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ABSTRACT

Injuries to the hyaline cartilage of the knee joint are
difficult to diagnose without invasive techniques. Even
though these defects may be the most important prog-
nostic factors in assessing knee joint injury, they are
usually not diagnosed until arthrotomy or arthroscopy.
Once injuries to hyaline cartilage are found and/or
treated, no technique exists to follow these over time.
Plain radiographs, arthrograms, and even computed
tomography fail to detail most hyaline cartilage defects.
We used magnetic resonance imaging (MRI) to eval-

uate five fresh frozen cadaver limbs and 10 patients
whose pathology was known from arthrotomy or ar-
throscopic examination. Using a 0.35 Tesla supercon-
ducting magnet and spin-echo imaging technique with
a head coil, we found that intraarticular fluid or air

helped to delineate hyaline cartilage pathology. The
multiplane capability of MRI proved to be excellent in
detailing small (3 mm or more) defects on the femoral
condyles and patellar surface. Cruciate ligaments were
best visualized on sagittal oblique projections while
meniscal pathology was best seen on true sagittal and
coronal projections.
MRI shows great promise in providing a noninvasive

technique of evaluating hyaline cartilage defects, their
response to treatment, and detailed anatomical infor-
mation about cruciate ligaments and menisci.

The diagnosis and treatment of injuries about the knee joint
has evolved tremendously in recent years. The need to
accurately detail ligament laxity has been established and

our abilities to address those problems have improved. The
arthroscope has enhanced our understanding of meniscal
function and improved our treatment of meniscal pathology.
Despite these recent advances, our ability to diagnose and
treat hyaline cartilage defects has not improved signifi-
cantly. In the long term, this portion of the knee joint
anatomy is most important for function. If laxity problems
are solved and meniscal lesions treated in the face of hyaline
cartilage damage, the end result may not be worthwhile.
Part of the reason for this dilemma has been the clinician’s

poor understanding of hyaline cartilage physiology.
Hyaline cartilage is an extremely complex substance at

both the microscopic and macroscopic level. The homoge-
nous appearance of cartilage masks its unique structure
which provides properties unequaled by any other material.
It can be deformed, yet it regains its original shape while
distributing loads to subchondral bone in a protective man-
ner. It is unequaled as a low-friction gliding surface. It quite
often outlasts years of wear without obvious ability to repair
itself. The complex interaction of its cells and matrix in a
surface usually less than 5 mm makes this function possible.

Chondrocytes compose approximately 5% of hyaline car-
tilage volume, while matrix accounts for 95%. Matrix is 60%
to 80% tissue fluid and 20% to 40% structural macromole-
cules. Collagen, proteoglycan, and glycoprotein comprise the
macromolecules. The complex milieu produced by these
components in a hydrophilic atmosphere which changes with
age controls the activity of the enclosed chondrocyte.l’ The
matrix and cellular organization is not homogenous. It is

organized into zones and regions. Morphologic and biochem-
ical differences between zones exist depending on depth
from the articular surface.ll The most superficial of the four
zones is specialized for gliding with a high collagen content
and a low proteoglycan concentration. The second zone is
the middle or transitional zone. This area contains larger
collagen fibers and increased proteoglycan content. The
third zone is the deep or radial zone which consists of the
highest proteoglycan concentration and the lowest water

’ Presented at the 12th Annual Meeting of the AOSSM, July 1986, Sun
Valley, Idaho
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concentration. The fourth zone is that of calcified cartilage
which contains mineralized matrix.
The ability of this layered structure to respond to injury

depends upon the depth of the insult. Since the only blood
supply available to cartilage is through subchondral bone,
injuries that do not penetrate bone are called superficial and
must rely on the avascular response of local cells. Insults
that penetrate bone produce a more typical response to
injury. Without vascular ingrowth and the influx of fibro-
blasts, repair of superficial defects is left up to the local

