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INTRODUCTION

Extensive studies on the scattering of slow neutrons by a
system of atoms have been carried out(l’g’B); However, only for gases
and solids has it been possible to make accurate detailed calculations.
For the case of liquids the complexity of the interatomic interactions
and their time variations make these calculations very difficult and
only through the use of several approximations has it been possible to
make any progress, Two of the approximations commonly used are the
static approximation(u), in which the change of energy of the neutron
upon scattering is assumed to be negligiile compared with the initial
energy of the neutron, and the convolution approximation<5), for which it
is difficult to find a physical interpretation, although mathematically
it is equivalent to setting the expectation value of a product equal to
the product of expectation values.

The static approximation gives no energy spread produced by
the scattering; and the diffusion model, which in conjunction with the
convolution approximation, predicts too great an energy spread as
- compared with experimentL

In this work a new approach is attempted. The method consists
of introducing a well known liquid potential function, limited to normal
liquids, due to Lennard-Jones and Devonshire(6), into the scattering
formulae., The energy spread predicted by this model is in better
agreement with experiment for the cases studied than the previously

mentioned theories,
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In Chapter I we have used the quantum mechanical theory of
scattering in order to obtain the basic formula (1.14) for the differen-
tial cross-section (in angle and energy) of slow-neutrons, The Lennard-
Jones and Devonshire liquid theory together with some thermodynamic
properties of normal liquids are reviewed in Chapter II, In Chapter III
an approximation to the Lennard-Jones and Devonshire potential function
(2.9) is used in order to obtain the differential cross-section for
monatomic normal liquids (3.20). The parameters used for several
monatomic normal liquids are discussed in Chapter IV and exhibited in
Table I, The results obtained for the angular cross-section, (4.7) and
(4,8), for these liquids together with experimental data available are
shown in Figures 5 through 9 at the end of Chapter IV, Some of the
existent theories are discussed in Chapter V. The resulting formulae,
(5.18) through (5.20), are compared with the model introduced in this
dissertation., Table II, at the end of Chapter V, shows experimental as
well as theoretical results obtained for the broadening .of the neutron
final energy spectrum width at half-height for liquid Lead at different
temperatures. A generalization to diatomic normal liquids and the
introduction of spin dependence into the scattering formulae are made
in Chapter VI, The results are applied to liquid Nitrogen, and the
angular cross-section thus obtained for liquid Nitrogen is compared to

the experimental cross-section in Figure 11,



CHAPTER I

QUANTUM MECHANICAL THEORY OF SCATTERING

In what follows we will derive the basic scattering formulae
to which all the foregoing theories are applied.

We want to consider a system of N bodies being bombarded by
monoenergetic slow neutrons of incident energy e€,, and we want to
calculate the number of neutrons scattered by this system into 0, o
and € (See Figure 1).

We can show that the number of particles scattered per unit
time into the solid angle dQ by atoms undergoing a transition from
initial state o to final state n, per unit incident flux, is given by

(Appendix A1)
_En gy 12
o (6)an = o ENON (1.1)

where Eﬂ and 50 are the neutron wave vectors for the final and the
initial state fespectively, and f%(e) is the amplitude of the 7=th
spherically scattered wave,

If we now define Py, as the probability of finding the system

in the initial state o (2 Dy = 1)
0

a(6)ag = 2 % pacf]‘(e)dsz (1.2)
an

would give us the angular cross-section due to transitions between all

final and initial states of the system,



Figure 1. Scattering Collision Diagram.



Let @ (r) be the incident neutron wave function, (Figure 1),
Ge (r,r‘) the Green's function for the appropriate Schrdodinger equation
(Appendix A.2), and
Lo @ = Olr (e e =/ &’ enx (£) T (z, &) fo(8),
then

¢ (x) =o(x) + & [l o, (r, 2') T_(z)¥ (x1),  (1.3)
= u y=0 r' & = - r-
where Aﬂ<§) is an energy eigenfunction for the scattering system,
will be an integral representation of the time independent Schrodinger
equation
[H(e) + H(x) + T (z, £) - el ¥{(g, £) = 0. (1.4)

In (1.4) & = &7, &, *++, &y represent the position vectors of N bodies
in the system, H(¢) the system Hamiltonian, H(r) the neutron Hamiltonian,
F(z, £) the neutron-system interaction potential, and e; the total
neutron-system energy.

In order to solve Equation (1.3) we make use of the well known
Born's apprdximation(Ythich may be obtained by simply taking inside the

integral sign in (1.3)

vo(r') 2o (') d (1.5)
which leaves us with
¥(x) Yo (x) + [P0 o (z, z') I o () (1.6)

The boundary conditions that the solution of our problem must
satisfy are that there is an incoming wave for the system initial state q,

and asymﬁtbtically spherically outgoing waves in every state
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- o ik~z k
urn(g)r:’ 0% 4 #¥(g)e MO s = (1.7)
roe f%(e)eikﬂr/rg othervise,

Thus, if we introduce the asymptotic expression for Gen(i,z') (Appendix

A.3) in (1.6), we get

¥ (I’) r— oo (I)(I‘-)v'— my, elk

1 3 -ik .r! '
e ). - o5 e ——— [ &7rleT IR Ig(z ol ) (1.8)

where m, is the neutron's mass. Therefore,

04 _ Iy 'il_i_ 'f_' P t
£2(6) = s l[ld V= Tglr') o (z') (1.9)

and since @ (r) =exp (iky « r) (1.9) becomes

1I‘ °(_1§_O k ) 1
gﬂﬁg /, =T, (x'). (1.10)

ff]‘(e) -

Meking use of this result and of Equation (1.2) we may write

m]_’l 2 k 5 11' eK 2
o(6) = < ) Yp L. | [ ddre HP (r ) 1.11
Orhe o < 1 ko l r' I ( )
where gn = EQ —En is the momentum transfer vector,

Thus far, we have said nothing with respect to I'(r,¢).

We will now assume it to be given by what 1s known as the Fermi pseudo-

(78)

potential’” *, and refer the reader elsewhere for justification of this



assumption. Thus, let

N orhi2
r(zr, §) = - ;lbs 5(r - &) (1.12)

where bS is the scattering length of the s-th atom and in general may be

spin dependent, and &(r) is the Dirac delta function,

Introducing in (1.11) the energy conservation relation(gfg),

we get
( ) 'l'f 'djr 2K (i) |o) |26(.en-e)de (1.13)

which with the help of Equation (1,12) and of the integral representation

of Dirac's delta becomes (Appendix A.k4)

N N e
k1 t “iKeg (t) 1K-g
o(e,0) = o fdtel 42y (al. Zl jélbgbje A Jla) (1.1k)
>
where g = ¢4 - ¢ (1.15)
is the energy transfer, and
£,(t) = exp (itH/ﬁ) £y exp (-itH/A) (1.16)

the Heisenberg's operator.

In order to proceed further we have to decide which system we
are going to treat and, therefore, which Hamiltonian we are going to use,
Having done this, we could formally calculate (1,16) and could go on with

the operations indicated in (1.1k4).



CHAPTER IT

NORMAL AND ASSOCIATED LIQUIDS

It has been customary to classify liquids into two categories,
those that followed certain empirical rules, such as Trouton's Rule, and
had similar physical properties like vapor pressure, surface tension,
etc.; and that minority thati did not show such correlations. As more data
were accumulated and knowledge of the chemical structure of the molecules
that formed these liquids increased, a better understanding of the
empirical correlations was obtained.

These empirical correlations were only explainable if it was
assumed that the internal degrees of freedom of the molecule were not
seriously disturbed by the closely packed molecules in the liquid state;
and that the molecule in the gaseous state was essentially spherically
symmetric. It is thus implied that in the passage from the gas phase to
the liquid phase the internal structure of the individual molecules was
little modified. These liquids were called Normal, On the other hand, the
liquids that deviated from these "normal' conditions were believed to
form in the liquid phase links among molecules causing disturbances in the

internal degrees of freedom (rotational, .vibrational, and electronical).

These liquids were called Associated,

Lennard-Jones and Devonshire Theory Review

Several attemptsao’lD have been made trying to explain the
thermodynamic properties of liquids., Lennard-Jones and Devonshiréé)(LJD)

made a significant contribution in this respect when they introduced a

-8«



=9-

potential energy, alrgady found empirically to fit the properties of
slightly'imperfect gases, in their liquid model. They found that this
particular choice could predict with satisfactory accuracy the temperature
dependence of the virial coefficient B(PV/k I =1 + B/V + C/V2 4+ -=.) of
the slightly imperfect gas, the critical temperature, the boiling point,
and the heat of evaporation.

In their work it is assumed that each molecule moves in its own
cell and a calculation is performed in which the actual time varying field
to which a molecule in the liquid is subjected is replaced by a suitable
average. This average field for a molecule moving in its cell is then
obtained by’fixing the immediate neighbors to their respective equilibrium
positions. All these "smeared'" nearest neighbors are assumed to be
arranged in a spherically symmetric fashion. That is, arranged with
equal probability on the surface of the cell,

In Figure 2 the central molecule is at P, a distance r from the
center of the cell. The center of the cells are separated a distance .a,
The probability of finding x "smeared" nearest neighbors in the area
encircled by the rings is

x(2na? sin6 d6 / Una®) = (x/2)siné Aae; (2.1)
the interaction potential between the particle at P and the particle at
Q is given by V(R). Therefore, the average potential energy within the

cell (r < a) will be given by

— /2 \ '
V(r) = fo/ VQJrQ + a2 - 2ar cos 6 ) g sin 6 d6 (2.2)



O R

Figure 2. Lennard-Jones and Devonshire Cell

It was mentioned before that the interaction potential chosen
will be that which predicts with reasonable accuracy the equilibrium

properties of the slightly imperfect gases, namely

V(R) = - ﬁz + ﬁ%ﬁ (2.3)

the well-known Lennard-Jones six-twelve potential function.

