Conclusions of no difference are becoming increasingly important in evaluation research. We
delineate three major uses of no-difference findings and analyze their meanings. (1) No-differ-
ence findings in randomized experiments can be interpreted as support for conclusions of the
absence of a meaningful treatment effect, but only if the proper analytic methods are used. (2)
Statistically based conclusions in quasi-experiments do not allow causal statements about the
treatment impact but do provide a metric to judge the size of the resulting difference. (3) Using
no-difference findings to conclude equivalence on control variables is inefficient and potentially
misleading. The final section of the article presents alternative methods by which conclusions
of no difference may be supported when applicable. These methods include the use of arbitrarily
high alpha levels, interval estimation, and power analysis.
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E valuation research is increasingly concerned with conclusions that

an intervention may not have had a meaningful impact, supported
by statistical evidence suggesting that the null hypothesis may be true (e.g.,
Greenwald, 1975; Fagley, 1985; Cohen, 1987). This lack of meaningful
impact is commonly referred to as “no difference” —a term best understood
as meaning “no practical difference.” Yeaton and Sechrest (1986, 1987) have
assembled and integrated much of the literature on no-difference findings but
point out that “inferential problems of no-difference results are not well
understood” (1986: 838). We support these authors in their organization of
the no-difference literature and seek to contribute to an understanding of the
inferential problems. We believe that the relevant problems are made man-
ageable when there is clarity as to the following.
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1. The role of the no-difference findings: We delineate three prominent uses of no-differ-
ence findings and discuss the inferential problems peculiar to each use.

2. The type of error that is to be minimized: Whereas traditional conclusions of “differ-
ence” seek to minimize Type I errors, no-difference findings need to minimize Type 11
errors (i.e., failing to reject the hypothesis of no difference — the null hypothesis — when
in fact it is false). While this distinction has been recognized for many years, it is often
disregarded; moreover, the meaning of Type I errors varies in the context of the three
uses of no-difference findings.

Underlying our position is our belief in the importance of the principle of
conservatism in science — the belief that one should posit only those conclu-
sions of which one is quite certain. This principle underlies the conventional
use of the 5% level of significance instead of, say, the 30% level.

Our concern, however, is that this convention often misleads investigators
in the direction of misusing nonsignificant results in such a way as to violate
the principle of conservatism (see Cangelosi and Jesunathadas, 1986). In
particular, we discuss several kinds of situations in which following tradi-
tional conventions would have the effect of lowering confidence in no-
difference conclusions. The following analysis seeks to address the manage-
ment of no-difference explorations, primarily within the context of this
concern for the appropriate conservative stance. We begin, as noted, by
delineating three common uses of no-difference findings. We then consider
the implications of multiple comparisons and, finally, suggest alternative
statistical procedures for maintaining conservatism in connection with no-
difference conclusions. OQur purpose is not to establish a definitive procedure
(indeed, a combination of procedures may be useful), but to begin a dialogue
and perhaps to stimulate a period in which several procedures are tried and
their various attractions compared.

THREE USES OF NO-DIFFERENCE FINDINGS

Yeaton and Sechrest (1986) point out the many ways in which no-
difference findings can support the validity of scientific conclusions. We suggest
that decisions not to reject the null hypothesis (i.e., to accept a “no-difference”
finding) are prominently used for the following purposes:

Case 1. To permit the conclusion of no treatment effect in randomized experiments,

Case I1. To permit the conclusion of no treatment effect in nonrandomized studies, and

Case I11. To establish equivalence between groups: (1) on control variables in nonrandomized
studies and (2) in the face of attrition in randomized experiments. Demonstrating
equivalence is undertaken in order to make further analysis justifiable.
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The purpose of delineating these three uses is that conclusions of no
difference must be managed differently in each.

CASE 1: NO-DIFFERENCE OUTCOMES IN RANDOMIZED EXPERIMENTS

For impact analyses (both experimental and quasi-experimental) a con-
cern for no-difference findings occurs in such policy areas as the effect of
limited versus radical mastectomy (Fisher et al., 1985), the efficacy of
acupuncture (Gaw et al., 1975), the equivalence of control and experimental
groups in a study of the treatment of angina (Gerstenblith et al., 1982), the
effect of preventive police patrol on crime and public attitudes (Kelling et al.,
1976), the effect of no-fault divorce laws on the divorce rate (Mazur-Hart
and Berman, 1979), the effect of pretrial release without bail on appearance
for trial (Botein, 1964-65), and the effect of desegregation on white flight
(Pettigrew and Green, 1977). In each of these studies and a great many others,
investigators have made a substantive or theoretical case for the absence of
an effect.

In most randomized €xperiments, significance tests are used to determine
whether the difference in outcome between experimental and control groups
is sufficiently large to justify rejecting the possibility that it is due to chance.
Such a conclusion is based on establishing an alpha level so small (e.g., 5%
or 1%) that the risk of attributing efficacy to a treatment when the difference
is due entirely to the randomization process or other chance effects is
minimal. The smaller the alpha level, the more conservative the test (i.e., the
lower the likelihood of Type I errors), and the more weight a significant result
carries. Before proceeding, it is worth emphasizing the reason behind this
conservative tradition in social science.

In some areas, such as manufacturing, it may be possible to specify exactly
the relative costs in dollars (or some other common metric) of Type I and
Type II errors. For example, it might be possible to estimate objectively the
relative costs of remaking parts wrongly thought to be defective and of
shipping defective parts (these two errors may be thought of as wrongly
rejecting and accepting, respectively, the hypothesis that the parts are good).
For such cases, it is appropriate to ignore statistical conventions, such as a
probabilistic 5% decision rule, and establish a criterion that minimizes the
expected cost, for example: “Remake the lot when the mean of a sample of
parts deviates more than two-thirds of a standard error from the accepted
norm, because the probability times the cost of remaking good parts when
following that rule is less than the probability times the cost of shipping bad
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ones.” In the social sciences, however, the relative cost of Type I and Type
I errors is more difficult to establish.

In the face of such uncertainty, we have statistical conventions that
encourage us to withhold judgment when the data are not conclusive. In the
traditional statistics, conventions direct us to withhold judgment when failing
to achieve significance at, for example, the 5% or 1% alpha level. Mostly, in
other words, we use conventions that consider Type I errors alone, despite
the likelihood that they result in large risks of Type II error, because it is
impossible or impractical to compare the probable costs of the two. Since a
balance cannot be struck, the strategy elected is to choose the more serious
type of error and minimize its probability. Thus we have a conventional,
conservative bias against conclusions of difference or relationship.

