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ABSTRACT

The purpose of this study i1s to develop techniques for processing
signals received by a spacial array of K omnidirectional antennas so as
to produce optimal direction-of-arrival estimates. Such estimates are
useful for navigational purposes in which case the signals are electro-
magnetic in nature as well as for seismic investigations where the sig-
nals are mechanical vibrations transmitted through the earth. Another
possible application is an underwater direction finding system which
utilizes an array of hydrophones for its receiving antennas.

Two distinct approaches to the problem are pursued which apply dif-
fering mathematical disciplines. The first approach models the array as
an element of a phased array direction finding system and attempts to
apply "Stochastic Optimal Control Theory" to produce otpimal control laws
for directing the pointing angle and specifying the beam width of the
array. Optimal filtering of the signals is also considered. The con-
trols and filter which result in "Minimum Error Variance" are considered
optimal. The second approach applies "Estimation Theory" and considers
the array only as an information gathering device whose signals are to
be processes directly without the "prefiltering" present in phased arrays.
The optimality criterion of this approach require$ the direction-of-arrival
estimate to result in a "Minimum Probability of Error" or, what is shown
to be equivalent, to have "Maximum a Posteriori Probability."

In the Control Theory approach, the model is investigated under both
open-loop and closed-loop operating conditions. The closed-loop anal-
ysis applies "Dynamic Programming" techniques and produces an integral
equation whose solution represents the optimal controls. Unfortunately,
the nonlinearities in the system prevent an explicit solution of this
equation. The open-loop analysis assumes the a priori probability dens-
ity of possible angles of arrival is concentrated in a "narrow" region
about the a priori expected direction of arrival. An optimal filter
and optimal controls are obtained for this case.

The "Estimation Theory" approach assumes the received signals are
samples from a Gaussian random process which are corrupted by additive
Gaussian noise. Extensive use is made of the "Theory of Random Proc-
esses" and "Functional Analysis." The Radon-Nikodym derivative of a
particular Gaussian probability measure with respect to another Gaussian
measure plays a key role in the optimal estimation technique derived.
Several special cases are considered in which the signal and noise proc-
esses are restricted to being "marrow-band." For these cases, an easily
implemented technique is obtained for evaluating the required Radon-
Nikodym derivative. Finally, a "narrow-band" numerical example is in-
cluded along with an analysis of the error that results from the use
of this estimation technique.

xvi
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1.1 BRIEF STATEMENT OF THE PROBLEM

The problem to be considered here is concerned with the surveil-
lance of a region of space in which multiple sources of electromagnetic
radiation are present. These sources, which emit random signals and
are embedded in a noisy environment, operate in an intermittent mode and
have the possibility of varying their relative locations within the
region of surveillance. The system, which is to perform the surveil-
lance, receives information concerning the source locations in the form
of a sequence of time signals of finite duration, each of which is the
output of an element of an array of omnidirectional antennas. The solu-
tion which we desire, then, specifies the operations to be performed by
a signal processing system in order that optimal, in some sense, esti-
mates of the angular locations of the sources relative to the receiving
array can be provided. These angular locations will, henceforth, be
called the "angles of arrival" or "directions of arrival" of the signals
at the site of the receiving array. In the literature, this problem is
sometimes referred to as the '"Direction Finding Problem." It includes,
as a special case, the "Radar Problem" in which the angular location of
a source,whose emitted waveform is known to the surveillance system, is
required.

A direction finding system that is capable of operating according
to the above specifications has an obvious military application for de-
termining an enemy's strategy. For example, activity in certain geograph-

ical areas may indicate an elaborate preparation is underway; activity



of a single source at sea may indicate the location of a submarine; and
the resolution of a number of signal sources, synchronized to a common
signal, may indicate a new air-defense system. To demonstrate a nonmil-
itary application, suppose the antenna array is replaced by an array of
seismic sensors. It is then evident that the above signal processing
system can be used, equally well, to determine locations of earth distur-

bances as well as to map the earth's strata for oil exploration.

1.1.1 History of Direction Finding

In the past, a variety of techniques, depending on the exact applica-
tion, have been utilized for determining the direction of arrival of sig-
nals at a particular point in space. Almost all of these techniques, how-
ever, pursue a common method of attack which requires antennas with direc-
tional properties to be sequentially scanned through the region of surveil-
lance. The direction of maximum or minimum received signal strength is
then used as an indication of the true angle of arrival of the signal.

In the period around 1890, Hertz,l operating in the 200 Mc range,
utilized cylindrical parabolic mirrors to focus and concentrate energy
from a transmitter and hence produce an antenna system with directional
properties. Directivity was also used by Marconi2 before 1900 to increase
the range of his transmission by the use of copper parabolic mirrors.

When radio communication, because of the ranges possible, progressed
rapidly to the hf range around 1900, the mirror technigues were no longer

practical and J. Zenneck,3 at about that time, introduced simple "direc-

" "

tor'" and "reflector'" wires to increase the range and to separate inter-

)
fering signals. A similar approach was pursued by S. G. Brown' who con-

nected together two vertical antennas separated by a half wavelength.

5

Stone,” in 1902, proposed to physically rotate this array to determine



the direction of arrival of the wave.

The next major advance was due to Bellini and Tosi® who provided
a second array at right angles to the first. Then, by means of quad-
rature coils placed outside of a single rotating coil, they were able to
sequentially sample the signal being picked up by each antenna pair. This
technique avoids the necessity for rotating the entire array. The de-
vice for sampling the antennas sequentially is called a "goniometer" and
has its counterpart in many present day direction finding systems. Such
a device is shown schematically in Fig. 1.1 where the moving coil is con-
nected to a receiver.

An additional improvement was provided by Zenneck who placed an omni-
directional element in the center of the array and connected so as to add
phasewise to the output of the moving coil of a Bellini-Tosi goniometer.
This arrangement produced an antenna pattern which was a rotating cardioid
rather than a figure-eight, thus eliminating the 180° ambiguity which
existed with the former configuration.

World War I and the development of the vacuum-tube amplifier with
its sensitivity stimulated refinement of the above method of direction
finding. Of particular interest was the design of the Adcock array and
numerous indicators, both mechanical and cathode-ray types. World War
IT produced the 8-element Adcock array, H collectors, and crossed loops,
all utilizing the spinning goniometer technique. Since about 1950, the
University of Illinois has been conducting experiments7 with the Wullen-
weber facility which utilizes a goniometer and a 120-element circular
array. Furthermore, the recent papers of W. J. Lindsay and D. S. Heim8
and C. E. Lindahl and B. F. Barton’ which are concerned with goniometer
systems testify to the fact that these techniques are still of impor-

tance today.
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Fig. 1.1. The Bellini-Tosi goniometer for sequentially
sampling a pair of the Bellini-Tosi array.



The methods described above employing spinning goniometers are not,
however, the only practical techniques for determining the direction of
arrival of a wave. World War I also saw the development of several ro-
tating loop direction finding systems which applied the directivity of
the loop to determine the direction of minimum received signal intensity.
Various other techniques for obtaining directivity employing reflectors
and lenses were also utilized during World War IT.

Two recent developments have produced the possibility for a tremendous
improvement in the art of direction finding. A new interest,lo with em-
phasis on arrays of large numbers of elements, has provided the impetus
for advances in our knowledge of the principles of arrays and the inven-
tion of new arraying techniques. These advances, together with the pres-—
ent availability of compact digital computers with their inherent signal
processing capabilities, hold the promise of a vastly increased capacity
for classifying and keeping under surveillance a large number of emitters.
(These possibilities will be explored in the ensuing chapters of this
thesis.)

For the sake of completeness, it is worth mentioning that still
other techniques have been devised for solving the direction finding prob-
lem. In the situation where a limited number of sources whose signal
strength at the site of the surveillance system is strong, time delay and

phase comparison techniques are applicable.

1.1.2 Basic Elements of a Direction Finding System

Before examining any direction finding (sometimes abbreviated DF)
system for its individual characteristics, it will be useful to consider
the elements basic to any system and see how they can affect its per-
formance. A block diagram of a generalized DF system is shown in Fig.

1.2 with a discussion of its individual blocks being presented in the
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following six sections.

1.1.2.1 Signal Source.—The signal source has four properties which

affect the performance of a direction finding system. These are its
transmission frequency, its power level, its modulation characteristics,
and its location relative to that of the DF system's antennas which inter-
cept the emitted signals. The transmission frequency and modulation char-
acteristics influence the choice of the antennas and receiving equipment
employed in the system. The source power level together with its location
which can be given by specifying the source—receiving antennas separa-
tion as well as its angular bearing influence the DF system only as they
affect the signal strength of the emitted signal at the site of the re-
ceiving antennas.

1.1.2.2 Propagation Medium.—The propagation medium affects a direc-

tion finding system by attenuating the signal in varying degrees depend-
ing upon the frequency of the carrier, the time of day, the distance be-
tween the source and the receiving antennas and many other factors. In
addition, it is also possible for the propagation media to introduce
various other distortions such as random phase errors which are independent
of the source being used. Finally, under certain conditions in long-range
direction finding, multipath propagation usually cannot be avoided.

1.1.2.3 Antennas.—All direction finding systems require some de-
vice for sensing the electromagnetic waves that have been emitted by the
sources. The exact type utilized is a function of the desired antennsa
pattern together with the carrier frequency and bandwidth of the emitted
signals as well as various economic considerations. The type that will
be of interest to us employs an array of omnidirectional antennas.

1.1.2.4 Signal Processor.—In most direction finding systems, the

processor has two distinct functions to perform as illustrated in Fig.



1.2. These functions are discussed in the two following sections.

1.1.2.5 Prefilter.—The basic purpose of this unit is to cambine the
signals received by the antennas in a manner such that its output can be
interpreted, by the following filter,as a direction of arrival of the
signal. 1In systems employing arrsys of omnidirectional antennas, the out-
puts from the individual antenna elements are usually combined so that the
"array-prefilter" pair possesses a highly directional antenna pattern¥
and, as a result, the prefilter can be thought of as a "beam forming" net-
work. Then, by varying this method of combination with time, the system
can be caused to scan the region of surveillance. Systems employing dish
antennas also permit an analysis in a manner similar to that of the above
system of omnidirectional antennas. In this case, however, the prefilter
is restricted by mechanical connections with scanning being performed by
a physical rotation of the antenna. In any event, this prefilter is norm-
ally preset and independent of past received signals. In the systems to
be considered in this presentation, the above restriction will be relaxed
with the operations to be performed by the precessor being specified so
as to optimize the performance of the total system.

1.1.2.6 Filter.—The filter takes the output of the signal prefilter
and provides an estimate of the direction of arrival of the signal ac-
cording to some established criterion of optimality. As an example of
such a criteria, we could require the filter to provide the estimate which
has the "maximum a posteriori probability" based on the received signals

and any a priori information that might be available.

1.2 APPROACHES TO THE PROBLEM

In this dissertation, two different approaches for determining an

¥See Refs. 11 and 12 for a discussion of phased arrays.



optimal estimate of the direction of arrival will be explored. Chapters
2-5 present a solution which attempts to apply the existing theory of
"Stochastic Optimal Control" to this problem. In particular, control laws
for the optimum beam forming network and the optimum filter are derived.
In Chapters 6-9, an alternate approach is pursued in which the separation
of the beam forming and filtering operations is absent. Instead, the op-
erations to be performed by the optimal processor are specified by an
equation, whose solution represents the optimal estimate. This equation,
whose implementation with existing hardware is also considered, is derived

by the application of several techniques from the "Theory of Estimation."

1.2.1 Stochastic Optimal Control Theory

Historically, the classical theory of control of deterministic, lin-
ear, time-invariant systems was developed during the 1930's and 19L0's.
Design of control systems according to this theory usually entailed an
analysis of its frequency domain characteristics. During the 1940's and
1950's, the theory was extended to linear, time-invariant systems involv-
ing stationary random signals by use of Wiener's theory of prediction and
filtering.

During the last 10 years, the fundamental direction of research in
control theory has turned toward the modern theory of optimal control.
This theory requires the determination of a control law which governs the
action of a controllable variable so as to optimize (i.e., maximize or
minimize) some performance or loss functional. By the use of the state-
space techniques, the calculus of variations, dynamic programming, and
Pontryagin's maximum principle, a very substantial and satisfactory theory

now exists for deterministic systems.
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Just as the classical theory was extended to include the effects of
random disturbances, attempts have been made to extend modern control theory
into this area. Indeed, some successful results have already been cbtained,
particularly in the case of linear, discrete-time systems.13 The results
which will most interest us are due to the Russian, A.A. Fel'dbaum,lu who
has established a general procedure for handling both linear and nonlinear
discrete-time systems. Applying his techniques, solutions can be obtained
which, in general, require the use of a digital computer in a manner sim-
ilar to that required by many solutions employing dynamic programming. As
with dynamic programming, however, these solutions demand computation rates
which, in many cases, are unrealistic in light of the capabilities of pres-
ent day computer systems. Other authors, E. P. Maslov,15 V. P. Zhivogly-
adov,l6 and R. L. StratonovichlT to name a few, have attempted to apply
Fel'dbaum's "dual control" techniques to specific situations with varying
degrees of success. Results18 have also been obtained for the continuous-
time optimal control problem with noisy observations, but, in the nonlinear
plant case to which our particular problem reduces, the theory is still
in a rather preliminary stage of development.

