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I. INTRODUCTION

This report contains a summary of the theoretical work which has
been accomplished to date on the wing-body interaction study being carried
out at the University of Michigan Supersonic Wind Tunnel under Contract
AF 33(038)~197¥7, Omne of the objectives of this program is to investigate
the overall flow field at Mach No. 1.90 over the combined configuration of
a cylindrical fuselage and the inner portion of a thin wing of triangular
seéction and to investigate the results in terms of existing nonviscous
wing-body interference theories in order to try to assess the viscous ef~
fects in the actusl case. Thus the purpose is not only to check linearized
theory but also to use it as a basis to "subtract out", if possible, the
nonviscous effects so that an idea of the purely viscous effects can be ob~-
tained. As a preliminary step in this investigation the especially simple
(from the point of view of getting a mathematical solution) ease of a plane
shock wave intersecting a cylindrical body has been studied using the three
different methods of (1) Ferrari (Ref.l), (2) Nielsen-Matteson (Ref.2), and
(3) Nielson (Ref.3). (See pp. 5-13 for a short discussion of these methods).

There are two reasons for choosing the shock-wave--cylinder prob-
lem mentioned above for a preliminary study. First, this case is simple in
that the first step in the iteration. process normslly needed to solve a
wing-body problem ip to and after the trailing edge of the wing (see pp.
3.4 for further discussion) ylelds the final solution, since we assume that
the shork-generating wedge (™wing") is at infinity so that any interference
effects from the cylinder ("body") reflecting from the wedge back to the
cylinder will influence the cylinder only infinitely far downstream. Sec~-
ondly, there exist some experimental results for this case (Ref. 8) which
may be compared to the theoretical results of the three methods mentioned
above to get some idea of how much the theory and experiment can be expected
to diverge.

Having computed the pressure distributions by the above-mentioned
methods, 1t is possible to compare them with each other, especially with
regard to:
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(1) the computational time required;

(2) the difficulty of the computations involved, i.e., how
much is straightforward computation and how many steps
there are (many short ones or a few long straightfor-
ward ones);

(3) the extent to which the various methods are sensitive to
computing errors or approximations, i.e., are errors accum-
wative;

(4) +the accuracy of the methods both at the intersection of
the shock wave and the cylinder and also assymptotically
in z, i.e., to what extent do the disecontinuities in the
boundary conditions effect the accuracy of the solution; and

(5) the extent to which general statements can be made concerning
the solution, i.e., can the rate with which the solution
reaches its assymptotic value be determined or can integrated
effects be determined readily.

IT. GENERAL DISCUSSION OF LINEARTZED THEORY

Physically the supersonic wing-body interference problem con-
sists of attempting to find the changes in pressure on the body of a mis~
sile or aircraft caused by the proximity of the wing and, conversely, to
find the change in pressure on the wing due to the presence of the body.
In order to render the problem tractsble, it is necessary to make several
assumptions at the outset. First, we must eliminate the viscosity from
the equations of motion. Even the flow over quite simple configurations
cannot be solved exactly if the viscosity is tsken into consideration.
Secondly, 1t is necessary to linearize the equations of motion after the
viscoslty has been set equal to zero. There are, to be sure, methods for
handling problems concerned with simple configurations using the full non-
linear equations of motion, but these methods are difficult even in the
cagse of a simple configuration. We will therefore consider from here on
only linearized nonviscous isentropie irrotational flows over the wing=-
body configuration.

Cprtain other mathematical idealizations or approximations con-
cerning the boundaries of the body are also introduced, namely, (1) that
the surface of the body is a circular cylinder or that it is s0 nearly
eylindrical that it can be so approximated; and (2) that although the wing
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is twisted or at an angle of attack, 1t is still very close to a plane pas-
sing through the axis of the body, so that instesd of satisfying the wing
boundary conditions on the actual surface of the wing we will specify them
in this plane.

The methematical problem which confronts us, then, is that of
finding the solution of the potential equation,

(Mz-uﬂ~iﬂ+i&+ﬂ (1)

d22 r° 662 r T br2

with boundary conditions which give the normal derivative of é (velocity
normel to the surface) on all parts of the wing and body and also the
specification that there be no upstream influence of the wing-body juncture.

It should be noted here that we desire a detailed picture of the
altered pressure distribution. We are not primarily interested in the gross
effect of the interaction, i.e., the effect of the body on such integrated
quantities as the 1lift, drag, and moment of the wing or the integrated 1ift,
drag, and moment induced on the body by the wing. Consequently, we are no§
interested in what would happen if either the wing or the body became van-
ighingly small; e,g., we are not concerned with slender-body theories.

In order to simplify the problem, we assume that the span of the
wing is such that the influence of the tip of the wing is not felt in the
Tegion in which we are interested. The problem ctdn be solved Wwith the
tip effect in it, but it considersbly complicates the solution. Furthermore,
we asBume & wing with supersonic leading edge, in particular a straight
unswept wing, in order to eliminate inmteraction between the upper surface
and the lower surface of the wing.

