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ABSTRACT
The design of a marine shafting system is modelled
mathematically in order to perform optimization studies with

respect to shaft strength as well as longitudinal and vertical

positioning of the bearings. The objective criteria used are
minimization of the bearing reaction influence numbers and even
distribution of the bearing loading. Design trade-offs can be
thus established. The problem is posed in a nonlinear
programming formulation and is solved using a standard
generalized reduced gradient method (GRG2) but in a specialized
solution strategy. Two examples from actual ship designs are

presented.



INTRODUCTION

A proper design of the propulsion system plays an important
role in the good operation of marine vehicles. This article
examines a detailed design procedure of the shafting system,
specifically suited for subsequent optimization studies,

Optimal strength and alignment 4is defined to mean the
calculation of shaft diameters, number of bearings and
longitudinal and vertical positioning of these bearings, in such
a way as to ensure a proper distribution of bearing 1loads and
acceptable shaft stresses and deflections [1,2].

Traditionally an alianment plan, i.e. the identification of
bearing longitudinal and vertical positioning, 1is achieved by
indirect (or iterative) methods [3]. This assemes a given bearing
longitudinal positioning. A common rule of thumb states the
following minimum bearing distances [2]:

2/d>12-14 for d>400 mm

where £/d is the relative bearing distance over shaft diameter.
These iterative methods consist of perturbing a base-line design
by arbitrary amounts dictated by the user's experience, until an
acceptable plan for the vertical bearing positioning, is achieved
by trial and error [3]. The base-line is usually taken to be
that of straight alignment in which all bearing centers are
concentric [4].

Almost every method, which gives an alignment plan, is based
on the Reaction Influence Numbers, or RIN's [5]. They are essen-
tially solutions of a number of equalibrium problems equal to the
number of bearings, In each problem, the shaft is perturbed

vertically by a unit amount at the location of a bearing and the



changes 1in reactions at all bearings are the RIN's so computed
[5,3].

Today the alignment study is usually conducted according to
the fair curve alignment theory, the calculations being performed
by é suitable computer program.[2]. In most cases, the analysis
is still limited to the evaluation of the static condition (i.e.
non-rotating shafting) at any average draught. There is
however, a number of different external parameters such as
reduction gear (if there is one) forces, propeller thrust etc.,
that may alter this static alignment condition considerably [2].
It is essential to be aware of these parameters and to take them
into consideration in the design analysis as carefully as possible.

The purpose of this paper is to describe a model for finding
an optimal longitudinal and vertical positioning of the bearings.
The whole analysis will be performed for rotating shaft
(propeller forces and moments, reduction gear forces and
eccentric propeller thrust can be taken into account), but with
one major simplification: the bearings will be considered as
point bearings, in order to avoid at this stage all the
difficulties arising from the hichly nonlinear hydrodynamics of
the bearing oil film [6]. Furthermore, the analysis will be
restricted to the vertical plane which is more heavily loaded

compared with the horizontal one.



MODEL OUTLINE
The final goal of the modeling effort is the development of
a problem statement in the mathematical programming formulation
minimize f(g)

subject to
h(x) =

1O

(1)

g(x)

N\
1O

where the objective function f£(x) is a scalar depending on the

~

-

vector of design variables x = (xl,xz,...xn)T, and h =
X

~

(hl,hz,...hm)T, g = (91'92""gk)T are vector functions of used
to represent the equality and inequality constraints of the
problem.

In the above formulation (1) we assume that if several
criteria are desirable as objectives (i.e. f really being a
vector), then the objective function f represents an appropriate
scalar combination of these cri£eria. Furthermore, the
expressions of the constraint functions may not be in an explicit
algebraic form, but may be defined through a set of numerical
procedures,

The <classification of design criteria as objectives or
constraints is a rather subjective one and depends on ‘the
particular design application of the model. Furthermore, in a
general problem statement several quantities may be considered as
possibly wvarying, but in a particular application some of these
may be taken as fixed, based on the design specifications. These
guantities, considered as constant in a given model application,

we shall call parameters and we will distinguish them from the

problem variables x, with respect to which the optimization must



be performed. The parameter vs. variable classification is also
a rather subjective one, but it is generally suggested naturally

by the statement of the design problem.

System Configuration

A general arrangement of a marine shafting system configura-
tion is shown in Fig. 1, the main parts identified in the figure.
This arangement is not the only one in use, but it does represent
a great range of installed marine shafting systems [l]. In the
present paper we are concerned primarily with the design of the
intermediate shaft, in terms of both size and positioning. This
assumes tacitly that we are at a stage in the design process,
where the propeller design and the gear reduction design (if
present) have been determined to a large extent.

It should be noted that although it may be desirable to
include the configuration in the decision—making of an
optimization model, this is generally impossible because the
required mathematical expression of changes 1in topology is
extremely difficult (except in special cases, such as truss
structures). Therefore, the entire model is based only on the
above configuration. However, a similar modeling procedure can
be used for another configuration, if desired. The separately

optimized design configurations can be then directly compared.

System Variables and Parameters

The main variables considered in the model are the

following:



The diameters of propeller and intermediate shaft.

The 1longitudinal positions of the intermediate shaft
bearings.

The vertically displaced positions of the bearings.

The longitudinal position of the reduction gear with

respect to the main engine.

The design parameters, considered known and constant during

the optimization process, are as follows:

1.

7.

The main engine type is known, e.g. turbine or diesel -

with known number of strokes and cylinders - and the
engine longitudinal position is known.

