Nonhomogeneous Markov Decision Processes
Linked by Side Constraints

Christopher L. Morse
James C. Bean
Department of Industrial & Operations Engineering
University of Michigan Ann Arbor, MI 48109

Nejat Karabakal
Production Modeling Corporation
Three Parklane Boulevard, Suite 910 West, Dearborn, MI 48126

Technical Report 97-04
April 1997

Nonhomogeneous Markov Decision Processes

Linked by Side Constraints

CHRISTOPHER L. MORSE
JAMES C. BEAN
Department of Industrial and Operations Engineering
University of Michigan, Ann Arbor, Michigan 48109
NEJAT KARABAKAL
Production Modeling Corporation
Three Parklane Boulevard, Suite 910 West, Dearborn, Michigan /8126

April 28, 1997

Abstract

We present a mixed-integer nonlinear formulation of nonhomogeneous Markov decision pro-
cesses linked by side constraints. A nonlinear penalty function is used to relax the side constraints.
The concepts of pressure and volume are introduced in a variant of simulated annealing which
is used to heuristically solve the relaxed problem. A multiplier adjustment method is presented

to find bounds. Computational results are reported.

Introduction

A Markov decision process is a staged, stochastic optimization model that appropriately models
many real problems such as equipment replacement. During each stage of the problem, the system
is in one of a finite number of states. These states describe some condition of the system. For each
stage and state of the problem, one of a finite number of actions may be chosen for the system. The
action induces a reward. The system then proceeds to the next stage where the state is known with
a probability dependent upon the stage, current action, and the current state. We will consider
finite horizon problems where the horizon is the number of stages in consideration.

In many problems, the data may not be static through the stages of the problem. In this case the
model is a nonhomogeneous Markov decision process (NMDP). Research in NMDPs has primarily
focused upon solving infinite horizon problems. The literature includes Park, Bean, and Smith [19),
Bean, Hopp, and Duenyas (4], Bean, Smith, and Laserre [5], and White [21].

Finite horizon NMDPs are solved by dynamic programs (see Derman [9] and Denardo [8]) that
determine an optimal policy. For equipment replacement problems, the optimal policy would be an
optimal replacement schedule for the particular asset in question.

Often in equipment replacement problems, a portfolio of assets must be analyzed. In this case
a replacement action may have an associated capital expenditure in addition to the reward value.
These capital expenditures may be limited in each stage (or period) by budget constraints. To
formulate this problem, each asset’s replacement is modeled as a NMDP and the processes for all
the assets are linked during each period by side constraints representing the budgets.

The equipment replacement problem above motivates the study of the general problem of non-
homogeneous Markov decision processes with side constraints. A literature search for this topic
revealed no published papers regarding this topic. Related research includes Derman [10], which
considers a single constrained homogeneous Markov decision process. Past research in groups of
Markov decision processes focuses upon large scale homogeneous Markov decision processes. This
includes White and Schlussel [22] and Varaiya [20).

Because this type of problem has not been addressed in the literature, we will introduce a

mixed-integer disjunctive programming formulation. As a method of solution, a simulated annealing
technique expanded to include both temperature and pressure will be presented. This algorithm may
“have further applications in both artificial intelligence and operations research for other problems
with constraints which cannot be incorporated into variable definitions. Because the solution from
simulated annealing is not necessarily optimal, a bound is presented based on a multiplier adjustment
method.
The mixed integer programming formulation and a relaxation using a nonlinear penalty function
are in Section 1. Section 2 presents a simulated annealing approach to solve the relaxed problem.
Section 3 develops a multiplier adjustment method to find a tight upper bound. Computational

experiments are reported in Section 4. Section 5 presents conclusions.

1 Problem Formulation

To facilitate the formulation of nonhomogeneous Markov decision processes with side constraints,
we present a dynamic program for solving a single unconstrained problem (see Derman [9] and
Denardo [8]). Let p index the process being modeled (initially, we only consider a single process).
Let ¢ index the stage and i index the state for process p. Define a scenario to be the states of all

the processes over the time horizon for a given outcome.

Define:

v(p, t,1)

7r(p, a’ t’ 1‘)

P(p’a’7t,i’j)

R(p,a,t,1)

The following dynamic program solves for the maximum discounted expected return for process

Number of stages.

Maximum expected return for process p of actions in stages ¢
through H if process p is in state i in stage t.

Resource consumption if action a is chosen during stage ¢

for process p in state i.

Probability that if action a of process p is chosen in stage ¢
at state ¢ then the result will be state j in stage ¢ + 1.
Reward if action a is chosen during stage ¢ for process p in state 1.
Set of possible states for process p.

Set of possible actions for process p.

Discount factor per stage.

Salvage value of process p in state i at the end of stage H.
Probability process p is in state 7 at the beginning of stage 1.
Resource limit in stage t.

The state of process p during period ¢ in scenario k.

Number of scenarios.

Expected return if action a is chosen for p,t,i.