chondrocytes. Chondrocytes from immature cartilage are
capable of increasing metabolic activity. 21,46-47 However, ma-
ture chondrocytes show little potential for replication49 un-
less a chronic injury situation such as degenerative arthritis
is induced.30,31,54,68, 78, 79 Despite their lack of cellular division,
adult cartilage cells can increase matrix production in re-
sponse to various stimuli.9, 10,34,35,37,39,43,44,48,50-55,62,71-73,76
Various authors have documented the ineffectual response
of hyaline cartilage to superficial lacera-
tions.1, 2, 5, 6,13,14,20,22,24,26,28,45,48,49,61,64,75 Others have stated
that superficial lacerations remain stable and only occasion-
ally produce early degenerative arthritis.56,81
Deep penetrating injuries through the subchondral plate,

on the other hand, stimulate a response similar to that of
vascular tissue, including hematoma formation, influx of
fibroblasts, and vascular ingrowth.13,14, 16, 17, 19,23,36,45,56-58,64
Those factors besides depth of injury penetration which are
important to the ability of hyaline cartilage to repair, remain
open to investigation. Convery et a1.19 investigated the im-
portance of defect size on the distal femoral condyles of
horses. Defects less than 3 mm in diameter showed complete
repair in 3 months, while none of those larger than 9 mm in
diameter showed complete repair. Baker et a1.3 found that
electrical fields induced by electrodes next to subchondral
bone accelerated hyaline cartilage healing. Mitchell and

Shepard58 investigated the effects of compression on the
healing of intraarticular fracture in rabbits using AO fixa-
tion. Compression of fracture fragments consistently pro-
duced better repair of hyaline cartilage defects.

Salter et al., 70 in a classic study, showed the advantages
of continuous passive motion (CPM) over immobilization or
intermittent motion in healing articular cartilage defects.
They used defects 1 mm in diameter in adolescent and adult
rabbits to evaluate two indices of repair: nature of the
reparative tissue and degree of metachromasia. They con-
cluded that CPM increased the rate and completeness of
healing at 4 weeks. O’Driscoll and Salter 6’ advanced the
potential usage of CPM by applying it to intraarticular

autografts in New Zealand rabbits. They recognized the
limited cellular response of hyaline cartilage and used the
cambium layer of periosteum as a source for undifferentiated
mesenchymal cells. They concluded that periosteum has
chondrogenic potential, especially when subjected to CPM.
The ability to improve the repair potential of articular

cartilage defects was investigated by others including
Pridie63 and Insall et a1.,32 who clinically used multiple drill
holes through subchondral bone to induce a healing re-

sponse. Mitchell and Shepard57,58 first investigated this ap-
proach using distal femurs of adult rabbits. They placed
multiple 1 mm drill holes through subchondral bone and
then injected 3H-thymidine 24 hours prior to sacrificing the
rabbits to trace cartilage activity. At 2 and 4 months post-
drilling there were good plugs of cartilage present with
variable distance spread and considerable metabolic activity.
However, at 8 and 12 months the cartilaginous appearance
was less obvious and the repair tissue had become more
fibrous. The tangential collagen appearance was lost and the
surface had become fibrillated. Furukawa et al.11 arrived at
the same conclusions with their radiochemical analysis. At
6 months postinjury there was more collagen and less hex-
osamine than control. They suggested that the fibrous tex-
ture was due to the loss of proteoglycan rather than a change
in collagen.
Because of the inherent inability of animals or humans to

repair injured hyaline cartilage adequately, whether the in-
jury is deep or superficial, there is an obvious need to detect
those defects. Once detected, whether treated operatively or
conservatively, there is a need to follow the natural history
of these injuries. Arthroscopy has allowed surgeons to view
more defects and attempt various treatment options. Inves-
tigating the ability to detect these defects was our goal in
evaluating the knee joint with MRI. We hoped that this
procedure would eventually allow sequential evaluations of
those defects. Arthrography has proven ineffective in de-
tecting such lesions,27,33,80 just as plain radiographs and
computerized tomography.
MRI is a relatively new technique that depends upon the