The propeller is known, e.g. of known weight, diameter

size, mass centroid location. The forces and moments
transmitted are assumed steady at the shaft RPM under
consideration,

The power and thrust transmitted between the propeller

and the remaining shafting system is given and the shaft
RPM is considered fixed.

The material of the shaft has been selected.

The number of bearings to be used has been selected.

The use or not of a reduction gear component has been

decided. If one 1is wused, then its geometric and
operational characteristics are known, e.g. weight,
imposed forces, low speed shaft diameter, bearing
position, allowable loading for bearings and shaft.

The position of the aft peak bulkhead is fixed.

Note that once the optimization study is completed for one

set of parameter values, it may be desirable to reoptimize the



system for another set of values, or for small changes in the
Parameters, to perform a sensitivity analysis. Results from

sensitivity and parametric studies may be used by the designer to

determine whether further study or remodeling may be necessary.

Design Requirements

The design requirements imposed on the shafting system are
thoée selected by the designer as necessary for satisfactory
and/or desirable performance. Some of them may be incorporated
in the objective function in (1) and the remaining will be
included as constraints.,

In broad terms, the main design requirement is to achieve
minimum cost, which can be broken down to parts cost,
installation cost and operational/maintenance cost [1,5]. In a
more technical sense this translates to the following more
specific requirements:

1. Minimum diameter size for each shaft.

2. In-line positioning of stern tube bearings, i.e.

coincidence of their centerlines.

3. The net downward loading for all bearings should not be

excessive,

4. The loading for all bearings should be even, i.e. equal

to the same percentage of their maximum allowable load.

5. The combined fatigue stress at critical shaft cross-

sections should not exceed the fatigue strength of the
material.

6. The shaft must be sufficiently flexible so that errors



due to uncertainty of loading and arbitrary changes in
alignment (within limits) can be accommodated. This is
important in order to acount for hull deflections at

heavy seas, bearing weardown, or thermal variations.

The above criteria and some additional secondary ones wiil
be discussed in detail in the next sections describing the

analytical formulation of the model.

Model sSubdivision

The general design problem can be decomposed to two
subproblems to be studied separately, for reasons of convenience
that will become apparent later.

The two subproblems are:

1. specification of propeller and intermediate shaft
diameters; the diameter of a reduction gear -if present-
is a parameter. Specification of the 1longitudinal
position of each bearing of the intermediate shaft, and
longitudinal position of the reduction gear;
longitudinal positions of aft and forward stern tube
bearings and location of reduction gear are parameters.

2. Specification of the vertical displacements of all
bearings.

Clearly the above subproblems are not independent but they

are linked through common variables. This interaction will be
studied as part of the optimization procedure. In the next two
sections. we will develop detailed models for these two

subproblems.



STRENGTH AND LONGITUDINAL BEARING POSITIOMNING MODEL

The model described in this section has two parts. The
first deals with the development of a strength inequality
constraint, which imposes an upper bound on some equivalent
maximum stress, The second deals with appropriate expressions
for the criteria of the Longitudinal Bearing Positioning (LBP)

problemn,

Combined Stresses
The maximum normal stress on a circular cross-section due to
bending moment and axial force is [7]

o = MbD/ZIY + F/A (2)
where Mb is the bending moment, D is shaft diameter, Iy is moment
of intertia, F is the axial force normal to the section and A is
the cross-sectional area.

The maximum shear stress due to torsion is similarly [7]
given by
T = MtD/2Ip (3)
where Mt is the torsional moment and Ip is the polar moment of
inertia,
The equivalent combined stress according to the maximum
distortion energy criterion (von Mises) is

g = O +3THY2 (4)

Note that the velocity field imposed on the rotating
propeller is changing during one full rotation and it is repeated
periodically at a steady rate for steady RPM. It 1is then

suggested [8] that a cosine-like variation in the propeller

thrust, F, and torsional moment, Mt' may be employed, i.e.

10



M = th(l + Acos v6) (5)

F (1 + ycos vg) (6)

where th, Fm are mean values, y is the number of propeller
blades and A+ u are the alternating components (% of mean
values) of torsional moment and thrust respectively. Lacking a
better estimate for ) and yj , the values suggested [8] in Table 1

may be used. Furthermore, the bending stress at any point on the

shaft surface is given by

Iq = (MbD/ZIy)cos 6 (7)

Mow we can combine eq. (2) through (7) to obtain the

equivalent stress [1]:

, o 21 1/2
q
: B [LbD.cos 3] F(l + 1 cos ve)]Z {DNt(L+kcosv6)}
cq = + 3

ZIY + A 21‘_n ﬁs)

The maximum and minimum values are given for 6 =0 and 6 =n

respectively, i.e.
2V 1/2
max

g [DMb/ZIy + F(1 + U)/A]z + 3[DMt(l + A)/2Ip}

o [DMb/2Iy - P +(-1) /a2 4 3 [DMt(l +(—1)\’x/21p]2 /2 (10)

This completes the development of the stress model.