Therefore, after trivial integration and rather lengthy

algebraic manipulations, we obtain:
T(r) = V(o) + Ax(V%/V)2 [(V¥/V)2 o 1(r2/a®) - 2m(r?/a?)] (2.4)
where
V(o) = mx(V*/V)2 [(V*/V) - 2] (2.5)

in which if e* denotes the minimum value of V(R), and r* is the value of R

at which this minimum occurs, then



1]

A* = - xe* = xp?/by :
' (2.6).

V*/V = (r*/a)5 = (EV/M)%a"B'
where V denotes the volume per molecule éﬁd 1(y) and m(y} are functions
defined by
| 1(y) = (1 + 12y + 25,252 + 1292 + y") (@ - y)™0 -1 (2.7)
m(y) = (L + 9@ -9 -1

Approximation for Pabential

Equation (2.,4) tells us how the potential energy of a given
molecule changes as it moves in its cell, while (205).gives the valué of
this potential at the centervof the cell, The zero of -energy is, as
usual, that of infinite separation, The right hand side (RHS) of (2.5)
is a funchion of A¥ and V¥*/V only; that Of.<2°h) depends on these two
quantities and also, through a, on the numerical constant y_(a5 =y «V),
which is determined by the geowetrical arrangement of the molecules,

Some representative curves for V(r) for certain values of v* [V
are shown in Figure 3, Curves 1 and 2 haVe a potential hump at the center,
while 3 does not, It is found that the field cegses to have this central

hump when (Appendix A,5)

e = e | @ > 67,

Y oy B 3B n (2.8)
-k

1
For this range it is easy to see that if one expands V(r)
in a series of even powers of r, the main contribution to V(r) comes from

the r2 term, The contribution from the rest of the terms being neglected,



vivs. 38 ;1
£.840 ; 2
s.035;3

Figure 3.  Lennard-Jones and Devonshire Potential.
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Therefore, the potential can be written
T T 2
V(r) = V(o) + sr (2.9)

where

_Me? ¢ [y ) _ox (M 1ou
2 (Y (1 ] (S B

Equation of State and Derived Thermodynamic Functions

It has besn shown elsewhere(lo) that the free energy of an

assembly of N molecules &n a volume V may be exhibited as the sum of three
independent terms, the translational or kinetic motion, the potential,
and the internal degrees of freedom contribution. This 1s possible if
the partition functions of the system is given by the product of partition
functions for the kinetic, potential, and internal degrees of freedom,
respectively, This is satisfied by dilute gases and presumed to be a
good. approximation for highly compressed gases and for ncrmal liquids.
To these approximations the only distinctions among normal liquids,
compressed gas, and a dilute gas are entirely due to differences in
the potential part in the free energy.

Under this assumption one can show (Appendix A.6) that for

our parabolic approximation the free energy per molecule is given by

= V(o) - 3kgT 1n (kgT/hw) - kgT In j(T) (2.11)



1l

where j(T) stands for the internal degrees of freedom partition function.
From this relation one can derive related thermodynamic
functions such as the partial potential Y, the molecular heat content H,

and the equation of state (Appendix A.7).

Trouton's Rule

Trouton's rule can be formulated as follows: all normal

liquids have the same entropy of evaporation at their boiling points.

It is shown in Appendix A,7 that the heat content HL, for

the harmonic oscillator model is given by

L

H' = V(o) + 3k T[10 - 35 (V*/V)2][5 - 11 (v*/V)21™

L
+ B,

& Lax(VE/V)E[L - (VE/V)2)

and for the gas-phase(l0)

G

G
H' = (5/2)kBT + Eint

Therefore, the molecular heat of evaporation A, would be

Ay = HG - gb = (5/2)kpT - V(o) - G(V) + E(j%nto - E]:i‘nto

G(V) = 3kgT[10 - 33 (V¥/V)2][5 - 11 (V¥/V)2]~L - hax(vx/V)2 4
f[1 - (VX/V)2]
and the entropy at boiling is then

AS. he 5 V(o) - G(V)
kg kpTp 2 kpT kpTH

where we have assumed

G L
int. = Bint,

(2.12)

(2.13)

(2,1k)

(2.15)

(2.16)
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For Argon, for example,
(v*/V) 21, (m*/kpT) = 16,6 « A 8/kg 2 7,65
The experimental value is approximately 8, (See Table 2 Chapter VI

of reference 10),

Entropy of Melting

In reference 10 it is shown that using the harmonic oscillator
liquid model, one can exhibit the entropy of melting as a function,
although approximated, only of the frequency of vibration of the crystal
and the liquild state.

The value obtained for the entropy of melting is
. . c, L
A Sm/kB = %/kBTm =3 1n(w /w’) + 1 (2,17)

Formula (2,17) has been used in order to obtain o for Lead.
In order to do this, we have assumed that w* was determined by the
characteristic Debye temperature @(w® = (kB®/ﬁ) = 12,371 x 1012 gec™t
for @ = 94.5°¢12) and that the entropy of melting (Am/kyT = .95 10+17,
These values lead to wl = 12a575 X lOlESec'lq We will use this value

L
of w in Chapter V,



CHAPTER III
DIFFERENTIAL CROSS-SECTION ACCORDING TO THE APPROXIMATION TO THE
LENNARD~-JONES AND DEVONSHIRE LIQUID MODEL POTENTTAL
In Chapter I (1.14) we have established an expression for the

differential cross-section, ¢ (e, 6), which we may write in the following

form
g (e, 9) = GJ.nrler(€J 6) + Obuter(e’ 9) (5'1)
where
k_ itgy -iK- t) iK
Ginner(e’e) " ko gﬂﬁ[mdte Z'Pa al Z b5 s€ Es ( ) ’§S|a) (3.2)
and

Touter (£,6) = “o=f ate %0 ( (a2 3 5oy e i Es(V)eihrLy)a) (3.3)
ko 2rhi-e =1 j=1 |

;4&

The reason for this break-up of the cross-section is that for a

monoatomic system o. (e, 6) represents the non-interference cross-section,

inner
sometimes referred to as the direct-scattering part of the cross-section

and gives the contribution to the cross-section from those waves scattered
by each atom individually. The Gouter(eJ 6) represents the part due to the

scattering by different atoms giving, thus, the interference part or outer

effect.

Inner Effect

We will proceed first to calculate o €, 6). In Chapter II

1nner<

we have egtablished that when the range

o

(2v/u)2 a2 5 .67

-16-
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is satisfied a suitable approximation to the IJD model potential was given

by

V(r) =V (o) +s 19 r< a

with V (o) and s given by (2.5) and (2.10), respectively.
With the help of‘Figures 1 and 2 we construct Figure L4, and we
define

£s(t) =By + Es(t)- (3.5)

The vector £,(t) is then the position vector of the s-th nucleus
at time t, and it is given by the vector addition of a fixed vector By to
the center of the cell, and a vector Es(t) which gives the actual position
of the s-th nucleus with respect to its equilibrium position at time t.

We may write the true Hamiltonian

N LD n o
At _ AT}
B =2 (- B ) 2 (- TR V()

for n electrons, N nuclei, and V the sum of electrostatic interactions
between all of them, In this section an approximate Hamiltonian has been
used in which we have replaced the potential V (z, E) by our approximation

to the LJD potential. Thus

N
B! ;’ H = Z HS (5"6)
s=1
and
B, = (p5/21,) + (u7/2)x5 + F(o) (5.7
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Figure k4.

Nuclear Coordinates.
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Let

I

05(E, t) = exp [-iKe£ (t)] (3.8)
Then
0,(8, £)0%(5,0) = a5(z,t)0f(x,0) (3.9)

where Q' is the hermitean conjugate of Q, Therefore,

N
1nner(€ 0) = (K/E“ﬁko)°!wdtel q<séibsgs(£:t)gs(£;o)>T (3.10)

where the thermal average indicated by < > is evaluated through the

use of a corollary to Blogch's theorem2 lh, and (Appendix A.9)

+
< 9 (r,t)a (x,0) >

2 p(a|b 2e-1Kers(t) iKorg a)
= I p (et |

| (3.11)
2% nAl*-intw*A?{2 o

= bs Z e 2 In(A 'K )o
N==00

The Heisenberg's operator is given by (Appendix A.8)

;S(t) = exp (iHt/H)r, exp(-iHt/A) = cos wtrg (o) + (sin wt/Mw)gs(o)
(3.12)

where

K2 = (2n,/8°%) (e + ¢, - 2" ee, cos 6)

o

A, = (fAw/2k,T)

* E (3.13)
Al =

: (#/2Mw)csch Al
A' = A' cosh A

3 2 1

and In(x) is the modified Bessel's function of order n, which can be

written in terms of the ordinary Bessel's function, Jn(x), of order n
_ a=n .