resonance of protons in a magnetic field after excitation by
radiofrequency energy. It produges high resolution cross-
sectional body images with greater soft tissue contrast than
radiographs or computed tomography.
The production of cross-sectional images with MRI was

first demonstrated by Lauterbur in 1973.38 Various studies
since that time have investigated normal and pathologic
anatomy of different parts of the body. 7,15,18,29,59 Recent
applications to the normal intraarticular and extraarticular
structures about the knee joint are promising.4o,41,42,65-67, 77,82
Sagittal views demonstrate femoral condylar cartilage as
well as cruciate ligaments, patellar tendon, quadriceps ten-
don, and menisci. Axial sections are best for the patellofe-
moral joint, patellar bone, and trochlea. Coronal images
provide additional detail of femoral hyaline cartilage and
menisci.

The advantages of MRI include enhanced soft tissue

contrast and direct multiplanar capability for three-dimen-
sional imaging.’ The ability to vary tissue contrast through
alternations in imaging pulse sequences as well as the direct
multiplanar image acquisition greatly facilitates the ability
to image soft tissue structures. MRI is noninvasive, with no
known adverse effects on human tissue. 12 Some information

may also be obtained on the chemical composition of the
tissue or fluid.8,59,83 Current disadvantages include the long
scanning times, the dependence on patient cooperation, and,
to a lesser degree, spatial resolution. Present cost of an MRI
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examination is approximately $800. With advances being
made in computer software, though, it is predicted that
within 18 months that cost may be reduced to one-fourth
that amount.
Even though knee hyaline cartilage has been seen in

normal knees, no studies have investigated the effectiveness
of MRI in identifying hyaline cartilage defects. Sabiston et
al. 69 were able to reliably visualize early osteophytes and
capsular thickening in experimental osteoarthritis, but car-
tilage erosions were not reliably seen. The purpose of this
study was to evaluate MRI as a tool in the noninvasive
study of hyaline cartilage defects.

MATERIALS AND METHODS

A total of five fresh frozen cadaver knees and 10 patients
were evaluated with MRI. The five fresh frozen cadaver
knees were first evaluated for range of motion, instability,
and general appearance. None showed evidence of previous
surgery or injury.
Medial arthrotomies were performed in the cadavers. In-

spection of the knee joints was carried out and the results
recorded, including hyaline cartilage thickness, meniscal
integrity, cruciate or patellar abnormalities. Discrete chon-
dral defects were made of varying depth, width, and location.
The dimensions of the defects were measured with calipers
marked in 1 mm increments.
A total of 24 chondral defects was made under direct

surgical control via arthrotomies in the cadaver knees. The
location, dimension in three planes, and angle in degrees
from the longitudinal axis of the diaphysis were recorded.
Defects ranged in width from 2 to 13 mm, depth from 1 to
8 mm, and calculated removed volume from 6.3 to 1,144.0
mm3. Two patellar defects were excluded from the study due
to incomplete scans which did not include transaxial images.
A total of 10 patients’ knees was scanned with MRI.

Patients were selected from an orthopaedic patient popula-
tion ; all underwent arthroscopy. Three patients were

scanned postoperatively and seven preoperatively. Ages
ranged from 15 to 58 years. Selection was biased toward
those patients with ligament instability symptoms, therefore
increasing the likelihood of traumatic chondral defects. One
patient did not have an effusion and his knee was injected
with 22 cc of Ringer’s lactate prior to the scan.