Dynamic Strength

The equivalent stress calculated in (8) is alternating about
a mean value, as in Fig., 2, Therefore fatigue failure must be
considered and a criterion for dynamic strength must be used.
The Gerber criterion may be used as more appropriate [7],
giving the inequality
oprn/Se + (9gp/Sye) % €1 (11)

where the mean and alternating stress components are respectively

OST = (Omax + Omin)/2 (12)

11



arr = (Onax T %min)/? (13)

g’ Sut are the endurance limit, vyield strength and

ultimate strength, respectively, of the shaft material.

and Se’ S

In addition to condition (11), the conservative requirement
that the yield point is never exceeded should be impoéed, i.e.

aLt T %1 < Syt (14)

Shaft Strength Constraints

The two inequalites (1ll) and (l14) represent the strength
constraints on the shaft. Using (12) and (13) they are rewritten
2
]

a8 (sP) [lo,,. = 0..)/25 1 + [(o

max m + Omin)/28u+

nax . <1 (15)

(SF) (Gmax/syt) <1 (16)
The safety factor SF was included to account for expected
uncertainty in the precise evaluation of the 1loads magnitude,
The values of Mb’ Mt change substantially with the loading and
operating conditions of the ship. Experimental data supplied by
the U.S. Navy [9] can be used for an estimate of the safety
factor, as in Table 2.

The equations (9) and (10) defining Cmax and Omin will be
included as equality constraints in model (1). Note that (15)
and (16) will in general impose lower bounds on the shaft
diameters. Additional lower bounds are given by Classification
Rules, such as by Lloyd [10] and the American Bureau of Shipping

[11]. These are generally expressed in the form

d, > d,

« § = 1
i imin’ 1 1,2 (167)

where dl and d2 are the intermediate and propeller shaft

12



diameters.

Parameters for Longitudinal Bearing Positioning (LBP) Problem
The longitudinal positioning of the bearings is an important
aspect of the shafting system design because it influences the
bending moment distribution and therefore the minimum diameter
requirements.
Considering the LBP as a subproblem examined separately, the

following quantities must be taken as given parameters:

1. The external 1loading of the shafting system, This
includes the propeller weight, forces and moments at the
operating speed, the location of the center of gravity,
reduction gear weight and transmitted férce components.

2. The longitudinal ~positions of the two stern tube
bearings are fixed, since the aft peak bulkhead position
is determined from other vessel design considerations,
However, the distance between these two bearings must be
the greatest possible in order to minimize the maximum
bending moment occuring between them [1,7].

3. The reduction gear is a compact component with a design
essentially fixed by the manufacturer. Therefore, - £he
relative position of the reduction gear bearings and the

shaft diameter are fixed.

Objective and Constraints for the LBP Problem
In the model outline we described several <criteria which

must be satisfied by a good design with proper bearing

13



positioning. These criteria are now refined and expressed
analytically.
For the purpose of defining a scalar optimization problem,

We must select one criterion as the most important one, to serve

as the objective function of the problem. In the present model
we select as main design objective a desirable lack of
sensitivity of the shafting system with respect to changes in
alignment (we mentioned earlier that, for example, hull
deflections and bearing weardown will contribute to such
alignment changes). This criterion then implies small bearing
reaction influence numbers [2,5] and the objective function may

be expressed as follows:

N, N
minimize fl = 2{; ;Z; ISRijl (17)
i= J=

This expression is expiained by reference to the simplified
configuration of the shafting system shown in Fig. 3. In this
figure the total number of bearings is designated by NL‘ Bear-

ings No. 1 and No. 2 are the reduction gear ones, while No. NL—l

and No. N. are the stern tube bearings. The diameters for the

L
intermediate and propeller shaft respectively are designated by

dl and dz. The reduction gear shaft diameter dG

parameter. The longitudinal positions of the reduction gear and

is a design

intermediate shaft bearings are given by the variables xj where
j=2,...,NL—2 for a system employing a reduction gear
and j=1l,..., NL—2 without reduction géar. Recall that the relative
position of reduction gear bearings is a parameter.

With the above notation, the reaction influence numbers SRi' of

J
the shafting system in (17) are expressed as

14



Squ = f(dk, xj) ; k=1, 2 (18)
where the function f represents symbolically the results of a
very accurate finite element analysis computation. The finite

element program will be discussed separately in a sebsequent

section,

We will now continue with description of the constraints.

For a given bearing number, positioning must be selected so
that the maximum bending moments for each shaft portion remain
small, This is achieved in part by requiring small shaft diame-
ters, and the previously discussed strength constraints aimed at
that. However, an additional requirement may be imposed by
asking to have the ratio of the aft to forward stern tube bear-
ing reaction between the values two and three(or some other
bounds) . Besides all bearings' reactions must be positive
(upward), which is in fact a general requirement for the bearing
loading. Thus, the inequality constraints

2R < R < 3R

N.-1 N NL-l
R- >O ; j:l' ...'N

(19)
L (20)
must be imposed.

Note that when all bearings are in line, the aft stern tube
bearing reaction is very large and positive, while the forward
stern tube bearing reaction is usually negative, This implies a
large bending moment for the propeller shaft, a situation to be
avoided.

The above mentioned large bending moment is proportional to
the aft stern tube bearing reaction, so a constraint that ensures

a small such reaction should be included. A simple way to imple-

ment this, is to impose an upper bound on the reaction value. A

15



suggest value for this upper bound is twice the propeller weight

wp’ i.e.

Ry < 2W
NL p

Finally, from geometric considerations the 1longitudinal

(21)

positioning variables must satisfy the sequencing

J—
in the pressence of reduction gear, and

0 < xj 5 xj+l < XNL-l P 3=, .oy NL -2 (23)

in the absence of reduction gear, LG being the distance between

the reduction gear bearings.

16



VERTICAL BEARING POSITIONING MODEL

In the Vertical Bearing Positioning (VBP) Model the
variables are the vertical positions of the bearings 6j’ 3=lreeey
NL-2.