(I,(x) =14 Jn(lx))°

Upon substitution of (3.11) into (3.10) we obtain
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Ginner (e, 9)

=b2 W L (k/k ) eTAzK * nhyc (3.14)

NN ==00

oI, (AJK®) & (e, - € - nfw)

Outer Effect

As has been mentioned before, the interference between the
amplitudes scattered by independent atoms of the system produces changes
in the intensity which have been observed in X-ray diffraction and lately
also in Neutron diffraction.

In order to calculate this intensity exactly, it is necessary
to have a detailed knowledge of the interparticle interactions and of the
position correlations to which they lead. In order to determine the
inelastic part of the outer effect, a knowledge of the time dependence
of these position correlations is necessary as well. The exact
calculation of these effects is extremely difficult. This fact forces us
to make some approximations as described below,

In what follows we will make use of the familiar Heisenberg's
operator time expansion technique(2’152 to calculate the thermal average
We will then show, in the Appendices A,10 and A.l1l, that the

in QOuter'
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zero~th order term of this expansion may be related to the well-~known
radial distribution function, g(r), through the use of the Irving
Zwanzig theorem. The function g(r)dBr is defined to be the probability
that, given an atom at the origin, a distincet one will be found simul~
taneously in d5r about r. The first order term is shown to be zero(l)

if the Wigner distribution functions are assumed to be isotropic in

the momenta, (Appendix A.10), In this way it is shown as has been pointed
out elsewhere(l7), that inelastic effects are much less prominent in the

interference terms than in the direct scattering.

Therefore, we can write

(é,@)

N N iK ”‘(ij“‘-g.s)'i‘
o >0
outer

(k/k_)8(eq-c) < 2. 2 Dbgbs
fkolbleo s7b g=L ° 9 * (3.15)

(b h/ko)s(éoqs) o [ dBreiK' £‘é<f)

I

where p is the number of atoms per unit volume., (See Spin Dependence
Chapter VI).

Much theoretical and experimental work has been ddhe with regard
to the radial distribution function in liguids. On the theoretical side
Kirkwood(lB), Ivon(l9), Green-Born(go) have derived integro-differential
equations which through some approximations have been solved for certain
choices of potentials., These cases have been reviewed in a book by T. L,
Hill on Statistical Mechanics.(ll)

On the experimental side the determinations of the radial dis-~
tribution function, using X=ray diffraction, for several elements have
been reviewed to great extent by Gingrich(2l); and for those cases in which
neutron diffraction techniques have been used Henshaw, Pope, Hurst, and
Brokhouse, t0 mention a few, have measured g(r) for Argon, Nitrogen mole-

cule, Oxygen molecule, and Lead<22’25).
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For our particular problem the choice of the theoretical
radial distribution function, which we will use in our calculation of
Gouter’ will be governed by the consistency in the interaction

potential used to calculate on the one hand, the g(r) function and on

the other our o

ipner calculation., Namely, we would have to calculate

the g(r) function by using the six-twelve Lennard-Jones potential. But,
since this calculation has been done elsewhere using a modified
Lennard-Jones and Hard-sphere potential because the calculation of

) . ooty (11,24)
the Lennard-Jones potential alone turned out to be extremely difficult

there is no need to repeat it here., Instead we will use the hard-

sphere potential,

U(r) =0; r>ad
(3.16)
:oo,'rSd_
and an expansion to first order in the density(ll’29)
O; r>d
g(r)=-{
.1; r <24 (3.17)

=1 + (4npa3/3)[1 - (3r/bd) + (r/a)3/161a < r < 2d
of the radial distribution function (Appendix A.12) for simplicity's

sake, since the results may be exhibited in closed form,

Incident Spectrum

Although we have assumed in the theory that we had mono-
energetic neutrons of incident energy €,, this is not achieved in
practice, and therefore, in order to compare theoretical results with
experiment, we have to introduce into the theory the fact that the

incident beam has a finite energy width, about an average,zé rather than
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being of the ideal 8(ey-€,) type. Assuming this energy spectrum is
given by a Gaussian distribution (which is approximately the case for
most crystal spectrometers) as
G(ep,eo) = L exp[-(eo-€0)2/p?] (5.18)
we may then calculate
c(e,@;Eg,B).:.f:deoG(eo,Eg)d(e,egeo) (3.19)
and obtain (Appendix A,13)

G(G,Q;EO,B)/NbEL = Uouter(€;95zoza) + GO(G,G;EO,ﬁ) + 0+(€99.‘;EO)B>

_ (3.20)
+ 0_(¢,0;¢,,B)
where we have written
Uinner(€:95go:ﬁ) =0y + 0+ 0
and
2
Q, = € + n(fiw/2) - Ve(etnhw) cos 6 (3.21)
qo(e,eggs,g) = exp[- (6-55)25“2—26A5sin242 lIo(EeAgsing g) (3.22)

04(e,05¢0,B) = Z:V (e+nhw) ~1T (Aan exp[-A Qh+nA (e- Eg+nhw)2/52]

(3.23)
o_(e,85¢e5,B) = ZUV€(e-nhw)'I I (A2Q2-n)-exp[-A3QxunAf—(ﬁwe ~nHw) 2/52
' n=l " (3.24)
and for O4ite, (Appendix A,1k)
Oouter(€;6; 50:5) = exp[ -(e- e B ]{B} (3.25)
In expression (3.25) the bracket is given by
B} = -DA, ., (y) + (3D2/16) [24(y2-1)-cos 2y - 48y sin 2y
& 7z / (3.26)

+ (5% + 1292 + 24) « cos y + (432 + 2hy) sin y]
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where
y =Kd = (4nd/n) sin (6/2) (3.27)
and )\ is the wavelength corresponding to the energy e,

D

il

bnad 3); As = (Lm, /A2)A)
(bnd”p/3); Ap = (4my/8=)A4 (3.28)

]

‘A5/2(y) 3(sin y - y cos y)y‘B; A5 = Apcosh Ay

In formula (3.26) we can immediately recognize the first term
as the familiar Debye approximation to the outer effect, while the rest
is closely related to a similar expression derived in the classical

)

approximation (high temperature) by Mazo and Zemach“ “in connection with

neutron diffraction by imperfect gases.



CHAPTER IV

CALCULATTIONAL PROCEDURES AND DATA

Energy Transfers
In Chapter IIT, (5.20), we have expressed the cross-section

as the sum of four terms, the second of which, 05(€,8; €5,B ),
represents the elastic contribution to the direct scattering of the
neutron final energy spectrum. This 1s seen to be the case because for a
narrow width incident spectrum the main contribution to g, comes from
those values of € close to Eo, as given by the Gaussian centered at
about Eé, In the same way one can see that the Gaussians in the
third and fourth terms (3.23) and (3.24) are centered about €, - nfw
and EB + nfiw, respectively, which indicates that the neutron has lost
or gained nhw units of energy in collision. Thus o, and g_ give the
inelastic contribution to the cross-section resulting from the loss and
gain of energy by the neutron. The first term, 0, teps in the
approximation considered is formed only of elastic scattering. Therefore,
we can see that the summationsin o, and 0. are limited, essentially by
the amount of energy the neutron can lose to or gain from the system.
We can then say that if in the average the system is in thermal
equilibrium, and thus has kBT units of energy the neutron can approximately
gain this same amount. Then the upper limit in the summation in the
0. expression would be given by

n_ = (kgT /'ﬁw) (k1)
On the other hand if the neutron has E5 units of energy with which
it started out, it can only lose this ﬁuch; and the upper limit in the

summation in the o, expression is

—25-
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n = (Eé/'ﬁ@) (k.2)

Nearest Neighbor Distance and Hard Sphere Dilameter

We have seen (Chapter II) that the average nearest neighbor
distance or the distance between the center of the cells is given by
"g", and that "a" enters into the expression for w, the oscillator
frequency. We have also seen (Chapter III) that in the calculation
of g(r) another parameter entered, d, the hard-sphere diameter, These
two parameters are not equal. However, one may obtain an approximate
relationship between them by noticing that if one would use the Lennard-
Jones six-twelve potential to calculate the first peak in the g(r)
function, it would be given by the minimum of the Lennard-Jones potential.

The value at which the g(r) function has its first maximum is
then

Tt max = TF for LJ potential (k.3)
For the hard-sphere potential this maximum appears at "d"

Tigt max = & for hard-sphere potential (4.k4)

Therefore, using (2.6) we get

vx\L/3
d ¥r* = —_ k,
r* = a V) (4.5)

Calculational Procedure

We can summarize our results by writing for the differential
cross~-section of normal liquids
0[6)93 EO}B)TE w(U;V;a);p] ()4'06)

which tells us that if the inequality
1

(2v/p)2a'5 S 67
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is satisfied, and if we also know
a) the experimental conditions
i, average incident neutron energy, Eé,
ii, dincident energy spectrum width, B, (which may easily
be related to the half-height width), and
iii, the temperature, T, at which the liquid was kept
during the experiment, and
b) the liquid under investigation, defined by
i. the number of atoms per unit volume in the liguid,
p, and
ii. the oscillator frequency, w, which is related to the
six-twelve Lennard-Jones gas-phase potential parameter
u and v, and the nearest-neighbor's distance, a,
we can obtain the intensity of neutrons scattered through angle 6 and
into final energy €.