Patients and cadaver limbs were scanned in an identical
manner. Spin-echo magnetic resonance images were ob-
tained on a 0.35 Tesla (T) superconducting system operating
at 15 Mhz (Diasonics, Inc., San Francisco, CA). A 30 cm
&dquo;head&dquo; coil was used in lieu of a surface coil as it allowed

complete visualization of the knee without repositioning and
produced clearer images than the surface coil. Only one knee
was placed in the coil during the examination; if necessary,
the other limb was secured to the outside of the coil and

supported with a pillow. No special hardware or software
modifications were made to the equipment.
For the description that follows, TR refers to the repeti-

tion time of the 90° radio frequency excitation pulse used to

generate the magnetic resonance signal. The term TE refers
to the echo time, which is twice the time between the 90°
excitation pulse and the 180° echo rephasing pulse used in
spin-echo imaging. Several parameters are responsible for
the generation of the MR signal; two important parameters
are the T1 and the T2 relaxation times. These are intrinsic

properties of proton magnetization and directly affect image
contrast. Pure T1 and T2 images cannot be generated di-
rectly with spin-echo pulse sequences. However, by varying
the TR and TE times of the imaging pulse sequence, T1 and
T2 weighted images can be acquired. At intermediate mag-
netic field strengths (e.g., 0.35 T), T1 weighted images are
typically acquired with a TR of 0.5 second and a TE of 30
msec. Typical T2 weighted images are acquired with a TR
of 2.0 seconds and a TE of 60 msec.
A transaxial localizer scan (TR 0.1 second, TE 30 msec)

was performed initially. The knee was repositioned if

needed; a subsequent software update allowed electronic
offset of position without moving the patient. High resolu-
tion images were acquired on a 256 x 256 matrix with a 24
cm field of view (0.95 mm/pixel). T2 weighted images were
obtained with a TR of 2.0 seconds and a TE of 80 msec.
This pulse sequence provided excellent contrast between
joint fluid and cartilage while maintaining a good signal to

Figure 1. Depth versus defect detectability (cadaver group).

Figure 2. Width versus defect detectability (cadaver group).
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noise ratio. A total of 16 5 mm thick contiguous images,
covering 8 cm, were acquired simultaneously; this imaging
sequence took approximately 17 minutes to perform. Direct
coronal and sagittal images were obtained in all cases.

Transaxial images were usually acquired, especially if patel-
lar pathology was suspected; some of these were acquired
with a TR of 1.5 seconds and a TE of 80 msec. The average
examination took 90 minutes to perform.

Comparative evaluation of the blinded MRI reading and
the known anatomical lesions was carried out. Some of the
authors (radiologists) were not informed of the cadaver or
patient findings until after the scans were read to prevent
prejudice of interpretation. Findings from sagittal, coronal,
axial, internally, and externally rotated sagittal images were
tabulated. This study focused on the ability to visualize
chondral defects and other hyaline cartilage pathology. Data
included the size, location, and character of any hyaline
cartilage pathology; however, findings relative to bone mar-
row, cruciate ligaments, menisci, synovium, capsule, and
effusion were also noted. Comparison of the known pathol-
ogy (from in vitro visualization or arthroscopic evaluation)
was made with the MRI interpretations. The comparisons
allow determination of false positive and false negative
readings regarding identification of hyaline cartilage defects.
Reliability of defect visualization was further broken down
into subsets according to size, depth, volume, and location
of the chondral defect. The tabulation of findings is sepa-
rated into categories of hyaline cartilage defects (cadaver
group, Figs. 1 and 2; patient group, Table 1), meniscal tears
(Table 2), cruciate deficiencies (Table 3), and bone changes
for both the cadavers and patients. The main focus of this
study is chondral defects, although related or incidental
findings are presented.

RESULTS

Hyaline cartilage defects

The normal appearance of hyaline cartilage is demonstrated
in Figure 3. It is the grey region overlying the dark subchon-
dral cortical bone. A total of 18 of 22 known hyaline cartilage
defects in the cadaver knees were identified on the MRI
scans (Table 1). The readers incorrectly interpreted one
femoral condylar region as abnormal which did not have a
visible defect at arthrotomy. The data is further broken
down in Figures 1 and 2 by depth and width.
The data show that seven of nine of the 1 mm deep

chondral defects were identified at scanning. Similarly,
seven of nine of the 2 mm deep defects, all three of the 3
mm deep lesions, and the solitary 8 mm deep chondral
fracture were seen. The widths were subgrouped as shown
in Figure 2. Three of six of the lesions with a maximal width
of 1 to 3 mm were identified. Likewise, 15 of the 16 chondral
defects measuring greater than 3 mm in maximal width were
seen.