The main concern in the VBP problem is proper allocation of
bearing loadings qj, where

q. = Rj/L.D. 7 3=l,0.04, N (24)

, J J 3] L
Here Lj is the bearing length and Dj is the diameter taken as

the sum of the shaft diameter and the diametral clearance of the
oil film,
We define pj to be the loading qj of the jth bearing as a

percentage of its maximum allowable loading qg. i.e.

max’
A J

pj = qj/qjmax (25)

and ﬁ_to be the arithmetic average of all the pj's, i.e.

A N

- L
p = NL Zl pj (26)
J:

Then the requirement for the bearing 1loading to be evenly

distributed suggests the following objective function

NL
minimize £, = jZl le - | (27)

The attending requirement of having each loading within
acceptable margins, 1is expressed by imposing upper and lower
bounds on the loadings, i.e.

<q- H j=l,ooo'N

jmax (28)

< qy L

where the bounds generally depend on the oil film characteristics

qjmin

and the L/D ratio of each bearing [6]. It is expected that

actual values for q.

jmin will be supplied by the bearing

and qjmax

manufacturer., In the absence of better data, the values ijin =

17



500-1,000Kp are suggested [12] depending on bearing diameter

size. For q.

jmax’ the values in Table 3 are suggested [8].

There are several explicit constraints arising from a
desired shape of the shaft's elastic curve. First, note that the
slopes 3 of the elastic curve at bearing locations must be

restricted not to exceed a certain limit ¢.

jmax’ which depends on

the bearing type, i.e.

Ssmax < 05 < %imay ? 3=LreesN

jmax L (23)

The value ¢jmax may be supplied by the manufacturer. Otherwise,

the following expression can be used (see Fig. 4):

PP + (0%p? + 1?p? + 1) 1/2
$ax = arccos 3 3 (30)
Di + L

the symbols used being explained in Figure 4.

Next, observe that a good elastic curve must be smooth
[4,5,1]. Expressing this analytically is a somewhat subjective
operation, Examining two situations as in Fig, 5, it is evident
that case (b) exhibits a certain desirable smoothness. We may
then impose the following specific constraints: The vertical
displacement of every bearing, -but the two stern tube ones, must
be positive(downward); the slope of the intermediate shaft elastic
curve must decrease gradually up to the flange connecting with
the main engine, where theoretically it must be zero, in 6rder
vnot to transmit bending moments from the shafting system to the
engine. These constraints are expressed by the inequalities

0 i S j=2'ooo'N - 1 (31)

32851 L
M, <mM (32)
Inequality (32) requires that the moment at point A (Fig. 3), for

a specified small slope at that point, remains below a small

18



percentage of the maximum bending moment on the stafting system,
i.e., m is taken as a small number (a good’value is 0.05) instead
of zero.

Two additional geometric requirements relate to the elastic
curve: The vertical displacements of the reduction gear bearings
may be equal since, the reduction gear is considered compact,
i.e.,

61 = 62 (33)
The equality (33) has been considered in our analysis; its
absense though does not alter the results considerably. Further-
more, the 1line connecting the stern tube bearings serve as the

datum for measuring vertical displasements., Therefore,

) = & = 0 (34)
NL NL—l

A final constraint must be included, if a reduction gear is
employed in the system, namely that the two bearing reactions
must be approximately equal. This will ensure that under
operating conditions good contact is maintained between mating
gear teeth [2,12]. We express this constraint by

[Ryp = Rypl < 2Ry (35)
where va, sz are the vertical reactions and ARV the allowable
difference. A value for ARV may be supplied by the gear
manufacturer. In the absence of such data, it is suggested [12]

that ARv = 2300 - 6800kp depending upon the reduction gear size.

19



DESCRIPTION OF A FINITE ELEMENT PROGRAM FOR THE SHAFT ALIGNMENT
CALCULATIONS
It was mentioned in the previous sections that a numerical

Computation is used for the calculation of the shaft elastic

curve, bearing reactions and reaction influence numbers under a
current set of constraints imposed by the optimization procedure.
The program used for that purpose must be very accurate in order
for the reduced gradient optimization method subsequently used
[14] to work properly. For example, the partial derivatives of
the constraints and objective function with respect to the vari-
ables, must be as accurate as possible.

For the above reason, a finite element program has been
developed for the shafting system analysis. The ‘problem has been
formulated as a two-dimensional vertical plane one. The analysis
is structured to accept typical shaft alignment program input of
shaft 1lengths and diameters, material densities, and external
loads. All the bearings are taken as point supports with or
without lateral and rotational flexibility. Buoyancy effects of
water or bearing lubrication 0il can be included. External loads
can be introduced from components such as gear weight, gear teeth
loading, couplings, o0il distribution boxes, thrust collars,
couplings etc. In addition to propeller weight, the sﬁeady
eccentric thrust, lateral forces and moments can be included.

The shafting system has been modeled by beam elements,
including bending, shear, axial loading and all their coupling
effects. For the beam differential element shown in Fig. 6, the

following governing differential equation is used:

20



El——k + F_—f = P (36)

where E: Young's modulus

G: shear modulus

I: area moment of inertia of beam element

A: uniform shaft cross-sectional area

F: axial force oh element; positive in compression

py: uniform, distributed load

v: displacement in y direction

The finite element analysis for a shafting system composed

of elements of this type has been derived using Galerkin's
method, the most widely accepted of the weighted residuals

methods. This variational approach is essentially a special case

of the Ritz method.
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NUMERICAL RESULTS

The two subproblems, presented in the previous sections were
not constructed only on the basis of engineering analysis, but
also for computational reasons. From the design viewpoint, the
two objective functions are competing so that a true vector
optimization problem is involved. The multiobjective methods are
not particularly useful in the present context, because the
intuitive understanding of the competing design objectives
already exists. Thus a simpler way can be wused, namely a
sequential procedure where each subproblem is solved separately
while feasibility of the other is maintained. From the
computational viewpoint, this approach is dictated by the fact
that the solution is so sensitive to vertical positioning
perturbations that no good initial guess provides appropriate
feasible convergence for the combined problem (with
composite/weighted objective function); This was verified by
computational experiments using the GRG2 code version [14] of the
generalized reduced gradient method.