Table I shows those elements for which there is gas-phase
datal® available and for which the cross-section has been calculated
according to the parameters also shown.

In the Case of Lead the y and v parameters are not known.
However, one can estimate the oscillator frequency for the liquid state
by making use of an approximate expression for the entropy of melting
(Chapter II, (2,17)). The value of w thus obtained was used in our
calculation.

The results for the angular cross-section are shown in

Figures 5 through 9. Figures 5 and 6 show the angular cross-section
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2-2’25)is available

for Argon and Lead, respectively. Experimental data(
for these two elements, and we have shown it in the same graphs. The
theoretical curves were obtained by integrating the final energy spectra
at each angle, i.e.,

o(0) = [ deo(e,0; eg,B) (4.7)
and the normalization of the experimental points is that which gives
closest fit at large angles.

Notice, however, that in the last three figures T, 8, and 9
(Neon, Krypton, and Xenon) we have only shown a few integrated points
at large angles. The integrated points are properly indicated on the
curves. The angular distribution shown is

a(6) = [ ded(e - &) o(e,8; €,B) (4.8)
which is equivalent to counting particles with a counter that only
detects those particles with final energy EOQ

This was done due to the fact that there is not any experimental
data available for these elements. Therefore, the nearest neighbor
distance "&" is not known. We have guessed this parameter for Ne, Kr,
and Xe from crystal daba and calculated r¥, Thus it was felt that the
complete energy distributions were not necessary.

Notice, also that the asymptote (see diagram) about which the
intensity fluctuates is a function of temperature. Although, not a
very strong function of temperature, this feature may be detected
experimentally.

The final energy spectra widths at half-maximum are given in

Table II, Chapter V.
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Diagram. Intensity versus Scattering Angle as
a Function of Temperature.
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CHAPTER V

COMPARISON OF AVAILABLE THEORIES WITH "SMEARED" POTENTIAL MODEL

In what follows we will try to outline briefly some of the
available theories and to compare the results obtained with these

theories to those obtained with the model investigated in this work,

(,25)

Zernike=Prins Static Approximation

Although originally the Zernike-Prins formula (5.5) was not
derived in the manner we will describe below, it is equivalent to
assuming the time-dependent operator gs(t) to be slowly varying in time,

Thus, setting t = 0 (static approximation)
95 (£,0) 9F (£,0) ¥ 95(£,0) 95 (£,0) =1 (5.1)

and as before (3.15)

N N
<’S§l ng 9 (£,%) 95 (8,002 Mo [ &°r g(r) exp (iK-1) (5.2)

7
Therefore

o(e,8) = b (eg-e) (i/ko) (1o [ a7re(r) exp(iK-r)) (5.3)
which with an incident spectrum of the form (3.18) gives
o(e,05¢€,,B) /ML = exp[-(e-¢,)2/p2](1+p [aIrg(r)exp(iK 1)) (5.4)

Convolution Approximation

This approximation due to George Vineyard(5> is essentially

described in the following manner: define g(r)d’r = the radial

-36-
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distribution function = the probability that, if an atom is at the origin,
& distinct atom will be found simultaneously in d°r sbout r, G(r,t)ddr
the time-displaced pair distribution function, the probability that, if
an atom is at the origin at time zero, an atom will be found in &y
about r, at time t, Therefore, we can write

G(z,t) = Gg(x,t) + G, (r,t) | (5.5)
where Gs(ﬁ:t) = the probability of finding at r and time t the atom that

was at the origin at t = 0, and

Gd(g,t) the probability of finding at r and t an atom distinct
from the one that was at the origin at t = 0.

These two functions are formally defined by

N
G, (z,t) = (2n) 201 fadke-iKer < )] 0,(£,5)0%(£,0)>y (5.6)
K 4=l |
and
Ga(z,t) = (2n)7207F [ aPke K- L L ayle, 105800, (5.7)
K %J

If now in (5.7) we let (convolution approximation)

7‘3 ng%(_g, )0} (£,0)>= %uzl%( £)0}(£,002,(£,0)05(6,0)>
J , J

(5.8)

v L + M
¥ 2<E (5, )8}(5,0) T??} 20,8008 (8,00,
J
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(5.7) becomes

Ga(r,t) = (2x) 72wt fadke 1K L. [N—l<leQZ(§,t)Q:E(_§yO)>T
j(/:

(5.9)
L 2 : Sor [ fodee KLY Y
< Q,(e,0)Q (£,0)> = fa?r'[fa RrIc Q,(t,0)0.(g,0)>
szlg(g )9,(£,0)>= Jar'[[aKe L o a(8:008;(2,00>p]
#3 %J
5 4' t il +
[ fadk e Ki(z-r') o7 2)(8,)90}(£,0)>,
4=1
Gy(r,t) = l[ g(r') G, (z-r; t)
where g(r) is formally defined by
(r) = (2n) 2wt fadxeiK L <1§ lglsz (£,0)0. (£,0)> (5.10)
BT Y = = A AT R "
& a
Finally, by applying the convolution theorem, Vineyard showed that
(5.11)
kK be 1  y 9 2
o(e,6) =-———f <L 2 ayE,t)o (é 0)>;= Nb —lf*—I‘ (K,q) [1+7(K) ]
ko 2rh~ £=1 j=1
where
r(60) = [ ot [ gg(r,e)etEzat) (5.12)
and B
y(K) = [ glr) e'ELadr (5.13)
T

By definition the Gs(z,t) function is interpreted to give the
wandering away of an atom from the origin. In one of the models Vineyard
used, he assumed that this distribution was governed by the diffusion
equation

(V2 + %) G (x,t) =0 (5.14)
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which when solved for a point source at the origin gives

Gg(r,t) = (4nDt)_5/26xp(—r2/4Dt) (5.15)
This.result:leads to
ry(K,q) = 2DK[(DK?)2 + ¢2]-1 (5.16)

and thus to

o(e,0) = (Nb2k/ko)2DK2[(DK2)2 + q2]-1(1 + pfeiK-rg(r)a3r) (5.17)

Summary
Let oy(€,0), 0o(€,0), and 03(6,9), represent the Zernike-
prins formula, the Vineyard diffusion model, and the "smeared! potential

liquid model cross-sections, respectively as given below

oy (e,8) /20 = 'f;k_ 8(e-e;) (L + p [ K I g(r)adr) (5.18)
O
op(e,0) /02N = £ 2DKE (1 4o [T g(ryadn (5.19)

ky, (DK2)2 + g2 ;
> e
05(6,6)/b2N = ig-néLWS(eo—e—nﬁw)[e'A5Qn+nAl~In(A2Q§)

. (5.20)
+ p8,, f eiK-r g(r)dBr].

We, therefore, have that
(a) the static approximation, oy(e,6), gives no final energy
spectrum broadening,
(b) the diffusion model, 02(6;9), gives an energy broadening
given by the half-height width equal to Aeg ¥ SHDKZ,
and

(c) the "smeared" potential, o,(e,0), although difficult to

5(

write in closed form, gives an energy broadening, calculated

by a 704 IBM machine, usually smaller than.that predicted

by (b).
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The half-height widths for liquid Lead, at two different
temperatures, have been measured and reported in the literature(26)
in an attempt to check the diffusion model,

We have calculated these widths using the "smeared" potential
model, The results of the experiment, the diffusion model and the
"smeared" potential model are shown in Table II. The incident half-
height width is given by Ae,, the "smeared" potential half-height width
by Aey, the experimental half-height widths by Ae,, and the diffusion
model byvAe5,

It 1s observed that the width at half-maximum increases with
temperature. This effect is also observed in the other elements studied.

It is also observed that the energy spectra are more sensitive to these

changes in temperature than the angular distributions (See end of Chap. IV),

TABLE II

LIQUID LEAD FINAL ENERGY SPECTRUM WIDTHS

T AT Leq Dep Ae3

°K (x 107%) | (x 1079) (x 1078) | (x 1072)
Element ev ev ev ev
Lead 609 1.06 1,78 1.86 + .11 2,30
Lead 823 1.06 2.07 1.98 + .11 L. 60

NOTE: Comparison for Liquid Lead of Experimental Widths at
Half-Maximum, A€2?26), with the Widths at Half Maximum
for the "Smeared" Potential, Aey, Calculated for an
Oscillator Frequency, w = 12.6 x 1012 sec-l (See
Chapter II, p, 15) and the Diffusion Model Aez(2,26),



CHAPTER VI

NORMAL DIATOMIC LIQUIDS

Diatomic Molecule
The time independent Schrddinger equation for a molecule may

be written as

# N o N £ o
(-_éfn—é-z v, - .Z EB—@EVJ+V)\1’=E\¥ (6.1)
i=1 J=1

There are n electrons and N nuclei and V is the sum of electro-
static interactions between all pairs of them.

It can be shown(27) that the above equation may be separated
into two equations. One of them describing the electrons motion and the
other an approximate equation for the nuclear motion. Born and Oppenheimer(ga)
have shown formally that this approximation is Jjustified so long as not too
high vibrational and rotational modes are excited.