The wing~body interaction problem may be simplified further into
a leading-edge problem and a trailing-edge problem. In the leading-edge
problem we are concerned only with the interaction in the region ahead of
the Juncture of the wing trailing edge and the body, so that we can assume,
in effect, that the wing chord is infinite as far as points in front of the
trailing edge are concerned. In the trailing-edge problem we are interested
also in the flow behind the wing trailing edge, i.e., in the flow over the
afterbody which is induced by a wing of finite chord.

The solution up to the trailing edge, although tedious, is straight-
forward in that the solution can be obtained explicitly as an infinite
series. Since there can be no interaction between the reglon above the wing
plane and the region below the wing plane, we may apply an extra symmetry
condition which destroys once and for all any effect on the wing plane due
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to the bodies' perturbation potentisl. On the other hand, if we are in-
terested in the pressure distribution on the body at and aft of the trailing
edge, this extra symmetry condition is not necessarily present, so that we
must use an iteratign process such as that described by Ferrari. This iter=-
ation is set up as follows: the wing 1s first solved alone in the free
stream; then the body is introduced into the flow field of the wing in the
uniform stresm and & second perturbation field is computed to cancel the
velocities induced at the body surface by the wing. This second perturba-
tion field will now destroy the boundary condition on the wing, s0O that a
third perturbation field must be introduced to cancel the velocities induced
in the wing plane by the second perturbation field. The third perturbation
field then destroys the boundary conditions on the body, so that a fourth
perturbation field must be computed, ete. If this iteration process con-
verges, as 1t must (as pointed out in Ref. 4, p. 3T), then we will have &
solution to any wing-body problem to which we apply the method. In general,
only the first step of this iteration process can be performed without a
tremendous smount of work. Hence, in practice the accuracy of the method
depends on the accuracy of the first approximation.

In order to solve wing~body interaction problems, it 1s necessary
to be sble to find for wing alone and body alone potential functions which
satisfy certain given boundary conditions. The wing potential can be de-
termined by the methods summarized in Ref. 5 or the method of Ref. 1.

The body potential, in which we are more interested here, may be obtained
by several methods. A brief outline of three of these methods, Refs. 1, 2,
and 3, 1s presented later. It was considered desirable to study the body
potential solution z little more closely, since in the tests proposed to be
made under this contract most of the pressure holes are on the body. The
reason for this is that the body is perfectly cylindrical and is maede s0
that it can move with respect to the wing, so that in effect the orifice
holes can be made to appear to move on the body, thus giving a very fine
pressure coverage on the body. Another reason for working on the body po~
tential is that it is the solution for a three-dimensional body, which,
being more difficult than a two-dimensional solution, is necessarily sub=-
ject to more aspproximstions and hence more inaccuracies, so that it was
considered desirable to check the various methods against each other on
the body to try to determine their relative merits.

The specific problem to which the three methods of epproach dis-
cussed below have been applied is that of a plane shock wave impinging
on a cylindrical body in a supersonic stream with cylindrical axis in the
streamyise direction. The reasons the shock-cylinder problem was selected
for study were the following: First, this problem presents all the essen-
tisl Pestures of & wing-body problem, but it is conslderably simplified
in that no iteration process is necessary, since the effects from the body
are reflected back to the body (by the shock-generating wedge or "wing")
only at an infinitely great distance downstream from the first intersection
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of the shock and the cylinder. Also, note that no wing solutions are
necessary, since the "wing"™ has been moved to infinity, so that it has

an influence on the body but we do not need to consider the effect of

the body on the wing. In addition, this problem produces a uniform
cross-flow past the body which can be very easily computed (by
incompressible-flow methods, since the cross-flow component is very much
subsonic) snd compared with the theories used here. Also, the local so~-
lution on the surface Just behind the shock wave can be obtained by two-
dimensional sweep-back theory similar to that of Refs. 6 and 7, so that
these results at the intersection line also can be compared to the theories
used here. ILastly, the shock-cylinder problem was selected because there
are considersble experimental data on this problem (Ref. 8) which can be
used partly as an experimental check on the theoretical work, partly as a
preliminary trial ground to see how strong the viscous effects are here,
and also to try to get some ideas of the order of magnitude of the errors
in the theory (at least locally, where Ref. 6 can be compared with linear
theory).

The shock-wave~-cylinder problem is in some ways a difficult test
for the linearized theory. (1) Behind the shock wave there is a uniform
cross-flow which produces an asymptotic pressure distribution (characterized
by a doublet flow about a circle), in which the square terms in velocity
must be used to compute the pressure, since if the only axial component of
velocity is used then the pressure would be found to be constant around the
gurface. In this case, then, the effect of the square terms on the pressure
must be felt; the question is how soon and how much? (2) Due to the cross-
flow mentioned above, there is a considerable eccumulation and thickening
of the boundary layer as we move around the surface of the cylinder toward
the lee side. The thicker boundary layer materially alters the pressure
distribution by changing the displacement thickness, by shifting the pres-
sure distribution by means of pressure propagation through the boundary
layer, and by separation effects. (3) The last reason is that the shock
wave from the wedge hits the body and reflects two-dimensionally, causing
large Mach number and pressure variations, whereas if the wedge were on the
body (if it were a bonafide wing) then these effects would be less severe,
since the maximum local pressure changes would be approximately half as
great.