Contrast this traditional use of significance testing with its use in conclu-
sions of no difference, still in randomized experiments. As a hypothetical
example, consider an evaluation that attempts to show that the traditional
policies requiring newly released inmates to report to parole officers are
unnecessary. Instead, it is proposed that a state program involving an honor
system for newly released convicts (i.e., no requirement to report to a parole
officer) will be just as effective in deterring future criminal activity. Suppose
that 42 out of 100 randomly chosen subjects granted this honor system upon
parole were later convicted of serious crimes, and that out of 100 randomly
selected control subjects with traditional parole requirements only 32 were
later convicted of serious crimes (a difference of proportions of 0.10). Given
these data, one would conclude that the difference between the groups is not
significant at the one-tailed 5% level (Z is dependent on the proportions
involved; choosing 32% as a given, a difference of proportions of 0.12, rather
than 0.10, would have been necessary for significance) and, thus, that the
new parole program is just as safe as the old. But this failure to reach
significance would in general not be reassuring: while the results may not be
statistically significant, 42 is quite different from 32 and could signify an
important community crime risk.

One might be tempted by convention to use a “more conservative” test,
say the 1% level, but this tactic would backfire because then the new program
would be considered safe unless 49 or more of the experimental subjects were
convicted of serious crimes (a difference of proportions of 0.17!). Thus it
appears that extending traditional strategies to the no-difference situation
results in tests that are more liberal than the investigator intended. The
problem is, as Blalock (1972) suggests, that the investigator is on “the wrong
end of the hypothesis” (p. 161). In such cases, the investigator is attending
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to Type I error when Type II error — failing to reject “no difference” when it
should be rejected —is the real concern.

Rather, in such a case, state officials might reserve the term “safe” for a
program that yielded 40 or fewer convictions as compared to 32 in the control
group (a difference of proportions of 0.08, p > 0.10). Should one wish to be
even more conservative, one might conclude that the program was safe only
if there were fewer than 37 convictions (a difference of proportions of less
than 0.05, p > 0.25).

The important point here is to notice the trend to increase confidence in
all conclusions by restricting the range of significance to only the most
compelling values: rejection of the null hypothesis is most compelling with
extremely large differences —outlying scores that are significant at small
alpha levels; “acceptance” of the null hypothesis — the no-difference conclu-
sion — is most compelling with scores close to the null value, scores that are
nonsignificant even at one-tailed alpha levels of 0.25 or even greater. Thus
if we wish to be conservative in accepting no-difference findings, we need
to do something comparable to the use of large alpha levels rather than small
ones (we suggest three alternatives in the final section, below).

That a desire to be conservative sometimes requires small alpha levels and
at other times large alpha levels results from our being concerned with
different types of error. In the traditional case we wish to avoid calling an
ineffective program effective (avoid Type I error — rejecting a null hypothesis
when it is true); in the no-difference example we wish to avoid the conclusion
that a treatment with appreciable impact had little or none (avoid Type II
error —failing to reject a false no-difference hypothesis). This distinction
between types of error is explained in any introductory statistics text; it is
developed here because it appears to be misapplied in murh of the no-
difference literature: When a substantive or theoretical case that would be
supported by no-difference findings has been made, chances are high that
significance testing will then be applied by the investigator in the ordinary
way, and therefore misapplied. In some cases (especially in Cases Il and 111,
below) it is better to draw conclusions of no difference without inferential
statistics of any sort (e.g., make judgments simply on the basis of the
magnitudes of the differences), but there are alternative procedures, such as
large alpha levels, that could legitimately be used more frequently to support
relevant conclusions in no-difference situations. Unquestionably, these pro-
cedures apply in principle to Case I, randomized experiments.

In summary, it is necessary to be conservative in one’s statements.
Believing that science progresses best when only the most conclusive results
are accepted as true, “the researcher should lean over backwards to prove
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himself wrong or to obtain results that he actually does not want to obtain”
(Blalock, 1972: 161, empbhasis in the original). Thus when supporting a
decision that one drug treatment is superior to another, for example, research-
ers should make itdifficult to conclude on the basis of experimental evidence
that there is a difference (small alpha level). When supporting a position that
a particular treatment or policy is not superior, researchers should make it
hard to conclude that the treatments are equivalent. If after making it difficult
to conclude no difference the no-difference decision is still supported, then
the conclusion carries some weight.

CASE II: NO-DIFFERENCE OUTCOMES IN QUASI-EXPERIMENTAL STUDIES

Most evaluations are not randomized experiments in design. When assign-
ment to treatment groups is not by randomization, as in quasi-experiments
and ex post facto studies (and, incidentally, in ordinary survey research in
social science), the considerations regarding significance testing when it is
important to hedge no-difference findings conservatively are not at all the
same. This is not so much because of any special implications of no-
difference results in quasi-experiments, but rather because of the general role
of significance testing in that context. Basically, significance testing has little
relevance for causal inference in such studies.

Mohr (1988: 90-96) explores the subject at length, including the presen-
tation of certain qualifications of this basic conclusion (Mohr, 1988: 163-
182). The essence of the matter is this: In impact analyses, a test of signifi-
cance responds to the question: “What is the probability that results such as
those observed could have been generated by random forces rather than a
treatment effect?” The answer is based on the statistical model of sampling
theory, which assumes assignment by a probability sampling procedure. In
a randomized experiment, if one can rule out the effects of the randomization
itself for at least some of the measured difference, relatively few reservations
remain to an inference of at least some true experimental effect.

In the quasi-experimental case, however, chance plays a minor role. If a
difference between the treatment and comparison groups is statistically
significant, one may consequently be fairly certain that it is not due to chance.
Such information, however, is rarely interesting. Since the groups were not
assigned by a chance process, the test only rules out effects from such sources
as random measurement error and events in the world that happened to occur
to the subjects at random after their assignment to treatments in the study.
The major worry by far in assessing the treatment effect, however, is that
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there has been selection bias in the original assignment (or, in the case of
before-after designs, effects from extraneous events occurring at about the
same time as the treatment). These are nonrandom effects. Selection bias
replaces randomization vagaries as the chief alternative to treatment effects
in quasi-experiments, and this worry is not addressed in any way by the test
of significance. »

A nonsignificant result suggests that, had the two groups been equivalent
before treatment, the measured outcome difference is not too large to have
occurred as the result of certain random forces (measurement error, recent
random events, etc.). One does not know, however, how nearly equal the two
groups were to start on variables that matter for the outcome; one possibility
is that the two groups were quite different and that the treatment has evened
them out some, that is, it has had a substantial impact. Although the emergent
difference may be small, inference of little or no treatment effect is then
inappropriate. ‘

One might try to overcome this potential bias by employing a pretest and
other control variables, but the same difficulties remain in principle. An
evaluation of the impact of a job training program might measure the before
and after incomes of those who voluntarily participated in the program and
those who voluntarily declined participation. Even if the pretreatment in-
come of the two groups were exactly equal or statistically controlled (see
Case 111, below), one cannot conclude that the two groups were equal on all
other meaningful —but unmeasured — variables, such as the motivation to
work (see LaLonde and Maynard, 1987).