TABLE 1
Patient hyaline cartilage defects (no. seen/no. present) 

_

TABLE 2
Meniscal tears

TABLE 3
Anterior cruciate disruptions

Figure 3. Sagittal view of knee demonstrates the dark cortical
bone and overlying light hyaline cartilage.

The calculated volume of each defect missed at scanning
measured 6.3, 9, 12, and 60 mm3. The one defect of 60 mm3
measured 5 by 6 by 2 mm deep. In retrospect, this defect
was identifiable on the scan, but not obvious enough to call
on the initial reading. It was located in the long axis of the
femur, in the midportion of the condylar articular surface.
With the knee in the extended position, the defect was
obscured by the adjacent meniscus.
The 10 patients had a wide variety of hyaline cartilage
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Figure 4. A, coronal view (magnified) demonstrates a 6 x 3
mm defect in hyaline cartilage on the lateral femoral condyle.
The defect is outlined by air which is dark. B, sagittal view.

defects on the patella, femur, and tibia (Fig. 4). Arthroscopy
identified a total of 21 hyaline cartilage lesions in eight
patients; the other two patients had normal hyaline cartilage
surfaces. These are broken down into groups by location and
depth as depicted in Table 1. The grading system used refers
to depth of the lesion, with Grade I referring to surface and
texture changes but no cartilage substance loss; Grade II
including partial thickness losses of hyaline cartilage but no
exposed bone; and Grade III denoting exposed bone.
Only one of five Grade I lesions could be identified on

MRI scans. Of these five, one was patellar, one was tibial,
and three were femoral abnormalities.
There was a total of 10 Grade II lesions, 2 on the patella

(Fig. 5) and 8 on the femoral surface. The MRI scan correctly
identified eight of these ten defects ranging in size from 1.0
x 1.0 cm to 3.0 x 2.0 cm. The dimensions were estimated

arthroscopically using a 3 mm probe tip as a reference guide.
Of the two defects not seen on MRI, one was on the patella
and the other on the femur.
The Grade III chondral fractures consisted of two on the

tibial surface and four on the femur for a total of six. All
but one of the defects were identified on MRI scan. Grade
III defects ranged in size from 1.0 x 0.8 cm to 3.0 x 3.0 cm.
The one defect not seen was a 0.8 x 1.0 cm lesion on the
tibial surface, directly across from a kissing but slightly
larger femoral defect.
The majority of chondral abnormalities, 15 of 21, were

located on the femoral condylar surface, with no predilection
for medial or lateral. Looking at just femoral Grade II and
III lesions shows that 11 of the 12 defects ranging in size
from 1.0 x 1.2 cm to 3.0 x 3.0 cm were correctly identified
on MRI scan. The one lesion not seen was an irregular
lateral femoral condyle lesion measuring 2.0 x 2.0 cm x 1.0
mm deep.

Figure 5. Transaxial view of the patellofemoral interface dem-
onstrating 3 x 3 x 1 mm deep hyaline cartilage defect on the
lateral patellar facet.
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Meniscal lesions

Meniscal pathology was apparent in some of the cadaver
specimens and the patients (Table 2). A total of five meniscal
tears was created in the five cadaver knees; all were periph-
eral nondisplaced detachments greater than 2 cm in length.
Of the five detachments, three were identified on the MRI
scans with no false positive readings. The sagittal sections
provided the best visualization of the peripheral meniscal
detachments with coronal views adding more information.
Fluid within the knee joint helped to identify the tear due
to the high contrast between fluid and meniscal tissues.
The patient population had a total of four meniscal tears

identified at arthroscopy. Of these four lesions, one was a
peripheral displaced tear in a 9 year old with a discoid lateral
meniscus (Fig. 6). Two patients were scanned postopera-
tively after partial meniscectomy had already been per-
formed. The other meniscal injury was a posterior horn tear
in the medial meniscus. This lesion and the discoid meniscus
with detachment were correctly identified on MRI. Four

Figure 6. Coronal view of an 11 year old with open epiphyseal
plates and a medially displaced torn discoid lateral meniscus.
Note the adaptive molding of the medial half of this lateral
femoral condyle and thinning of the hyaline cartilage between
cortical bone and meniscus.