The optimization procedﬁre then starts by generating a
feasible initial point. This is necessary, not only because of
the computational complications mentioned above, but also because
there may be no feasible design for the given set of parameters.
The initial point is generated by using a very simplified version
of the second subproblem (vertical bearing positioning, abbr.
VBP) in order to circumvent the difficulty of large
sensitivities.

After a feasible initial point 1is found, the main

optimization procedure starts by solving the first subproblem

22



(strength and longitudinal bearing positioning, abbr. SLBP). The
inputs assume equal longitudinal intermediate shaft bearing
positioning, reduction gear position at the far right end of the
system (near the main engine) and diameters at the bounds given by

the <classification rules, The initial vertical positioning is
held constant during the SLBP optimization., The results obtained
are used as the initial point for the VBP optimization. Thus one
outer iteration is completed. The procedure is repeated until
convergence is achieved within a practical tolerance.

The results for two examples of actual ship designs are
described now., First we present the problem specifications and
then the results of the optimization study. Since both examples
are from the literature, direct comparison with the previously
proposed designs is possible,

Example 1: Bulk cargo ship with the main bearing on the
forward end of the bullgear ([12], p. 472), Fig. 7.

The variables are as follows:

dl' dzz intermediate and propeller shaft diameters
respectively.

Xor XgpeeerXg? longitudinal position of the reduction gear

and the intermediate shaft bearings respectively.

61, 52,..., 66: vertical positions of the reduction gear
and intermediate shaft bearings respectively

(positive downwards).
The parameters and the values used for the bearings are

given below:

23



BRLN OILG QMAX QMIN

#1 103.0 0.3 0.0896 0.006

#2 62.7 0.3 0.039825  0.001

#3 36.0 0.25  0.0427 0.0018
#4 36.0 0.25  0.0427 0.0018
#5 36.0 0.25  0.0427 0.0018
26 36.0 0.25  0.0427 0.0018
#7 18.75  0.28  0.097 0.0034
#8 18.75  0.28  0.097 0.0034

where
BRLN: bearing length in inches

OILG: bearing diametral oil clearance in inches

QHAX: bearing maximum allowable loading in klbf/in2

QMIN: bearing minimum allowable loading in klbf/in2

The remaining parameters are:

Wp = 49,381 klbf

F = 244,00 klbf

dG = reduction gear diameter = 24 in,

ARV = allowable reduction gear bearing reactions
difference = 5,0 klbf

X = alternating component of torsional moment = 3.5%
of mean torsional moment.

u = alternating component of thrust = 6% of mean
thrust

S, = endurance limit = 27.0 klbf/in®

S,¢ = vield strength = 30.0 k1bf/in?

s, = ultimate strength = 60.0 k1bf/in?

24



E

G

SFprop

SF

DENS

The

and 5.

int

Young Modulus
Shear Modulus

= Safety factor

300

120

for t

00 k1bf/in?
00 k1bf/in?

he prop. shaft = 2.0

Safety factor for the interim. shaft = 1.75

Shaft material density = 0.000283 klbf/in3

results of the optimization study are shown in Tables 4

Example 2 SD14 bulk cargo ship, constructed at the Hellenic

Shipyards, Greece (1], Fig. 8.

The

\%

Example 1.

The

ariables

and bearing description are the same

The parameter values are given below:

19.8414 klbf

170.0 klbf
15,9212 in
5.0 k1bf

27.0 k1lbf/in?

bearing parameters are

#1
$2
#3
%4
#5

#6

BRLN
39.37
19.685
14,1732
14.1732
14,1732

14,1732

OILG

0.1
0.1
0.1
0.1

O.l

0.1

2§

_ . 2

S,¢ = 30.0 klbf/in

_ 2
Sut' 60.0 klbf/in
E = 30000 k1bf/in?
G = 12000 klbf/in?
SFpop= 2+
SF, . = 1.75
DENS = 0.000283 k1bf/in>

OMAX CMIN
0.085 0.00285
0.036 0.0059
0.046 0.01
0.046 0.01
0.046 0.01
0.046 0.01

as

in



#7 15,748 0.1 0.044 0.007
#8 15,748 0.1 0.044 0.007

The results of the optimization study are shown in Tables 6

and 7.
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DISCUSSION
A simple but extremely useful remark is that the optimum
SLBP must give almost equal bearing spacing. Furthermore, the

bearings must be gathered somewhat aft in order to provide good

support to the propeller cantilever, It can be seen from the
presented examples that these rules of thumb are satisfied.

The objective function (17) of the SLBP problem decreases
always from the one iteration to the next, since it is
independent of the wvariables of the VBP problem, Hence
theoretically it must converge to a lower value than the one
initially given, The same does not happen with the objective
function (27) of the VBP problem. Since it does depend on the
SLBP variables, the final design might have a greater objective
function from the initial one. This 1is actually expected,
because we try to minimize simultaneously two competing
objectives resulting to the above observed conflict. Of course
it is entirely possible to introduce subjective preference, e.g.
weighting factors, in order to bias the solution towards either
criterion.