III. SUMMARY OF THE METHODS USED

Before we launch into a discussion of the results of the methods
used on the shock-cylinder problem, it is probably a good idea to give a
short summary of the methods used. The discussion is necessarily not
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complete but only an outline of the approaches; for a complete explanation
see the original reports (Refs. 1, 2, and 3).

A. Nielsen-Matteson Method

A possible method of solving for a body potential would be to
distribute singularities over the surface of the body and then determine
the strength of the singularities in order to satisfy the boundary condition
that the normal derivative be specified (the negative of the velocity that
we are trying to cancel). In a nonplanar problem this is, however, not as
easy as 1t sounds, because each singularity that we introduce produces a
normal derivative to the surface, depending on the strength of the singu-
larity, at all points in the downstream Mach cone. The normal velocity
induced by the singularity alters the boundary condition at these downstream
points so that instead of the singularity strength depending only on the
local normal velocity, it depends also on the integration of all the up-
stream singularities, thus we get an integral equation for the distribu-
tion function. The integral equation cannot, in general, be solved exactly;
the next best thing is to attempt an approximste solution.

The continuous distribution of singularities on the surface of
the body can be approximated by assuming that the strength of the singu-
larities is constant over a small but finite area of the surface. Thus,
the whole surface of the body is approximated by a large number of small but
finite surface elements. If these small surface elements are now approxi--
mated by secant plane-surface elements; over which the strength of a super-
sonic source singularity is constant, we arrive at the physical picture
described in Ref. 2, namely that each of the plane-surface elements is ac-
tually a plane symmetric wedge of finite span. In order to avoid the oc-
currence of infinite welocities on the surface of theibody due to the infinite
sidewash of the wedges, Ref. 2 places the wedges a small distance inside
the cylinder.

In the method of Ref. 2, the surface of the body is divided into
octagonal rings of length O0.4R (see Fig. 1). The average velocity normal
to the surface of the cylinder was calculated by integrating the velocity
over the area and dividing by the area.

From the boundary conditions the slopes of the wedges on the first
ring cen be computed; then, knowing these slopes, the boundary conditions
at the downstream stations can be modified to account for velocity induced
normal to the surface of the cylinder by the wedges in the first ring.
We can then go to the second ring and compute the wedge slopes there in a
manner similar to that used at the first ring. Having the wedge slopes at
the second ring, we can then correct the normal velocities at all the down-
stream stations as we did for the first ring. We proceed ring-by-ring,




Fig.| Octagonal Rings Used in the Nielsen— Matteson Theory.
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downstream, finding wedge slopes and correcting boundary conditions at
each successive ring until we have the wedge slopes as far downstream as
we want them. With the solution for the wedge slopes, it is then possible
to compute the velocity components anywhere in space by a simple superpo-
sition of the effects of all the wedges. In particular, we can find the
velocity components on the surface of the cylindrical body, from which we
can compute the pressure. In their report (Ref. 2), Nielsen and Matteson
give tables for computing the wedge slopes from the average normal velo-
cities to the areas and also a second table which gives the dowhstream in-
fluence of any given wedge on all the others that it affects.

B. Ferrari Method

The wing-body interaction problem is solved in Ref. 1 in a com-
pletely different manner from the Nielsen-Matteson approach. If we separ-
ate variables in Eq. 1, then the solution becomes:

)

g = v, :E: g (rt,z') cos no , (2)

n=0

where the terms contalning sin n6 have been dropped because of symmetry
with respect to the plane @ = O (veritcal plane) and n is an integer due

equation, each of the ¢n must have an integral representation of the form
0

¢n(r',z') = £ (z' - r' cosh u) cosh nu du (3)
osh‘lz‘
condition.

The boundary conditions v,(8,z') may be expanded in a Fourier
series, with coefficients depending on Z':

Vn(@,z') =V, zi: an(z') cos ne . (%)
n=0

Differentiating Eq. 2 with respect to r' and setting r' = 1 gives us the
velocity normal to the surface on the surface, which must cancel'Vn as
given in Eq. 4. Thus for each Fourier component we have

to the periodicity of ¢ in ©. It can be shown that to satisfy the potential

where fn is an unknown distribution function to be determined by the boundary
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&¢n(r';zl )
T o = -an(z') . (5)

r'=1
Using the integral representation of ¢n given by Eq. 3, we have

O «
-a,(z") ==l: £, (z* = r' cosh u) cosh u cosh nu du. (6)
osh=1z!

Since the integral equations (6) cannot be solved explicitly, Ref. 1 sets
up a step-by-step procedure which is similar to that used by Von Karman and
Moore (Ref. 13) and which gives the fn‘s as a broken-line function. The
procedure goes as follows:

(a) The z' axis is divided into a convenient number of
equal intervals.

(b) The value of a, in the first interval is used to find the
slope, KK%),'Of fn in the first interval.

(c) Then a, at the end of the second interval and Kﬁ%) are
used to find the slope, K,(Iﬁl‘), of £_ in the second intervel.
In general, K é can be determined in terms of a, at the end
of the i¥ inferval and all previous K, 's.

Once the distribution function f is known, ¢n may be obtained by

a numerical evaluation of the integral appearing in Eq. 5. Once all the
#ls are known the problem is solved.