For additional background on the stochastic optimal control problem,

see the paper by Wonham,l9 where further references are given.

1.2.2 The Theory of Estimation

"Estimation Theory" was established as a mathematical technique in
1806 with the first publication on "least squares" estimation by Legendre.20
This concept is generally credited to Gauss,21 however, since his method
published in 1809 was derived from fundamental principles. At that time,
it was used mainly by astronomers as a means of reducing observations to

obtain the orbital parameters of minor planets and comets.
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After the introduction of the least squares, the next major advance
was the '"method of moments" formulated by K. Pearson®® around 1900. The
main disadvantage of the method of moments is that estimates found with
this technique are not the "best" possible from the viewpoint of "effi-
ciency.,”gh

Estimation theory was put on a firm foundation by R. A. Fisher with
a series of fundamental pape:r's.23"25 Fisher demonstrated that the method
of "maximum likelihood" was usually superior to the method of moments and
that estimates derived by this technique could not be improved "essentially."

A renewed interest in this area was stimulated by the rapid develop-
ment of communication theory. Similar but independent theories were de-

26

veloped by N. Wiener and A. Kolomogorov27 for separating desired signals
from undesired noise signals. Wiener was interested in obtaining optimum
estimates of signals by the use of linear, physically realizable electronic
filters and assumed the observed signals where sample functions of "sto-
chastic processes." A very complete presentation of the theory of sto-
chastic processes which we shall reference from time-to-time is availsable

. 0
in the books by M, Ldéve,28 J. L. Doob,29 3

and P. R. Halmos.
The application of maximum likelihood techniques to the problem of
optimum demodulation of communication signals was first considered by F.
W. Lehan and R. J. Parks.3! Further investigations of this problem were
carried on by D. C. Youla3? and D. Slepian.33 Youla was concerned with
amplitude demodulation while Slepian was interested in the estimation of
a finite number of parameters of which the signal was assumed to be a
function. J. B. Thomas and E. Wong3h obtained the a posteriori most prob-

able estimate of the modulation rather than the maximum likelihood esti-

mate. Recently, H. L. Van Trees3” has attempted to generalize the work
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of these authors to handle arbitrary modulation as well as diversity com-
munication problems. These notes by Van Trees have stimulated much of

the work that is presented in the last four chapters of this dissertation.
However, rather than directly apply the techniques of Van Trees, a more
fundamental approach has been pursued which extends the work of T. T.
Kadota.36'39 These papers by Kadota are concerned with deciding which of
a finite number of Gaussian signals of differing covariance functions, in
addition to Gaussian noise, is being received. Finally, there is also a
great body of literature concerned with the application of maximum likeli-
hood techniques to the analysis of radar systems with the papers by E. J.

Kelley, I. S. Reed, and W. L. Rootuo‘hl being examples.



CHAPTER 2

SYSTEM MODEL FOR CONTROL THEORY SOLUTION

2.1 INTRODUCTION

In the next four chapters, a solution of the "Direction Finding Prob-
lem" by the use of "Stochastic Optimal Control Theory" will be sought. As
an initial attempt at a solution, this approach appears to have merit in
light of the fact that most existing systems have some control variables
which affect the signals received. For example, with a dish-type antenna,
the pointing angle affects the received signal strength. In the majority
of these systems, however, the scanning modes and filtering techniques are
independent of past received signals and often established without any
real regard for each other. As a result, we might logically ask the fol-
lowing questions. '"Is it possible for the control laws and filtering op-
erations to be coordinated, depending on the past received information, so
as to obtain a total system optimization?" "Can we, by the use of optimal
control functions and possibly in conjunction with a digital computer, in-
crease the performance of existing systems?" 1In the following chapters
we shall attempt to answer these questions by obtaining an optimal "open-
loop" solution and an optimal "closed-loop" solution with emphasis on both
the control laws for orienting and shaping the antenna pattern and the
filter operations which process the received data. For the closed-loop
solution, the control law will be a function of past received signals,
past controls, and any priori information that might be available concern-
ing the true angle of arrival of the signals. In the open-loop solution,
the control law will be independent of past received signals and past

controls but still a function of the a priori information.

13
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2.2 SYSTEM MODEL

The DF system which will be presented in this section for analysis
in the next three chapters has been selected because of its simplicity
and because it exhibits most of the features of existing direction systems
which are of importance when considering their system optimization.

Before introducing this system model, however, let us first consider
the direction finding system illustrated in Fig. 2.1. This system will
be employed to provide us with some justification for our particular
chcice of system model. In Fig. 2.1, an incident wave at an angle o rela-
tive to some reference direction, , is impinging upon a group of K omni-
direction antennas. This wave has been emitted by a source, sufficiently
far removed, so that the wave appears to be a plane wave when viewed at
the site of the receiving array. Furthermore, the source waveform is a

pure sinusoidal of frequency w. while the source location is in a plane

o]
which contains all the elements of the antenna array so that the estima-
tion of a single angle is required. (If and when a tractable solution is
found for this type of signal waveform and this particular source-array
geometry, we may then consider the more general (and difficult) case where
the source is emitting a random signal and the estimate of two angles is
required.) Recall,* now, a group of K onmidirectional antennas can be
connected in such a manner that the group has the characteristics (antenna
pattern) of a single directional antenna. By the introduction of proper
delays and amplifications of the individual received signals before sum-
ming, the pointing angle and, to some extent, the beam width can be con-
trolled. Applying this fact, in Fig. 2.1 the individual received signals

are shown as inputs to the devices Bj,je{1,2,...,K}, which delay and amp-

*¥See Ref. 11, Vol. 2, Chapter 1.
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lify as required by the coder. The coder, in turn, specifies the delays
and amplifications which are necessary to comply with the controls ul(t)
and u?(t), the desired pointing angle and beam width, respectively, spec-
ified by the controller. Moreover, since we are interested in optimal DF
systems, the controller operates so as to optimize the performance of the
filter whose output 4, is a "best" estimate of the angle of arrival of the
signals based on the data y'(t) received during the finite observation in-
terval [0,T¢]. Finally, in this figure, an additive noise source is shown
which is assumed to be independent of the controls.

Let us now consider a model which, as we shall see, possesses the es-
sential features of the preceding direction finding system. Since the
coder performs known operations, as far as the control-estimation problem
is concerned, the model shown in Fig. 2.2 is equivalent to the system of
Fig. 2.1. In this figure a, B, and 6 are unknown parameters, a represent-
ing the unknown direction of arrival, B representing the unknown signal

amplitude and 6 the unknown phase angle. The signal s'(t) is given by

s'(t) = C'(a,B,ul,u?) sin (wyt+6)

1

where C' is the deterministic function of the variables a, B, u*, and u?

which summarizes the effects on the signal s'(t) produced by the unknowns

o and B, the antennas, the coder, the summer, and the devices Bj,je{lﬁhcu.,K},

of Fig. 2.1. (Note, if we eliminate the control variable u2, this model

could equally well serve as a model for a system which employs a dish-type

1

antenna where the pointing angle u® is to be controlled and whose beam

width is fixed.) The actual function C'(a,B,ul,u?) is linear in B so that

it may be written as B times C"(a,ul,u?) where C"(a,ul,u?), as a function

of the variables o, ul, and uz, is most easily obtained by experimental
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Fig. 2.2.

Simplification of the DF system illustrated in Fig. 2.1.
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techniques. However, an approximation for the function C"(a,ul,u?) (us-
ually referred to as the amplitude "antenna pattern") which retains its

essential properties is given by

Clo,ul,u?) = exp{-u?(a-ul)?}

As with C"(o,ul,u?), this function has a maximum when ul equals o and a
beam width dependent on u?.

We are now in a position to present the system model which will be
the subject of the ensuing analysis. This model is illustrated in Fig.
2.3 where it can be seen to have a structure similar to that given in
Fig. 2.2. 1In this model, however, additional simplifications have been
introduced by substituting BC for C' and assuming 6 is known so y'(t) can
be synchronously detected to eliminate the sin (wyt+6) term which contains
no information about the angle a. (A phase-locked loop can be employed

to provide the variable 6.) The signal y(t) is then given by
y(t) = BC(a,ul(t),u?(t)) + n(t)

where n(t) represents the noise in the system and is assumed to be inde-
pendent of the controls. In addition, since we are interested in pos-
sibly utilizing a digital computer which demands discrete-time data and
since such problems are usually easier to solve, the observation interval
[0,T¢] has been divided into J subintervals with the signal y(t) being
sampled after each subinterval to obtain the sequence {yj},je{l,Z,,..,J}.
The controls ul(t) and u?(t) can then also be restricted to a discrete
form with u3 and ug being the respective controls applied during the jth
subinterval. For convenience, moreover, we shall assume that the noise

component of y(t) at each sample time tj, Ny is an independent random
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Fig. 2.3. System model to be analyzed in Chapters 3-5.
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variable of zero mean and variance 0%. Finally, in many problems it is

reasonable to assume that the direction finding system has available some
a priori information concerning the true values of the unknown parameters.
For this model, we shall exhibit this information in the form of a known
probability distribution of these parameters.

It is now possible to be more specific as to what we shall mean by a
closed-loop and an open-loop solution for the direction finding problem
using control theory techniques. A solution which specifies the operations
to be performed by the controller and the filter for the model of Fig. 2.3
will be called a closed-loop solution while a solution for this model when
the controller is required to operate without knowledge of the past samples
of y will be called an open-loop solution.

To summarize, in hopes of obtaining a tractable solution, we have de-
veloped a very simplified model of a direction finding system while, at
the same time, retaining many of the features important to the control-
estimation problem. The significant point to remember is, if no solution
can be found for this model, there appears to be little hope for solving

the more realistic problem in this control-estimation framework.



CHAPTER 3

THE OPEN-LOOP SOLUTION

3.1 INTRODUCTION

Although we are interested primarily in the closed-loop solution, we
shall begin with an investigation of the open-loop system from which in-
sight (and experience in obtaining a solution) can be gained. The results
of this chapter are presented in Section 3.3. A discussion of these re-
sults, however, will be deferred until Chapter 5 at which time the closed-

loop results will also be discussed.

3.2 ASSUMPTIONS

The solution presented in Section 3.3 is optimal when the following
assumptions together with the system model of Fig. 2.3 represent a valid
description of the environment of the direction finding system.

A3.2.1

The control u? is fixed which implies the beam width does not change
during the observation interval [0,Tf]. Also, the controls u},je{l,2,...,J},
are chosen a priori since we are considering the open-loop system.

A3.2.2

The unknowns o and B are independent random variables having means
2 and 02, respectively. In

o B

addition, the probability density of o is an even function about m

of my and mg, respectively, and variances ©
or
A3.2.3
The probability density function of a, p(a), is "narrow" compared
with the beam width so that, over the range of a where p(a) is different

from zero, the function C(a,ug,uz) can be written as

21
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Cla,ul,u?) = py + qylommy) + ryla-my)? + e(a,uj,u?) (3.1)
where
Py = exp{—uz(ma—uﬁ)z} , (3.2)
qy = -2u? (mg-u})exp{-u? (my-u})?} , (3.3)
ry = 2(u2)z(mu—uj)zexp{—uz(mu—ug)2} - uzexp{—uz(ma—ué)z} , (3.4)

and the absolute wvalue of s(a,ué,uz)is less than the real positive con-
stant €,. (The first three terms on the right of Eq. (3.1) are, of course,
the first three terms of the power series expansion of C about the point
my when C is considered to be a function of o only. As a result, for any
€, > O, there is a width for the density p(a), below which, Eq. (3.1) is
valid.)

A3.2.L4

The class of filters from which an optimal filter is sought operates

on the received signals to produce an estimate o, according to the equa-

tion
J
% = b+ ) by (3.5)
J=1
where yj is the value of y at the jth sample time, bo represents a bias
J
of the sum Z bjyj and {bj} is a sequence of weights applied to the re-
J=1

spective samples by the filter.