Thus when the design does not involve random assignment, defending a
conclusion of no effect on the basis of a nonsignificant result requires
defending the assumption that the treatment and comparison groups differed
only by chance in their potential outcome scores before the treatment was
administered, that is, that the assignment process was functionally equivalent
to a randomization procedure. Defending this assumption is the raison d’etre
behind some of the more sophisticated evaluation designs. The question
becomes how effective these designs are in avoiding selection bias or some
other distortion. Some of the more sophisticated nonrandomized designs
appear reasonably adequate (e.g., the regression-discontinuity and random-
comparison-group designs; see Mohr, 1988), others less so. The ultimate test
is comparison of inferences from nonrandomized studies with those of
parallel randomized experiments, using the same treatment subjects in both
cases. Unfortunately, early comparison studies seem to indicate that results
from the commonly used nonrandomized designs may easily be misleading,
even when a pretest is used and very sophisticated analysis procedures are



Julnes, Mohr / NO-DIFFERENCE FINDINGS 635

later applied (e.g., Deniston and Rosenstock, 1973, or the series of studies
described in Ashenfelter, 1986, Fraker and Maynard, 1987, and LaLonde and
Maynard, 1987).

The foregoing analysis suggests that a no-difference finding based on
statistical inference in a quasi-experiment would ordinarily have little to do
with causality. However, the statistical model can serve to provide a metric
for judging whether a difference is large or small (Blalock, 1960: 270-271;
Mohr, 1988: 93-96). The metric is in terms of the probable outcomes of a
hypothetical randomization process, as demonstrated by the significance test.
If a positive difference, for example, is so small that even randomization
would be expected to produce a larger difference, say, 25% of the time, as
indicated by a nonsignificant result at the one-tailed 25% alpha level, then it
may indeed be declared “small.” There is no harm in this as long as it remains
firmly understood that what is under consideration is the difference and not
the treatment effect. The difference may indeed be small (in this metric or
any other), but the treatment effect may still have been large in either the
beneficial or harmful direction — offset, as we have noted, by selection bias
in the quasi-experiment.

CASE 1II: NO DIFFERENCE ON CONTROL VARIABLES

Perhaps the most common use of no-difference conclusions involves
attempts to show that two groups are equivalent in terms of measured control
variables (examples are too common to cite). This use does not address the
question of treatment effect directly but is meant to support such an analysis:
() in the case of justifying a comparison group in a quasi-experiment, whose
initial similarity to the treatment group is always critical if a causal inference
is eventually to be made, and (b) in the case of attrition from the experimental
or control group in a randomized experiment. In the former case, no-difference
conclusions are used to suggest that the treatment and comparison groups are
so similar on measures believed related to the outcome that they can be
viewed as equivalent except for the treatment (and all unmeasured variables).
In the latter case, the point is to see whether the attrition has compromised
the result of an earlicr randomization procedure: if there is no difference on
certain measured characteristics between those who left and those who
remained, then the nature of the group has not been changed by the attrition,
at least not on those measured variables. Otherwise, the basis for invoking
the statistical model for hypothesis testing, which assumes random sampling,
has apparently been undermined. Note with respect to attrition that if the
design is quasi-experimental rather than experimental, the similarity of the
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treatment and comparison groups is already uncertain; it is ambiguous
whether attrition, if it occurred, has made matters better or worse. There is
therefore little point in testing for the similarity between those who left and
those who remained. Nevertheless, if the groups are assumed to have dif-
fered at the start only by chance, these comments would apply to the quasi-
experimental case as well.

In both cases (a) and (b), the conservative logic demands that one use a
test that makes it difficult to conclude no difference, something that a small
alpha level (5% or 1%) generally does not do.

But furthermore, once the decision is made that the groups are “equiva-
lent” on the basis of a no-difference finding, the information from the control
variables is typically discarded. This disregard of valuable information is
unnecessary and unfortunate. If there are even slight differences in control
variables and these control variables are related to the outcome of interest, it
is best to use this information about differences in the analysis. That is, rather
than reduce the information about control variables to a dichotomy (differ-
ence versus no difference), it is better by far to use the actual values on the
control variables in the analysis — for example, as independent variables in a
multiple regression equation. Therefore, the significance test for no differ-
ence need not be performed at all.

The advantage of this approach is that the added information can give a
more accurate picture of the treatment effect. For example, Smith (1976)
reported results in which a treatment group was worse off on a pretest than
the comparison group, but the difference was not significant. Although the
difference appeared to be substantial, failure to reach significance at the 5%
level was interpreted as indicating that the two groups were equivalent, an
inappropriate no-difference conclusion. Furthermore, following treatment
the treatment subjects were better off than the comparison subjects. Because
the outcome difference was not significant, however, the results were inter-
preted as showing that the treatment had no effect. Had the information on
the pretest been used in the analysis rather than discarded it would have
indicated that the treatment group had moved from well below the compar-
ison group to well above it —a difference that could signify a very substantial
impact. (Note: Because the study was a quasi-experiment, it does not add
force to the above observation to say that the result might well have been
statistically significant: significance testing in Case I —impact analysis in
quasi-experiments — is generally of dubious value.)

In sum, Case HI represents an inefficient use of the no-difference infer-
ence. Just for information, one might examine the differences and even test
them for significance (but not at the 5% level) to get a metric for “small” and
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“not small,” as in Case II. But it is both wasteful and inappropriate to discard
the information at that point on the basis of a “no-difference” conclusion.

THE RELEVANCE OF MULTIPLE COMPARISONS
FOR NO-DIFFERENCE FINDINGS

In the foregoing analysis, we have tried to show that conservatism in
no-difference conclusions requires minimizing the risk of accepting a false
null hypothesis (minimizing Type Il error) and that this is accomplished, for
example, by moving in the direction of higher alpha levels. We now consider
the impact of multiple comparisons on the conservative stance in relation to
no-difference findings. Multiple comparisons with no-difference conclu-
stons can be divided into two groups: (a) those in which a single no-difference
finding (or a very few) will lead to some action, and (b) those in which some
action is taken only if all (or almost all) of the multiple comparisons produce
no-difference conclusions.