MRI scans were read as showing meniscal tears in patients
without tears seen at arthroscopy.

Cruciate ligaments

In all 10 patients, the ACL was identified on MRI scan (Fig.
7A). There were four complete ACL tears of which all were
correctly identified on MRI. On arthroscopic examination
of the remaining six, four were felt to be normal and two
were grossly intact but elongated, representing previous
intrasubstance failure (Table 3). None of these six grossly
intact ACLs were seen as abnormal on MRI. There were no
false positive readings for cruciate pathology.
The posterior cruciate ligament (PCL) appeared redun-

dant on the MRI in one patient. This was the only patient
with a PCL deficiency on clinical examination demonstrated
by posterior sag at the tibia at 90° of knee flexion and at
arthroscopic evaluation.

Bone

Several miscellaneous changes in bone were seen on MRI.
One patient with diffuse cartilage loss and synovitis had a
large subchondral cyst. Two patients who had undergone
arthroscopic drilling of Grade III femoral condyle lesions
demonstrated changes in the subchondral bone and marrow
elements immediately adjacent to these defects. The signif-
icance of these findings remains unclear. One patient with-
out a cartilage defect showed changes in the marrow signal
of one femoral condyle, but corresponding radiographs were
normal. No bone scan was performed but osteonecrosis was
suspected by history.

DISCUSSION

The importance of detecting hyaline cartilage defects is

emphasized by its limited healing capacity. Our attempts to
improve that healing capacity therapeutically would benefit
immensely from a noninvasive method of determining the
status of the cartilage and its response to treatment. MRI
can provide visualization of hyaline cartilage. Eleven of 12
Grade II articular cartilage defects on the femoral condyle
in our patient population were identified on MRI scans. The
measurement of those defects are estimates made at arthros-

copy by comparison to a 3 mm nerve hook tip. The precise
sizing of the defects at arthroscopy is not as important as
the fact that the overall reliability in identifying Grade II or
deeper lesions was very good. The defects in the cadaver
group were intentionally made smaller to test our ability to
detect small defects. Fifteen of 16 defects that were 4 mm
and larger in width along with those 3 mm and greater in
depth were identified. Seven of 9 defects 1 mm in depth
(Fig. 1) and 7 of 9 defects 2 mm in depth were correctly
identified. These results suggest a consistent and sensitive
method of detecting small cartilage defects. However, it

should be kept in mind that the two groups of defects
(cadavers and patients) were different in appearance and
method of production. The defects in the patient group were
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Figure 7. A, sagittal view of knee through the intracondylar
notch demonstrates an intact ACL. B, sagittal view demon-
strates PCL.

probably the result of compression or shearing forces. Those
in the cadaver group were sharply dissected. We chose this
technique instead of a more functional one in order to
produce small defects with specific dimensions. In retro-
spect, the sharp borders produced by carving made the
defects more identifiable.

Other factors should be kept in mind when evaluating the
results of scanning small defects. First, in plane resolution
was limited to 0.95 mm/pixel. Second, section thickness was
5 mm and partial volume averaging becomes a significant
factor when the defects are narrower than the section width.
Three of the four missed defects in the cadavers were less
than 6 mm in width. Only one defect larger than 5 x 2 mm
deep (5 mm) was missed.
We chose not to use the previously described MRI tech-

nique (Beltran et a1.4) for knee imaging because the T2
weighted images on our scanner gave us the best tissue
contrast, particularly in visualizing hyaline cartilage.