A3.2.4

The optimal controls a;,je{l,2,...,J}, and the "weights"
Qj,ja{l,2,...,J}, together with the bias b, which characterizes the optimal

filter minimize the expected value of the squared error, i.e., they min-
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imize E{(ae—a)z}.

According to Assumption A3.2.3, the solution that will be obtained
in this chapter corresponds to the limiting case in which a great deal of
information is available concerning the true value of o and only minor
refinements are required. The restriction of the optimal filter to the
class specified in Assumption A3.2.4 has been made because of the ease of

implementation of such filters.

3.3 RESULTS

The following results were obtained when the assumptions of Section
3.2 were applied to the system model illustrated in Fig. 2.3. These re-
sults together with those derived by the closed-loop analysis of the next
chapter will be discussed in Chapter 5.

R3.3.1

Suppose J, the total number of samples upon which our estimate is to

be based, is an even number while

= mge, + (1//207) ¢, (3.6)
2
~ 1 o
E ; /mczlma)z( OLmB2 (37)
°a<08+m3)qmax+°n
and
J
Aé)o = ma - mB le%JpJ (3.8)

where ¢, denotes the J-dimensional column vector whose elements are plus
one, c¢ denotes the J-dimensional column vector for which J/2 arbitrary ele-
ments are plus one and its other J/2 elements are minus one, Qugx =‘J§3;§
exp{—l/2},'\k’>(j is the jth element of b, and ﬁj is the value of P, when the

Jth element of i} is the control ﬁ}. Then, as the beam width becomes
J
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large compared with the width of the probability density function p(a),
the use of'go as the filter bias and the jth elements of‘ﬁ} and/i_as the
Jth control and jth filter weight, respectively, results in an expected
value of the squared error which approaches arbitrarily close to the ex-
pected value of the squared error resulting from the use of the optimal
values of these quantities.

R.3.3.2

If the controls, the filter weights, and the bias specified in R3.3.1

are applied, the expected value of the squared error becomes

- 2
( 22+0” )
s 0§0 Z i
E{(o_-a)?} = o2 i %8 ~ Gmax r+ e! (3.9)
e a %
L°§(0%+m%) tE
max

where €' is a term which goes to zero as the beam width becomes large com-
pared with the width of p(a).
It will be shown, the controls specified in R3.3.1 direct the antenna

beam so that, for equal time intervals, each of the two angles at which the
antenna pattern (the function C(a,ul,u?)) has maximum slope as a function

of & are oriented in the a priori expected direction my.

3.4 SOLUTION

Let us begin by defining y and b to be the J-dimensional column vec-
tors whose jth components are given by Y3 and bj, respectively. Then,
using a superscript T to denote the transpose of a vector, we find that

Eq. (3.5) can be rewritten as
- T
o = b, +by (3.10)

where P?X_is understood to represent the matrix product of 9? and y. Our

problem, then, according to the optimality criterion of Assumptiocn A3.2.5,
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reduces to the determination of b,, b and the control vector E}, E} being
the J-dimensional column vector whose jth element is u§, that minimize the
expected value of the squared error which results from the use of Egq.
(3.10) to estimate a.

Forming E {(og-a)2}, we find
E{(ae-a)? = B{(dTy-a)?} - [E((2Ty-a)}]? + [b-E{(bTy-a)}]2. (3.11)

Then, since b, appears only in the last term of Eq. (3.11), it is easily

seen that
by = by = E{(0Ty-a)} (3.12)

A
minimizes E{(ae-0)?} with respect to by and, therefore, b, as defined in
Eq. (3.12) is the optimal bias. Moreover, when b, = %o’ the expected

value of the squared error reduces to
E{(0g-0)2} = E{(bTy-a)2} - [E{(bTy-a)}]? . (3.13)

In order to obtain the optimal "weights" {bj}, let us first simplify
Eq. (3.13) by squaring the indicated quantities and noting that only the
random vector y and the random variable a are affected by the expectation.

Then, applying Assumption A3.2.2, Eq. (3.13) becomes
E{(0e-0)2} =02 + 1bTDb - 2bTd (3.14)
where
D = E{(y-E{y})(y-E{yHT} (3.15)
which is the covariance function of the random vector y and

4 = E{(a-my) y} . (3.16)
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We now have the expected value of the squared error in a form, as given
in Eq. (3.14), which will allow us to obtain the optimal "weights."
Taking the gradient of Eq. (3.1L4) with respect to b and setting it

equal to zero, we find the vector of optimal "weights" b must satisfy

oDB - 24 = O

or equivalently,
A
b = D7la (3.17)

where D”! denotes the inverse of the matrix D which we shall assume exists,
at least for the time being. The jth component of b is then the weight
applied to the jth sample by the optimal filter. Finally, substitutingfa

for b in Eq. (3.14), E{(ag-a)2} becomes
E{(ag-a)?} = o2 - dTp-la (3.18)

which now must be minimized with respect to the control vector ul.
Applying Assumptions A3.2.2 and A3.2.3 and denoting the J-dimensional
column vectors whose jth elements are Pjs ds» and r;, by p, g, and r, re-

J

spectively, the matrix D becomes

D = 0§@T+(o§+m§)ogg_g:f + [(og+mf)ve - m2(02)2]rrt
*o305 (e + rpT] + 02T + De(p,q.x) (3.19)

where yg = E{(a—ma)“}, I is the identity matrix, and Dg(p,q,r) is a ma-
trix whose elements go to zero as €, goes to zero and, hence, as the beam
width becomes large compared with the width of the density function pla).
(Note, to obtain D, we have used the fact that E{(a—ma)3} = O which follows
from Assumption A3.2.2 where p(a) was assumed to be an even function about

my.) The vector d on the other hand, reduces to



(3.20)

where Qe is a J-dimensional column vector whose elements also go to zero
with €,. It can now be seen, even if D, and de are neglected in Egs.
(3.19) and (3.20), the minimization of Eq. (3.18) with respect to the con-

trol vector _Lll

is a problem which is not readily solvable since the func-
tional relationships between p, g, r, and the control vector E? are non-
trivial. It appears that only a computer solution can produce the desired
minimizing control vector E}' Thus, we find that the method of solution
which calls for the successive minimization of E{(ae—a)z} with respect to
by, b and 31, although being relatively straight forward as far as the b,
and b minimizations are concerned, becomes analytically unmanageable when
the u! minimization is considered.

Let us now back up to Eq. (3.13) and take a slightly different ap-

proach. Rather than derive the optimal vector b at this point, let us

write Eq. (3.13) in the equivalent form
E{(ae-0)2} = E{[(bTy-a) - E{(bTy-a)}]2} (3.21)

and apply Assumptions A3.2.2 and A3.2.3 which, after some rearrangement

of terms, gives us

E{(0e-a)?} = oé((o%+m%)l/29?3 _ m8(0%+m%)_1/2)2 + O%E?E
T 0202
* E{[(8-mg)oTp +(B(axmy)?)-mgol)b x)? b+ —2E-+ ¢
+
(% mB)(3,22)

where €, is a term which goes to zero with €,e Then, since the fourth
term of Eq. (3.22) is independent of b and ul, the use of the J-dimensional

column vector of filter "weights" ¥ and the J-dimensional column vector
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n
of’ controls E}

which minimize the sum of the first three terms of Eq.
(3.22) result in a loss, E{(og-a)?}, which approaches arbitrarily close
to the loss resulting from the use of the optimal "weights'" and optimal
controls as €, goes to zero. But this implies, the performance of a

system, as measured by E{(a.-0)?}, which employsli_and Y! instead of‘i
gl approaches the optimal performance as the beam width becomes large com-
pared with the width of p(a).
LN N1 " . "y

To obtain b and u*, note that the vector of "weights b, and the vec-
tor of controls E% which minimize the sum of the first two terms of Eq.
(3.22) must be such that B, and §, (the vector g when §1 is the control
vector) are colinear while J; must be of maximal length, i.e., §1Ti1 must
achieve the maximum value of g?g. If‘ﬂé_1 and‘gi_1 did not satisfy these con-
ditions, we could always find another pair, call 'l:hem"_ﬁ_2 and ﬁ; for which
o T _ & TN v T v T .
b,"q, = b,7q, and b,"b, < b,"b, and, as a result, the sum of first two

-~
terms of Eq. (3.22) could always be decreased. Moreover, if‘E_l and E& are
~ T v T~ v ~z1 . e s .

such that b, p; and b, r, are equal to zero, b; and uj; will also minimize
the sum of the first three terms of Eq. (3.22) which implies these vectors
are suitable choices for ﬁ_and ﬁ}, respectively. (The vectors‘ﬁ1 and il

are vectors p and r when ﬁi

is the control vector.)
Looking now at Fig. 3.1 where qj is plotted, we see that g?g_is max-

imum when ut,je{1,2,...,J}, satisfy
J

(ma—ué) = = 1//202 (3.23)
or, equivalently,

u3 = m, + 1//2u? .

Qa

As a result i&’ must be of the form
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Fig. 3.1. Plot of q. vs. (m -ul).
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4 = /2u? exp{-1/2}c’ (3.2L)

where c' is a J-dimensional column vector whose elements are either plus

or minus one. Furthermore, if Y, has this form,

9% = o0 (3.25)
and
T J
4P, = Y2u? expl-1} ) ! (3.26)
j=1 ¢
where c' is the jth element of c¢'. Then, if J is an even number and half
j z

of the cj’s are plus one while the other half are minus one, ?Lngl is also
zero. But this together with Eq. (3.25) implies 'ElTﬁl and 3 "7, are zero
since El and il are collinear. Thus, ift vc_f:_ci, the control vector and the
filter "weights" vector which minimize the sum of the first two terms in

Eq. (3.18) also minimize the sum of the first three terms in Eq. (3.18)

v
so that ’1\)_/ = El and ﬁl is given by

M1

u me + (1//2u%) ¢ . (3.27)

(The vectors c, and c are defined in Section 3.3.)
. . ~ vy :
Let us now determine the vector’_’ﬁ_l. Since b, and g, are collinear,

we can write
A/
'b -

B, = ag, (3.28)

where a is a real number. Then, the first two terms of Eq. (3.22) can

be written as
2 2,m2y1/2e0 Toe 2
Gu(a(OB mB)

2y-1/2y2 2 2~ Tw
8,9 - mglogmy) )* + et g, (3.29)

which is easily shown to be minimized when
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02mB

a = = (3.30)
2( 2, 2\ 2 2
940 g o ) %ax™on

end q 2 = 9~1T9-1 2Ju?exp{-1}. Finally, substituting Eq. (3.30) and Eq.

(3.24) with ¢' = ¢ into Eq. (3.28), we find

2
‘% ) (l/VJ)qmaxoimai .
2 £
0§(°§+m%)qiax+°% (3.31)

which, together with Eq. (3.27), reduces Eq. (3.22) to
2

o}
r 0202 + —re
a B Amax
ii > + e . (3.32)
2(g24m2 on
o%(o4%+mé) +
ot BTTE qéax

E{(ae—a)z} = og

Finally, let us now investigate a suboptimal bias that is a function of
known quantities. 1In particular, if we return to Eq. (3.11) and substitute

for by instead of %o, E{(ae-a)z} will increase by €, which also goes to
zero with €,. Then, if we let €' = €,+€,, the remainder of the results
presented in Section 3.3 follow.

Several attempts were made to provide, under less stringent conditions
than above, the control vector, the filter "weight" vector, and the filter
bias whose application results in a loss which approaches that obtained
by the use of the optimal forms of these vectors. In particular, addi-
tional terms were added to the power series expansion in Assumption A3.2.3
with a search similar to that pursued above being conducted for approxima-
tions to the optimal control vector, the optimal filter "weights" vector,
and the optimal bias. A solution was not found, however, and it appears

that only a computer solution of the type discussed in the paragraph con-
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taining Eq. (3.20) will produce a solution. Moreover, since we are really
interested in the closed-loop solution, a computer solution was not at-
tempted and the investigation of the open-loop system was terminated at
this point. The solution presented in this chapter does, however, bring

out some interesting points which are discussed in Chapter 5.



CHAPTER 4

THE CLOSED-LOOP SOLUTION
L.1 INTRODUCTION

In this chapter, optimal filter and control functions for the closed-
loop system illustrated in Fig. 2.3 are obtained. This is accomplished
by making use of techniques which were developed by A. A. Fel'dbaumlLL and

which resemble the dynamic programming approach of R. Bellman.h2

L.2 ASSUMPTIONS

The system model discussed in Chapter 2 and illustrated in Fig. 2.3
together with the following assumptions specify the environment in which
the solution presented in this chapter is optimal..

Ab.2.1

The unknowns o and B are random variables with a joint probability
density function given by p(a,B).