’U(p, t, 2) = InaXg R(p,a,t, 7‘) + anGS(p) P(p, a, taiyj)v(pat’l' la])

For a group of processes, each problem can be solved separately using the above dynamic pro-
gram. However, the resulting actions may violate the side constraints. As a step toward the

inclusion of side constraints in the model formulation, a linear program is given below as (P1) (see

forall t,i € S(p)

v(p, H + 1,1) = Z(p, %), for all i € S(p)

Denardo [8]). This linear program solves the above dynamic program for process p.

min Y q(p,1,i)v(p,1,1) (3)
i€S(p)

(P1) subject to

’U(p, t, 2) 2 R(pv a,t, Z) + aZjeS(p) P(pa a,t, ’i,j)'U(p, t + 19j) (4)

foralla,ie S(p)ym=1,...,H-1
U(pa H,l) 2> R(pvayH’i) +aZjES(p) P(p7a'vH77'1.7)Z(p’.7) (5)

for all a,i € S(p)

The optimal values for v(p, t,7) in (P1) are equal to the maximum discounted expected returns
of the set of action choices. The lack of variables explicitly representing these decision choices in
the linear program (P1) creates a difficulty in determining resource consumption. The selection of
decisions can be represented by the binary variable y(p,a,t,1), which is 1 if action a for process
p is chosen in period t at state i, 0 otherwise. With the addition of side constraints, the optimal
value for (P1) may be infeasible. The value for v(p, t, 1) must take on a value equal to a discounted
expected return corresponding to a decision in the set of possible decisions. Thus, there is a set
of equality constraints for each v(p,t,7) where each constraint represents the value of a decision
choice where only one of these constraints needs to hold for each set. The constraints in each
set are disjunctive. Disjunctive constraints are connected by the logical operator or as opposed to
conjunctive constraints which are connected by and. Disjunctive constraints are naturally nonlinear.
However, it is possible to construct equivalent linear constraints. A linear mixed integer formulation

(P2) using the linear equivalent of disjunctive constraints is given below with side constraints (12).

max) Y q(p,1,9)v(p,1,1) (6)

P ieS(p)
(P2) subject to
v(p,t,9) 2 R(p,a,t,i) + @ Xjesp) P(psast, i, 5)v(p, t +1,5) = M1 - y(p, a,t,1)] (7)
forallp,a,i€ S(p)ym=1,...,H—-1
v(p,t,i) < R(p,a,t,1) + @ Xjegp) PPy ast, 4, 5)v(p,t +1,5) + M[1 - y(p, a,t,1)] (8)
forallp,a,i€ S(p)ym=1,...,H-1
v(p, H,i) 2 R(p,a, H,%) + @ ¥jesp) P(p,a, H,i,5)Z(p, 5) — M[L - y(p, a, H,i)] (9)

forall p,a,i € S(p);

v(p, H,1) < R(p,a, H,%) + @ ¥jesp) P(p,a, H,i,5)Z(p, j) + M1 - y(p, a, H,)] (10)
for all p,a,i € S(p);

Yoyt i) =1 (11)
forall p,t,i € S(p);

Yp Lem(pra,t, sp)y(p,a,t, s5) < B(t) (12)

forall t,k

y(p,a,t,1) € {0,1}

where M is a large positive number.

Problem (P2) is based upon a formulation for nonhomogeneous Markov decision processes sug-
gested in Bean, Hopp, and Duenyas [4]. Constraints (7)-(10) are linear equivalents of disjunctive
constraints. Previous approaches to disjunctive programs include cutting planes in Balas [1, 2] and
Jeroslow [15]. Also, a Bender’s decomposition approach was developed in Bean [3] and Bean, Hopp,
and Duenyas [4]. However, the combinatorially large number of disjunctive constraints and side
constraints impedes a direct solution method for (P2).

The above formulation (P2) of the side constraints (12) is considered a fat solution (see Kall
and Wallace [16]). Given an action vector y, the probability of a particular scenario occurring in
stage t may be very small (or even zero). If this scenario violates the side constraint for stage ¢ the

solution would be infeasible. Therefore by including constraints for every possible scenario, good

solutions may be eliminated even if the probability of violating a constraint is very small. This type
of constraint heavily effects the objective function. For this reason we now present an alternative
formulation of the side constraints using expected values.

Define ¢(p,t,7) to be the probability of process p in stage ¢ being in state i given the values
of all action variables, y(p, a,t,i). We can use the following recursive equation to determine these

probabilities:

apti)= Y Y alp,t—1,5)y(p,a,t = 1,5)P(p,a,t - 1,3,1). (13)
Jj€S(p) ¢

Define Y to be the matrix of decisions y(p, a,t,7). Define E(t,Y) to be the expected value of

expenditures during stage t. Then the new side constraint for the model is

EtY) =3, Yiesp) Lc (@ ti)m(p,a,t,)y(p, a,t,9) for all t

B(t)-E(t,Y) >0 forallt (14)

By substituting constraint (14) for constraint (12) we now have the expected value version (E1)
of the original model (P2). Let V(E1) be the value of the objection function of (E1) for the optimal
solution. The major drawback in using side constraints based upon the probability equations (13) is
the loss of linearity. However, the combinatorially large number of side constraints has been reduced

to the expected value side constraints (14).

1.1 Nonlinear Penalty Function

The number of constraints can be further reduced by relaxing the side constraints and introducing a
penalty function. A nonlinear penalty function for integer programs was developed in Hadj-Alouane
and Bean [12]. This penalty function has the form:
H
pA(y) = ; A[min(0, E(t,Y) - B(1))]”

By\ using this nonlinear penalty function, strong duality directly follows from Hadj-Alouane and
Bean [12]. Define V(E2) to be the optimal objective function value for problem (E2) as given below.
There exist multipliers, X > 0 such that for all A > X, V(E1) = V(E2).

Now, with the reduction in constraints, feasible solutions in the relaxed problem can be found
easily. Replace the action variable y(p, a,t,i) with the new action variable j(p,t,i). Let 7(p,t,1)
equal the index of the action choice, a € A(p). Now, the multiple-choice constraints are embedded
in the solution representation and the linearized disjunctive constraints are reduced to network flow
constraints.