When the <classification rules' constraints (16') are not
present, and the number of bearings is considerably greater than
two (number of stern tube bearings), the diameter of the
intermediate shaft d1 reduces considerably while the diameter of
the propeller shaft d2 increases., When d1 decreases, the
intermediate shaft becomes more flexible and so the ‘influence
numbers corresponding to its bearings reduce. The reactions of

the stern tube bearings, because of the reaction influence
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numbers SRij' are (Fig.3):

" Ny -2
= + I SR, s 6.
vy vy j=1  Nprdd
A NL""?_
PNL—l = P‘NL—l + '21 SPNL-l,j"Sj
A J=

where Ri is the reaction of ith bearing when all bearings are
vertically in straight line. The stern tube reactions above
satisfy almost always as active one of the constraints

2RNL_1_5 RNI.S 3 RNL_l (19)

Since the 5i's remain constant during the optimization
procedure of subproblem 1 and the SRij's are reduced, then RN
and RNL_l.no longer satisfy (19). This is the reason why d2 has
a tendency to increase; doing so will increase RN and RNI;J_and
the propeller 1load will not produce a great difference between
them, since the propeller shaft has become much stiffer. This
necessitates the presence of an upper limit for dz when (16') 1is
absent, since a great difference between dl and d2 is not only
impractical but also undesirable because of stress concentration
considerations. Constraint (21) provides such an upper limit; of
course another one representiﬁg better a particular common
practice might be used.

In real operating conditions, a considerable aft stern tube
bearing wear-out is about 0.75 - 1 mm [12], This hypothetical
lowering of the stern tube bearing will not be incorporated in
the optimization procedure since it can be subtracted afterwards
from the assumed zero stern tube vertical displacement, thus
defining a new datum line for the vertical displacements of all

bearings.,

About 2.5% of the shaft power is converted to heat in the

28



reduction gear as well [12]; the result of this heating, at the
normal operating temperature, is the rise of the reduction gear
bearings. In common practice cases, it is about 0.6mm [12].
This need not be taken into account originally but treated in a
similar way as the stern tube bearing wear-out of the previous
paragraph.

In all the optimization analysis presented here, nothing has
been mentioned about the vibrational (torsional, longitudinal and
lateral) characteristics of the shafting system. They were not
incorporated because they are difficult, tedious and rather
expesive to compute in iterative procedures required by
optimization techniques. This happens because they can be
calculated accurately only through other separate numerical
computations. For this reason, every optimal design found by the
method of this paper should be checked afterwards for vibration
performance in order to be accepted by the designer. If this
current "optimum" design is not acceptable according to vibration
criteria, a redesign of the shafting system has to be performed
taking into account possible limitations imposed by vibrational

characteristics.
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NOMENCLATURE

9] : normal stress on a circular cross section

Mb : bending moment

D : shaft diameter

Iy : moment of inertia

F : axial force normal to the cross section; positive

in compression

T : maximum shear stress due to torsion

My : torsional moment

Ip : polar moment of inertia

Oan : equivalent combined stress

Mtp,Fp : mean values of the torsional mement and axial
force respectively

Ay M : alternating components (% of mean values) of

torsional moment and thrust respectively.

ag o .. i ini . a circu
max, ‘min maximum and minimum normal stress on ircular

cross section

OaLT : alternating stress component

Ost : mean stress component

Se : endurance limit of the material
Syt yield strength of the material
Sut ultimate strength of the material
E : Young's modulus of the material

G : Shear modulus of the material

SF : safety factor

dl : intermediate shaft diameter

62 : propeller shaft diameter
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NL :

SRij :
X. :
]

R. :
]

W :
P

L

CIj :
qjmax’ qjmin
¢j :
S, :
]

Rypr Ryg ¢
RV :
Py

v

e .

VY

Mz :

reduction gear shaft diameter

number of bearings

reaction influence number of the ith bearing with
respect to the jth bearing.

longitudinal position of the jth bearing

reaction of the jth bearing

propeller weight

total length of the shafting system

loading of jth bearing

: maximum and minimum loading of jth bearing

slope of the elastic curve at the jth bearing
location

vertical displacement of the jth bearing;
positive downwards

vertical reactions of the reduction gear bearings
allowable vertical reaction difference for the
reduction gear bearings

uniform, distributed load in the y direction
displacement in the y direction

total rotation angle of the elastic curve

shear force in the y direction

bending moment around the z axis

34



ab

:

pe

able

ab

:

-
N
o
g
o

-

F ok

fos

[o¢

LIST OF TABLES

Values for Alternating Components and of the

Torsional Moment and Thrust [4].

Safety Factor Values for Strength Calculations
(9]

Upper Bound Values for Bearing Loading [8]

Optimal Design for Example 1,

(a) Bearing Reactions and 1Influence Numbers for
Example 1.