In the first type, consider an experiment with the honor parole system in
which there are multiple subpopulations of parolees (e.g., first offenders
versus multiple offenders; nonviolent versus violent crimes). If one con-
cludes no difference for a particular subpopulation, then the honor system
will be used for that type of parolee. If there were 10 subpopulations in the
experiment (e.g., 200 parolees in each subpopulation randomly divided into
honor and traditional parole programs), one faces a greatly increased likeli-
hood that one of the subpopulations will yield a nonsignificant difference just
due to chance (principally, to “unhappy” randomization). The proper re-
sponse is to make it even harder to conclude no difference for each sub-
population. In the framework of using the alpha level as the criterion, this
would involve raising alpha (e.g., from a conservative level of 0.25, one-
tailed, to an even more conservative level of 0.30).

Another example of this type involves comparing one treatment with
several others: An incxpensive drug is compared to a variety of different
surgical techniques. If the drug is “equivalent” to any of the techniques, it
will become standard policy to use the drug whenever that particular tech-
nique was formerly indicated. Under such conditions, an experiment com-
paring the drug to 10 surgical techniques runs too great a risk of falsely
concluding no difference unless one compensates by making it harder to
conclude no difference for each comparison. Again, if one were using an
alpha level as the criterion, becoming more conservative would dictate
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raising the critical alpha level, thereby requiring values closer to the null
value.

The second type of multiple comparison decision— needing to find no
difference on all comparisons — is exemplified by an experiment on the honor
parole system in which there is only one population examined but multiple
measures of recidivism. Thus the eligible parolees are randomly assigned to
the honor or traditional system and their subsequent behavior is evaluated in
terms of 10 recidivism measures (e.g., number of convictions, time before
first conviction, and seriousness of crimes): the program is considered a
success only if all measures yield no-difference results. A corresponding drug
study would conclude that a new drug was as effective as traditional surgery
for a single disease only if it yielded no-difference findings for all 10
symptoms monitored.

Perhaps the most common use of this second type of multiple comparison
decision, however, occurs when researchers attempt to conclude that two
groups in a quasi-experiment are equivalent by virtue of no-difference
findings on control variables (as in the case of attrition, or of differences
between treatment groups). In the typical case, the groups are not declared
equivalent unless all of the comparisons are nonsignificant. We have argued
that groups should not be declared equivalent or nonequivalent on the basis
of a control-variable comparison. The case is no different when there are
multiple comparisons, as there usually are. Instead, the comparison factors
should be used as control variables in a multivariate analysis. Still, the logic
of multiple no-difference comparisons in such cases is instructive, and we
will touch on it briefly, below.

First, it is important to recognize that using multiple comparisons to
support a global conclusion of no difference results in a paradox. On the one
hand, as is commonly understood, the probability of at least one Type I error
is increased; that is, there is an increased likelihood that at least one compar-
ison will be significant merely due to chance. On the other hand, and this is
less commonly noted, the probability of at least one Type II error is also
increased, so that the more independent comparisons there are in any set of
nonsignificant differences, the more likely it is that at least one of them is
nonsignificant by chance. Thus multiple comparisons simultaneously: (1)
decrease the likelihood of a global conclusion of no difference, and (2)
decrease confidence in such global conclusions when they are made.

Yeaton and Sechrest (1986) suggest that when one wishes to conclude no
difference for multiple comparisons, it is appropriate to lower the alphalevel
for each comparison (see Davis and Gaito, 1984, for a general treatment of
this issue.)
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From a different perspective, since many group characteristics are typically tested for
initial differences (such as age, sex, aspects of medical history), it would be expected
that a few spurious differences would be produced by chance alone. If such subgroups
have adequate sample size and statistical power, then it is legitimate to cite the problem
of experiment-wise-error rate and to opt for such standard approaches as lowering the
alpha level of each comparison [ Yeaton and Sechrest, 1986: 842, emphasis in original.].

There is an important sense in which Yeaton and Sechrest are correct: at
any given level of significance, the more comparisons, the more likely that
one of the comparisons will be statistically significant just by chance (Type I
error). Such a chance difference would prohibit further analysis; thus, it is
natural to lower alpha to make it more difficult to conclude that the groups
are different.

But this advice merely highlights the tension between Type I and Type II
errors. While there are ways to decrease each of these, (see Cohen, 1982),
the two are inversely related: all else being equal, lowering alpha necessarily
decreases the likelihood of Type I error and increases the likelihood of Type 11
error. Thus not only do multiple comparisons per se increase the probability
of making at least one Type Il error, but lowering alpha as a strategy
constitutes a second, compounding mode of having the very same effect.

As discussed in Case I, if we knew the relative costs of Type I and Type 11
errors, we could dispense with statistical conventions. It is the lack of this
objective knowledge that inspires conventions to manage Type I error in
order to maintain confidence in traditional conclusions of difference. With
conclusions of no difference, we need parallel conventions to manage Type II
error rates, something that lowering alpha does not do.

Consider the following scenario: The honor versus traditional parolee
study is conducted, with random assignment and with multiple independent
measures of recidivism. Wanting to be rigorous about the comparability of
the two treatments, the researchers decide to assert equivalence only if
differences on all types of recidivism are small, p > 0.25 for each measure
considered independently. But the first outcome variable examined, “seri-
ousness of crimes leading to new convictions,” reveals higher average
seriousness for the honor parolees (significant, p < 0.21). Fortunately, the
groups were compared also on number of arrests, number of convictions, and
time to first conviction, all nonsignificant (p > 0.25). Assume now that the
researchers, following standard advice for multiple comparisons, had low-
ered alpha from 0.25 to 0.20 before the analysis. Since differences on all
outcomes would then be nonsignificant, they would conclude that the treat-
ments were equivalent.
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Our intuition tells us that this “standard approach of lowering alpha”
increases the risk of wrongly concluding no difference (Type Il error);
intuition would be even clearer if all five conviction comparisons had yielded
p < 0.21 but were considered innocuous due to the lower alpha level.
Lowering alpha should be proposed only if one believes that multiple
comparisons make the overall conclusion of equivalence more conservative
than originally desired. But in the no-difference situation, assuming that the
several comparisons are independent, this belief would not be true: If two
groups proposed to be equivalent are compared in terms of age, race, religion,
and family background, lowering alpha means that larger differences in age,
for example, will now be tolerated as nonsignificant. Why should this be so?
If one decides on the basis of one comparison that a one-year age difference
between groups is not negligible, multiple comparisons should not lead one
to consider a two-year difference to be negligible.