The relaxed model, (E2), is

maxz Z q(p, 1,%)v(p, 1,7) Z;)\tmm (0,E(t,Y) — B(t))? (15)
P ieS(p)

(E2) subject to

J€S(p)

Y(p, 1) € Ap) (17)

Now, the objective function (15) and constraints (16) are nonlinear. However, the number of
constraints has been greatly reduced from (P1). Additionally, all solutions which satisfy the multiple-
choice criteria (17) are feasible to (E2). This allows for simple construction and representation of

feasible solutions for (E2).

2 Solution Technique

Because the problem (E2) is nonlinear with many local optima, a direct solution method cannot be
employed for realistically sized problems. Therefore, a new variant of simulated annealing is used

for the problem.

2.1 Simulated Annealing

Simulated annealing is a general heuristic procedure which follows a physical analogy of annealing.
The algorithm generates a sequence of solutions in a search for near optima. To begin each iteration,
a neighbor of the current solution is randomly selected. If the objective function value of the neighbor
is better than the current solution it is accepted as the new current solution. If the value of the

neighbor is worse, it is accepted with a probability dependent upon current temperature and the

objective function value difference between the current solution and the neighbor solution. The
temperature during the simulated annealing procedure changes according to a cooling schedule. At
the beginning of the procedure, the temperature is high so that worse solutions are likely to be
accepted. Towards the end, the temperature is low and only improving solutions are accepted. For
a more detailed description of simulated annealing, see Dowsland [11].

The general simulated annealing outline in Dowsland [11] was used. For our problem, a neighbor
of solution y has all action choices the same except for one variable. This variable may take any
action choice in the set of possible actions. The objective function, f(y), is the function given in
equation (15). Define c to be the current temperature. The future temperature is a function of c,
n(c). The cooling schedule was determined to be a linear function where 7(c) = ¢ such that v < 1.
(Note: this is a geometric cooling function in terms of the iteration count.)

The inclusion of the penalty function and dual multipliers in the objective function (15) provides
a unique problem. Previous applications using dual multipliers, Jellet [14] and Mittenthal [18], have
assumed that these dual multipliers are given before the simulated annealing procedure begins. By
using the nonlinear penalty function it has been shown in Hadj-Alouane and Bean [12] that there
exist optimal multipliers, A > 0 such that for all A > X, strong duality exists. Therefore, if the
multipliers used are such that A(t) > A(t) and the solution obtained from simulated annealing is
optimal for these multipliers and the solution is feasible in terms of the relaxed constraints then the
solution is optimal. It would seem to make sense to set these multipliers to extremely large values
such that they are greater than \(t) for all t. However, by using such large multipliers the objective
function becomes excessively penalized so that only solutions that are feasible to the resource limit
constraints will be accepted even when the temperature is high. From empirical experience, the
convergence is often slow for these large multiplier values. Since determining the optimal multiplier

values is extremely difficult for this problem, a different approach is taken.

2.2 Pressure

Taking from the physical analogy of simulated annealing in which temperature refers to the accep-
tance probability of a non-improving solution, we develop the concept of a thermodynamic system.
Based upon the thermodynamic equation, PV = nRT, we effect the system by altering pressure and

temperature to induce a change in volume. In our analogy, volume refers to a fuzzy set representing

solutions that are acceptable with a ‘reasonable probability.” Thus as temperature decreases, the
volume will decrease as less solutions are included in the acceptable set. Pressure relates to the
values of the multipliers for the penalty function. When the system is under high pressure the
penalty function multipliers are large. Therefore the probability of selecting a nonfeasible solution
is small and the volume is low. In low pressure situations (small multipliers) the algorithm is more
likely to accept solutions that are infeasible in terms of the side constraints and the volume of the
system increases. If the multipliers are in an increasing phase, the system is being compressed. If
the multipliers are decreasing the system is being decompressed.

In this application, both cooling and compression follow a linear process. Thus, the volume
is decreasing and the set of acceptable solutions is shrinking. The goal is to achieve a feasible
solution near the optimal value by the end of the procedure. At the beginning of the algorithm
the values for the multipliers start small such that A(t) < A(t). During the cooling step of the
simulated annealing procedure, compression also occurs. The values for the multipliers change such
that A(t)new = B(A(t)ola). For our application, B(A(t)ea) = 6(t)A(t)oig where () > 1 so that at the
end of the algorithm A() 3> A(t). At the beginning of the procedure this method allows exploration
of solutions infeasible in terms of the resource limit constraints. Towards the end of the algorithm, if
the current solution is feasible, only improving feasible solutions are accepted. Otherwise, solutions

with increased feasibility are preferred.

3 Bound Development

Due to the heuristic nature of simulated annealing, bounds on the optimal objective function value
are needed to measure the quality of the solution produced. For large problems, calculating reason-
able bounds for the expected value problem is extremely difficult.

We now return to the problem (E1) and introduce a linear relaxation of the side constraints in
problem (E1) to form a Lagrangian relaxation. The resulting problem is used as a bound for the
value of problem (E1). Lagrangian relaxation is used when the problem resulting from relaxing a
set of ¢onstraints into the objective function is solvable. Solving this relaxation for a given set of
multipliers will produce an upper bound for the optimal solution value to the original problem. Let

vA(p, t,1) be the maximum expected return value penalized with multiplier A. Define the penalized

10

reward value, Ra(p,a,t,1) to be:

RA(p7 a, t1 Z) = R(p7 a, t1 z) - Atﬂ'(pa a, ta 7’) (18)

and the penalized expected return to be:
NA(pa a,t, l) = RA(p,a7ta i) + C!ZP(]), a, t,’i,j)UA(p, t+ la]) (19)
J

Then the following model (LRA) is a Lagrangian relaxation of (E1):

V(LRa) =)D alp,1,i)va(p,1,4) +) Awa’B(t) (20)
P i t
(LRa) subject to
’UA(p, t,i) = m(‘?‘x RA(p? a,t, 1’) + aZP(p’ aat,iaj)vA(p,t+ 1,7 Vp,t,i (21)

J

Lemma 1 The optimal solution value to (LRa) for any A¢ > 0 is an upper bound for (E2).