Ak.2.2

The control u? is fixed during the interval [0,Te], i.e., we are again
considering the case where the beam width does not vary.

ALk.2.3

A control function (a function which specifies the operation of the
controller) and a filter function (a function which specifies the opera-
tion of the filter) will be considered optimal when they Jointly result
in a system which possesses a minimum expected value of the squared error,
i.e., if a system employes these functions, the expected value of the

error will be minimized.
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4.3 RESULTS

The following results were obtained when the assumptions of Section
L.2 were applied to the system model illustrated in Fig. 2.3. As stated
in the previous chapter, these results together with those obtained in
Chapter 3 will be discussed in Chapter 5.

Rk.3.1

The optimal filter operates on the received samples {y;} according

to the equation

[ op(a,B)

p(y./ul,a,8)dedd
Q(0,8) j o d

I =2
~

el
Q
@

1
p(yj,uj,a,B)dadB

[
I =2y
|_J

Qa,B)

i.e., the estimate & which is provided by an optimal filter satisfies Eq.
(L.1). In this equation, Q(a,8) denotes the region of the variation of
the variables o and B over which they must be integrated while the func-

[) y- u.l o B = p y —BC o U.% u’. ll’-2
( J/ j’ i ) O( j ( > J, J)) ( )

when po(nj) is the probability density function of the noise random var-

iable n;. (The function BC(a,ul,u?)

j 3 was discussed in Chapter 2 and repre-

1, and

sents the value Y3 would achieve in the absense of noise when a,B,uJ

u?

are the angle of arrival, the signal level, the pointing angle, and
the beam width, respectively.) If, for example, the variables {nj} are

Gaussian,p(yj/ué,a,s) takes the form

1 = -1 _ 1 ,,2)12
p(yj/uj,u,ﬁ) GXp{ . [yj BC(a,uj,u )]‘}

2mo 20
n n
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2

where On is the variance of ns.

J
RL.3.2
The optimal control Gj applied during the jth subinterval of the ob-

servation interval [0,T¢] minimizes the function

Gj(uﬁ) = f min f ter Imin f [ (a-4)2
aly,) u§+l Aygen) (uy  0yg) b oala,B)
J
(x) p(a,B) jgl P(yj/qu,oa,B)dadB SYgp Wy [ W (4.3)

which is, in turn, a succession of minimizations with respect to the future
controls and integrations with respect to future samples yi,ie{j,j+l,...,J},
as well as the variables o and B over their respective regions of varia-
tion. (The variable & in this equation has the functional form illustrated
by Eq. (L.1.).)

We shall find in the next chapter, the evaluation of Eq. (4.1) and
the minimization of Eq. (4.3) with respect to u3 requires the use of

numerical integration which, in turn, necessitates the need for a digital

computer.

L.} SOLUTION
Let us begin by denoting with L, the loss function which equals the
expected value of the squared error. We can then write
f
L = | (a-00)2p(0,00) A2 aya,) (4.14)
Q(o,04)
where o, represents the output of the filter, 2(a,a,) is the region of

variation of the variables o and ag, d2(a,0.) is an infinitely small ele-
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ment of 2(o,a,) which will also be written asdadoe, and p(a,a.) is the

e

Joint probability density of o and a,. (Throughout this chapter, we shall
use p(x;,%X,,...,%,) to denote the joint probability density of the arbi-
trary variables X1 5%y 5000 5Xp listed in parentheses.) Therefore, to satisfy
the optimality criterion of Assumption AL.2.3, a filter function and con-
trol function must jointly minimize this loss function.

To simplify the notion in the following discussion, we shall now dis-
card the superscript on the control ul. No ambiguity will result since

2

u“ is assumed fixed and will not enter the derivation. Then, applying the

fact* that the integral of p(a,ue,B,yjduj) over the region of variation

of B,yE and uz is equal to p(a,0e), i.e.,

P(Q,Ge,B,Yj,UE)ddejduJ. = p(d,ae) s ()'I'-5)
Q(Bayjau-j)

we can write the loss function L of Eq. (4.L4) in the alternate form

L = f (0-0e)?p(a,00,8,y_,u_) dadaedBdy_du_
Qa,0. .8,y ) el F &5 77 J ¢ yJ J
b e’ bl a'ﬂu'J'
(L.6)

where ys = (yl,yz,...,y ), u== (U ,u_,...,u_), dy3-= dyldyz...dyJ and

J J 1772 J
duj = duldug..,duJ. (Remember yj is the jth sample of the received signal

y.) Moreover, if we make use of the relation¥

p(xl 5X2)
p(x,/x,) = —L220

p(xp)

which defines the conditional probability density of X given x,, we can

write

*See Ref. L3, pp. 29-30.
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p(asaessay:jrauj-) = p(aaB)p(ae/yTauj,Q,B)p(Yj—,uﬁJ—/agB) (u.p()
and
p(ijuj/u,B) = p(uJ/yj:quj:T,u,B)p(yJ/yj:I,uj,a,B)p(yj:r,uj:r/a,e)
(L4.8)

In this last equation, the second term on the right can also be written

as

P(Y;/¥g—su5,0:8) = p(y;/us,a.B) (4.9)
since the noise random variables {nj} are assumed to be independent and
since the function BC in our model of Fig. 2.3 has no memory which im-
plies the probability of Yy given yj:I” %T’ o, and B is Jjust the prob-
ability of Yy given ur, o, and B alone.

Let us now assume the filter function exhibits a random strategy,
i.e., the filter generates an estimate o, based on the data y3 and %T
according to some probability density function which we shall denote by
F(ae/y33u3). (By allowing a random strategy for the filter function
rather than requiring it to be a deterministic function, we have increased
the number of elements in the class of possible filters from which an
optimal element is sought. We shall find, however, the optimal element
in this class exhibits a deterministic strategy rather than a random
strategy as might be expect.) It is then obvious that the conditional
probability density p(ue/yj,uj,a,B) on the right of Eq. (L.7) can be

written as

p(ue/y'jauj’aas) = p(ue/yjauj) = F(Ote/yﬁauj) (24.10)
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since the output of the filter depends only on the values of yj-and U
If we also assume the control function for the Jth subinterval exhibits

a random strategy, denote it PJ(uJ/yjfi’uj:T)’ we find the first term on

the right of Eq. (4.8) can similarly be written as

P(uJ/.Yj‘__l‘,uﬁ,a,B) = p(uJ/yﬁ,uJ—_i) = FJ(uJ/yj—-_l-’uT:I) (h.ll)

since the control during the Jth subinterval depends only on yj_i, and
uz—  Then, substituting (4.9) and (4.11) into (4.8) and proceedings by

induction, we obtain

J
p(y_auE/a :B) = E

J j FJP(YJ/UJ,G,B) (h’-lg)

1

where FJ=:p(uj/y7_I’uj“f) is the control function for the jth subinterval
J— -_—

and Ty = p(u,).

If we now defined the function G(ag) by

n =g

G(ae) = f (a—ae)zp(a,B)

P(yj/uj,d,ﬁ)dade (4.13)
Q(a,B) 3

1
and substitute (4.7), (4.10), (4.12), and (L4.13) into (L4.6), the loss func-

tion becomes

f J
L = f J (o) G(ae)I‘dae} I T4y du_ . (L.1k)

Q(yj,uj) Q j=1

Moreover, since the filter makes its estimate after the Jth subinterval,
for purposes of determining the optimal filter function we can assume the
Fj's are known. As a result, it can be seen from Eq. (L.1L) that L is

minimized if
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fz G(a, )T dae (4.15)

Q(ue)

achieves a minimum value for each possible combination of the vectors
Y and u—. It can also be seen that (L4.15) achieves this minimum value
J

if
I = 6(0g-a) (L.16)

A
where § is the Dirac delta function and o minimizes G(ae) for any set of
vectors yE and uE. Therefore, minimizing G& e) with respect to og by

taking the partial derivative of G(ag) with respect to o, and setting it

(S

equal to zero, we obtain

' J
J/ op(a,B) I p(yj/uj,u,B)dadB
& = Q(OL,B) J=l (h.l"{)
, J
pla,B) I p(yj/uj,a,B)dadB
Q(a,B) j=1

which, together with (4.16), represents the optimal filter function.
(The second derivative of G(ae) with respect to ag is easily found to be
positive for all o, so that 4 as defined in Eq. (4.17) does, indeed, min-
imize G(ag).) Note that this filter is optimal regardless of the control
mode, so, when no restriction to a particular class of filters is made,
it is also an optimal open-loop filter.

Turning now to the problem of obtaining the optimal control function,

let us define the function Gj(uj) by

Gy(uy) = f G(a)ay, - (4.18)
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Then, substituting (4.18) into (4.1L), the loss function L becomes

=1 9 J-1 J-I
Q(yJ_l,uj:I) Q(uJ) J=1 (.10}

It can now be seen, as in the previous paragraph, L is minimized when the
term within the bracket is a minimum for any combination of the vectors

yJ T and uJ T But this term achieves its minimum value when

r; = 5(uJ-GJ) (4.20)

and ﬁJ minimizes GJ(uJ). Thus, I'; as given in Eq. (4.20) is the optimal
control function during the Jth subinterval.
If the above procedure is repeated, the remaining optimal control

functions can be found to have the similar form

- A
r, 8 (u, uj) (L.21)
where ﬁj minimizes the quantity Gj(uj) defined by
f [
Gj(uj) = J min J .. minf J (0-8)2p(a,B)
J ]
(x)jzl p(yj/uj,a,B)dadéj Wyp Wi dyj . (Lo2)

The problems associated with the implementation of this equation in a
real situation will be discussed in the next chapter.

This completes the derivation of the optimal filter function, (L4.16)
together with (L.17), and the optimal control functions, (4.21) together
with (L4.22), which jointly minimize the loss function L. By reinstituting

the proper superscript on the control variable uj, these optimal functions
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can be seen to coincide with those presented in Section 4.3. The expres-

sion for p(yj/u;,a,B) given in Eq. (4.2) is obtained by replacing the

noise variable ny by [yj—BC(a,ué,uZ)] in the probability density function
for nj. This follows from the fact that the probability of yj being in

a particular set A given u%, a, and B is just the probability that nj is
in the set specified by the collection of point yj—BC(u,uﬁ,uZ) as yj ranges

2

over the set A. (Remember, u® is also known due to Assumption A3.2.1.)



CHAPTER 5

DISCUSSIONS OF CONTRCL THEORY SOLUTIONS

5.1 DISCUSSION

The goal of the three previous chapters has been to determine if "Sto-
chastic Optimal Control Theory'" can be applied to the direction finding
problem. In many respects, this approach seems the most natural since
most existing direction finders operate by controlling the pointing angle
of a directional receiving antenna. This control mode is normally independ-
ent of past received signals or, at least, it is chosen without any real
gard to what is optimal. Therefore, if "Stochastic Optimal Control The-
ory" can be applied, possibly in conjunction with a digital computer, many
existing systems could be easily converted to take advantage of these
techniques.

Rather than investigate a complicated system as to its optimal per-
formance, a much simplified model was constructed which still retained
the essential features of a typical direction finding systems. By using
such a model, it was hoped that techniques could be established for solving
the more general problem. Certainly, if no reasonable solution can be
found for this simple model, it is doubtful that the more complicated
models could be optimized to any real extent.

With the above considerations in mind, an investigation of the model
under open-loop operation was initiated. This investigation was con-
cerned with determining optimal filter and control functions which depend
only on a priori information, i.e., filter and control functions which
are not allowed to be altered during the observation interval as more in-

formation is received. These constraints are typical of those usually

L2
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imposed on existing direction finding systems. In addition, because of
their ease of implementation, the class of possible filters from which an
optimal element was sought was restricted to those whose outputs are a lin-
ear combination of the received signals plus, possibly, a known bias level.

The filter "weights," the filter bias, and the controls presented in
Section 3.3 were shown to result in a system whose performance approached
arbitrarily close to that of an optimal open-loop system as the beam width
became large compared with the width of the probability density function
p(a). (The system performance was measured by the expected value of the
squared error which, for the above filter and controls, has the form illus-
trated in Eq. (3.9).) This particular relationship between the beam width
and the width of p(q) corresponds to the limiting case in which a great deal
of a priori information is available concerning the true direction of arri-
val and only minor refinements are required.

Observing now the functional form of the filter "weights," the filter

bias, and the controls specified in Section 3.3, we find that they ex-~

hibit the following properties:

P5.1
The filter "weights" are dependent on the applied controls.

P5.2
The controls are such that the antenna is always directed so the angle
of maximum slope of its pattern is oriented in the a priori expected di-

rection my.

B5.3

The controls are such that each of the two angles for which the an-

tenna pattern slope is maximum are utilized for equal time intervals.