In terms of the parole example, finding that the honor parolees are
“equivalent” to traditional parolees in terms of number of arrests and time to
first conviction does not compensate for possible differences in the serious-
ness of crimes committed. The effect of lowering alpha will be that more real
differences in recidivism are overlooked; this potential increase in Type II
error makes it more likely that an unsafe parole program will be pronounced
“safe” and, hence, unwisely continued.

Thus the solution of lowering alpha decreases the risk of Type I errors —a
definite problem when it is felt that all comparisons must be nonsignificant —
but at the cost of an inevitable increase in the risk of Type II errors. When
making multiple comparisons, it is necessary to decide which error type is
more important. For conservatism in connection with the typical no-difference
conclusion, it is Type 1I errors that must be given priority. In concluding no
difference, researchers should be most concerned with the probability of
falsely accepting the null hypothesis. With this orientation, the researcher
must manage beta (the probability of Type Il error), allowing alpha to become
larger when necessary. As noted, this merely mirrors the more common
practice: one always allows beta to become larger when moving to lower
alpha levels in the traditional multiple comparison situation.

Because multiple independent comparisons do not inherently make a
global conclusion of no difference more conservative, we recommend against
lowering alpha as a general solution. Our perspective on multiple compari-
sons is developed further in the context of the statistical procedures described
in the following section.
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METHODS TO SUPPORT NO-DIFFERENCE FINDINGS

The foregoing discussion indicates why it is generally inappropriate to
conclude no difference upon failure to reject the null hypothesis at the 5%
level —such a test is too liberal. Accepting Yeaton and Sechrest’s (1986)
belief in the importance of no-difference conclusions, as we do, a concerted
effort is required to develop alternative methods that maintain the conserva-
tive stance. Rather than endorse one particular method, we present three
alternative approaches.

1. Test the null hypothesis with a large alpha level (e.g., 0.25, one-tailed).

This option is probably the simplest solution. We have used the one-tailed
25% level in this article, but it is arbitrary.' In the example of the honor parole
system as originally developed above, the program would be concluded to
be as safe as the traditional system if less than 37 honor inmates were later
convicted (difference of proportions of less than 0.05). Note that such a
procedure need not require that every program of this type with an effect
greater than a difference of proportions of 0.05 be categorized as “unsafe.”
One could continue to reserve the conclusion “unsafe” for outcomes signif-
icant at the 5% level —in this case a difference of proportions greater than
0.12. If an effect greater than 0.05 but less than 0.12 were obtained, no
judgment, safe or unsafe, would have received particular support (see Figure 1).

The resulting three zones, “no difference,” “no judgment,” and “differ-
ence,” can help to clarify debates as to whether or not an intervention has had
an impact. For example, Coleman et al. (1975a, 1975b) suggest that school
desegregation led to “white flight.” Assuming that a causal inference is
pertinent in this ex post facto context, their conclusions should be tested with
a small alpha level (e.g., 0.05 or 0.01). Pettigrew and Green (1977) suggest
that desegregation has not caused white flight; their data should be analyzed
with large alpha levels (e.g., 0.25 or higher). Both sides of the debate should
agree that intermediate results (e.g., between 0.25 and 0.05) support neither
position.

The high alpha-level solution leads to some important insights, but it
shares with traditional 5% testing the problem of being defined in terms of
alpha and thus Type I errors. While testing at the 25% level is more
conservative than testing at the 5% level, neither test provides any estimate
of the quantity that is statistically critical in the no-difference circumstance,
the probability of Type II errors. In some cases the probability of Type 11
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Figure 1: Three Zones of Judgment

errors could be quite large, in some quite small, but in all such cases it is
unspecified. Thus this method does not allow one to reach standard statistical
conclusions, such as: “The probability of being wrong when concluding no
difference in this case is less than X%.” Rather, this method primarily
provides a metric with which to judge the size of the result in a randomized
experiment (Case I), or in a quasi-experiment (Case II), with the caveat that
in a quasi-experiment the metric applies to the “difference” found and not

- the “treatment effect.” If a positive effect fails to reach significance at the
one-tailed 25% level (i.e., an effect that small or smaller would be expected
to occur 75% of the time due to chance), one can choose to conclude that the
treatment effect (Case I) or the difference (Case I1) is indeed small. While such
a metric could be used for comparison-group-similarity analyses (Case III),
we have argued that this is inefficient and potentially misleading and will not
advise the Case III application for any of the techniques proposed for
consideration in this section.

2. Establish a confidence interval indicating a range of values for the true treatment effect,
given the observed experimental outcome.
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Let us say that 95% of the time, chance alone (acting primarily through
the randomization procedure in an experiment) would yield a difference of
proportions of 0 + 0.20.” Let us say also that the difference actually observed
on the posttest in a randomized experiment was 0.15. Then the true treatment
effect may be believed to be 0.15 = 0.20 with 95% confidence.

The aim of this confidence interval is to estimate what the treatment effect
truly is rather than to declare “difference” or “no difference.” For the parole
study data, for example, a 95% confidence interval yields 0 = (1.96 x 0.067),
or 0 = 0.133.° If the study results showed a difference of proportions of 0.10,
this means that, with 95% confidence, the treatment effect was 0.10 = 0.133.*

In sum, unlike method number 1, above, this procedure does use statistics
to estimate a meaningful parameter, in this case providing a range in which
the true treatment effect is believed to lie. Further, this range provides more
information than a simple conclusion of “difference” or “no difference.”
However, often a decision must be made: Shall we conclude “no difference”
or not? As long as the most extreme value in the range would not cause one
to regret concluding no difference, such a conclusion is justified (see
Dunnette and Gent, 1977; Blackwelder, 1982). However, when the range
includes values so large in absolute magnitude as to be worrisome, it will be
difficult to have confidence in such a conclusion.

Thus the classic application of confidence intervals is most useful when
the interval is entirely within the range of acceptable difference or, perhaps,
clearly outside it. In what may well be the most common case, that in which
the interval includes both acceptable and unacceptable values, traditional
confidence intervals (e.g., 95% intervals) do not allow explicit statement of
the probability that the treatment effect is negligible (or its complement, the
probability of error in accepting the hypothesis of no difference when it is
false).

As an alternative to this standard application of confidence intervals, one
could decide ahead of time how large a difference is still negligible — effectively
no difference —and calculate the confidence level corresponding to the
interval (based on observed results) that puts that particular difference just at
the tip of its range. One might then find that the difference is a negligible one,
for example, with 97% confidence, or perhaps only with 60% confidence.
This use of confidence intervals is unorthodox, and it happens also to be
illegitimate in a noteworthy sense. Since it arises most naturally out of the
tradition of power analysis, we will reconsider it in that context, below.