Proof: See Appendix A.

To find a tight upper bound we need to find minp V(LRA). The most common approach to
this type of problem is subgradient optimization (see Beasley [6]). This algorithm is an iterative
procedure that uses the subgradients of the objective function to alter multiplier values. Subgra-
dient optimization is a general method whereas multiplier adjustment methods (MAMs) rely upon
specific problem structures. MAMs adjust the multipliers at each iteration so that the dual value is
monotonically decreasing in upper bound problems.

An attempt at using subgradient optimization for our problem resulted in slow convergence.

Therefore, a multiplier adjustment method is developed below.

3.1 Multiplier Adjustment Method

A successful multiplier adjustment method was implemented in the deterministic case of parallel
equipment replacement in Karabakal, Bean, and Lohman [17]. However, because the structure of
the problems- are significantly different in this paper, a new multiplier adjustment method for our
problem is presented.

The subgradients for the side constraints are given by
Gy = E(t,Y) - B(t)

11

For stage h with G, > 0, the side constraint is infeasible. In this case iwe should increase
Ap by 6, > 0 and thus encourage a decrease in infeasibility for stage h. For all other stages
t # h, 6; = 0. Define Va49(p,t,1), Ra+o(p,a,t, i), and Na,g(p, a,t,1) to be their respective values
penalized by the multipliers A + . Below is a procedure for determining the value of), so that
V(LRA) > V(LRa+g). This is accomplished by showing, for certain values of 6, that the current
optimal solution to (LRp) defined as a;,u- remains an optimal solution in (LRA¢) and the value of
the solution is monotonically decreasing. To calculate possible values for 6}, we need the following:

First, define 6(p, h, 1) to be the difference between the optimal expected return for p, k, 4 and the
next best expected return value or

5(17, h,"') = mlfl (NA(p’ a;h'i,?h»":) - NA(p, a,h’i))'
aFapy;

P

Let {(h) be the minimum of all the 6(p,t,) scaled by the distance from stage h or

C(h) = min (8(p,t,3)/ ot

Define mpmqz(h) as the maximum resource consumption for optimal action choices in stage h or

Tmaz(h) = n;l)aix 7(p, a;hiv h, 1)

Define the transition vector from stage t < h — 1 to stage h to be Tx(p, A¢,t,1,7) where A; is the

matrix of actions in periods ¢ through h and

Th(P, Atatviaj) = ZP(Z), a, tai’ k)Th(p» At+1yt+ 17 ka]) (22)
k
and for stage h — 1
Th(p,Ah—lyh_laiaj) :P(pvaah"lviaj) (23)

Note that the expected budget in stage his: Ea(h) = 32,3 3 4(p, 1,4)Th(p, A1, 1,4,)7 (p, Gphis By i).
We now show that for a change of 6, in the multiplier for period A, the values for the maximum

expected returns do not change in the stages following stage h.

Lemma 2 For stagest > h, va44(p,t, 1) = va(p,t,1).

12

Proof: Since 6; = 0 and Nay¢(p, t,a,i) = Na(p,t,a,1) for all p,a,i,t > h, the maximum expected
return values do not change. ®
Below is a theorem which states the changes in the maximum expected return values for stage

h and the stages prior to h. The theorem is limited to a range of values for 8j,.

Theorem 1 For n(p,a,t,i) > 0 for all p,a,t,i and for 0 < 6y < (((h)/Tmez(h)) the mazimum
expected return values in (LRA+g), are:

a’) fO’I‘ stage h: 'UA+0(pa h7 ’L) = UA(pa h? ’L) - 0h7r(p, a;hi) ha Z)

b) fO’I" stages t < h: vA+t9(p7 t, 7‘) = UA(pst7 7’) - ah—mgh ZJ Th(pv At)t97:,j)7r(p1 a;hia h7])

Proof : See Appendix B.

Now, given the changes in the maximum expected return values, the change in the objective

function value for problem (LRa+¢) from problem (LRA) can be found.

Corollary 1 For the conditions given in Theorem 1,

V(LRa) — V(LRate) = o* 10, ((E(h) — aB(h))

Proof: The objective function of (LRa1¢) is:

V(LRate) =Y. a(pLi)vase(p,1,i) +) (A¢ +6;)a' B(t)
P i t

= Z ZQ(p7 11 i)(vA(p) 1? Z) - O‘h—loh ZTh(p) A17 1, iaj)ﬂ-(p, a;hh ha]))
P i J

+Y A B(t) + 6, B(h)
t

= V(LRA) - 000" D T 340, L) Th(p, A1, 1)70, a3 b) — 0" B(R)

P i J
= V(LRa) = 640" " (Ea(h) — aB(R))

Therefore, since Ea(h) > B(h),a > 0, and 6, > 0 the value of the objective function decreases
by 6xa""1(E(h) — aB(h)). m
Theorem 1 and Corollary 1 combine to give us a multiplier adjustment method for finding a tight

upper bound. Solving (LRA) for a given value of A will give an upper bound for problem (E1). By

13

increasing the multiplier for an infeasible side constraint in stage h by 6}, as defined in Theorem 1,
the resulting solution value will decrease by 6,a"~1(E(h) — aB(h)). Repeatiﬁg fhis for resulting
solutions gives a multiplier adjustment method for tightening the upper bound value. Corollary 1
shows that at each iteration, the value for the upper bound is decreasing. The procedure ends when
either a feasible solution is

found or no improvement exists after a predefined number of iterations. Therefore the mul-
tiplier adjustment method is not guaranteed to give an optimal solution for the dual problem

minp V(LRA), but gives a relatively tight bound.