C. Summary of Nielsen Method

The method of Ref. 3 is somewhat similar to that of Ref. 1. A
separation of variables is performed on the wave equation so that the po-
tential ¢ is again given by Eq. 2. Eq. 3, however, is replaced by

n

tort4l -1
g, - -%,nf g & [ )’ 12 Mar, ()
%

where gn(g) is the distribution function which corresponds to the f in
Ref. 1 and
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én-l

-1/2
prewiSCRL L

is the singularity being distributed, which corresponds to cosh nu in
Ref. 1, If we take the ILaplace transformation of Eq. 7, we will get a
fairly simple result, since the integral in that expression is of the con-
volution type so that the transformation L (@,) of @, becomes

n 1
L(g,) = - L(g,) 2’ T (o3) &° K,(s). (8)
r'=1 JE 5

We can also get another expression for L(¢,) by transforming
the differential equation and the boundary conditions; then, since the dif-
ferential equation is an ordinary one, we can solve it explicitly. The
transformed counterpart of Eq. 5 is

L ]| - - (9)

r'=1

and the transformation of the differential Eq. 1 is

&2 3 + 1 _ég + 1 QE;Q_ _iézz[

= 0 . (10)
ér'g r' Jr! rr? é@z

Upon separating variables in Eq. 10, we can write the solution
in the form

(§) = ) Culs) Ky(sr') (11)
n=
or
L(g,) = Cp(s) Ky(sr') . (12)

Differentiating Eq. 12 with respect to r', we get

d_ 1(g,) = sepls) Ki(s) . (13)
Jr' r'=1

10
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Comparing this with Eq. 9, we can solve for the heretofore unknown co-
efficients Cph(s) to get

Cn(s) = .:.I.'.(_agl

sKp (s) (1k)

Thus Eq. 12 can be written in the form

-L(an)
L(g,) = Zn

Kn(s) . (15)
.- (

ts)

Using Eqs. 15 and 8, we can solve for the Laplace transformation
of g,, the distribution function,

v "
L(g,) = - T(nﬁ%-) [ si(ay) 1L E‘%‘(‘s‘)] . (16)

If then we take the inverse transform we will have an explicit
expression for the distribution function 8n. The right side, being a pro-
duct of transforms, will become a convolution integral of the inverse trans-
forms. If we define the inverse transform of the second factor to be a
function M (z'), i.e.,

= 1~ -8 17)
(z') =1-1 | &7 b4 (
*n s K'(s)

and if we note that the first factor is the transform of the derivative of
ay, with respect to z', then we can write

8! (§) Mn(zf-%)dg . (18)

Having computed g, We are then in a position to substitute this in Eq. 7
and determine the veloclty potential at any point in the field. The M,
functions are tabulated in Ref. 3 for even n up to n = 6. Expression
18 gives us essentially an inversion of the integral equation (6) of Ferrari,
which removes the unknown distribution function from under the integral sign.

Nielsen has pointed out that if we are interested in the value of
the axial velocity on the body only, then we do not need to find the dist-
ribution function, but rather we can get expressions that give us dff /dx on

11
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the surface directly in terms of an integration of the boundary conditions,
To do this, simply take Eq. 15 and combine it with Eq. 20, which is a funda-
mental relation in Laplace transform theory,

%n

t
az r'=]1 r'=1

L

) (20)

It

wm

o
RN
jn}

to get

1}

09, K, (s)
L - a
oz |, : Ll:n:[ s K/ (s)

- e ] - nfe [ Gkl (21)

Now take the inverse transform of (21),

09 2"
Oz? - an_! a (§)w (z'- §)as (22)
r'=1
where

1
W, (z) = 17t E{n(s)’LKn (s)] . (23)

Ki(s)

Having a¢n , we can get the axial velocity perturbation

0z' Irt=1
and hence the linearized pressure, or we can integrate é¢n/az' with respect
to z' and get ¢n as & function of z', which gives us the Fourier components
of the tangential velocity.

The connection between the method of Ref. 2 and the methods of
Refs. 1 and 3 can be demonstrated in the following intuitive manner. Ref., 2
distributes one kind of singularity, namely a supersonic source, on the sur-
face of the cylinder, whereas Refs. 1 and 3 distribute an infinite variety
of singularities on the axis of the cylinder. This is somewhat analogous
to the solution of problems in ordinary potential theory, where this solu-
tion may be obtained either by a superposition of multipiles (harmonic
functions) at the origin or by a surface distribution of singularities.

12



In addition to the methods described above there are two other
reports, Refs. 9 and 10, that have some bearing on the problem being dis-
cussed, although these reports have not been applied specifically to the
shock-wave~cylinder problem. Also, for a summary of methods of treating
the wing~body problem in which the body is not necessarily a circular
cylinder see Ref. 11.

IV. DISCUSSION OF COMPUTATIONS INVOLVED

Besides the linearization and the other usual approximations,
each of the theories has some other approximations involved in order to
bring the theory to a point where computations are possible.