Optimal Design for Example 2

Bearing Reactions and Influence Numbers for

Example 2

35



LIST OF FIGURES

Fiqure 1 32 Configuration of a Marine Shafting System

Fiqure 2 3 Equivalent Stress Flactuation

Figure 3 3 Simplified Shafting System Configuration

Figqure 4 3= Maximum Slope of the Elastic Curve at Bearing
Locations

Figqure 5 = Smoothness of the Elastic Curve

Figure 6 = Uniform Beam Element with Distributed Load, and
End Loads

Figure 7 = Bulk Cargo Ship Shafting Arrangement (Example 1)

Figure 8 2 SD14 Bulk Cargo Shafting Arrangement (Example 2)

36



Values for Alternating Components of Torsional

Table 1: Moment and Thrust [4]
No. of prop. blades Supports A% u%
3 struts 2-5 7- 3
5 4 struts 2-5 3-9
5 .
g 0 5 struts 2-4 3-9
ReR
J*E 3 bossings 4-8 6-12
B0
§ 4 bossings 4-6 5-10
5 bossings 4-5 4-8
2
o 3 - 7-12 8-12
8]
T2 4 - 10-15 | 3-8
O -
—~ q
gua 5 - 6-10 3-8
-
)

Table 2 : Safety Factor Values for Strength Calchlations [9]
Shaft Surface Ice breaker Submarines

Ships Ships "Single-screw| multi-screw
Propeller
Shaft 2.0 3.5 2.25 2.0
Interme-
diate Shaft 1.75 2.25 2.0 1.75

max

Table 3 : Upper Bound Values for Bearing Loadina [8]
Aft Stern Tube Forward stern tube Intermediate shaft
bearinc bearing bearing with L/D=1
6.3 kp/cn? 2.8 kp/an 3 kp/cn? for lubric

ring

5 kp/cm2 for lubric

disc




Table

4

Optimal Design for Example 1

LBP subproblem

longitudinal position of jth bearing from main engine connecting flange in inches

intermediate shaft diameter in inches

propeller shaft diameter in inches

vertical displacement of jth bearing from the line defined by the two stern tube

bearings, in inches, (positive downwards)

*
Vari- * x d d OBJ

g ables| *2 %3 %4 %5 6 1 2
- M
R .0 | 61.78
3™ 1 | Initi-[102.125 | 241.325| 380.725 520.125{659.525| 21.0 23
- 0 [aV] R
H e al
58 g |les .58
27 §11°  les.os1 | 223.619] 380.291] 520.823|659.595 |20,9907 [22.9907 | 54

U o
T3 Z-Lnd' 65.081 | 223.619] 380.291| 520.829|659.601 [20.99  |22.99 55.57
o tero
3
) (% I .t.‘_
R arlu " ho2.125 | 241.325| 380.725| 520.125659.525 [21.0  P3.0 61.78
S o
ol
o E
5 ~| 1St ks 0ss | 202.001] 358.513|482.229607.625 |17.4963 [30.0892 | 39.62
~ 0
0T
ug g —
o & 2nd
2g - 165.085 1213.515|384.359 |501.913 |615.691 [16.5842 {30.3529 | 34,65
hafil Iter.) .
3 4

VBP subproblem
Vari- *

=} .
9 ables | 1 S, S5 S, 6 S¢ OBJ
ST ]
[} 1+4 =
gw  |Imitim 0.0 | 0.0 0.0 | 0.0 0.0  B35.18
- o al )
B ~ 1st

E U
S |tter. :|o.752689D.752782(0.72307710. 6131020 424235 0.180889|181.1
288 —

nd.

'EE'UH Iter, 0+7°2689D.7527690.723067P.6130990, 4242350 18089 181.08
[+
kS Initi-
o al 0.0 0.0 0.0 0.0 0.0 0.0 B35.18
5w
W O
i 1st
& 8 | Irer.[0.939355D.939482.898725D.72625 0.473997)y. 191765|179 11
SE©

'~ T
gF4g 2nd
29 | Trer, 1.02117 [1.02132 [0.971752D.760516(. 486957/0. 19458 |184. 3
bl B
3 M




Table 5(a) : Bearing Reactions for Example 1

Reactions in klbf*
Bearing Initial Final 1 ** Final 2
$1 35.326 35.393 37.488
#2 40,202 40.593 32.390
#3 12.419 13.817 11.314
#4 14.814 10.825 0.793
#5 10.39 1.283 1.008
#6 28.816 1.621 1.425
$#7 -57.812 28.326 33.500
#8 130.178 82.133 98.522

* Shear deformation and thrust effects are included.

** Tinal results (1) with and (2) without the Classification
Rules limits for the diameters.



Table 5(b)

Sequence #1 to #8.

Influence Numbers for Example 1 .

Bearings list in

Reaction influence numbers in klbf per 0.001
movement down*

in bearing

-1.238528
1.965498 [-3.286883 SYMMETRIC
-0.913568 | 1.828058 |-1.694124
—~ | 0.234611 (-0.637042 | 1.147412 |-1.481458
;S -0.060439 0.164112 |-0.462967 | 1.095255 |-1.478287
:ﬁ 0.015798 |~0.042898 | 0.121016 0.456123 | 1.120017 |-1.60506
o |~0.004268 | 0.011589 |-0.032694 | 0.123227 |-0.478114 | 1.282184 |-1.593388
M| 0.000896 {-0.002434 | 0.006867 0.025883 | 0.100423 |-0.434935 | 0.691463 |{-0.336398
-1.125508
. 1.707791 [-2.706118
-0.73782 1.382106 |~-1.207907 SYMMETRIC
tq 0.202239 |-0.499013 | 0.869317 }1.236458
—~ |-0.058998 | 0.145575 |{-0.386186 |1.005283 |-1.44397
® | 0.015614 |-0.038527 | 0.102205 {0.433467 | 1.114859 |-1.609065
.5 -0.004199 | 0.010361 |-0.027485 |0.116568 [-0.47661 1.283277 {~1.592697
= | 0.000881 |-0.002175 0.005769 +0.024469 0.100047 |-0.434896 0.690785 |-0.335943
-0.537756
0.831695 [-1.337701
~0.360322 | 0.667044 |-0.517434 SYMMETRIC
~ | 0.094974 }0.230397 | 0.359766 |-0.59593
~ |-0.036201 0.08782 -0.188728 | 0.582326 |-0.932215
® | 0.009436 0.022891 0.049194 |-0.261307} 0.715216 }1.015665
.5 -0.003192 0.007743 |-0.016641 0.088392 |-0.398909 | 1.043119 |-1.570779
B 1 0.001366 }0.003313 | 0.00712 |-0.037822{ 0.17069 -0.517102 0.850266 |[-0.471205
* Shear deformation and thrust effects are included.
** Tinal results with and without the Classification PRules

(1)

limits for the diameters.