4 Computational Results

The simulated annealing with compression algorithm was coded in C and run on a Sun Ultra-2
workstation. Random test problems were created using a data generator based upon pavement
maintenance problems. Pavement maintenance is a case of parallel equipment replacement where
the problem is to schedule maintenance or restoration alternatives for street segments. The goal is
to maximize service benefits so that the costs of actions are within budget limits. Karabakal, Bean,
and Lohmann [17] present an approach for solving deterministic pavement maintenance problems.
Since pavement deterioration is often highly variable, the deterministic assumption is not valid in
many cases. In this section, we present computational results using pavement maintenance problems

with stochastic deterioration.

4.1 Problem Generator

The data generator was based upon the scheme for deterministic problems in Karabakal, Bean, and
Lohmann [17]. Stochastic deterioration follows from Carr and Kim [7]. For pavement maintenance,
each street segment is considered an asset. The street segment areas p(p) were sampled from the
uniform distribution: U(1000,7000). Each asset could be in seven possible service states and has
four possible actions. The service level of a street segment is given by its pavement condition index
(PCI)! PCI is a number between 0 and 100, 0 being worst, 100 being best. The cost for each
action option was determined by the following equations where i € {1,2,...,7} is the service state

number, PCI(3) is the corresponding pavement condition index for state i, t is the current stage,

14

and r(p) is the area of street segment p:
m(p,1,4,1) 15.016r(p) (0.948)FCI0)

) = r(p)(8.5+0.02m +0.1(100 — PCI()))
n(p,3,t,4) = r(p)(10+.02m + .12(100 — PCI(3)))
) = r(p)(16.42 4+ .124m)

I

m(p,2,t,1

m(p,4,t,4

Action 1 represents the do-nothing option, actions 2 and 3 are two types of overlays and action 4
is reconstruction. The cost equations follow from Karabakal, Bean, and Lohmann [17]. The benefit
for each action is determined by weighted value of the service state and the cost of the action. The

following equation is the benefit value:
R(p,a,t,i) = 1000 — 7(p, a,t,1) (24)

Salvage values, Z(p,1), were zero for all assets regardless of service state. Transition probabilities
were assumed to follow an exponential deterioration as in the deterministic approach in Carr and
Kim [7]. The following scheme was used to determine transition probabilities:

Let ¢* be the maximum possible service state level for an asset during the next stage. This level
was determined by the current state level and action choice using the following equations:

action 1: i* =i -1

action 2: t* =1

action 3: * =1i+1

action 4: 1* = 7 (the maximum service state)

For the do-nothing option (action 1) the service level degrades by one degree. For the first overlay
option (action 2) the service level remains constant while for the second overlay option (action 3)
the service level improves one degree. When reconstruction (action 4) is chosen, the pavement
section is at the maximum service level. For each segment p, define d(p) = p(p)/7000 + .9, where
(.9 < d(p) < 1.1). The deterioration rate is ¢(p,t,1*) = (d(p)i*)/(.2m + ¢* — 1). The transition

probabilities are then determined by the following equations:

P(p,a,,)(i") = (1= e #P4) /(1 - 604 (25

P(p, a, t, Z,J) = (e(j_i.)d’(prt’i') —_ e(j—i'—l)tﬁ(p,t,i'))/(l —_ e—i“p(patai‘)) (26)

15

j=1,...,4 -1

Budget values are proportional to the area for each segment: B(t) = €., p(p), where € can be

set to vary the tightness of the budget constraints.

4.2 Computational Experiments

Computational experiments were conducted on problems of varying problem sizes to measure com-
putational times for varying values for . The values for ¢ were 6, 7, and 8 for 50 asset problems.
For 100 asset problems the values of ¢ were 5, 6, and 7. Note that larger values of € represent
larger budget values. The values of € were varied to measure the effect of tighter constraints on
CPU time. Time horizons of 5 and 10 periods were used for the 50 asset problems. Four problem
instances were tested for each problem size and value of €. Each problem instance was run using the
simulated annealing with compression code using ten different random number seeds. A discount
factor of .9 was used for the data sets. The simulated annealing code used the following cooling and
compression schedule: n(c) = .98c and B(A(t)) = 1.05A(t). The simulated annealing procedure was
ended when the value reached a given tolerance to the upper bound.

Table I contains the results for solution values for problems with 50 assets over a 5 period time
horizon. The first column corresponds to the problem parameters where p is the number of assets, t
is the number of periods, and e is the budget level as given above. The tolerance allowed is given in
TOL. VAR is the total number of integer variables. The multiplier adjustment method was coded
in C and the resulting upper bound is reported in column M AM. These minimum, median, and
maximum values from the simulated annealing solution are reported in the columns corresponding
to SA SOL. CPU times for reaching the given tolerance are reported in seconds.

Table II contains results for problems with 50 assets and 10 periods. Table III is for problems

with 100 assets and 5 periods.