A. Nielsen-Matteson Method

The approximations in the Nielsen-Matteson method are of quite a
different sort from those in the other two methods. In this case the body
has to be cut up into a set of finite areas over which the effects have to
be averaged. The size of the areas that are used depends on a compromise
between the accuracy desired and the time required for the computations.
Octagonal rings of length O.4R in the streamwise direction (see Fig. 1) were
used in the computations for the shock-cylinder problem, since tables for
the correction of boundary conditions and coefficients for computing the
wedge slopes using this size of octagonal rings were already available in
Ref. 2. The formulas necessary to compute the wedge slopes and the formulas
to correct the normal velocity due to the effect of upstream wedges were
easily generalized to the case where there is no symmetry between the upper
and lower parts of the cylindrical body as is assumed in Ref. 2. The for-
mulas were checked by assuming the symmetry property and verifying that
the formulas then became the same as those in Ref. 2. In addition, it was
necessary to compute tables for obtaining axial and tangential velocities
from the wedge slopes.

It might be pointed out that the gmount of time necessary for a
calculation on a body with n rings varies roughly as n2, since, for ex-
ample, if we doubled the number of rings we would need to make twice as
many corrections of the boundary conditions for the upstream wedges and
since there are twice as many rings to do this for, there would be four
times as many operations to perform.

The question of the size of the areas to be used for a certain
accuracy is not too easy to answer, since it is a question not only of

ENGINEERING RESEARCH INSTITUTE -+ UNIVERSITY OF MICHIGAN —
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how accurately the wedge slopes can be obtained from the boundary condition
a particular ring but also of how accurately the boundary conditions
have been corrected due to the influence of the upstream wedges.

One thing can be said, however, and that is the tangential veloc~-
ities are not as accurate as the axial velocity components. This is a re-
sult of the fact that the wedges used to produce the interference velocities
have infinite sideflow velocities at the tips which do not cancel because
the surface of the adjacent wedges are not parallel and the strength of the
singularities are not the same, since the neighboring wedges do not in gen-
eral have the same slope. These infinities will affect both the normal
and tangential velocities, but they will most strongly affect the tangential
velocities.

The wedge sideflows are nearly tangent to the surface; in the
limiting case they would be tangent and the neighboring wedges would have
the same strength, so that the infinities of adjacent wedges would then
cancel each other. In order to eliminate as far as possible the effects of
the sideflows on the normal (as well as tangential) velocities, Nielsen and
Matteson place the wedges a short distance inside the body, so that the in-
finite velocitles are removed from the surface (see Fig. 1). The effect
on the accuracy of the method caused by this displacement of the wedges from
the surface is probably much less than the effect of averaging the velocities
over an area in order to use wedges of finite size. At one station (z' = 4.0)
the edge of the wedge was placed at distances of 0.02, 0.04, and 0.06 times
the radius of the cylinder from the surface, and the ratios of average normal
to average axial velocity were computed (this ratio determines what pressure
will be induced on the surface due to a given normal velocity to be canceled);
the ratios were found to be 0.87, 0.83, and 0.79 respectively. In Ref. 2
and in the computation for the shock-cylinder problem, the d&istance was taken
as 0.OLR.

In the application of the Nielsen-Matteson theory it was observed
that although one would expect an asymptotic doublet flow around the cyl-
inder some distance aft of the shock wave, the method did not seem able to
produce this. The wedge slopes that were computed did not appear to con-
verge as rings further and further downstream on the cylinder. Fig. 2 is
a graph of the total wedge slopes as a function of z', the axial distance.
As a consequence of this apparent lack of convergence of the wedge slopes,
the velocities and pressures did not approach their asymptotic values. On
the other hand, the method gives good results near the wing-leading-edge
body Juncture.

The probable explanation for the divergence of the wedge slopes
is that the wedge areas are too large. When we average the boundary con-
ditions over the area in which the boundary conditions vary quite strongly
(for example, near the shock wave where the slope can be zero over part of

1h
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the area shead of the shock line and something else over the rest of the
area) and then determine an average wedge slope, we will of course have
sizeable differences between thig average wedge slope and the slopes of

the smaller wedges which we would have obtained if we had broken the area
up into finer divisions. If we consider the effect of this wedge on the
following ones we will see that the average effect on the next area can
vary somewhat with the manner in which the boundary conditions were can-
celed on the preceeding wedge (either on the average over the area or exactly
at each point). Since each succeeding wedge slope has an influence on
wedge slope to be solved for subsequently, any error in the first wedge
slope will affect the second, and then the first and the second will affect
the third and so forth, each error having a cumulative effect on downstream
wedge slopes.

The Nielsen-Matteson theory has the advantage that it is easy to
set up and once it has been put in a form for computation these computations
are straightforward and easy to perform, the time needed to complete the
method being about the same as for the other two methods.

B. Ferrari Method

Since the Ferrari method uses an expansion of the boundary con-
dition in a Fourier series in © with coefficients depending on z', we will
have the usual difficulties involved in approximating a step function with
a finite number of terms from the infinite Fourier series.