To understand this behavior, let us substitute Eq. (3.8) into Eq. (3.5)
and assume the filter "weights'" vector is‘i as defined in Eq. (3.7). We

can then write



J
~
6 = myt J B.(y.-y.) (5.1)
Nt J7d Ud
J=1
where y = msﬁj which approaches arbitrarily close to the expected value
J e

of vy as the beam width becomes large compared with the width of p(a).

It can now be seen, the estimate a_ is the sum of the a priori expected

e
value of o plus a weighted sum of the deviation of the samples {yj} from
the values {?j}~

Let us now consider the jth sample and approximate the antenna pat-
tern as a function of o in the vicinity of my by the first three terms of
its power series expansion assuming the control is m, +/v/2uZ. (Note for
this control, the antenna pattern slope is maximum in the direction a = mj
which implies the third term of the above power series expansion is zero.)
This approximation to the pattern times mg is then illustrated in Fig. 5.1
where the deviation of the sample yj from y. is plotted against o for the
case where cé = 0 and oi = 0, 1.e., for the case where B is known a priori
and the sample yj is noise free. (Remember, yj = BC(a,u%,u2)+nj in the
general case so, when ny = 0 and B = my, the sample ¥, becomes mBC(a,ué,uz).)
Suppose, now, A, is the deviation of the true angle of arrival and Ay is
the corresponding deviation of the sample yj from ?ﬁ. Then, for this
situation, it is obvious from Fig. 5.1 that Ay should be calculated by

dividing A

y by the slope of mBC(a,u%,uz) at m . Observing Eq. (3.7), we

find this is exactly the operation performed by the filter specified by
Egs. (3.7) and (3.8) when og and 0% are zero. The quantity mquaX/%f is
the slope of mBC(a,ué,uz) at o = m  when the control u§ is mu+l/v2u2.

Moreover, since the antenna pattern slope at o = m, depends on the control,

it is clear that the filter should also depend on the controls as observed

in Property P5.1.
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O
]

Fig. 5.1. A plot of the deviation of the sample y from y
functlon of a in the vicinity of ma when ul = m, + l/
of = 0 and 0?2 = 0. J
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If we now let Y3 be a noisy sample so its value is displaced by an
amount Aﬂ from the value Ay illustrated in Fig. 5.1, dividing the devia-
. 1.2 . . ,
tion Ay+An by the slope of mﬁc(a,uj,u ) will result in the error Aa shown
in Fig. 5.2. Moreover, it can be seen that A& will be least when the
slope is maximum which accounts for the second property listed above.

Note, however, in the noisy case, the filter weights as specified in Eq.

(3.7) are dependent on the variance of the noise as well as the slope of

~ 1.2
mﬁu(a,uj,u )

To understand Property P5.3, let us again assume Y3 is a noise free
sample but, now, allow B to be different from ng. For this case; a plot
of mﬁc(a,uﬁ,ug) in the vicinity of m, when u} is equal to my+lA2u° dif-
fers from a similar plot of mBC(a,uﬁ,u2) as shown in Fig. 5.3 where the re-
spective curves are labeled "Curve a' and Curve b." '"Curve a" is displaced
from "Curve b" by an amount Ag which depends on p-mg and possesses a cor-
respondingly greater slope. Also in this figure, "Curve c" is drawn par-
allel to "Curve b" but intersecting "Curve a" and the line =My at a common
point. Now, if Ay 1s again the deviation of the angle from my, dividing the
corresponding sample deviation Ay by the slope of "Curve b" results in the
estimation error Agln (We are forced to divide by the slope of "Curve b" in-

stead of the slope of "Curve a" because B is unknown.) This error, is

equal to the sum of Agﬁ and Agi

25,
as shown in Fig., 5.3. Let us now look at

Fig. 5.4 where the previous figure is redrawn but with ul° equal to ma—lﬁJ2u2(

J
For this case, the error obtained by dividing the deviation Ay by the slope
of "Curve b" is AgE which equals A%% minus Aggo Furthermore, the errors
Ag% and Ag% are equal as are Agi and Agg. It can now be seen, the use of
the controls ma+1ﬁJ2u2 and ma-l/JEug for equal time intervals as stated

in Property P5.3 eliminates the errors Agi and Agg since they cancel each
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Fig. 5.2. A plot of the deviation of the sample y fro y
function of a in the vicinity of ma when ul = o + l/
62 = 0 and An represents the noise in the Qample

B
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Fig. 5.3. Plot of the deviation of the sample y, from §: as a func-
tion of o in the vicinity of m when ul = m + l/JVEuz, 02 # 0

a 2 _ a J o B
an on = 0.
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Fig. 5.4. Plot of the deviation of the sample y, from ;. as a

function of a in the vicinit
cé # 0 and oi = 0.

y of m when ug = magl/V2u2,
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other when the estimates of A, are averaged. The errors Azi and A
on the other hand, cannot be eliminated since they add when the average
is teken.

One additional property could be added to the above list which sim-
plifies the implementation of the filter specified by Egs. (3.7) and

(3.8). It is easily shown that % %3£j is zero so Eq. (5.1) reduces to
J=1

J ~N
0 = my * jz bjyj (5.2)

and, as a result, it is unnecessary to subtract ?& from yj for each sample
as suggested by Eq. (5.1). This follows from the fact that the slopes of
BC(a,ué,uz) at m  when u} = ma+l/ﬁ532 and u} = ma-l/JEET are the negative
of each other while ?5 remains fixed for all samples.

Finally, to obtain an indication of how the error variance is af-

fected when Egs. (3.6)-(3.8) are utilized, let us write Eq. (3.9) in

the equivalent form

" C,+C, )

E{(ae—a)z} = g2 v+ e (5.3)

% . 1+C1+Cy
where C; = o%/m% and Cp, = o%/(oim%qiax). A plot of the function
(Cl+C2)/(l+Cl+Cz) against C, for various values of C, is then illustrated
in Fig. 5.5, which, together with Egq. \5.3), can be used to evaluate the
performance of the estimation technique presented in Chapter 3. (Remember,
the term €' goes to zero as the beam width becomes large compared with
the width of p(a).) The constant qiax is equal to J times the square of
the antenna pattern slope at m,.

The question can now be asked, "Are the above stated properties in-
dependent of the particular antenna pattern utilized or do they depend in

a special way on the assumed form that was employed?" Returning to the
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deviation of Chapter 3, we find the same solution will be obtained re-
gardless of the antenna pattern as long as it is symmetrical about its
pointing angle. If the pattern is not symmetrical, it is not clear
what form the optimal control should take although the resulting error
can be calculated easily from Eq. (3.22).

Turning now to the closed-loop results presented in Section 4.3, we
see immediately the optimal filter is a nonlinear function of the samples
{yj}. In addition, we see the present optimal control depends not only
on past samples {yj} but also on future controls. This is typical of many
solutions obtained by the use of dynamic programming techniques. If we
now take a closer look at Eq. (4.3), a major difficulty is directly noticed.
Rather than provide an explicit expression for the jth optimal control,
Eq. (L4.3) represents an identity that the optimal control ué must sat-
isfy. 1In order to implement this result in a realistic problem, a
method for solving this equation must be available. Several attempts were
made to perform the indication integrations analytically when various
probability densities were substituted for P, and various antenna patterns
were assumed present. In one instance, the integration was attempted
when P, had the form of a Gaussian probability density and C(a,u%,uz) had
the form exp{—uz(a—uﬁ)z}, These attempts did not meet with any success,
however, so the possibility of performing the integrations numerically
with a digital computer was explored. Although useful for implementing
the optimal filter of Eq. (4.1), numerical integration was found to be
impractical approach to a solution of Eq. (4.3) since the variables {yj}
range from -~ to +~. There are simply too many arithmetical operations
to be performed, even with a digital computer, when a reasonable number

of samples J is considered. Finally attempts were made to approximate
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the optimal controls by assuming the probability density p(a,B8) was a

"narrow" function about m, and mg as done in Chapter 3. Some preliminary

o
results were obtained but, because of their marginal applicability, have
not been included in this presentation.

In conclusion, it was found that "Stochastic Optimal Control Theory,"
at least that applied by the author, did not give a satisfactory answer
to the question of how an optimal direction finding system should operate.
As a result, it was decided to alter the above approach and attempt to
apply, instead, "Estimation Theory" to this problem. This altered ap-

1

proach, utilizing "Estimation Theory," is the subject of the remaining

chapters.



CHAPTER 6

STATEMENT OF THE ESTIMATION PROBLEM

6.1 INTRODUCTION

In the previous chapters, a direction finding system was considered
which employed a beam forming network. This network delayed and combined
the outputs from the various elements of an antenna array in & manner
specified by a controller so as to produce a system which had the char-
acteristics of a single antenna of variable directivity and whose direc-
tion of maximum gain could be varied. These directional properties of
the system were then exploited for the purpose of determining the direc-
tion of arrival of the impinging signal with a "control function" and
"filter function" being derived which resulted in optimal performance of
the system. In the remaining chapters, a direction finding system will
be considered in which the beam forming network is absent and the outputs
of the antenna elements are processed directly. This method of attack
results in what appears to be a more general solution in the sense that
the system is, initially, less constrained. This statement must be
qualified, however, since a different criterion of optimality is applied
to the model. 1In any event, this technique results in a system which
lends itself to a more complete mathematical analysis and which can be

implemented by hardware that is available today.

6.2 STATEMENT OF THE PROBLEM
The objective of the remaining chapters, as in the previous chapters,

will be to derive a technique for determining a "best* estimate" of the

¥The optimality criterion is discussed in Assumption A6.3.3 of Section
6.3.

5k
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direction of arrival of a random signal which has been emitted by a point
source. This estimate is to be based on the time signals observed at

the outputs of K antennas which form a receiving antenna array. In addi-
tion to the signal originating from the point source, we shall assume

the received signals include additive noise terms. We shall also assume
the source is far enough removed that, at the site of the receiving ar-
ray, the random signal takes the form of a plane wave. The geometry of
a portion of the array relative to the plane wave is illustrated in Fig.
6.1 while the system which is to provide the estimate is illustrated in
Fig. 6.2.

In Fig. 6.1, a coordinate system has been drawn with an arbitrary
element of the array positioned at its origin. A portion of the wave-
front assumed to be impinging upon the array together with a unit vector
u originating at the origin and perpendicular to this wavefront have been
indicated. The angles between u and the x and y axes are denoted by al
and az, respectively, and jointly represent the angle of arrival of the
wave. Also in this figure, the vector &k has been dreawn from the origin
to the site of the kth element of the array. We shall now assume, with-

out loss of generality, the vectors u and are column vectors whose com-

&k
ponents are the projections of these vectors on the coordinate axes. It
can now be seen, if s(t) is the time signal received at the origin due
exclusively to the point sources, the corresponding signal [s(t)]k re-
ceived by the kth element of the array is given by

T
[s(6)], = s G + 22 (6.1)

[¢]

where ¢ is the velocity of propogation of the wave, &E is the transpose

of &k’ and &Eg_is the matrix product of &g and u. (In the following pre-
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Wavefront

>y

x Denotes Antenna Locations

Fig. 6.1. Geometry of the receiving array relative to
the direction of arrival of the signal.
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Processor

Fig. 6.2. Processing system to be used to provide an estimate
of the direction of arrival of the signal.
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sentation, brackets will be used to distinguish K-dimensional column vec-
tors whose individual elements are either time functions or random pro-
cesses. Moreover, the KxK matrix covariance functions corresponding to
these random processes will also be characterized with brackets while in-
dividual elements of these matrices as well as the above K-dimensional
vectors will be denoted by subscripts. Thus, we shall use [s(t)] to
represent the column vector of signals received by the antenna array due
to the point source and [s(t)]k, as in Eq. (6.1), to denote the kth ele-
ment of [s(t)] which is the signal received by the kth array element due
to the point source.)

In Fig. 6.2, the outputs from the various antenna elements are shown
as inputs to a processor whose output is represented by (&1,&2) = & which
is a "best estimate" of (al,a?) = a.

The problem now reduces to the determination of the operations to be
performed on the input data by the processor so as to produce an optimal
estimate. We will say these operations have been specified when an equa-
tion has been provided whose solution is readily obtainable and represents
the optimal estimate. In addition to providing this equation, considera-
tion will be given to the problem of obtaining an operational method for

providing a solution to the equation by the use of existing hardware.

6.3 ASSUMPTIONS (General Case)

In order to obtain a solution to this problem it will be necessary
to be more specific concerning the type of noise that will be present,
the type of signals that might be emitted by a typical point source and
the criterion of optimality that must be satisfied. We shall begin by
specifying the most general conditions under which we are able to obtain

a solution. In the next section, we shall present conditions which are
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more restrictive but which, at the same time, allow us to obtain a more
tractable solution. The general solution, which is derived in Chapter 7,
is optimal when the following assumptions are valid.