5 Conclusions

The stochastic cases of parallel equipment replacement problems motivated the study of nonhomo-
geneous Markov decision processes linked by side constraints. No previous research for this complex

problem exists in the literature. A mixed-integer nonlinear programming formulation of the problem

16

was introduced. A nonlinear penalty function was applied to relax the side constraints. A multiplier
adjustment method was constructed to produce upper bound values for the problem.

The relaxed problem with the nonlinear penalty function was heuristically solved by a variant
of simulated annealing. This variant introduced the concepts of pressure and volume to alter the
multiplier values. This variant of simulated annealing has the potential to address the general class
of global optimizafion problems with relaxed constraints where the multiplier values are not easily
determined.

Because no previous research was found, a library of test problems was generated. Computational
results were completed for problems of 7,000 and 14,000 binary variables. These problems were
solved within 5% and 10% tolerances of the upper bound value respectively. Most problems were
solved within a reasonable amount of CPU time. Problems of ¢ = 6 for the 50 asset problems did
not have a median CPU time of less than 10,000 seconds for all problem instances. As expected,
computational times were shown to decrease with decreasing tightness of the budget constraints. The
formulation, multiplier adjustment method and the simulated annealing variant with compression
presented in this paper combine to give an effective approach for solving the complex problem
of nonhomogeneous Markov decision processes linked by side constraints. Computational results
show that these methods can solve a 14,000 binary variable nonlinear mixed-integer program in a

reasonable amount of CPU time.

Acknowledgment

This work was supported in part by the National Science Foundation grants DDM-9202849 and
DMI-9634712, the Great Lakes Center for Truck and Transit Research, and the Alfred P. Sloan

Foundation through the University of Michigan Trucking Industry Program.

17

Table I: Computational Experiments for (p = 50,¢ = 5) problems using a Sun Ultra-2 workstation.
SA SOL Seconds

(p,t,e) | TOL VAR MAM | Min Median Max Min Median Max

(50,5,6) | 5% 7000 10021 | 9394 9520 9520 68.49 3965.93 >10,000
(50,5,6) | 5% 7000 10194 | 9534 9684 9957 | 225.72 9792.73 >10,000
(50,5,6) | 5% 7000 10628 | 10005 10098 10100 [50.73 1503.68 84.66
(50,5,6) | 5% 7000 9789 | 8887 9184 9276 | >10,000 >10,000 >10,000
(50,5,7) | 5% 7000 10693 | 10159 10160 10162 | 38.07 45.47 180.9
(50,5,7) | 5% 7000 10615 [10084 10085 10085 | 38.38 53.42 5392.83
(50,5,7) | 5% 7000 10489 | 9857 9965 9966 42.97 630.81 > 10,000
(50,5,7) | 5% 7000 10390 | 9871 9871 9873 40.00 49.30 2783.57
(50,5,8) | 5% 7000 10533 | 10007 10007 10007 | 43.82 49.43 628.57
(50,5,8) | 5% 7000 10758 | 10221 10221 10224 | 41.81 46.92 55.49
(50,5,8) | 5% 7000 11083 | 9884 9884 9886 57.98 137.52 137.52
(50,5,8) | 5% 7000 10474 | 9950 9950 9970 42.26 55.00 1150.65

18

Table II: Computational Experiments for (p = 50,t = 10) problems using a Sun Ultra-2

workstation.
SA SOL Seconds

(p,t,e) | TOL VAR MAM | Min Median Max Min Median Max
(50,10,6) | 10% 14000 17399 | 15272 15364 15506 | >10,000 >10,000 >10,000
(50,10,6) | 10% 14000 17317 | 15114 15198 15449 | >10,000 >10,000 >10,000
(50,10,6) | 10% 14000 17923 | 15789 15938 16132 | 8463.53 >10,000 >10,000
(50,10,6) | 10% 14000 17626 | 15503 15709 15864 | 6182.16 >10,000 >10,000
(50,10,7) | 10% 14000 17530 | 15531 15775 15779 | 419.94 8174.62 >10,000
(50,10,7) | 10% 14000 18142 | 16328 16328 16338 | 150.14 681.57 3696.30
(50,10,7) | 10% 14000 18047 | 16226 16243 16245 | 144.77 1065.65 >10,000
(50,10,7) | 10% 14000 17614 | 15765 15853 15856 | 179.99 1865.56 >10,000
(50,10,8) | 10% 14000 18888 | 17000 17002 17010 | 83.90 93.80 100.78
(50,10,8) | 10% 14000 18385 | 16547 16549 16553 | 87.12 102.13 125.14
(50,10,8) | 10% 14000 18567 | 16711 16712 16720 | 86.66 100.03 122.17
(50,10,8) | 10% 14000 17907 | 16117 16117 16121 | 96.32 105.90 135.50

19

Table III: Computational Experiments for (p = 100, ¢ = 5) problems using a Sun Ultra-2

workstation.
SA SOL Seconds

(p,t,€) TOL VAR MAM | Min Median Max | Min Median Max

(100,5,5) | 10% 14000 19463 | 17517 17519 17553 | 102.13 137.24 648.96
(100,5,5) | 10% 14000 19634 | 17671 17672 17747 | 103.60 127.25 227.05
(100,5,5) | 10% 14000 19843 | 17859 17861 17988 | 96.13 122.19 491.97
(100,5,5) | 10% 14000 19918 | 17926 17927 18001 | 95.13 134.52 318.79
(100,5,6) | 10% 14000 20054 | 18049 18050 18084 | 92.28 110.49 151.04
(100,5,6) | 10% 14000 20894 | 18805 18807 18999 | 91.04 104.70 134.06
(100,5,6) | 10% 14000 20956 | 18861 18864 19049 | 88.50 102.20 168.01
(100,5,6) | 10% 14000 20744 | 18670 18673 18755 | 89.43 95.50 115.09
(100,5,7) | 10% 14000 21335 | 19202 19208 19526 | 78.60 95.04 152.3
(100,5,7) | 10% 14000 21302 | 19172 19175 19180 | 84.78 89.63 101.67
(100,5,7) | 10% 14000 20838 | 18755 18761 19245 | 94.95 99.66 126.91
(100,5,7) | 10% 14000 21704 | 19353 19542 19549 | 78.73 83.44 92.43

20

6 Appendix A

Proof of Lemma 1:

To facilitate the proof of Lemma 1 we use the following notation as described below. Define

p,a,t, and 1 as before and:

X7

I (X7)
E(X.)