The mathematical boundary condition is the given velocity normal
to the body produced by the shock wave. If we nondimensionalize this
normal velocity with respect to the uniform cross~-flow of the shock, then
vn/Vc is equal to cos @, since v, is just the component of the cross-flow
V. which is along the normal to the cylinder behind the shock plane and v,
is zero in front of the shock plane. We see at once that all the Fourier
components will be zero in front of the shock and one intersection distance
downstream they will all be zero again except for n=l (the cos 6 term),
which will remain 1 giving a doublet cross-flow in planes =z' = const.
Expanding the functions described above in the usual way, we obtain:

; - “1(7. N “1(q.
0<z'<2 - Slq[(n 1)cos=4(1 Z'):L,+ 1 514:(n‘l)cos (1 z'{]
®n 1t n-1 TC n+l
n+l
z! ;>_2 an = 0
cos™1(1-2") 1
0<z <2 a, = ‘*‘—;’—““““ + 5;’ sin[? cos'l(l-z')]
n=1
z1>2 a.n = 1
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Fig. 3 is a graph showing the exact boundary conditions and the approxi-
mation to these exact boundary conditions if we retain only the first

four terms in their Fourier series representation. Fig. 4 is a plot of the
amplitudes of the Fourier components, an(z'). This plot may be used to
determine roughly the number of terms necessary to give a certain approxi-
mation. The absolute magnitude of the terms behaves like 2/nn for large
values of n. In addition, the frequency of oscillation of the components
increases with increasing n, so that a finer division of increments along
the z' axis is necessary in order to describe fully the contribution of the
higher-order terms in the Fourier series. In the computations for the shock-
cylinder configuration, only the first four terms were kept, because it

was -felt that this number of terms would give a sufficient amount of accuracy
and yet not make the computational work excessive.

As mentioned previously, the Ferrari method involves the approxi-
mation of a continuous distribution function by a broken-line function.
Furthermore, the slope of the distribution function in any one interval is
a function of the slopes of the distribution function in all preceding in-
tervals. As a result of this, any error in one interval may well have a
cummulative effect, causing larger errors in downstream intervals. In the
course of the computations it appeared that the approximations that were
made did not seem to destroy the convergence, although computing errors
of any size did introduce a sizeable error in the result. The computations
involved in finding the distribution function are more complicated than the
computations in the Nielsen-Matteson method, which were discussed in the pre-
vious section.

It should be noted that for each Fourier component the accuracy
of the component depends on the fineness of the interval chosen and that
for a given accuracy the interval used must be smaller for the higher-order
components, since the higher-order boundary condition components fluctuate
more rapidly, as previously pointed out. This permits the rapid calculation
of the lower-order components using a large interval if only a rough approxi-
mation to the true answer is desired. 1In the course of the computations
for f; in the shock-cylinder configuration, some trials were made using dif-
ferent interval lengths. The results indicate that the computations are
quite insensitive to the internal size for ¢l‘ In fact, the full inter-
section distance was used for the interval, length and even then the results
were not far different from those obtained wusing one-fourth the intersection
distance as the interval length.

Fig. 5 shows the various Fourier components @, @, @, ¢5 of
the interference velocity potential $. In addition @./0z', d¥1/0z", o¥o/0z',
and O¢3/OZ', which are involved in the computation of the axial pertufbation
veloecity u', are shown in Fig. 5. d¢i/az' was obtained by analytically dif-
ferentiating the expression for ¢i and then numerically integrating the

17
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resulting expression, which involves only f's and K's. This procedure is
preferable to simply differentiating the function ¢i(zﬁ) numerically, since
it increases the accuracy of J¢i/bz'.

C. Nielsen Method

Since the first step in both the Nielsen method and the Ferrari
method is a separation of the variable 6, the boundary conditions in both
methods must be expressed in exactly the same way. Hence, all remarks made
concerning the approximations involved in applying the boundary conditions
in the Ferrari method, which were made in the previous section, apply egually
well to the Nielsen method. In the present method the data necessary to
solve the problem, the M and W functions, were available for all the even
components up to the 6th, but none of the odd M's or W's were published,
since, as pointed out before, in the usual case where we have independence
of the upper and lower parts of the body a symmetry condition can be imposed
which eliminates the odd-order terms. Since the W and M functions are de-
fined as untabulated inverse Laplace transforms of combinations of Bessel
functions, they are not too easy to compute and the difficulty of computation
increases as n increases. Hence, only Wl and W, were computed and their
values are given in Appendix A. The error in Wi and W5 was kept to about
0.002. The corresponding M's were not computed, since we are interested
here in the solution only on the surface of the body.

In the Nielsen as well as in the Ferrari method it can be ob-
served that as the order of the component goes up more trouble can be ex-
pected in the solution. We note in Fig. 4 that as n gets larger the magni-
tude of a, decreases as expected, but the number of fluctuations increases,
so that if some approximate method is used to find the potential in which
the value of a, is assumed constant or linear in intervals, then in order to
get a good approximation the size of the interval will have to be reduced for
the larger values of n. Although values of )@, /¢z' can be expressed as con-
volution integrals of the Wh functions and the boundary conditioms, it is still
necessary to preform the integrations numerically or graphically. The curve
to be integrated has to be computed at a finite number of points a certain
distance apart and then some form of numerical integration must be used.

The accuracy of the results of course depends on the closeness of the points
used in the numerical integration.

V. A BRIEF COMPARISON OF THE THREE METHODS

The Nielsen-Matteson theory has a certain advantage in that some
physical interpretation can be put on almost all the steps in the solution.