A6.3.1

The time signal [y(t)]k received by the kth antenna of the array dur-
ing the observation interval [0,T,] is the sum of noise and a signal which
is due to the point source alone whose angular location is desired. Each
of these terms represent the kth component of a vector sample function
from a zero mean K-dimensional, vector Gaussian process. (See Section
T7.2.1 for a discussion of random processes.) If rS(t,v) is the covariance
function of the signal (point source) process driving the antenna located
at the origin in Fig. 6.1 and if o is the true direction of arrival, the

matrix covariance function of the signal process [S%(t)] driving the en-

tire array is given by [r(a)(t,v)] and its jkth element takes the form

[r(a)(t,V)]jk = rS(t+Tj,v+Tk) (6.2)
where
T
- gou(a) ’

C

ne{j,k}, and ¢ is the velocity of propagation of the wave (see Eq. (6.1)).
Furthermore, the elements of this matrix are continuous and bounded on
[O,Tf]x[O,Tf] where [O,Tf] represents the observation interval. The noise
process [N(t)] driving the array is independent of the signal process and
the elements of its covariance function [r°(t,v)] are bounded and con-
tinuous on [0,T¢]x[0,T¢] also. In addition, the noise process has the

property of "separability" (see Ref. 29, p. 52) and there exist constants

¢ > 0 and § > O such that
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kgK {[ro(t,t)]kk + [ro(v,v)]kk - [ro(v,t)]kk - [ro(t,v)]kk} < Clt-—v|6
when t,vs[O,Tf]. (These last two conditions will be used to guarantee
the continuity of "nearly all" sample functions of the noise process
[N(t)]. Continuity of the sample functions is a reasonable requirement
since they are the observed outputs of physical devices which possess
finite response times.) Thus, the total process [Y%(t)] driving the ar-

ray is given by
[Y*(t)] = [8%(t)] + [N%(t)]

and is Gaussian, of zero mean, &and possesses a covariance function of the

form

[ro(t,v)] = [208)(t,v)] + [x°(t,v)] . (6.3)

Finally, the covariance function of the noise process [N(t)] satisfies

T T
Jr £ f C e(6)1Tro( v) 1I£(v) Jat av > 0 (6.14)

0 0

for every K-dimensional, column vector valued function [f(t)] which

satisfies

T, .
0 < f [£(+) ) [£(t)]at <
0

(The superscript T on the vector [f(t)] denotes the transpose.)

A6.3.2

The signal processor has available certain a priori information con-

cerning the possible values of the angle of arrival. In particular, this
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information takes the form of a known probability distribution function
for the possible angles of arrival.

A6.3.3

The "criterion of optimality" to be satisfied is that of "Minimum
Probability of Error (MPE)." If the direction of arrival has one of M
possible values, this criterion requires the space of possible received
signals @ to be partitioned into M disjoint subsets (Al’AZ"">AM) which

have the property

Pr(ai)Pri(Q—Ai) (6.5)

HJ
I
Il e~

i=1

is minimum among the set of possible partitions. In Eq. (6.5), Pr(o;)
represents the a priori probability that o 1s the true direction of
arrival and Pri(Q—Ai) is the probability of the received signal not being

an element of Ai when the true direction of arrival is q (Another term

i
can be added to the sum in Eq. (6.5) if the possibility of noise alone
being received is present. See Section 7.3 for additional disccusion.)
Thus, if a decision scheme is used which specifies a; as the true direc-
tion of arrival when the received signal is contained in Ay, it can be

seen that Pe is truly the probability of error. A similar expression is ob-
tained in the more realistic case where Mso. (In Appendix V, this opti-
mality criterion is shown to result in a partition that is "equivalent"

to that obtained by the use of the "Maximum A Posteriori Probability

(MAP)" criterion. This latter criterion places a particular received
signal in the subset Ai if a; has the greatest probability of being the
true angle of arrival based on the received signal and the a priori in-

formation.)
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Assumption A6.3.1 implies (1) the dimensions of the array are small
compared with the distance separating the source and the array so that the
wavefront of the source signal is essentially a plane wave when viewed
at the site of the array, (2) the individual elements of the array are
separated by a distance which is sufficient to produce negligible inter-
action of elements (this requires* the interelement spacing to be somwhat
greater than the largest dimension of the elements),and (3) the antenna
elements have onmidirectional receiving patterns over the region of sur-
velllance. In an attempt to justify the assumption of known covariance
functions, let us remember that, in the case of stationary sources,
knowledge of the covariance functions is equivalent to the knowledge of
the power spectrums which is a reasonable assumption in many direction
finding problems. The assumption that the signal and noise processes are
Gaussian is typical of the restrictions normally placed on communications
problems. As always, the main justification for this assumption lies in
the fact that it simplifies the calculations and results in reasonsble
solutions to the problem. Finally, we shall find the property presented
in Eq. (6.4) easily verified in the cases which will be of particular
interest to us, namely, those in which the noise process driving each
array element is stationary and independent of all others.

Assumption A6.3.2 is particularly appropriate in the case where con-
tinuous surveillance of a mobile source is not possible, e.g., either
the source does not emit continuously or the direction finding system
cannot devote its efforts to this task continuously. Between each pe-
riod of surveillance, the source is allowed to change its position with

the result that, before each period, there exists an uncertainty as to

*¥See Ref. 10, p. 122,
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its true position which is reflected in the given probability distribu-
tions.

Many different optimality criterions could have been used instead of
that specified in Assumption A6.3.3. Intuitively, the probability of
error appears to be a reasonable measure of performance of the system.
The preponderant reason for choosing this criterion, however, is the fact
that the use of it results in a solution that can be easily implemented

with existing hardware.

6.4 ASSUMPTIONS (Special Cases)

By placing further restrictions on the functional form of the noise
and signal covariance functions, we are able to produce several special
cases which are often reasonable descriptions of the environment of a di-
rection finding system. Moreover, the solutions obtained for these cases
represent a tremendous simplification over the general case solution ob-
tained in Chapter 7 as far as implementation is concerned. In each of
these special cases which are analyzed in Chapter 8, the covariance func-
tion of the noise process will have a different assumed form. (See Sec-
tion 6.4.1 and 6.4.2 for characterizations of these covariance functions.)
Before specifying these forms, however, let us introduce the following
assumption which, also, will be employed in attaining each of the special
case solutions.

A6.L4.1

The noise and signal processes are stationary. Furthermore, each of
these processes has the "band-limited" property that the Fourier trans-
form of the jkth element of its covariance function, [F(w)].k, is repre-

J
sentable in the form illustrated by Fig. 6.3 where "most" of the trans-
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[F(w)]jk

- w, 0 Wo
w —

Fig. 6.3. Typical Fourier transform of [r (t)],. which represents
the cross~covariance function of the processes arlving the jth
and kth antenna of the receiving array.
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form is concentrated near a frequency W, and where the reciprocal of the
difference between the lowest and highest frequency (of significant en-
ergy) is large compared with the propagation time of signals across the
array. Also, there exists a symmetric kernel [hz(t,s)] which is square

integrable on TxT and which satisfies

JF [ otae) 1l o) iro(s-) Jatas = [x0(uv)] - o]
Finally, Ty is large compared with the reciprocal of the difference be-
tween the lowest and highest frequency (of significant energy) of [F(w)]jk
so that [hg(t,s)], for t,se[0,T¢], can be "approximated" by the kernel
[hz(t—s)] which satisfies

(o]

j‘ j' [r°(u-t) 1[n}(t-s) I [x*(s-v)Jatds = [r%*(u-v)] - [r%(u-v)] .

o Y (6.7)
(The sense in which [hg(t,s)] is to be approximated by [hg(t—s)] will be
discussed in Chapter 8.)

The solution of Eq. (6.7) is easily obtained by the use of Fourier
transforms and conditions on [r°(t,s)] and [r®*(t,s)] are easily found in
order that this solution is symmetric and square integrable on TxT. More-
over, it seems reasonable that the solution of Eq. (6.6) should "approach"
the solution of Eq. (6.7) as T, becomes large. We shall find, however,
the existence of a bounded symmetric solution to Eq. (6.6) and the fact
that it is "approximated" by [hg(t—s)] is very difficult to verify when
specific covariance functions are considered.

The following two sections characterize the forms that the noise

covariance functions will possess in the special cases analyzed.
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6.4.1 Independent, Identically Distributed Noise

This special case is a reasonable description of the case where the
noise is due primarily to the thermal noise introduced by the receiving
elements of the antenna array.

A6.4.1.1

The noise processes driving each of the receiving antenna elements
are independent and their covariance functions are identical and denoted
by ry(t).
6.4.2 Independent, Identically Distributed (Except for an Amplitude

Factor) Noise

This case is similar to that of Section 6.4.1 except now we are
allowing the noise level to vary between antenna elements.

A6.4.2.1

The noise processes driving each of the receiving antenna elements
are independent and their covariance functions are identical except for
an amplitude factor with the kth process covariance function denoted by

apry(T).



CHAPTER T

GENERAL SOLUTION OF THE ESTIMATION PROBLEM

7.1 INTRODUCTION
The method of solution that will be employed in this chapter, will
rely heavily on the theories of probability, stochastic processes and

functional analysis. Such books as Probability Theory by M. Loéve,28

Stochastic Process by J. Doob,29 Measure Theory by P. Halmos,BO and Func-

tional Analysis by A. Taylorhh are excellent references for this presen-

tation. However, an attempt will be made to make this treatment self-
contained in the sense that all necessary definitions will be included
with theorems being quoted if they are needed. 1In general , the proofs of
the theorems will be omitted if they are readily available in the litera-
ture.

In this chapter, a technique will be developed for detecting a sig-
nal and determining its angle of arrival at the site of a receiving antenna
array. The application of this technique will result in the specification
of either (1) "no signal is present" or (2) "an estimate of the true angle
of arrival of the unknown signal is o;" where oj is contained in the set
of possible angles of arrival. This specification will be optimal in the
sense that it minimizes the probability of error. (Remember, the opti-
mality criterion chosen in Section 6.3 was "Minimum Probability of Error.")
Moreover, it specifies the hypothesis of "Maximum a Posteriori Probabiliy,"
i.e., it specifies the hypothesis that is "most probable" based on the
signals received by the array and any priori information that is avail-
able concerning the true angle of arrival and the random processes present,

The form of these signals and the nature of the a priori information is

discussed in Section 6.3.

67
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The approach pursued in this chapter is an extension of that used by
T. T. Kadota,30"39 T. s. Pitcher,"5 and B. H. Bharucha® to solve the
problem of distinguishing between possible transmitted signals of dif-
fering covariance functionsby an observation of a single received sig-
nal. In the direction finding problem we are interested in distinguish-
ing between possible directions of arrival by the observation of a vector
of received signals which is a sample function of a vector valued process
whose covariance function varies in a known manner with the direction of

arrival of the signals.

7.2 MATHEMATICAL PRELIMINARIES
Concepts and theorems that will be useful in the remainder of this

chapter will be briefly reviewed in the next two sections.

7.2.1 Probability Theory and Stochastic (Random) Processes

Elementary probability theory suffices to handle problems of the type
considered in the four preceding chapters of this thesis in which only a
finite number of random variables are present. However, when continuous
parameter processes are present, questions concerning existence and unique-
ness become important and necessitate a more fundamental approach in which
very precise definitions are required. As a result, we will begin by
stating these definitions and proceeding from this point.

In order to consider random processes, we must first recall what is
meant by a probability space and a random variable.

Definition 7.1l: A probability (measure) space (Q,f>,P) is the triple

of the sure event Q, the (nonempty) o-field ggof events (or measurable

sets) and the probability (measure) P defined on(ﬁ%. (The symbols \123

and P with various subscripts will be reserved for the above quantities
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while w will be used to denote the individual elements of 2.)