Whatever manner of confidence interval were employed, if selection bias
were added to chance as a source of the null case difference, there would be
no basis for believing the true treatment effect to be within the interval, which
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relates only to the results of chance. Thus this technique would be appropriate
only for randomized experiments (Case I), as that is the only situation in
which unhappy randomization is the primary concern with respect to bias. In
anonrandomized study (Case 1), bias from self-selection or other assignment
sources, whose magnitude cannot be estimated by statistical techniques,
cannot be ruled out, leaving one with only small justification for invoking
the random-sampling model that lies at the foundation of classical interval
estimation. In attrition analysis (Case IIl), the difference between the two
groups is what it is; unlike the problem of a masked treatment effect, there
is no reason to wonder about such a thing as “the range in which it truly lies.”

3. Conduct a power analysis centering on the likelihood of detecting a true treatment effect
of some predetermined size.

The method of this subsection, power analysis, would again apply mainly
to randomized experiments; its use to infer causality in quasi-experiments is
appropriate primarily to the extent that, initially, the treatment and compari-
son groups may be considered as distinguished by chance differences alone.

Power is defined as the probability of detecting a true difference of a
specified size and is equal to 1 minus the probability of Type Il error. Apower
analysis would indicate the probability of making a Type Il error as a function
of three values: (1) the alpha level used as a criterion in a test of significance,
(2) the sample size, and 3) an effect size considered small enough that a true
effect of that size or smaller could be interpreted as “effectively no differ-
ence.” (Power = f[alpha, n, effect size]; Tables are readily available; e.g., see
Cohen, 1987.)

For example, if one could decide that 37 or fewer convictions among the
honor parolees would be a negligible increase —thus interpreted as “no
difference” — over the 32 arrests for the traditional parolees (a difference of
proportions of 0.05; n = 100 per group), then one could calculate the
probability of making a Type II error for any particular alpha level. One
proceeds by assuming that the true effect is indeed 0.37 — 0.32. When alpha
is set at 0.01 for a one-tailed test, the probability of detecting this true effect
by obtaining a significant result is only 5%; thus, the likelihood of missing
the assumed true effect (making a Type 11 error) is a very high 95%.

Note how the analysis is affected by the choice of alpha and by the
maximum acceptable difference (sample size remaining at 100 per group).
If a much larger effect could still be considered negligible, say something
less than 0.20 instead of 0.05, then, assuming the undesirable treatment effect
of 0.52 - 0.32 = 0.20 to be true, the probability that one’s results would be
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nonsignificant at the 0.01 level (one-tailed), leading to an erroneous no-
difference conclusion, would go from 95% to 31%. Returning to a difference
of proportions of 0.05 as the maximum acceptable difference, if alpha were
set at 0.10 instead of 0.01, then the probability of concluding no difference
in error would drop from 95% to 72%, and if alpha were set at 0.40 the
probability of a Type I error would drop to 23%. If alpha were set at 0.40
with a maximum acceptable difference of 0.20 (0.32 versus 0.52), the
probability of Type II error would be less than 1%.

This description of power analysis allows a more rigorous explanation of
the problem of lowering alpha for multiple comparisons of no difference
when all differences must be negligible. Assume that had there been only one
comparison one would have used alpha = 0.25. Positing the true treatment
effect for each comparison to be 0.42 — 0.32 = 0.10, beta for each comparison
then would be 0.33. If because of multiple comparisons the significance level
were lowered, the probability of Type I error would increase — if alpha were
lowered from 0.25 to 0.10 in our example, beta would increase from 0.33 to
0.72! In the parole experiment, had the effect of the honor parole treatment
actually been to create too large a difference in the single criterion, “serious-
ness of later crimes,” lowering alpha would make this unacceptable impact
more difficult to detect. Rather than facing a 33% probability of error in
detecting a real, nonnegligible difference, researchers lowering alpha from
0.25 to 0.10 face a 72% probability of error. Given that one has advisedly
adopted the criterion that all (or almost all) differences should be negligible,
the fact that the two groups are equivalent on 5 or 10 other comparisons does
not make this one real difference any less important to detect. Without an
adjustment in power, lowering alpha simply forces one to consider a greater
difference acceptable, contrary to one’s original, free determination. Of
course, the alpha level need not be the same for all variables; it might
variously be set higher or lower according to the substance and importance
of each particular comparison. Once the best level for each variable is
determined, however, there is no basis for lowering it simply because of
multiple comparisons.

In sum, as concluded above, lowering alpha is inappropriate as a response
to multiple comparisons for conclusions of no difference even when all
effects must be negligible. Instead, it is proper to leave alpha at least as large
as original considerations (e.g., a power analysis) determined it to be.

Power analysis as described in general terms above solved for power (and
thus, beta) as a function of alpha, sample size, and maximum negligible
difference. These relations suggest three procedures that would be useful in
various no-difference analyses.
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First, if one wishes no-difference conclusions to be analogous to conclu-
sions of difference, the primary concern is managing beta. This means that
beta must be restricted to an acceptably small error rate (e.g., 20%; 80% is
often considered to be the minimum sufficient power; see Fagley, 1985;
Cohen, 1987). The analysis would therefore proceed (A) to solve for the
alpha level required to maintain the desired small Type Il error rate (alpha
= f[beta, sample size, maximum acceptable difference]). This is Cohen’s
(1987) fourth type of power analysis, which he contends is rarely used. With
this approach one could require a power of 80%, for example (20% chance
of concluding no difference when there is a real effect of a given size), and
determine the alpha level that allows such power.” This would seem to be a
sensible procedure in the sort of case being considered here. That is, one
ought to be able to fix upon a maximum acceptable treatment effect and upon
an acceptable risk of error in concluding no difference if the effect is actually
that large. One then runs the significance test at the alpha level that yields
the appropriate risk of error. In the honor parole example, a real effect as big
as 10 additional convictions would be found 80% of the time when the
one-tailed alpha is set at 0.28 (corresponding to 36 honor parolee convictions,
a difference of proportions of 0.04; see Figure 2).°

As suggested previously, using an alpha level of 0.28 (to restrict beta to
0.20) as a criterion for concluding no difference does not obligate one to
conclude “difference” whenever the observed result is significant beyond the
0.28 Icvel. Rather, onc could continue to reserve conclusions of “difference”
for those results that extend beyond the 0.05 or 0.01 alpha levels. By setting
two criterion levels — one to conclude difference, one to conclude no differ-
ence —one demarcates three zones as in the first method suggested above,
including a middle zone of suspended judgment. But by tying the criterion
for no-difference conclusions to beta and arriving at alpha by that means,
conclusions of no difference are based on the standard and quite defensible
notion of risk of error —an element that is lacking when using procedure #1
(e.g., testing arbitrarily at the 25% alpha level without a power analysis).