21
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Even though the Nielsen and Ferrari theories are less physical in their
approach, they have certain other advantages from a computational viewpoint.
In the Nielsen and Ferrarl methods the basic problem is split up into a group
of subproblems (one for each Fourier component), each of which is independent
of the other subproblems, so that an error or a bad approximation in one
subproblem will have no effect on the other parts of the solution. 1In the
treatment of the subproblems the Ferrari method solves for a distribution
function slope in such a way that the solution for each successive slope
depends on all the preceding ones, which of course means that there is a
possibility for a cumulative error to exist. However, it appeared in the
actual solution that the approximation made in the first part of the solu-
tion did not seem to have any serious effect on the latter ones; that is,

the process gave a solution that converged to the proper asymptotic values
and compared very well with the Nielsen method, which uses an approach with-
out this chance for a cutulative error.

As was polnted out previously in the Nielsen method, there are
two ways of obtalning the solution, one in which a distribution function is
found first arnd then velocities and pressures, and a second shorter method
which can be used if pressures are wanted only on the surface of the cir-
cular body. In the shorter method the pressure on the body is obtained di-
rectly from the boundary conditions by one integration. The shorter method
has two advantages, (1) that only one integration is necessary, and (2) that
the integration is much easier to perform since there are no singularities
in the integrand as there are when we try to find the distribution function
from the M's.

It can be said roughly that the accuracies of the Ferrari and
Nielsen methods are about the same if the same interval length along the
z' axis is used in both methods (see Fig. 5). The Nielsen method has some
advantages, however, which should be pointed out. The first advantage is
that it is somewhat easier to vary the grid length in the Nielsen method
than it is in the Ferrari, since in the Ferrari method the basic summation
formulas change so that when each new distribution function sld@e is com-
puted each term in the summation has to be watched carefully to see that
the correct interval is used. This means that the Ferrari method is harder
to set up for routine calculation. A second advantage of the Nielsen method
1s that asymptotic expressions are available for the W, functlvis, so that
it is possible to make some general statements about the method without
performing the complete calculations, i.e., the values near discontinuities
can be determined more easily and also the downstream asymptotic behavior
can be determined. 1In the Nielsen expression for determining the pressure
there is also the advantage (from the point of view of analyzing the re-
sults) that the pressure splits into two parts, one being the local (Ackeret)
value and a second part being the effect of all the upstream influence.
Ferrari, on the other hand, is able to solve the problem in which the radius

22
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of the body varies along its axis, although this problem is more difficult
from the computational point of view inesmuch as it is harder to set up
in a routine manner.

The actual computational time required for all three methods is
approximately the same. The difficulty in using any one of the three methods
occurs in setting the problem up for computation. The Nielsen-Matteson
method is the simplest to set up if the various tahles of influence coell-
cients are avallable. The Ferrari method is not too difficult to prepzare
for computation. However, some of the computations involved are long and
require a good deal of concentration. As far as the Nielsen method is con-
cerned, there isno great difficulty either in applying the method to a
specific problem or in carrying out the computations as long as the Wn
functions are available.

VI. DISCUSSION OF RESULTS

In the calculations for the various theories a basic Mach number
of M = |2 was taken, since this simplifies the computation and since the
velocity data can later be converted to any desired Mach number by the usual
Prandtl-Glauert transformation. In addition, the velocities were nondimen-
sionalized with respect to the uniform cross-flow velocity induced by the
shock wave, so that in order to get the results for a shock wave of some par-
ticular strength, it is necessary to multiply the nondimensional ratios by
the cross-flow velocity.

In the Nielsen method the convolution integrals were evaluated

numerically using Simpson's rule with intervals of z' = 0.2, whereas the
Ferrari curves were obtained by the approximations described before with the
interval z' = 0.5. Some computations were done with Az' = 0.25, and

these seem to indicate that the rougher steps give a good approximation

at least for the lower-order singularities. A comparison of the curves
shows that the methods compare quite well for both ¢, and 0§,/dz' at least
up ton = 3: see Fig. 5.

The first point at which all three theories can be compared is in
the values of the perturbation velocities u' and vé. Since the Nielsen and
Ferrari theories compare well on the basis of their Fourier components, ¢n
and 0¢n/az, they will of course still have a good comparison when the com-
ponents are added up. Fig. 6 is a plot of the axial and tangential pertur-
bation velocities vs z' for different meridional angles as given by the three
different theories. The heavy lines that are drawn in are faired curves
based on points from all the theories and also a knowledge of the endpoints
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of the curves. It can be observed that both the Nielsen and Ferrari points
have a variation from the faired curve and that the two theories do not
depart in exactly the same way, which means that there is some variation
due both to the approximation and to the finiteness of the number of terms
in the Fourier series. Near the discontinuities there is a softening of
the effects, as would be expected from the relatively small number of terms
used in the approximation. Since there are no exact solutions without some
approximation, there is no absolute criterion for the error in the solution;
the only comparison that can be made is between the faired heavy curve and
the points given by theory.

The pressure was computed next from the velocity components by
converting them to M = 1.87 (the Mach number of tests in Ref. 8) and by
selecting a cross-flow velocity corresponding to & = 11.2° and L4.0°.