(2)



longitudinal position of j-th bearing from main engine connecting flange

in inches.
intermediate shaft diameter in inches

propeller shaft diameter in inches

vertical displacement of j th bearing from the line defined by the two
stern tube bearings, in inches,

(positive downwards).

Table 6: Optimal Design for Example 2
LBP subproblem
Vari- * *
o
8 l|ables| *2 X3 Xy X5 | %g 4 d) OBJ
oM .
88 |(Ini-
o tial |52.322{214.37 |376.418|538.466(700.512 | 13.846 |17.11 12.48
B
5 & ) st
4 g Tter.}44.34 |210.768{377.7041538.136(700.228 | 13.838 {17.1016|12.13
o g
§‘§ ®! 2nd
IR tﬁ Tter.l.44.34 |210.766(377.71 |538.16 [700.244 13.836 {17.1 12,12
0 Ini-
m +
9a |t1al ) 5 3721214,37 |376.418(538.466 [700.512 |13.846 |17.11 [12.48
mE - '
65 <Y Lst
SR Iter.] %44.384 211;492 377.568 |532.224 688.808 | 13.44 [20.681 [11.47
= &
& D
S oM
e," 2nd A
25 5| Iter. 44,384(228.7741412.102 {553.784 H698.072 | 13.176 [20.066 {10.52
fc IS R
VBP subproblem
g Vari- :
o]
3 lables | °1 5, | % 84 S5 %¢ |omg
© O
g% | lIni-
“w ~ltial | 0.0 0.0 | 0.0 0.0 |0.0 0.0 [429.8
@ E o
90§ st
© ., | Iter. 1.37564 11.37587 [1.32583 | 1.165 |0.83488 |0.34081 (201.7
L o |
E":,* 2nd
~
Iter.|; 37557 1.37579 [1.32577 | 1.165 [0.83488 [0.34081 |201.6
15
- Ini- :
S tial 0.0 0.0 0.0 0.0 0.0 0.0 429.8
Z 5
.(,;}(LH
2| N Ist }1.55971 [1.55991(1.4925811.26704 |0.87512|0.3486 {191.7
TEw | Iter.
- o
o=
g [N ] 2nd
59T Iter 1.7384 1.7386 |1.64837 {1.3431 ]0.9032910.35417 p28.7
- o
jc 3 ¥




Table 7(a): Bearing Reactions for Example 2.

Reactions in klbf*
earing Initial Final 1 %% Final 2
#1 7.222 10.798 11.146
$#2 14.872 11.035 10.981
#3 6.790 8.274 7.908
$4 7.102 6.155 4.302
#5 6.227 2.468 1.740
$#6 9.481 2,114 2.146
#7 -18.556 11.781 12.857
#8 52.453 32.902 36.340

* Shear deformation and thrust effects are included.

** FPinal rgsults (1) with and (2) without the classification
rules limits for the diameters.



Table 7(b)

: Influence Numbers for Example 2.

Sequence #1 to #8.

Bearings Listed in

Reaction influence numbers in klbf per 0.001 in bearing movement
down*,
-0.491471
0.661319 [-0.910203
-0.214766 | 0.335043 |-0.218487
0.056807 [-0.108964 0.14456 ~-0.183382
'; -0.015074 | 0.028913 |-0.058766 | 0.135951{-0.183653
tﬂ 0.004186 |-0.008029 0.016318 | =0.059107} 0.145919 [-0.224851
~1-0.001523 0.002922 |-0.005938 0.021509{-0.08109 0.232061 |-0.365701
g 0.000522 |-0.001002 0.002036 | -0.007374| 0.,027799 |-0.106497 0.197759 $0.113244
-0.47953
x| 0.640913 |-0.875332
*1-0.204114 0.315224 |-0.201865
—~1 0.054658 |-0.103361 0.135657 | -0.177397
= -0.015078 0.028513 |-0.056762 0.135195(-0.184624
| 0.004139 [|-0.007826 0.01558 -0.058796| 0.145908 |-0.223808
.ﬁ -0.001505 0.002846 |-0.005666 0.021383|-0.080936 0.23079 -0.363766
1 0.000517 {-0.000977 0.001945 | -0.00734 0.027783 {~-0.10586 0.196854 |-0.112795
-0.372032
0.485379 {-0.64472
-0.144616 0.215079 }-0.129915
~| 0.042938 |-0.076539 | 0.097855 | -0.155682
—~1-0.014689 0.026183 | -0.04834 0.139533|-0.208264
81 0.003895 |-0.006943 | 0.012818 | ~0.062051 0.162111 |-0.237623
E: -0.001412 0.002517 |-0.004647 0.022494|-0.091184 0.244163 |-0.380496
0.000537 {-0.000956 0.001766 | -0.008548) 0.03465 -0.11637 0.208565 F0.119643
* Shear deformation and thrust effects are included.
* %

Final results (1) with and (2) without the Classification
Rules limits for the diameters.
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