In Figure 10 we show a diatomic molecule, the center of mass
position vector R, and the relative position vector r. We will use the
following notation. The actual position vector of the vth atom in the

s-th molecule will be denoted by g; . In terms of the center of mass

position vector and the relative vector 1t i1s given by

v
tE =R +f r (6.2)
=g -3 —s
where
v_ %
f = - M v =1
M
1
=K/I—JV=2 (6'3)

Iy
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Figure 10. Diatomic Molecule Coordinates.
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Turning our attention to the diatomic molecule Hamiltonian,
we can show that the approximate nuclear motion Hamiltonien, HDM’ may
be written as the sum of the relative, H., and the center of mass

Hamiltonian, HCM’ as follows

Hy = Hey + H, ( 6.4)
where
2
By = -5 V(R M=+ (6.5)
and.
2 o 2
B -L L 2,208 LEL Ly ( 6.6)
20 r? Jr or 2ur

where u 1s the reduced mass ( = M;M,/M), L? the angular momentum operator
and U(r) the potential energy.

In order to describe the motion of the diatomic molecule in the
liquid phase, we introduce our approximation to the LJD liquid model
potential as an additional potential to which the center of mass is sub-
Jected. For normal liquids this is believed to be a good assumption
(see discussion in Chapter II). We may thus write as an approximation

for the diatomic liquid Hamiltonian,

2
= M
Hpp = Hyy + V(0) + -E—Rg + H. ( 6.7)

Spin Dependence

Spin dependence may be introduced through the neutron~system

interaction potential (1.12) if one writes for the scattering length

by = aj+plg * S ( 6.8)



il

v
where bz

molecule, o is the neutron spin operator (Pauli spin matrices), §; and S;

is the scattering length associated with the vth atom in the £4-th

are the nuclear spin operator and the nuclear spin of the vth atom in the

fth molecule, respectively; a; and Bz are given by

oy = [(s% + 1)ah" + % 2" 1(es + 1)t (6.9)
gy = 2(a)" - AV (esh + )™

These are the customary definitions of coherent and incoherent scattering

amplitudes, respectively. The scabtering.amplitudes for the two values

of the total angular momentum S; + 1/2 are given by Azi‘

For unpolearized neutron beams and nuclear spins we want to cal-
culate the aversge over neutron and nuclear spin direction of the thermal

average. We will indicate these aversges by { }i. Therefore, we want

N N 2 2
{<3 ¥ % ¥ %o, (gt) 'l 0) >} (6.10)
gl g1 vel el 29 A ETTU T}"

where

A (&%) = exp [-4k « £y(t)]

which in Appendix A.1l5 is shown to be equal to

{< /&;Lvu oyl 0% (5,8) &) (6,00 > o} (6.11)

LNV S TR TP
u%m[cxﬂad + T BBy sz(sz + 1) %aw)
1
c<a’ (g,t) AMT(E,0) >+

- Vv n
Fou PPy Palrn,

av(e,e) ob (8,0) > of°

. v . :
{<§Z .@J J
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where Oy, L, =1, if atoms v and p in molecule / are alike,

O, otherwise,

For spinless systems this reduces to

S vV i +
< T b Q £)05(8,0)>r = L oyos <o (e,t)0(£,0)> 6.12
{< 3 reimey 6,0 it R REAUOL N CES

For monatomic systems we have

s N ) .
{<,zJ§vbgb 2,(6,%)0 (g, )>, }G— gl[ot +—5 5 (S£+l)]<§z (£,t) £(§J0)>T
(6.13)
* £=1 j=1 ajaﬂ < Qﬂ(i)t‘)QJ(E,O)>T,

7

Thermal Average

We can write for the Thermal average with the help of (6.2),

-+

< 92(5,t>9§ (£,0)>, = < e'lﬁ‘fﬁj(t)+fzzéﬁléiﬁ‘(Ej+f“£J)>

(6.1k)

| —iK-Rﬂ(t) iK.R >

V
= < \]fc e = = JIWC T < wrle _IS_'I’ (t) lf“}{chl

The last step is easy to obtain once one notices that the
diatomic liquid Hamiltonian is separated in two, the center of mass
hamiltonian, H, = H,y + V(o) + Mw"R%/2, and the relative motion
hamiltonian, H,., and that they commute. Also because of this fact,

the total wave function may be written as a product

Wegok,) = BRIV, (2). (6.15)

r

n (6.14) we recognize the thermal average of the center of

mass motion as the one we encountered in the monatomic liquid treatment,
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and, of course, the same remarks apply. That is, when £ = j we use (6.19)
for the Hamiltonian, and for 2 # j we use the Heisenberg's operator time

expansion method, which we have seen lead to the radial distribution

function,

Static Approximation

The relative motion thermal average will be treated in this
section in the static approximation (See Appendix A,16 for discussion

of further correction terms), Therefore, setting t = O we have

. oV .
< wile-lf K.r,(t ) lfMK Ly | “<:w lexp[iK- (f“r -fv rz l (6.16)

At this point it is necessary to make an approximation in
the relative motion Hamiltonian. As it is standard practice in treating

diatomic molecules, we will expand the potential U(r) about its minimum

rM. Thus
Hr = Hrot + Hvib (6‘17)
where
- xere 2
Hpoy = L7 /2ury (6.18)
and
1 D o0 U2 5
Ho sy = = — — — 1r° — + U(ry) + =M (r-ry)= 6.1
vib 2, 2 Jr - ( M) 5 ( M) ( 9)

The relative motion wave function y, separates into a product
of the rigid rotator wave function, Vpot» and the vibrational wave

function vy 4y . Averaging over directions of the molecule axis, we obtain
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< zyr|exp‘[li§.(fu£j-fv££)]|z[rr> ¥ < wvibljo[Krj(fH-fV)]l Vo> 5 & =3

=<@Vib[Jo(Krjf“)Jo(Krsz)lwﬁibkr 504 F . (6.20)

Expanding ry about the minimum ry of the potential U(r) we finally obtain
<x¢f|exp[i§«(f“rj—fvr£)]]wf > ¥ jo[KrM.(f“—fv)] 5 4=
J (6.21)
= Jo(Kry3tH) Jo (K £¥) 52 £ 5.
The cross-section may then be written, after integrating over
incident energy spectrum
~ 2 s e -AzQ2+nhA - (e~g, +nhw)2/p2
U(e,e;e,ByaAONL =L Jm e ™ 17{&% (6.22)
'In(AgQg)[jo(alrMQn)+Bg/A§]+23§(alrMQo/2)pfdrg(r)Mﬁre[sin(alQOr)/aiQor]'
T

where ag =\/8mn/_.‘ﬁ2

AO = coherent scattering amplitude,

L Bg the bound-scattering cross-section = ae + %BES(S¢1)
and Q, is given by (3.21).

In the aforementioned we have assumed equal mass atoms in the
modecule and neglected the spin correlation term that appears when the
atoms are alike (last term (6.11)). In Reference 2 the spin correlation
term is discussed, and it was found to be negligible except for very
low mass number atoms.

Equation (6.22) has been computed in a TO4 IBM machine for
the Nitrogen moleaule. The results are shown in Figure 11 together

(22)

with the experimental data . In Table 3 we have given the numerical

constants that entered in this calculation.
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Results

In Figures 5 through 9 we have shown the calculated and the
experimental angular cross=-sections (When available) for the monatomic
elements studied. In Figure 11 we have shown the nitrogen diatomic
molecule angular cross-section. The agreement observed is believed to
be satisfactory. However, a radial distribution function more accurate
than the one employed in this paper for the outer effect would probably
improve the agreement.

In Table IT we have shown the broadening of the neutron final
energy spectrum as calculated with the "smeared potential” liquid model

and compared it with the experimental data as well as with the diffusion

model. It is seen that the "smeared potential" model is in better agree-

ment with experiment than the diffusion model. It is felt, however, that

more experiments on the broadening of the energy spectrum should be per-

formed, using monatomic elements as well as polyatomic elements, in order

to further test the accuracy of the model introduced in this dissertation.

No experiments on the energy distribution of normal polyatomic liquids

have been reported in the literature.
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APPENDIX A1l

TRANSITION CROSS-SECTTON(3L,32)

Let W%S(E) represent the scattered wave function from initial state
a to final state n. We determine the number P%S(e)dn of particles scattered
per second into df by equating it to the flux through a surface element of

the sphere of radius R,

v
o,

¥ ol x
7 . F X (B‘Vv\_s e %s A\ 57 (A.1.1)
LY\JG‘ m-zqus S \bﬁs\@ il

and since wﬁs(g) has the form

u(f\ — . oo (] (A.1.2)
\3( {q(gﬁ args( qu\ /

0

we obtain for the transition cross-section per unit incident flux in the =z

direction, Jug,

X

o &= B/ o

:H’«Y\\ 42(9\\2@2/m R* ] (& R, (o \‘k

= =

. I " L : }
= ( \Q / “f‘e.,;,\_ \ "\m‘ (B) \\ (A.1.1)
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APPENDIX A.2

INTEGRAL EQUATION

The time independent Schrodinger equation is given by

(A.2,1)

[ H('YHH(EHWQS\'EJ @ (\E)g\ =0

Expand ¥(r,¢) in terms of the complete set of stationary state wave

function of the system

(e.2) =3 by A (3 (8.2.2)
@ - e \P(S (3g

where

H(z)‘/\@(?’: E—@_/\ (3) (.2.3)

®

Then (A.2.1) becomes after substitution of (A.2.2) and (A.2,3)

\

Define

ZLE - € +H(\+ (e \] m_/\\s\:() (A.2.4)
e+ - ‘3 \\((3 (g-

€ = E-k;— = (3 (A.2.5)

-53-
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and multiply Equation (A.2.4) on the left by A?(ﬁ) and integrate over

£ space, then we obtain

c) _ v = — Y (A.2.6)
[H e GA‘N)&‘(') %%P\&Aém

where

P (v )

0 (¢t Tle Rl p)
|1 !\s;cg_» Me,3) (\.F@

| J

(A.2,7)

Introducing the Green's Function, G (r,r') defined in Appendix A.3
7

we can write Equation (A,2.6) in the form

\“{\: &(t % EY\ Q‘ \‘ T P (‘(WK\) (Y (A.2.8)

Y

where ¢(r) is an incident plane wave.