While it was not our intent to document meniscal, liga-
ment, or bone defects, several findings were noted. Three of
five peripheral meniscal detachments larger than 2 cm in
the cadavers were detected. There was one false positive
lateral meniscus tear in the patient group which, in retro-
spect, represented the popliteus hiatus. One peripherally
detached and centrally torn discoid lateral meniscus was
correctly identified. Our high number (four) of false positive
scans suggesting meniscal tears is at least in part related to
our scanning technique as well as the limited experience of
the investigators.
The PCL was routinely visualized (Fig. 7B). The one torn

PCL was correctly identified. The oblique sagittal images
needed to optimally image the ACL (Fig. 7A) were not
always obtained. Position changes such as hyperextension
could have been used to help identify pathology in the
cruciate ligaments. Since an intact appearance on a scan
could not rule out an intrasubstance failure of the cruciate,
this was not pursued.

Changes in the cancellous and cortical bone adjacent to
several hyaline cartilage defects were seen in the patient
population. Subchondral cysts were easily identified. Inten-
sity differences in cancellous bone were sometimes noted
adjacent to the hyaline cartilage defects. These increases in
intensity on T2 weighted images are difficult to interpret
since the scans were obtained after the defects were drilled
at arthroscopy. This could represent edema related to the
hyaline cartilage defect or possibly a reactive change in
cancellous bone resulting from the drilling. We intend to
continue monitoring these changes with serial scans.

In the future, we hope to improve the accuracy of MR
imaging of the knee. Faster image acquisition, off-axis gra-
dient selection, higher spatial resolution, different pulse
sequences, better imaging coils, and additional experience
will undoubtedly advance this goal. Because of the nonin-
vasiveness and enhanced contrast with an effusion, MRI is
ideally suited to the evaluation of acute trauma.
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DISCUSSION

George Belhobek, MD, Cleveland, Ohio: The major focus
of this paper is a discussion of the ability of MRI to visualize
defects in the articular cartilage of the knee joint. MRI, by
virtue of its ability to visualize articular cartilage with an
MR signal intensity different from subchondral bone and
its ability to image the joint in three separate planes, cer-
tainly has the potential to become a practical method of
evaluating hyaline cartilage injuries.

I am impressed by the data collected by these investiga-

tors. They show MRI to have the ability to demonstrate
cartilage defects with depth of 1 mm and with diameters of
1 to 3 mm. Most of the defects greater than 3 mm in diameter
were seen. I must say I am surprised by the authors’ ability
to resolve such small lesions with their equipment and choice
of pulse sequence. As stated in their paper, each MR slice
thickness was 5 mm, which would mean that partial volume
averaging would have to be a factor in demonstrating defects
of less than 5 mm. Their use of a head coil rather than
surface coils, and their use of T2 weighted images rather
than T1 weighted images, which would also result in less
than optimal image resolution.
One of the distinct disadvantages as stated by the authors

is that MR imaging takes a long time to acquire diagnostic
images, especially with T2 weighted sequences. Patient com-
pliance for an examination that would take up to 90 minutes
would be difficult, I believe. I am also interested to know
whether the authors have a feeling for whether MRI has any
potential in the early diagnosis of chondromalacia.

I would like to congratulate the authors on this thought-
provoking and interesting paper. MRI certainly appears to
have the potential to become a practical method of evalu-
ating internal derangements of the knee in the future. Im-
provements in MRI technology to decrease scanning time
and increase image resolution would certainly strengthen
that potential.

Authors’ Reply: The first issue addressed, the partial
volume averaging concept, is a very valid point. In the
cadavers there were very sharply defined hyaline cartilage
defect edges, whereas in the patient group, there was a more
ragged edge due to the method in which the defect was
produced. I think that had some effect on our ability to
detect the small defects in the cadavers. In the patient group
the lack of a sharp edge made visualization of small defects
more difficult.

Also, in patients, we use T2 weighted images. Effusion
fluid within the knees produces a very bright signal collected
in the defect, and that tends to be exaggerated at the T2
weighted images.
As far as early diagnosis and chondromalacia, our tech-

niques involve detecting defects. Softening and fibrillation
changes in early chondromalacia are probably not detectable
at this point.