Solving for alpha as carried out in variant (A) above requires specifying
the maximum acceptable difference and the risk of Type I error. The
observed results are then compared to the derived critical value to reach a
yes or no conclusion as to no difference. A second alternative is (B) to
determine the probability of error associated with a critical value equal to
the observed difference. One proceeds by calculating the “Z” (or “t”) value
that corresponds to the observed difference and entering that “Z” value into
the power equation. In effect, this use of power analysis is analogous to the
~ very common practice of supplying the significance level actually achieved
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Figure 2: Managing the Type Il Error Rate

by one’s results in traditional testing, rather than just saying that the results
were or were not significant at some predetermined level (e.g., noting post
hoc that p < .06, or 0.08, or 0.01, or 0.001, etc.).

Figure 3 illustrates the situation where the actual results yielded 32
convictions among traditional parolees, 34 among honor parolees, and there
was a declared maximum acceptable treatment effect of 10 additional con-
victions (42 convictions; difference of proportions of 0.10).

A difference-of-proportions test reveals that the 34 actual convictions
corresponds to Z = 0.30, which, substituted into the power equation, yields
a power of 87%. This means that if the true effect were 42 convictions,
deciding ahead of time (which was not done here) to conclude no difference
for 34 or fewer convictions would cause a Type II error only 13% of the time
(beta = 0.13). Note that this is the maximum expected error; if the true effect
were larger than 42 convictions, using 34 convictions as a criterion would
yield even fewer Type I errors.

The phrase, “ahead of time,” however, is critical, since the post hoc
procedure of variant (B) does not yield a true probability of error (see
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Guttman, 1981). For example, in traditional significance testing, rather than
making the statement: “My experimental results are significant at the 0.06
level,” which would be true only if the 0.06 level had been prcestablished, a
more acceptable statement would be: “If I had set alpha at 0.06, my results
would have been statistically significant.” This interpretation of “p < 0.06”
is not a statement of probability or a statistical basis for a decision. Imputing
such meaning to it is illegitimate. Its appeal is as an indication of the strength
of the relationship or treatment effect (see the concept of “evidence” de-
scribed by Goodman and Royall, 1988). Ceteris paribus, significance at the
0.001 level indicates a stronger relationship than significance at the 0.01
level, and so forth. It is, in other words a probability-based metric for strength,
just as in quasi-experimental design, as noted in connection with Case II,
above. The differences between the two uses are that it is applied here to the
interpretation of the strength of a treatment effect (a causal relation) in a
randomized experiment, and that the procedure discussed is post hoc (which,
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no doubt, it would usually be), rather than one calling for preestablished
levels.

In the power analysis context, rather than making the statement, “Setting
alpha at 0.xx on the basis of the observed difference, the result is nonsignif-
icant, beta < 0.13,” a more acceptable statement would be, “If I had set alpha
ahead of time at 0.xx, the result would have been nonsignificant, beta < 0.13.”
The larger the alpha level derived from the results, the smaller is that beta
level, and, therefore, the weaker is the treatment effect in this metric; thus,
the more justified is a conclusion of no difference.

Moreover, it is the logic of this variant of power analysis that may be seen
as the root of the unorthodox application of confidence intervals suggested
in the previous section (although the results of the two methods are not
necessarily equivalent).” Consulting Figure 3, it is clear that a 74% confi-
dence interval centered at 0.02 would just reach 0.10. One might therefore
be tempted to make a statement such as: “I can conclude with 74% confidence
that the true treatment effect is in this derived interval, and therefore that it
is not as large as 0.10.” This is, in other words, a conclusion of “no difference”
with 74% confidence, since 0.10 is the maximum tolerable effect. This post
hoc statement, however, has no true meaning in the language of probability;
it may be communicative, but it is illegitimate in precisely the sense just noted
with respect to ordinary significance testing and power analysis. We can
conclude only that achieving a 74% confidence interval by this post hoc
procedure is not as good as achieving a 95% interval, but is better than, say,
a 65% interval. In other words, we have here an analogous metric in
confidence-interval language for the weakness of the effect (the larger the
confidence level, the further away is the result from the maximum negligible
effect). Note that a 95% confidence level would be attained only with a power
of 97.5% and a beta of 2.5%, a very tiny effect indeed under the present
illustrative assumptions.

The final variant of power analysis to be considered here is (C) fo solve
for the maximum expected true treatment effect, given the required power
and taking the observed results as the critical value (maximum difference =
f[alpha, sample size, beta]). This formulation asks: “How large might the true
treatment effect be, such that the difference of proportions actually obtained,
or an even smaller one, would nevertheless appear 20% of the time through
sampling error, that is, through the offsetting vagaries of randomization?” If
there were 32 traditional convictions, 38 honor convictions, and a required
power of 80%, the maximum treatment effect expected to yield such results
would be 0.118, or less than 12 additional convictions (see Figure 4). One
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would then have to decide if a treatment effect of 12 additional convictions
(total of 44 honor convictions) would be acceptable.

One disadvantage of all power analyses is the added complexity of dealing
with equations and tables not part of standard statistical practice. However,
variant (C) is comparable to finding the difference of proportions that is 0.84
standard errors (the 20% tail, reading directly from the “Z” table) above the
observed result of 0.38 — 0.32 = 0.06 (“comparable to” rather than “equiva-
lent to” for the reason elaborated in note 7). That is, to assume that the true
treatment effect is 0.84 standard errors above 0.06 has the effect of placing
the observed difference of 0.06 at the point where, given that treatment effect,
80% of experimental differences would be larger than 0.06 (because of
randomization results that may mask the true effect) and 20% would be
smaller. Calculating this maximum expected true effect with multiples of the
standard error is a relatively simple procedure that does not require the power
tables or equations and that could be used to bracket the results of almost any
experiment.
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None of the general procedures reviewed in this section—high alpha,
confidence interval, or power analysis—appears ideal, but each is an im-
provement over the policy of supporting no-difference conclusions with a
failure to reject the null hypothesis at the 5% level. Traditional testing
wherein one tries to reject the null hypothesis has been criticized as being
too lenient, one argument being that “you don’t have to predict the size of
the effect, only that it will be bigger than nothing” (see Meehl, 1967).
Leniency is also an issue when using small alpha levels or reducing alpha in
no-difference conclusions. All else constant, the smaller the alpha, the lower
the power and the greater the range of results that will be interpreted as
confirmatory: Make alpha small enough and almost any result will do.