APPENDIX A.3

GREEN 'S FUNCTION

Define G (r,r') by the following equation

V5 )@Z‘Q'Qf\t‘\ =- 3 (e-¢") (:2:2)

and take the Fourier transform of both sides of this equation

- §L __;\NQ}s!: >

(ZW\ZHA’W‘@ VG (x

.an since -;‘E‘.! 2
Sé\”v 0 V G (e 'y =
4 'k

- (A.3.3)

2 v
=-k So\'ﬁr@ G (e

[y
we obtain i | _ i’vn
F(!‘\’@‘)=<zﬂ%g(\7’“@ e (8.3
Ly, il
=—(zn) -~ g /Uﬁz—h\z)
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Therefore, by inverse transformation, we obtain that
-3/ \ \%‘
G\‘k(t)g'\-_—(w\ So\"\a F(v‘ R
E\

This integral has been evaluated elsewhere(27%md the result is

VR - ')
0,
TAie-v'|

Gyk(f‘!‘_‘\:

That takes the asymptotic form

>0

G\—}@(\gs\f\) = L)u\okk\ﬁ\(‘f&\@'[\\/ 8

leoe'l = v w
| =
le-e'l = [istoe/e))r

-

W =(r.¢ \ L )

(A.3.5)

(A.3.6)

(A.3.7)

(A.3.8)



APPENDIX A.4

ENERGY CONSERVATTON (2)

In Chapter I we obtained (1,11)

€ (o) =(W\n/2n’0\z§z ;(Z ’ﬁ(%(kv)/}reo)‘
: \"-\< | 2 (A k1)
'H(ﬁ‘ o Ny |

¢! Y\‘°< )

which may be written

Tior= (W‘n [2mR* \2 gh«% |
§ (k,r\z\l)k (1.2

. S )%o | SY\J\%Y\ Q'a!\\_ Pv]c((ﬁ
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represents the differential cross-section (in angle and energy)y and
wherelﬁ(en - €) takes care of energy conservation.

Consider

(A.4.4)
"
Ho\‘v‘(v'\ﬁ(v\\F o()l

A’%&Pv Q, 0
, AR E/R * _iNGit

Z Wy MUK /)“ ) P*Ww)

\ \ d P \ gCGV\-—G\ (A.k.5)
i IRV 2

= (2n4 S CXh Q) E& \ x e a3 ) 0
ey’
SCTIRTRTIMNGRANES
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where we have used the hermiticity property of H(é) and the relation

1St /% AN
J A zy= 0 A _(3) e

easily proved by expansion, and
&a- eo-e

According to (1.12) we have that

(¢ 3) =

therefore

which when substituted back into (A.L.5) gives
'\ y:' - 1
Z{|#e Wi iegla \ J(e-e)

0 ’c
m\(m\zg 4(

5)):l -

(A 4,8)

o)



APPENDIX A.5

PARABOLIC RANGELO

In order to show that in the range V¥/V > ,67 the LJD potential
V(r) has a minimum at r = O and no other, one would have to take the
derivative with respect to r of V(r), equate it to zero, and then show
that r = 0 is a root; and that there are no other real roots for the
above indicated range., Also the seaond derivative at r = 0 must be

positive.,

Thus, using (2.,4%) and y = r2/a2

h

AN R VAT

U%) +

(A.5.1)

Therefore, r = 0, and

o Lly) = W\‘U@ ! \o——(\/*/\/\ /2 (8.5,2)

which leads to

(12b-5Y) + (1524 b+ 333% F(237.6b- 23y 4% ¢
_ (A.5.3)
+ (88\0+&45\%3 v ( 6\0—K35)%L\+75 %5-13 %6 _\_%Vbj - 5

-60-
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For the range 2b = 5/11 and for y < 1 there are no positive roots,

The second derivative evaluated at r = 0 is

\\

h L (0) —W\”(O\ = 4o0.4 \0—28 > O (A.5.5)

for 2b = 5/11,



APPENDIX A.6

HARMONIC OSCILLATOR FREE ENERGY

It is shown in Reference 10 that the free energy of an imperfect

gas or normal liquild is given by

F:—-)e%—\[w b (2l T /1) +

(A.6.1)

1

F N I AR b &(T\J

where the first term represents the contribution from the translational
motion, the second the internal degrees of freedom, j(T) the partition
function for the internal degrees of freedom, and Q(T) the potential

energy W contribution,

—\ /T

_ \ (A.6.2)
_Q(\):-——' %\DOXS\N\“‘MNQJ
N
dw; the volume element, to which the center of the i-th molecule in
the 1iquid belongs, For a harmonic oscillator W = V(o) + sT°
~\ \ = -
QT = NV aepl =N Vo) /e T 1
3
0 \ (A.6.3)

6o.
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Q(Ty = —SNkT o (o T /7 w) +

(A.6.4)

-VET-NV0 WRT%W(T\



APPENDIX A.7

THERMODYNAMICAL FUNCTIONSO

By definition we have that

VIEN L) (IF
e << | 2 (TY) ST

TN

)

o - oreens mery - - T4 (T /NT)

Y = Partial potential = .% + ? \/

and

H = Heat content = E + :Pv

(A.T7.1)

(8.7.2)

(A.7.3)

(A.T.L)

which for the harmonic oscillator potential, and with the help of (A.6.4)

become

VN AT

(A.7.5)

+3k T (522 (V%7 V)] [5- 1 SN

_ | o L
E = V) 43 rs,,T ‘\'E‘mt

L

BT BT g g (T

\

-6l -
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H= Vo) +3k T{10-35 (/v )]
-
{v:- 0LV VY T e A

[K\}*/\/\l— )1] +E\;V\t .

(A.7.7)



APPENDIX A.8

HEISENBERG 'S OPERATORJ2

Making use of the expansion

BU) = wep GME/H) O “‘V’““*““

(A38.1)

iy
\VWS

biw) | %] /ol

v
[

where

(08120 5 [ Bl wo-bu 5 Lu ol =lu lwpll 457

gnd. with
= )rz /2m + S¢- & conal . (A.8.3)
we can show that
n 20 2N
[Hﬂﬂ: G0 ( Jﬁ) 3 (6/2Wﬂ Y (o) (A.8.4)
and
2nx | . 2 ) R

[hyrl e GRY Csram) R /am @59
[T$)kEX:xk’§$h

which when substituted back into (A.8.1) gives

-66-
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(%) = Yoy ZOL—X\ \i25/ JC /(ZM

A.8.
20t ( 6)

ke /J2sm JZH\ (N2s/m'%) / Gnei))

2
which for s = gg— gives

f(‘t\ = V(o) Cos UJ-t 4 k’g_(.03 (S.\V\\Dt /W\U\)\ . (A.8.7)

It is interesting to notice that this result is Jjust what one

would get by solving

- (£) == k ¢ (&) (A.8.8)



APPENDIX A,9

THERMAL AVERAGE

We will show that, making use of Bloch's theoreml™

|
Q 2<RE>
0 0> = Q,:L T (A.9.1)
T
where Q is an oscillator coordinate, and of the Baker-Hausdorff theorem
AR C
(A.9.2)
L L = Q

where

C=h+B ¢ 5(A 8T+ A TAgI] +

(A.9.3)
_
-z 18 LA LARIY] + -
the thermal average, operationally defined by (A.9.4) is equal to
il (k) Ak
<oyt oyoE
T.
1 -he e ) e,
(2 p) Zh e L o)
X oy X
(A.9.4)
I Y S TN e \
-— 2
—‘{\:-ooQ) Q) Q) L‘(\CA'Z_\\< \

_68-
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where

Kzzszn/’\?\’L)(e*'@o*z &220%93
Av= Tw / kz@‘\‘

A,

(A.9.5)

(/24w esch by - Ay= A cosh b,

From (A.9.2) we get
N N A0 IR
< Q) - TF 0, :> —
T
\ N _ L
Seele -] L 1C_ K

_ 25
< > 0

(£.9.6)
Uwuc\)w%&]

The last term may be factored out of the thermal average because the

commutator is a constant. Using (A.9.1)

ARG AN AR o

L0 0 > =

-

2
) )
_-% € Lelo -t 2 +hke Lo fs@ (15,7
= O



-70-
((A.9.7) cont'd)

= amp \(."'\-2 < Lk, fsmf + L \é‘\csll_ (\s'\fsucyS Le 'YJ

-L e 1L o x)] >T + 3:2_\<%\<GK_YSOS£\ )‘(S(S]

op- < L d*- Leor ol lieed > )

= }‘%“G < r(?uc:owy W‘*’t<

SX %(5

and since we will show, at the end of this appendix, that

< ‘Fq('{:)r £) > <\ (iii. A.9.1)
= s S SG T

and that for z = exp (Muw/kgT)

o2+ |
< \rso(TS(5>T ’LM\)\) Z- |\ gw% (e :9.1)

4 o> :_ﬁ 8 (11. A.9.3)
SO 5(3 T L 0((3
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W\O[—KZ Bo(z+l) /2Mw(z-1) +

\ , - A t _\ i\&)-t
2 o2le (2 g ~ + 2L ) /Z\V\w Lz—m] (A.9.8)
bad - PCskii‘ n A\ -AV\u;t-
= “Z U L 2 L (A ™)
X k,\%,\,_ 00
where we have used the expansion -2: ij\
W= -00

(i.)