The terms measure,* probability and probability measure will be used
interchangably throughout this treatment since a probability can be de-
fined as a measure for which P(Q) = 1. A special type of probability
measure that will be of particular interest is called a complete prob-
ability measure. This measure has the property that subsets of sets of
measure zero are measurable, i.e., if a set A is contained in a set B
and if P(B) = O, then Aezg’and P(A) = 0. Actually, this is a very rea-
sonable property for a probability space to possess since, intuitively,
we would expect a subset of a set of probability measure zero to have
zero probability also. It can be shown*¥* that a given probability meas-
ure can always be completed in a unique way by a slight enlargement of
the o-field fg. This enlargement,‘%?, consists of all sets of the form
BUN wher Be@ and N is a subset of a set in# of measure zero. (The o-
field jg‘is also given by sets of the form BAN where B and N are as above

and BAN denotes the symmetric difference of B and N which equals

(B—N)L)(N-B).) The measure on‘%?, P, is then defined by

P(BYN) = P(BAN) = P(B) (7.1)

Definition 7.2: A real random variable X on (9,63,9) is a mapping

X of Q into the real line Qp = (-=,=) vhich is measurable relative to ég
and the o-field EgR of Borel sets¥¥¥ in Qg5 i.e., ror¥¥¥¥ eyvery Bg,jg R

we have {m;X(m)eB}E&g. (The concept of an expectation of a random vari-

¥See Ref. 30, p. 30, for the definition of a measure.
¥%¥See Ref. 30, p. 55.
¥%%See Ref. 30, p. 62, for the definition of Borel sets.
¥%¥¥It is shown in Ref. 30, p. 79 that this definition of measurability
of a random variable is equivalent to requiring, for all real a,

{w:X(w) < aleB.
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able X, E{X}, will also prove to be very useful and is defined as the
integral of the random variable X over the probability space Q, i.e.,
B(x) = Jx a.)

A random variable as defined gbove can be seen to induce a prob-
ability measure on the Borel sets of the real line. In particular, there

exists a distribution function

F(A) = Pl{w;X(w) < A} (7.2)

which is defined for all real A. This distribution function then defines

a probability measure PR

PR(B)=j]; aF(1) (7.3)

for all B where B is a Borel set and the integral is of the Lebesgue-
Stieltjes type. Actually, we have performed a measure preserving trans-
formation from (Q,¥3,P) to (QR,égR,PR) as discussed by Doob.* The utility
of this transformation becomes apparent if we consider, for example, the
problem of determining the expectation of a random variable of the form
¢(X) where ¢ is a Baire** function of the real random variable X. It can

be shown that

Jelx(wlee = [ e(e)ar(e) (7.4)

and, as a result, it is unnecessary to revert to the original probability
space to calculate the expectation. Moreover,*¥¥ any problem involving
random variables defined on (Q,GB,P) which are measurable with respect

to ¥B(X), (the smallest o-field on which X is measurable), can be ex-

*¥See Ref. 29, p. 617.
¥¥Any function defined on the real line which is measurable is called
a Baire function.
¥¥*See Ref. 29, p. 621.
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pressed as the corresponding problem in terms of random variables defined
on the induced probability space (QR,igR,PR). (The o—field.égshould not
be confused with the o-field (B(+) € Bwhich is dependent on the quantity
contained within the parentheses.)

In practice, the inverse of the above operation arises. That is,
what properties must a given function F()) possess in order that there
exist a probability space and a random variable with F()\) as its distri-
bution function? Loéve¥* shows that requiring F(A) to be monotone nonde-
creasing, continuous on the right, and

lim F(A) = O, lim F(A) = 1 (7.5)
Ao Ao
is sufficient for the existence of such a probability space and random
variable. If, in addition, F(A) can be written as the Lebesgue integral

A
F(A) = f p(X)ax , (7.6)

00

we say that p(X) is the density function corresponding to F(A). We will

be mainly interested in the case where X is a Gaussian random variable.

In this case, p(X) exists and takes the form

1 1
(x) = xp {- —— (%X-M,)?2 (7.7)
P /2nc§ © { 20% X %

where My and 0% are the mean and variance, respectively, of the random
variable X, i..e, My = E{X} and 0% = E{X-My}?.
Since we will be interested in families of random variables, we must

define what is known as a multivariate distribution function. In partic-

ular if X19°'°’Xn are real random variables, the function defined by

FOArs-esry) = PlusX,(w) 2 hys 3=1,2,...5m) (7.8)

*See Ref. 28, p. 167.
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is called their multivariate distribution function. Conditions that s

function must satisfy in order that there exist a probability space and
random variables with such a multivariate distribution are given by

Loéve.* These conditions require F(Al,...,An) to be nondecreasing and

continuous on the right in each of variableS‘&j} with F(Al,...,An) =0

if any Aj = -» and F(Al,...,xn) = 1 when each Aj = +o, In the case where
the family of random variables has more than a finite number of elements,

Kolmogorov** has proved that, if for every finite t set t15...5ty, the

multivariate distribution function L th,...,Xt is prescribed
1 n n

and if
1) F A geeesh = F . A oo g .
(1) tl""’tn( L ’ n) t'"']_’ ‘9tﬂ'n( TT]_, i TTn) (7 9)
where T ,...,m is a permutation of 1,...,n, and
2) F Aqsses A = lim F Aqse A
( ) tl, ,tm( 1o H) m) )\.—m tl, .,tn( 1o ’ n)
dJ
J=m+l,...,n (7.10)

for m < n, then there exists a probability space and a family of random
variables with the above finite multivariate distribution functions.

When a distribution function of n random variables is available, it

I

R on the n-dimensional

can also be shown to induce a probsbility measure P

Euclidean space

by

¥See Ref. 28, p. 169.
¥%See Ref. 29, p. 10.
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PR(B) = j'...s'dF(xl,...,xn) (7.11)
B

where QR = QR for all j and B is any Borel set in O2. The extension of

R
this res&lt to a nonfinite family of random variables can be accomplished
and is discussed by Halmos.¥* As 1in the single variable case, any problem
involving random variables measurable with respect to tg(Xt;teT), the
minimum o-field on which X; is measurable when t 1s contalned in the set

T, can be expressed as the corresponding problem in terms of random vari-
ables defined on the induced probability space.

The concept of a measure (probability) as discussed above, allows us
now to define several types of convergence which will be useful in the
following development.

Definition 7.3: A sequence of randam variables {X,} is said to con-

verge almost everywhere (a.e.) to a random variable X, with respect to

s measure P, if there exists a set N for which P(N) = 0 and X (w)>X(w)

when w#N.

Definition T.4: A sequence of random variables {X,} is said to con-

verge in the mean to a random variable X, with respect to a measure P,
(denotedlqi.m.Xn = X) if, for every € > O, there exists a real number n,

n-o«<

such that, forn > ng,

S 1%-x|2ap <e .
Q

Definition 7.5: A sequence of random varigbles {Xn} is said to

converge in measure (probability) to a random variable X, with respect

to a measure P, if, for everye€),& >0, there exists a real number n,  such

that, forn > ng,

*See Ref. 30, p. 15L.
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Plu: [X -X| > ¢} < e5. (7.12)

Definition T7.6: A sequence of random variables {X,} is said to con-

verge in distribution to a random variable X if the distribution func-

tions {F;} of {X;} converge to the distribution function F of X at every

continuity point of the latter.

Any standard text* on measure theory proves that convergence almost every-
where implies convergence in measure and in distribution. Likewise, con-
vergence in the mean implies convergence in measure and in distribution.
And finally, convergence in measure implies convergence in distributicn.

We now list several theorems which will be necessary to the follow-
ing treatment. The proof of these theorems can be found in the references
noted in each theorem.

Theorem T7.1: If the sequence of random variables {X,} converge in
the mean to X, then some subsequence {th} converges almost everywhere¥#¥
to X.

Theorem 7.2: If {X } is a sequence of random variables which con-
verges in measure to two different random variables, X and Y, then X = Y
almost everywhere. ¥¥¥

Theorem 7.3: If {X } is a mean fundamental sequence of integrable
random variables, i.e., if for every € > O there exists a real number n

(0]

such that

{ | %,-X,|2aP < € (7.13)

when m, n z_no, then there exists a square integrable random variable X

*See Ref. 30, pp. 92 and 103 and Ref. L7, - T7-
¥*¥See Ref. 28, p. 119.
¥%¥*¥See Ref. 30, p. 92.
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such that¥

Theorem 7.L4: A random variable is integrable with respect to a meas-
ure P if and only if its absolute value is integrable with respect to that
measure. ¥¥

Theorem 7.5: If {X,} is an increasing sequence of nonnegative random
variables which are integrable with respect to a measure P, then¥¥*

S lim X@P = 1lim fXdP (7.14)
0 noe n-eo
This theorem specifies conditions under which the order of the limit and
integration operations may be interchanged.
Theorem 7.6: (Schwartz inequality). If X, and X, are square inte-

grable functions defined on the finite measure¥**¥*¥ space (9,13,P),

then***%%

lx X,|aP < (}/ deé> 1/2 <, X%d%) 1/2. (7.15)
/ Q

Schwartz's inequality gives us an upper bound on the expectation of the
product of two random variables in terms of the second moments of the in-
dividual random variables.

Theorem T7.T7: (Tchebycheff's inequality). If X is a random varisble

such that E{X} = 0 and E{X?}= o§ < =, then, for every¥¥¥¥¥¥ positive ¢,

(7.16)

P{u;|X| > e} < = ©

*¥See Ref. L9, p. 1L6.
*%See Ref. 30, p. 113.
*¥%¥%¥See Ref. 30, p. 1l12.
*¥¥%¥¥) measure space (Q,lS,P) is finite if P(Q) < .
¥%X%X%¥*See Ref. 30, p. 175.
¥%%¥%¥%See Ref. 30, p. 200.
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We are now in a positiion to give the definition of a random process.

Definition T7.7: A random process is any family of random variables

{Xt;teT} where T is some index set. It may also be denoted with
{X(t,w) ;0eQ,teT} to emphasize the fact that two varisbles (t,w) are now

involved rather than one as in the case of a random variable.

The index set T is normally associated with the time of observation with
the process being either a discrete parameter of continuous parameter proc=
ess depending on whether the set T is an integer set or an interval of

the real line. The function of teT obtained by fixing we® and letting t

vary 1s called a sample function or trajectory of the process.

In this presentation, we will be concerned chiefly with Gaussian
random processes which are defined by specifying the form of the multi-
variate distribution functions. In particular, if, for every finite sub-

set t;,...,t, of T,

n

At )‘t

F(Atl,...,xtn) = j:wl f_m o) n/2/__

{ L (x-um ) Ly (X—MX)} dx

(7.17)
where
T
X = (X 9 ,X ) 1
tl tn
T
My = EB{(X, ,...,%X. )"}
X t) ty
and
v, o= EL(X-My) (x-M)T)

. T
(note that (X—MX) denotes the transpose of (X—MX) while V;l and |an de—

note the inverse and determinant, respectively, of the matrix Vn), then
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the process will be said to be a Gaussian process. It is easily shown that
such a system of distribution functions satisfy the conditions of Lo&ve

and Kolmogorov discussed above, and, as a result, there exists a prob-
ability space and a family of random variables with these multivariate
distribution functions. Note also that knowledge of the first two moments¥
of a Gaussian process is sufficient to characterize the process. We shall,
henceforth, refer to the first moment of a random process {X%;teT},

{E{X; };teT}, as its mean value function and to the joint second moment
T
)

B -E{Xg 1) (X -E{X}

;tveT}, as its covariance function.

The specification of the multivariate distribution functions of sa
random process may not, however, provide sufficient information to answer
all questions that might be of interest. For example, we may want to con-
sider the w-function defined by

J’ X(t,w)dt

T
where {Xt;téT} is a random process and T is the interval [0,Tp]. This op-
eration is not necessarily defined, however, since X need not be a func-
tion measurable with respect to t. Therefore in some cases, it is neces-
sary to restrict the class processes considered. This will be done with
the help of the following definition.

Definition 7.8: The random process X = {Xt;teT} is measurable on

the interval T if Xt(w) = X(t,w) defines a function measurable on the pro-
duct measure'spacé“‘(QXT,ﬁgxcgr,th) where 16; = 1b£f\T represents the
Borel sets on the interval [O,Tf] and Pxt is the corresponding product

measure.

*See Ref. L3, p. L9, for a definition of moments of a random variable.
*%See Ref. 30, p. 137, for a discussion of product measure spaces.
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Thus, if a process is measurable, it is reasonable to consider the inte-
gral of the process with respect to t while w is held fixed since such
a function is then measurable.*

Although not every random process on the interval T is measurable,
in many cases they are '"nearly" measurable. To make this statement more
precise, we will need the following definition and theorem.

Definition 7.9: Two random processes X and Y defined on the same

probability space (Q,iS,P) and the same interval T are said to be equiva-
lent if Xy = Yy a.e.(P) for every teT.
Theorem 7.8: (Borel-Cantelli lemma). For any sequence of events
{An} from the O—field.ﬁgassociated** with an arbitrary probability space
(Q, 6,’9), one hag¥%#
! P(A) <»=>Tim A, = ¢ a.e.(P) (7.18)
n n-»eo

where ¢ denotes the empty set.