SUMMARY

Yeaton and Sechrest (1986) have argued that no-difference conclusions
are an important part of science, warranting further attention. We have
attempted to contribute to the dialogue on no-difference conclusions by
addressing the methodology involved. We began by delineating three major
uses of the no-difference conclusion and we then discussed its meaning and
analysis within the context of each of those three uses:

Case I: Estimating the treatment effect in randomized experiments. If the
studies are well designed and embody sufficient power, it is possible to
conclude that a treatment had no (or little) effect with confidence in one’s
conclusions. Here, the question is not whether to use classical inference, but
how (another possibility, of course, is to use Bayesian techniques; see Selwyn
etal., 1981; Goodman and Royall, 1988). Unlike traditional uses of statistics,
confidence in no-difference conclusions increases when one’s procedure has
the same sort of effect as moving from a small alpha level criterion (e.g.,
0.05) to a large level (e.g., 0.25, one-tailed). If the risk of Type II error and
maximum acceptable difference are specified, the precise alpha level at
which it is appropriate to test may be determined. Alternatively, one could
obtain a strength measure by determining the “probability of being in error”
when concluding that the observed results represent no difference. Fi-
nally, one may use statistics to determine a range in which the true effect
is estimated to lie; one must then decide if the outer reaches of that range
may in context be considered “no difference,” that is, small enough to be
acceptable.

Case II: Estimating the treatment effect in a nonrandomized study. With-
out supporting information, it is risky outside of experimental design to



652 EVALUATION REVIEW / DECEMBER 1989

interpret a no-difference finding as good evidence that the treatment had no
effect. It is quite possible that the two groups were unequal before treatment
and that the treatment had a large impact that made the two groups appear
similar. Only to the extent that one can treat the groups as though established
by randomization can the analysis of Case I be made to apply to this category.
It seems appropriate that a defense of such an assumption be made when it
is used.

Case III: Using control variables to conclude that groups were equivalent
before treatment or that attrition has not biased a randomized study. This use
shares with Case II the problems of inference that arise when one cannot
presume randomized assignment. If the study actually was a randomized
experiment, then the use of statistics in this particular way is only a check
against “unhappy” randomization. While such a check is legitimate, it is an
inefficient and potentially misleading use of information and should be
replaced by using the control variables in a multivariate analysis in which
whatever differences do exist (as some almost inevitably must) are used to
explain and adjust variation in the outcome variable.

Multiple comparisons were shown to have different effects on the conser-
vatism of the analysis depending on the type of decision rule used, that is,
whether decision and action require all (or nearly all) comparisons to show
no difference, or require that merely one (or a few) show no difference.
However, in both decision types, the primary concern must be to manage
beta, not alpha, a focus that argues against using multiple comparisons as a
justification for lowering the alpha-level criterion.

Having made a case for these various aspects of the methodological
handling of common no-difference scenarios in evaluation research, many
aspects of which we presume will be controversial, and having suggested
what we would consider to be several of the most likely statistical procedures
to be implemented in such circumstances in practice, we look forward to a
period of debate and application in which the many issues involved will move
toward resolution by further scrutiny and trial.

NOTES

1. Twenty-five is a round number. ts associated Z-score of 0.67 (also a round number) will
generally reflect a small difference. We caution the reader, however, that “small” may not be
sufficiently conservative with regard to Type II error, particularly in the context of small sample
sizes or large variances.

2. This procedure requires an estimate of the parameter P (in our case, the proportion of
population convictions “without treatment”) because the width of the confidence interval is
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dependent on the variance of the sampling distribution which, in the case of the difference of
proportions, is in turn dependent on p, the estimated population proportion.

3. We estimate P based on the proportion of convictions in the traditional parole group, in
this case 0.32. That is, we consider this value to be a best estimate of the proportion of population
convictions “without treatment.” In many cases, including the present one, the meaning of
“without treatment” may not be very clear. An alternative to making a commitment to a specific
meaning of “without treatment™ is to use the most conservative available estimator of P, that is,
the estimator whose observed value is closest to 0.5.

4. The technique involved is a variant on ordinary interval estimation. For convenience, call
a difference of proportions a “difference.” In the ordinary case, the logic of building a 95%
interval estimate proceeds by asserting that (1) 95% of all sample differences are within 1.96
standard errors of a certain value that is the mean of the sampling distribution of such differences;
and (2) the observed difference in the case of this sample is therefore probably within 1.96
standard errors of that value. Such reasoning does not apply to experimental design because “the
observed difference in the case of this sample” does not represent the result of sampling alone,
but rather the result of sampling (the randomization procedure) plus the subsequent treatment
effect. Conceptually, this value does not appear in any sampling distribution. Rather, one builds
an interval estimate of the true treatment effect by taking the observed difference as a midpoint
and superimposing upon it the sampling distribution that represents the results of randomiza-
tion — the sampling distribution whose true midpoint is zero, the difference expected to result
from randomization. The values to the left of this newly labeled midpoint could reflect the true
treatment effect because randomization vagaries could have added to it to yield the observed
difference; the values to the right might also represent the true treatment effect because
randomization counteracted it in some degree to produce the observed difference. The point is
a conceptual one; here and below, the analysis is not affected.

5. Cohen (1987) provides tables for 0.01, 0.05, and 0.10 one- and two-tailed alpha levels;
for other alpha levels, we have used the following formulae supplied by William A. Ericson:

Power at h{where h = arcsinevp| - arcsinevp,) = 1-® (-h V2 +Zj_qg)and Z1 - a = hV%2 + d)-l(l - B).

6. Finding the alpha level (in this case, 0.28) that restricts beta to 20% for a specified
maximum acceptable difference is functionally equivalent to testing an alternative null hypoth-
esis —a null hypothesis of a specified difference (in this case, a difference of proportions of
0.10) — at the one-tailed 20% level (see Dunnette and Gent, 1977; Blackwelder, 1982).

7. If the relevant statistic were the difference of means and either the samples were large or
the population normal, the two methods would be equivalent in result. With the difference of
proportions, applying classical inference directly to the untransformed statistic (Cohen, 1987:
180; Blalock, 1972: 228-230), the variance of the sampling distribution (on which the estimate
depends) differs with P, which in our example represents the proportion of parolees that would
be convicted of crimes in the absence of treatment. Assume that P is estimated by pooling the
control- and experimental-group values, py and p,. For power analysis, the estimate of P depends
on the maximum acceptable treatment effect; for the confidence interval, it depends on the
observed result. These values generally are not the same (in our example, 0.42 - 0.32 for power
analysis versus 0.38 - 0.32 for the confidence interval). Thus the results of the procedure would
ordinarily differ slightly between the two methods. Note that they could be the same, however,
if P were estimated on the basis of the control-group proportion alone, as discussed in note 3.
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