< Srdgr(fT = [/ 1241) /2% (=-1y ) &wG

We can show that for the harmonic oscillator the following

relations hold

)()o( \\)v\q :MM\D\UW\N\/Z\ \\)V\wﬂ + (i. A.9.1)
+\1\A°‘/Z \\)V\o(—\ X
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jwk&{m(:/i*\;/\v\ \
L) &’
J(Wq+A\/lj\P
Ny + 4 -
(i. A.9.2)

(i. A.9.3)



Consider

* 2

(V\%\X}\Y\L\ = % d(m L .gdgmo A

* \
X Hm;fm/z b

ne+ A

:*M\Jw/mo \k\)

WX

~dw I2 \
otz b
(i, A.9.4)

4
=*(%/MMU(V\L+H/2‘ E Y (dgo72
N
\k“ +7_' dsh/2 k\g ) =dw Iz \ Y.,
k\) (- )/ 2 d( l

= (R /Mw) (n+5)

The thermal average thus becomes

<44

"W ,
T T (e e 3) oy (1. £.9.5)

(T g |
wa

5 N (.V\,JV\VV\; L)

nw“w“%

(a0 )
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e o

*R/Mw\(z 0,

fw,
WE W e3) = JW/MMK -

fue
2{2@ 5

N

(i« A.9.5 con't)

C

=(JW/MU03[QJ{‘/(\—Q:¥3 +—t'£_}

t==(%w/ hBT ) (1. £.9.6)

< %X%G>T = &‘\K (T+1) / 2Mw &%-M—XSMG (1. 8,9.7)

£ = Q;;Qr (J\',y u / RQBT\ (1. 4.9.8)



~T5=

< )Y“ \’(5 >T=_\JWMva=+&\/2c%»n] &“P (L)

i % % vz
(1i. A.9.1)
=l lp I ) UAERURESC NS
INAURE W\, L) (L 10g) =0 g
55555 (| V)L\v\w\ = ( . %\V\%h (w%\f m, ) =0

(ii. A.9.2)

+ﬂwb/l %m&&j
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(ii. A.,9.2 cont'd)

z

| P 1) = B (a5 ).

Therefore, the thermal average

< )Vo( KD(S>T:&VM\D(%H\ /'2. C=-1) X gw(s (11. A.9.3)

Similarly,
i = A;ﬁg: (ii. A.9.4)
« K>P t:;' ga é;(X F
< )f v > - 'k_:\g &o( (11, A.9.5)
o(
T (
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.<Y (%)V('H >T: <V v % | (111,)

We had in Appendix 8 (A,8.7)

LV v o(g) >
°< T
= <& r D) wes & r\adm\ (ijt/(‘/\w\l
|7 wwl + PO Lt /1)) >
b ¢ T

Tl < s Ll / ve) <>,

A (1ii. A.9.1)
(et wwt /M) L <v M>T +<p, \FF>T]

-

= wewl Pﬁ (2+A) /zMw(%—A\] 50( +
Fledwt Jvr ) Lo ey / 2.1 | Sw(g |

=R (2 /20 -0 = < ¢ >
. & X T

¢



APPENDIX A.10

IRVING-ZWANZIG THEOREM AND RADIAL DISTRIBUTION FUNCTION

The Irving-Zwanzig theoreél6)states that the expectation value
over a state ¥, of an operator depending on the position and momentum
operators of N bodies, is identical with the integral of the corresponding
classical function of position and momentum, over the so-called Wigner
distribution function of the state ¥. The Wigner distribution function
is the quantum mechanical analogue of the classical phase distribution
function, and depends on the position and momenta of the N bodies. It is

defined as

/ -‘&%N"@ %

\X/(f‘ \P_\ (ar'h) \

in which

re= &W.\\\f-u )fw\ ) }{i‘a“‘)’“\?'?".“)«g\\)\

and has the following properties
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pwiep s fogn e

SH'RM W e, p) = {3*& Apc& ) (:10.4)

We will also define the reduced Wigner distribution functions

\Ck\[”... SR Y )f_h)

(A.10.5)

N %
" ! &A‘ SR &Sm WN X/ (v \1\

and the reduced spatial distribution functions
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The theorem states that

(MC‘((@ Pl \\\e X X&Tc}\‘f (6 ’\Q-) (A.10.7)

where the classical function g(r, @) may be obtained®® from the function
of operators by substituting the operators R and P in G (R, ) by the
variables r, D, and by applying the operator exp [ ih V ] on the

%Kf‘“y_\ = mr ‘—lkXW YT-VV\ C'( (()N{\ (8.20.8)

NOTHE, The sign in the exponential is negative if in the function

G(B,_E) the operator R appears on the right, Consider
0424
0 Ca Vg Uil (e - Y o)
je - e

= \.\ (}\\{: c}\\‘f__ Qﬁ(}x}i;\\é.(\[&_ \EQ-& \X/NO((\C)A@_\ (A.10.9)

Look at

I\\Cb\r W X

-

A CW‘ v T W (e V_\
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0" =Lv- M- \\ “ er(vj”&-) Ry, Qj\é,\g\l

- AV
- \ = =\ o 10)
-Nk\\)—\\\ M\’W W (v, ANy (Ae20-
L o
Let r; = 2' and 22 = E]'_
-\ )
SEVOEN %%W oy 0" gl (o
| v 2 ) —\
Or
If
e, oca(
\(\l (\f\\\r \ ’L. ‘7.\-—\\)
and dropping the primes in (A,10.11) we get
ol X X
0 Y (A,10.12)

\2 z\
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0/04

The thermal average of ns is equal to
y Ew/kT -\
< " (I 0 )
2 T
- /R T +
2 0 &'“%()\7"(---3\3? A (e e
*® 3 N X —\> -V
~E /\QT -\
'/\“(\gn...,{‘\\ \ 3\3\r~-cX’>V (i@ \
~ & TW/RT
-2 A\ =
« o U /\'o( SQC\C‘\BEz\

The function p, (El’ 52) is just the quantum mechanical
analogue of the one defined in Chapter VI of Hill's booﬁlg. This 1is
seen to be the case after recognizing Slater's sum inside the integral
sign,

It is shown in Reference 11, p. 185, that for a fluid this

function is related to the experimental radial distribution function

g (r) by

, TV

(v ) = Q?'C% (r\z\ = gl(\r C ) (aa0.1h)

where p = number of atoms per unit volume = N/V,
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Therefore, our thermal average becomes

<ZZ Q/b\;‘_-r\\f_(%—%.\} >T
1%

(A,10,15)

- s\) \r& \it%(r\

since there are N(N - 1) terms in the summation,



APPENDIX A.11

TIME EXPANSION

In Chapter III we encountered the o thermal average,

uter
and we established the fact that in order to calculate 1t one was forced
into using the Heisenberg's operator time expansiongz) It was also

mentioned that in order to calculate g(r) there was no need to go to the
averaged IJD potential, since calculations for g(r) have been performed

using the Lennard-Jones six-twelve potential,

The thermal average was of the form

..&\4-?g ) &\3-2

2S -
< 0 >

in which we have only shown a few term of the expansion (A.8.1).

In Appendix 10 we have shown that the zero-th order term is

related to the g(r) function.

8-
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For the first and second order terms, we have that for a

Hamiltonian of the form

| |
W= Z TZ /em o+ V(3

=\

. )‘%— N} (A.11.2)

the commutators take the following form

N il
LH, o B0 e/ oM ] o e
1.3

- (R /M) ¢ s <R

(A,11.3)

and

-t A&

v LH e i llz(ﬁ/MS\é L

(A,11.k)

%—L“\R v Vo R /M)

H\f-(%—%)f}



-86-

Consider
- 1\

- il
< Lw g ]

-4
w5 ] Q/ ;>
T

:[(JW\S\Z/Z\"\J < W\F K_-,{\E.(g_%‘\} >'r+ (A.11.5)
s 2

—(k/v\sﬁ \§_‘<M\(;(-;\g-@_:§.\ «(:_>T ,
: <

In order to evaluate the second term in the RHS of (A,11.5)
we made use of the Irving-Zwanzig theorem and of the Weyl correspondence
rule to evaluate the classical function that enters in the theorem (see

Appendix 10).