For a comparison, the pressure was calculated both from the exact isentropic
relation which involves both velocity components, i.e., u' and vé on the
surface, and from the linearized expression in which the pressure depends
only on the axial velocity u'. From the linearized pressure relation we
would conclude that the asymptotic pressure on the cylinder due to the
cross-flow would be independent of 6, whereas there would actually be a
nonconstant pressure around the surface due to the asymptotic doublet flow.
If the isentropic pressure relation is used, then the effect of the doublet
will be included. Also note that the linearized pressure relation implies
that all the pressure distributions with § or M varying will be similar

to each other, so that an affine transformation of one or both of the axes
is all that is necessary to bring the curves into coincidence. When we
include the quadratic terms in the exact expression for the pressure, however,
the curves will no longer be exactly similar and the correct (according to
the incompressible cross-flow theory) asymptotic pressures will be obtained.
Fig. 7 shows the computed results of the exact isentropic pressure ratio

and the linearized pressure ratio, and the experimental results of Ref. 8
for shock deflection angles of § = 11.2° and ¥ = L4.0°. Fig. 8 gives a
composite picture of the theoretical pressure distribution. In the8 = 11.2°
case we see that there is considerably more percentage error between the
exact and linearized pressure ratio than in the case 6§ = 4.,0°. 1In general,
the divergence between the linearized and exact expressions for the pressure
is more serious at points downstream of the intersection, than at the inter-
section, due to the fact that the axial velocity steadily dies to zero,
while the tangential veloclities do not.

The comparison between theory and experiment is fairly good,
bearing in mind the things pointed out in Ref. 8; that is, there is con-
siderable boundary-layer cross-flow, which changes the surface pressure
both by altering the external flow and by providing a chamnel through which
pressure disturbances can propagate. The boundary-layer accumulation 1s
most serious on the lee side of the body, so that the biggest differences
between theory and experiment should be found there.
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In the region near the shock we see that the theory indicates
that pressure and velocity both should have very sharp peaks, which are
impossible to get from experiment due to the presence of the boundary layer.
This explains the difference between the experimental and theoretical curves
in Fig. 7 of Ref. 8. It should be noted that the linearized theory does
not give an accurate description of the flow near the shock wave, partic-
ularly for the higher deflection angles, since the theory assumes that the
Mach number is everywhere the free-stream Mach number, and this is of course
not a very good assumption near the shock wave. In faect, the linear theory
predicts a "shock jump" in the pressure ratio of 1.4k for 8 = L4° and 2.20
for § = 11.2°, while the values computed from shock tebles (Ref. 1k) are
1.51 and 3.26. It is possible that the experimental and the theoretical
curves are not for exactly the same flow conditions, although they were made
to coincide as nearly as possible.

Since the shock angle and the Mach angle are not the same, the
"intersection distance" in the actual case was taken to be the axial dis-
tance between the point where the shock plane first hits the body and the
point where it leaves the body (this intersection distance will be somewhat
shorter, inasmuch as the shock wave is nearer to being normal to the flow
than is the Mach wave). Also, the free-stream Mach number used was not
exactly the tunnel Mach number, inasmuch as the region in which the pres-
sures were measured was behind a conical shock wave from the nose of the
cylindrical body. For this reason, the free-stream Mach number was taken
to be 1.87. The value of the free-stream Mach number is probably much less
in doubt than the shock deflection, since this was determined by measuring
the shock angle with respect to the surface of the cylindrical body. Any
flow inclination or any movement of the body would cause the determination
of the deflection angle to be false. Also note that the pressure ratio
across the shock is more sensitive to a change in deflection than it is to
a change in Mach number. The errors are more serious at the lower deflec-
tion angles, so that although the linearized theory should give better re-
sults here, it may be that the experimental and theoretical curves are not
actually for the same flow conditons (% may be different for the reasons
mentioned).

It is clear, however, that the sharp-peaked pressure curve is
more closely followed by the experimental points for 8 = U4° than for
B = 11.2°. On the lee side the form of the experimental and theoretical
curves is nearly the same but they are shifted with respect to each other
due to the boundary-layer effects.

From the velocity components the angle the streamlines make with
the generators of the cylinder can be computed easily, and it is found at
the ® = 00° station that the flow deflection is 4° for ® = L° and 12.1/2°
for 8 = 11.2°, while from the china-film pictures in Ref. 8 these angles
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are found to be approximately 25° and 45°, which substantiates the state-
ments made about the experimentally determined cross-flow as compared to
the theoretical cross-flow. The angle of cross-flow is seen experimentally
to remain larger than predicted by the asymptotic theory, although it does
decrease appreciably as we move downstream from the shock wave.

APPENDIX A

THE FUNCTIONS W, (2') AND W (z')

VA Wl W5
0 .500 .500
.2 .51k 1.139
b .509 1.392
.6 490 1.310
.8 463 1.007
1.0 L1430 .606
1.2 .38p 200
1.4 .356 - .08L
1.6 .315 - 262
1.8 277 - .329
2.0 241 - .296
2.2 .207 - .212
2.k JAT7h - 112
2.6 146 - .01k
2.8 .120 .055
3.0 .097 .003
3.2 .077 .099
3L .059 .08L
3.6 .OLk .057
3.8 .031 .023
4.0 .021 - .008
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