Vector of actions where each element corresponds to the
action in state i for process p during stage t.

Matrix of actions for process p.

Matrix of actions for stage t.

Matrix of actions for all processes and stages.

Set of all possible X.

Transition matrix from stage ¢ to stage t + 1 for process p if policy X}
is implemented during stage t¢.

Vector of benefits for policy X? for process p during stage t.
by P2CXD)

Vector of initial state probabilities for process p.

5, T, o QI (XP)RY (X))

Vector of costs for policy X7 for process p during stage t.

Ep AT (XP)I(XF)

Now, (E1) can be written in this notation as problem (E3).

(E3)

max V
XeX

subject to

Ei(X:) — B: <0 forallm

Now, for A; > 0 define the penalized reward to be:

RY(XP) = RY(X]) - AdIZ(XY)

and the penalized value to be

V= T3 QU (KPP

p t=1

21

(29)

(30)

Define problem (UE3) with penalized reward values to be:

U(A) = max V' + ZAta B; (31)
XeX

Note that (E3) and (LRA) are equivalent.

The Lagrangian relaxation of constraint (28) in (E3) is the problem (LE3):

max V,\ =V - Z)\t Et Xt) Bt) (32)
XeX

For \; = Asa® > 0, (LE3) is an upper bound for (E3) and
W o=V- Z Atat(z QAT . (XP) — By)

= ZzatQPTP XP)RE(XP) - ZA atZQ” T (XD (XF) +) A’ B,
t

P t=1

H
=YY o' QTL, (XP)RP(XD) + Y Ao’ B

P t=1
= V, + Z AtatBt
t

Therefore, the optimal solution to (UE3) and is an upper bound for (E3) m

Thus, in our original notation, penalizing the rewards so that,
RA(p,aat’i) = R(pvavt)i) - Atﬂ.(pv a1t7i)

gives an upper bound for (E1).

22

7 Appendix B

Proof of Theorem 1: Proof (a): If ay,; is the optimal choice to (LRa) then

Na+6(paghir hyi) = Na(p, appis by 8) = Op(p, agpi, b, 5)
2 Na(p, appis by 1) = (C(R)/ Tmaz (b)) (p, apps h, 4)
> NA(p, Gppis hy i) = ¢ (h)
> Na(p, appi, by i) — (8(p, b, 1) /o)
> Na(p, aphiy by §) = (NA (D, s, b, 3) = Na(p, a, b, 1)) Ve
= Na(p,a, h,1) Ve

2 NA+0(pa a, ha ’L)

Thus, a,; remains optimal in (LRa+¢) and value of va19(p, h,7) = Nae(p, Appis By i) = va(p, hy1)—

7 (p, a;hi,h,i). [|
Proof (b): Proof by induction. Define z = h —m.
For z=1:

The expected return values in (LR 4¢) for stage h — 1 are:

NA+0(paaa h— 17 7:) = R(p?a, h—]-)i) - (Ah—l + eh-l)ﬂ'(p’ a, h— 17 7’)

+a)" P(p,a,h - 1,i, j)vae(p, b, 5)
j
= R(p7 a,h—1, Z) - Ah—l"r(pv a,h— Li)

+aZP(p,a,h - 17”:7j)(vA(pa h,]) - ghﬂ.(p1 a;hi’h,j))
J

= NA(paa’h - 112) - aGhZP(p,a,h— l,iaj)ﬂ-(p,a;hi,h)j))
J

The expected return values in (LRa 1) for stage h — 1 for the action choices optimal to (LRa) are:

Nato(p,app-1ih—1,4) = Na(p,app_15,h—1,9) —aby ZP(P, aph-1,ih = 1,4, 3)7(p, agpis b, 5))
> Na(p,app_15,h—1,1) - a((hJ— 1)
> Na(p,aj 1,0k — 1,1) — a(b(p, h — 1,1) /o ~(2=D))
> Na(p,app-1,h = 1,i) = (Na(p,ap p-1,4,h — 1,%) = Na(p,a,h — 1,)) Va

= Na(p,a,h —1,i) Va

23

> NA+0pa a,h— 1,4 Va

Therefore, the same action choices remain optimal in (LRa+4) and

UA-{-O(p, h—]-a Z) = NA+0(pa a';,h—l,ia h— 19 7')

= NA(p7 a;,h—l,ia h— 1, 2) — aby Z P(p1 a;,h—l,ia h - L, iaj)ﬂ-(p1 a';hi’ th))
J

= UA(pa h - 1?1’) - aoh ZTh(p’ Ah—la h - la i7j)7r(pa a';hi’ h,J)
J

Induction step. Assume that for z:

’UA+0(P, h -z, 2) = ’UA(p, h— Z,j) - azgh zTh(pa Ap—zyh - 2, i,j)7r(p, a';,h—z,iv h— Z,j)
J

Now, for z + 1:

Nato(pya,h—2z—-1,4) = R(p,a,h—2—-1,i) = (Ap—z-1 + Oh—r-1)7(p,a,h — 2 — 1,7)
+aZP(p’a’h— z- 1,1:,j)UA+9(p,h— Zaj)
J

= R(p,a,h—z—1,i) — Ap_,_17(p,a,h — 2 — 1,%)

+aZP(p7a,h_ z— lyi’j)(vA(le_ Z,j)
j

_a29h Z Th(p) Ah—21 h - 2, ja k)ﬂ-(p’ a;,h—z,ia h - 2, k))
k

=NA(p,a7h"z_lai)

_az+19h Z Th(P, Ah—z—l; h—z- L7, k)ﬂ(pa a;,h—z,i, h— 2, k))
k

The expected return values in (LRag) for the action choices optimal to (LRa) are:

Na+o(pyaph-zo1ivh—2=1,4) = Na(p,agp_p14h—2—1,)
—a*t1g, Zk:Th(p, Ap—z-1,h =z = 1,5,k)7(p,ap 4, h = 2,k))
> Na(pyagp—p1,i0h— 2= 1,4) = oA ¢(h—2-1)
> Na(p,ahp_po140h — 2 = 1,4) = &*T(6(p, b — 2 — 1,4) o~ (h=2=1)

2 NA(p’ a;,h—z—l,iv h—z-1, z) - (NA(p? a;),h—z—l,i’ h—z— lvi)

24

_NA(p’ a, h—z- 171)) Va
= Na(p,a,h— z—1,7) Va

> NA+9(p1 a,h—2-1, 7’) Va

Therefore, the same action choices remain optimal in (LR 1+g) and

va+o(ph—z—1,i) = Nayo(p,app_p1i0h—2—1,1)

= NA(p7 a;,h—-z—l,i, h-z-1, 7’) —abh ZTh(p, Apsh—2— 1,7:,]')71'(}7, a;hh h>.7))
J

= UA(I’? h—z- 1’2) - aehZTh(p7 Ahv h—2z- 1, i,j)ﬂ'(p, a;hi’ h,J))
J

Thus, by mathematical induction, the statement holds. m

25

References

(1] E. Balas, 1975. Disjunctive Programming: Cutting Planes from Logical Conditions. Nonlinear

Programming 2.
[2] E. Balas, 1979. Disjunctive Programming. Annals of Discrete Mathematics, 5:3-51.

[3] James C. Bean, 1992. A Bender’s Approach to Disjunctive Programming. Technical Report
92-26, University of Michigan.

[4] James C. Bean, Wallace J. Hopp and Izak Duenyas, 1992. A Stopping Rule for Forecast Horizons

in Nonhomogeneous Markov Decision Processes. Operations Research, 40:1188-1199.

[5] James C. Bean, Robert L. Smith, and Jean B. Lasserre, 1990. Denumerable State Nonho-
mogeneous Markov decision processes. Journal of Mathematical Analysis and Applications,

153:64-77.

[6] John E. Beasley. 1993 Lagrangian Relaxation in Colin Reeves (ed), Modern Heuristic Techniques

for Combinatorial Problems.

[7] Robert I. Carr and Chang-Duk Kim, 1993. Construction and Maintenance Actions for Multi-
Unit Deteriorating Facilities. Fifth International Conference on Computing in Civil and Build-

ing Engineering, 1-8.
[8] Eric V. Denardo, 1982. Dynamic Programming: Models and Applications, Prentice-Hall.
[9] Cyrus Derman, 1970. Finite State Markov decision processes, Academic Press, Orlando.
[10] Cyrus Derman, 1972. Constrained Markov action Chains. Management Science, 19:389-390.

[11] Kathryn A. Dowsland, 1993. Simulated Annealing in Colin Reeves(ed), Modern Heuristic Tech-

niques for Combinatorial Problems.

[12] Atidel Ben Hadj-Alouane and James C. Bean, 1997. A Genetic Algorithm for the Multiple-

Choice Integer Program. Operations Research, 45:92-101.

[13] IBM Corporation. Optimization Subroutine Library Guide and Reference.

26

(14] P.M. Jellet, 1990. Simulated Annealing for a Constrained Allocation Problem. Mathematics
and Computers in Simulation, 32:149-154.

(15] R. Jeroslow, 1979. An Introduction to the Theory of Cutting Planes. Annals of Discrete Math-
ematics, 5:71-95.

[16] Peter Kall and Stein W. Wallace, 1994. Stochastic Programming, John Wiley, Chichester.

[17] Nejat Karabakal, James C. Bean and Jack R. Lohmann, 1994. Scheduling Pavement Main-
tenance with Deterministic Deterioration and Budget Constraints. Technical Report 94-18,

University of Michigan.

(18] John Mittenthal, 1997. A Comparison of Global Search Heuristics for the TSSP+1. Working

Paper, University of Alabama.

[19] Yunsun Park, James C. Bean and Robert L. Smith, 1993. Optimal Average Value in Non-
homogeneous Markov Decision Processes. Journal of Mathematical Analysis and Applications,

179:525-536.

[20] P. Varaiya, 1978. Optimal and Sub-Optimal Stationary Controls for Markov Chains. IEEE
Transactions A.C., AC-23:388-394.

[21] D.J. White, 1995. Finite Horizon Markov Decision Processes with Uncertain Terminal PayofTs.
Operations Research, 43:862-869.

[22] Chelsea C. White and Kent Schlussel, 1981. Suboptimal Design for Large Scale, Multimodule
Systems. Operations Research, 29:865-875.

27