% _)J\D\‘ %\f %_A -V BC‘ (‘C))\V\ (A.11,6)

which applies when the operators R appear on the left in the function

G (p, r). Therefore,



ek = E) U(’ V25 o

=(hk/2) & %‘}\7’?0\122@ sfz -\)%)\
3.3, - (3 %_} (A.11.9)
*8& “[zti\ﬁ.é«?v\fz\ 'IQJ
PR %03,



-88-

The last term vanishes on the assumption that the f2
distribution is isotropic in the momenta,
Substituting this result in (A,11.5) we see that the first

order term in the expansion is zero,

—&\4.3 ‘«\4.72

-—

<LH )Q) "’1 o I> =0 (A.11.10)
T

Proceeding in the same fashion, we obtain

cpy=l ) s LIRT Y - ER (1T ) ]

and

] -tk-3 A
<iwid o Mle b >

L (wWE/ vr] % §<%(3 33?‘3@
e IR |
Q)——\Z)Y) > _\,(\;\ \( /L\/\\

i. ié\’ﬁ (}\'32 Ql&'g 'ﬁ\ ér\é e Y\\/

(A,11.12)

—\ -

\



APPENDIX A.l12

HARD SPHERE RADTAL DISTRIBUTION AND DENSITY EXPANSION

A1l thermodynamical functions of a system of N bodies can be
expressed in term of two very simple distribution functions(lﬁ)the
Py (El) and the p, (51’ r,). This fact alone makes distribution functions
very useful tools. However, things get complicated because in order to
calculate the p, (r;, rp) one has to know the P3 (r1, ros 55) ete, To
this effect several approaches have been tried. Most outstanding are
those of Kirkwoodtmﬁand Ivoﬂig-Green-Bornﬁajwho have obtained integro-
differential equations linking these distribution functions.

In this appendix we will limit ourselves to briefly outlining
the Kirkwood method, since it is the one we have used in order to obtain

the radial distribution function. In order to do this we define a

potential energy

U(rv e Q) = Z O\,O\.W(V,\

VT TN \eaﬂ-ew ") t

(A,12.1)

where the a's represent the intermolecular couplings. They range from

zero to unity. Full coupling (real fluid) aj =1, for all j's, and

(v v Le. Y \c\fﬂ‘ M .o A3V (A.12.2)
SV )=\ \ 2 e

-89-
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the probability that a molecule (not necessarily molecule 1) will be
found in the element of volume d3rl at r;, a second in d5r2 at rp, o0,

another in darn at r, =

=N/ (N-eVE D
\ g -U(r)g\/’@;\_

v .. A3
T C)\TNQ)

Nt L

where

“Uteay /R T
Z = “‘g&\%\( o dde (A.12.3)
\ N

By taking the derivative with respect to one of the a's of
Equation (A.12.2) the Kirkwood integro-differential equation is
obtained (Ivon-Green-Born take derivative with respect to one of the

r's). The result may be written aéll)

ke T :%—WQM (e fsa)= =W (Y )+

R R

(A.12.4)

*Ql/N\\xA}V,&@T WY P e v .a) t+
AL T LY
“Wwiy

3
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(A,12.4 cont'd)

“Y_izw v ovﬂ \E Y%W\R%w Y Or s a)

3

which in terms of the correlation function, gp (ry, rp; a),

SKY_ e = Q(T X f(\” v GO) - (8.12,5)
2

}(‘FY"C\3

can be written in the following form after integration over a

M% @)= W )+

0

+s\o

\5\““ d W (Y \(‘}Y(r €0, 50 ‘%(v\\_ﬂo\%}”g6

3

(1)

It can be shown that for p—» O the g, (El’ see , Ths a) equation

(neglecting terms of order 1/N) is
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e T kg (e e

n o)

(A.12.7)

n
S 2 wle )y 4 o2 WCr Y

2<_<<3<_n ") 122 \4

that, when substituted in Equation (A.,12.6), as a first approximation

for g3 and g, inside the integral sign, givets',(ll) 29

-\ -

(A

(v WZXO“\ = mﬁ[—uw\z\ /)(BBT] +

~ WY /R T -wie /R T
. K"\Cy"f K ) 3 \'s_ }\][ 0 3 B_ )\‘} (A.12.8)
3

Y
=3

For a fluid (a = 1)

e rea) = 9 (0 ) (8-12.9)
2 —yvy=z ) 2 \Z

~m(r‘g/‘rae'\'
\”R[“ Y

= - Y/ RT 4
w\f& \2 R s ‘ { Qj,u,(rn\/ YaBT— R]
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(A.12,9 cont'd)

= WLr ) /hr;\" eu.(_rﬁ)/ \ag “WLr) /*eBT
. %\ s ?\W“ 20le )

n
)

He

Hard Sphere Potential

W(vr) =0 v o>d
) (4.12,10)
= 00 o < d
Using cylindrical coordinates it is easy to show that for the above
potential
~w(C Y/RT ~w(r N/ R T
3 I ) K 1 [ 23 3
Ar Lo -1l o Ny
3
Iy ‘
AJl2,11
= 0 gvéé ( )

= (ard/ )= (av/ad) +Le/24V /2] ¢ dcread

=0 3r223

Therefore, (A.12.9) becomeslls 29)

%(M = 0 | s d

_ . v | r3 (A.12.12)
L4 %(QA 5“—;(3)*«(@(‘3\ | j8<re2d

A

D]



APPENDIX A.13

INCIDENT SPECTRUM CALCULATION

We have shown that (3.1L4 and 3.15)

G o/ N=2 (kik,) (a.13.1)

\nne N=-oo

.am\fi- N%K?'*—n A \1 1 . ( A\2\<z). g(eo-e oA W)

T N =(kik) 8leyre)-
5.2/ b N o

W\ (8.13.2)

' A3 O %(r)
‘

These are the results one would get for the theoretical cross-sections
when a monochromatic beam of neutrons of energy €, hits the target.
HoWever, this is not accomplished in practice. The true energy
distribution out of a crystal spectrometer is of the Gaussian type

rather than of the ideal Delta type. We will here assume that the

incident energy spectrum distribution is given by (3.18)
- _ 2 z.t]
Gy(ég-)eo»@_ L Q/x,\;[—(e;eo\ /(’: (A.13.3)

. _9u_
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Therefore the theoretical cross=-section would become

(€88, G\—\Q(c € Q\F(ee &) A€

co QJ

\LQDO\:K.‘CE: e)/(ﬁ o N 2 \16/6

WYL A‘%\<Z L nA|] ln( A\Z k) S(ea—e—nsﬁw\ +

+ L6 N (3 Xoo\ee o»o\ﬂf (eo—'é)"/gzl § (e-e)

(A.13.4)

'&&r oy (i k.e) %m

~(e- e—vx’Ww\ /%
= Lb® N\%Z &}e/(em)ﬁw\ 0

=-c0

N %_Yaﬂ (2€ +V\JV\\,0 24 € Cernhw) osd)
& )

I LA (2m /5%) (2eanio-2decerui coso)

4\-\;\\]? S4rr c}\r%(ﬂ S L \4vn /%= Q vl
‘[\\4mn/#\2\ \r-x
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therefore

Tleoe,p/ L™ N

2

= 3— de / (earhuw) QDO\(O [—(e—éo+n*ﬂw\l/(3

+
© )

(A.13.5
b -nqt 1T (hQE) -
oo \

4 g&\ 4Tet oy %m %U\‘l ", IS QO‘A NZ\W‘V\M Qo—“]

where

Q\Zv\: c +\(\XV%9 — /\\6(6-\-‘(\“&))\ QO%@

(A,13,6)

h = A‘Z (4m [#*)

3

A = ASCAW\W/'W\
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The summation over n may be divided into three parts as follows

0N (e)@-)'éw@: QDO\?L (eE)/ F" AsQﬂ' .
. 2
L (x.8)
G_Jr(e,eﬁ)eo)(%) s

= nzz‘{e/(em\'ﬁw)‘ L (h Q)

MTL—(E-ZM\M /¢ +nh A Q]

« Ce)e-)_eo)@

(A.13.9)

=2 e /Cew) L (A Q7Y

nnu\o{— (e-€ - Vﬁ/_\uﬂz/ %z -n A - ABQ’;\]



APPENDIX A,1L4

OUTER EFFECT CALCULATION

We have shown with the help of Appendices A,10 and A,1ll

that the outer effect may be exhibited as follows.

Wer
Q-w'tcz,r (6)9\ = N\OZ (h/&eo) 8(60-9 () go\Sr Q/ % (A.1k,1)

Also in Appendix A.12 we have shown that

%who ')‘réd

Mﬁgg &L -3 (3 \* QH 10¢véad (a2

= | L >24d

-Therefore‘

0 W T k\le
ol K
d

2
Q’Z% %\v\ s X v 4\ Ckcr\w\w AV *

Yavr swBab Q) %(\f\

A.14,3)

\ A%m o W OV }
2

~98-
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leads after trivial integration and somewhat lengthy manipulation to

Tt e®)= NG (R/k) Slese) {@} (h2h)

where
81 = b A, e+ (307D
'[24 (1) s 2 - 4B s + (A.14,5)

(Bt et 28 wer 4 4 (X H6%) iy )

in which

D= (4T CP(’ /3)
= Kd (A.14.6)

f\J; (3/ x)%)(mx.—-vcwsx,\ .

Integrating (A.l4.4) over incident energies, after introducing the

incident energy spectr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>