We can now present the following theorem which specifies conditions on a
given random process that guarantee the existence of an equivalent process
which is measurable.

Theorem 7.9: Let X = {X;;teT} be a random process on the probability
space (Q,ﬁS,Pl) for which the second moment El{XtXt'} is continuous when
t,t'eT = [0,Tp]. Then, there exists a random process X' defined on
(Q,ﬁB,Pl) which is measurable and equivalent to X. In addition, if X is
also a random process on the probability space (Q,%B,Pz) with Ep {X X1}

continuous for t,t'eT, there exists a process X" which is measurable and

¥See Ref. 30, p. 1k2.
*¥¥See Ref. 50, p. 128.
¥¥¥]1im A, = A .
n g? n1E¥n m

n-ro
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equivalent to X regardless of which of the spaces, (2,5 ,P) or (9,5,B),
is the underlying probability space.¥

Proof: Applying Theorem 7.6, we can write

g}xt-xt.ldPl.i {;g<xt-xt.)2dpi}l/2 = (B {(X)2} + E;{(Xy1)2)-2B{X, Xy 01}/
(7.19)

But, since El{XtXt'} is continuous for t,t'eT, for every € > O, there
exists a ¢ such that, when It-t‘l < 6, the expression on the right of Eq.
(7.19) is less than €2. Then, if we let B, = {w5|Xt‘Xt'| > e}, we see
that
~f | Xg-Xpr [aP; > Py (Be)
Q

which, together with Eq. (7.19), implies
P {w;| X=X | > €} < e (7.20)

when |t-t'| < e, i.e., Pl{w;lXt-Xtv[ > €) goes to zero as t' =+ t.

Now, for every integer n > O, let us choose a finite increasing se-
quence from T, say O < t§ < ... < tﬁn < T, such that P,{w;|X,-Xy|[>n71} <27
if u and v belong to the same interval [t?_l,t?]. (Without loss of gen-
erality, we may suppose that {t?}iCZ{t?+l}i for every n and that the

countable set T' consisting of all the t? is dense in T.) Then, let us

define a sequence {X*;n>0} of mappings of QxT into the real line by
*t,w) = X(t7,w)

. n .
if ti <t < t?+l‘ These mappings are measurable on (QXT,IEXGST). More-

over, the inequality

L Pilus|X-x@| > 071} < J 270 <o
n n

*This theorem is an extension of a theorem presented in Ref. 50, p. 91.
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holds for every teT and, due to Theorem 7.8,
1lim {w;|Xt—X1%} >n-l}y = ¢ a.e.(P)
n--o
But thls implies that the jointly measurable function

Iim X‘n(t,w)

jRa

equals X(t,w) a.e. (Pl) for every teT.

To prove the second part of this theorem, we need only choose the
sequences {t?}i such that the relation Pz{w;lxu—le > n~l} < 270 is also
satisfied. The remainder of the proof then follows the construction pre-
sented above.

Q.E.D.

We can now state the following theorems which illustrate several
properties of measurable processes.

Theorem 7.10: (Fubini). If X is a nonnegative measurable random

process on QxT, then

_f Xd(Pxt) = ff Xdtdp = f.('xant (7.21)
QxT Q@ T T Q

where P, t and Pxt are the measures on Q,T and QxT, respectively. Also,

if A is a measurable subset of QxT of measure zero, then almost every

section has measure zero.¥ (The set A = {w;(w,t)eA} is called the sec-

tion of A determined by t.)

Theorem 7.11: (Fubini). If X is an integrable process on 9QxT then

(7.21) is wvalig.**

¥See Ref. 30, p. 1kT.
¥¥See Ref. 30, p. 1L8.
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The sbove two theorems will be used to justify the interchange of the
orders of integration with respect to time and with respect to the prob-
ability measure of the sample space.

Theorem T7.12: Let {X;;teT} be a zero mean measursble Gaussian proc-

ess defined on the probability space (Q,13,P) and let T be a finite
closed interval of the real line. If E{XtXg} is continuous for t, seT,
and {gj} is any sequence of continuous real valued functions on T, then
the sequence of random varisbles {ej} defined by

65(w) = J'X(t,w)gj(t)dt (7.22)

T
is jointly Gaussian.¥*
Families of random variables which have the property of being "inde-

pendent'" will also play a key role in this presentation. As a result,

we state the following definition.

Definition 7.10: A family {Xj;jeJ} of random variables where J de-

notes an arbitrary index set is said to be independent if

Pl M{wX, <a,}] = T Plw;X, < a,} (7.23)
1 J J ] J J
J J
for every finite subset J' of J and every choice of real aj,jsJ'. Note

that by this definition, the distribution function of a finite subset of
an independent family of random variables is the product of the distri-
bution functions of the individual random variables of the finite subset.
This implies, in the case of an independent family of Gaussian random var-
iables which eventually enters our discussion, the density function¥*¥ of
any finite subset of the family if the product of the individual density

functions of the finite subset.

¥This Theorem is a trivial extension of the discussion presented in Ref.
L3, p. 155.
¥¥See Ref. 28, p.227.
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The concept of a "conditional expectation" of a random variable rel-
ative to a o-field fB' will also be useful. The following defintion
will serve to classify this operation.

Definition 7.11: If X is a random variable on (Q,%9,P), the condi-
@'

. 3 . 72 g . .
tional expectation E X of X with respect to ' C tﬁ is a random vari-

able on (2,%',P,) such that

g 8
= .2k
f:; Xdp E XdP],:.' (BE@) (7.2 )

1
where P is the restriction of P to (3'. (EfSX is unique¥* a.e.(%Bi).)

ﬁ 1
This definition allows us to write the following theorem.

Theorem 7.13: Let X be a random variable of finite mean on (,Y3,P)

and let f4, c4,C...C {5 be o-fields of measurable sets. Let ' be
the minimum o-field containing é?l,g%,...,i.e., let 45" =28(621;ﬁ? geee)s

then¥¥

X a.e.(P'") (7.25)

where P' is the restriction of P to 6%'.

We shall conclude this section with two additional definitions which
are concerned with the mutual relationships that exist when two different
measures are defined on the same o-field and three theorems which are con-

sequences of these definitions.

Definition 7.12: If (Q,@,Pl) and (n,@,Pz) are two probability

spaces,we say that P, is absolutely continuous with respect to Py, in

symbols P2 << P;, if P,(B) = O for every measurable set B for which

*See Ref. 50, p. 121.
¥%See Ref. 29, p. 331.
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P (B) = 0. If P; << P, and P, << P;, then P, and P, are said to be equiva-
lent, in symbols P1 =P,

Definition 7.13: If (Q,F,P;) and (Q,%,P,) are two probability

spaces, we say that P, and P, are mutually singular, or more simply, that

P, and P, are singular, in symbols PllPZ’ if there exists two disjoint

measurable sets A and B whose union is  and

Theorem T.1k: If (Q,“3,P;) is a probability space and if P, is a

probability measure that is absolutely continuous with respect to P,, then

there exists a finite-valued measurable function

T2

dP,

on £ such that
P2(B) = [ —2% ap, (7.26)
for every measurable set B. The function sz/dPl is unique in the sense

that if, also,

for all Beﬁ, then

a.e.(Pl).

The function dPZ/dPl is called the Radon-Nikodym derivative of the measure

P, with respect* to the measure Py.

¥See Ref. 30, p. 129.
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The above Radon-Nikodym derivative will prove to be an indispensable tool

in the solution of the estimation problem.

Theorem 7.15: (Kakutani). Let {Pln} and {P, } be a sequences of
probability measures where, for all n, Pln and Ppoy are defined on a o-
field jgi of sets from a space @ and Py = P, . Then the infinite direct

n

product measures P! = ﬁ P and P! = § p are either equivalent,
1 n=1 in 2 n=1 2n

Pi = Pé, or mutually singular, PilPé, according as the infinite product

ap 1/2
f( 1n> aPpy, (7.27)
n=l Q@ dPop

=8

is greater than zero or equal to zero.¥

This theorem will be applied to the case where {6 } is a sequence of ran-
J

dom variables such that 6, is defined on the two probability spaces,

J
(Qj’1fi’Poj) and (Qj,‘f%,PEj). Then, due to the above theorem, the pro-
dJ

e, T @)

1 J j=1 J

(o)

duct measures P¥ = P ., and P¥ = Pij defined on (
j=1 9 1oy=1 3
are either equivalent or mutual singular.

=8

T7.2.2 Functional Analysis

Functional analysis is the study of functions in which the individual
elements of a class are considered to be points of an appropriate infinite-
dimensional space. In this way, many theories of these functions can be
derived as simple extensions of theories that are true for finite-dimen-
sional Euclidean spaces.

The function spaces of interest to us can be characterized by the
following definitions.

Definition T7.14: A complex (real) linear¥** space W is called a

*See Ref. 51, p. 295.
%*Gee Ref. L4, p. 9 for the definition of a complex (real) linear space.
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normed linear space if there exists a real-valued function on W, whose
value at weW we denote by |lw||, with the properties:

(L) [y |1 < Hwy ]+ [yl

no
®
=
n

la| |]w]]
(3) |lwl] > o
(W) ||w|l] % oirw# o0

when w, wy, wy,eW and a is an arbitrary complex (real) scalar.

Definition 7.15: A complex (real) linear space W is called a complex

(real) inner product space if there exists a complex (real)-valued func-

tion on WxW, whose value we denote by (wl,w ) when Wi wzsw, with the

2
properties:
(1) (W1+W2,W3) = (WI,W3) + (WzaW3)
(2) (wy,wy) = (wyswy) (the bar denoting complex conjugate)
(3) (awy,wp) = alw;,w,)

(L) (w,w) >0 and (w,w) ¥ 0 ifw % O

when w, wy, W,, W,eW and a is an arbitrary complex (real) scalar.

Note that if we define ][w|| = (W,w)l/e, an inner product space is also i
a normed linear space.
One class of functions with which we will be concerned is denocted by
LZ[T} and includes all real-valued functions which are square integrable
on the interval T, i.e., all functions f for which the Lebesgue integral
[ f2at, (7.28)
T
where t represents the Lebesgue measure on the interval T, is finite. For

this class of functions, we can define an inner product by

(f,g) = ffgdt (7.29)
T
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and it can be shown¥ that LZ[T]’ with this inner product, satisfies the
axioms of a real inner product space. It is also a normed linear space

if we define

[e]]% = ,(fzdt- (7.30)
T

Furthermore, this space** is complete which means that all Cauchy*¥*¥ se-
quences in L,[T] converge in norm to an element in Ly[T], i.e., if {fn}

is a Cauchy sequence in L,[T], then there exists an element feL, [T] such

that
lm [|f-r [| = o.
n-»>o
A complete complex (real) inner product space is also called a complex

(real) Hilbert space. Henceforth, we shall refer to a complex (real) Hil-

bert space as a Hilbert space since the theorems that will be required
are true in both cases. In addition, L,[T] is separable which implies

that there exists a sequence of functions {gi} such that

(gj,gk) = 11if j=k

0 if j$k (7.31)

]

and such that, for any geLZ[T],

n
lim [ |e- ]
n»e T J

(g,g,)g. |%2dt = o.
. ,JJI

The sequence {gn} is known as an orthonormal basis for the Hilbert space.

(If a sequence of functions satisfies Eq. (7.31) only, it is called an

orthonormal sequence.)

¥See Ref. L4, p. 108.

*¥¥See Ref. LU, p. 377.

*¥**If {f,} is a Cauchy sequence, for every e > O, there exists a number
n, such that, for n, m > ng, |lfn—fm|| < €l
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If we now consider the set of functions

k 1 K

T,[T] = L;[T] = L}[T)x ... xIo[T] (7.32)

k

n ==

1

where L%[T] = L,[T] for all k so that a point in IQ[T] is a vector valued
function with each component of the vector being an LZ[T] function, we
find that L,[T] is also a separable Hilbert space when the inner product

is defined by

K \
(1e),leD) =} J (] [e], at. (7.33)
=1 T

In this equation, [f], [g]eLZ[T] and [f]k and [g]k are the kth components
of the vectors [f] and [g], respectively. The space EQ[T] will be the
space of interest in the remainder of this chapter.

The next topic to be reviewed is concerned with transformations de-
fined on the space L,[T]. As an example, consider the integral operator

R defined on Eé[T] by
R([£) = [ [e(t,9)] [£(v)]av (7.34)
T

where [r(t,v)] is a KxK matrix of functions of two varisbles and
[r(t,v)][£(v)] is the matrix product of [r(t,v)] and [f(v)]. The prop-
erties of such a transformation when the kernel [r(t,v)] is of a partic-
ular type will be discussed later. In the meantime, we shall classify
the transformation to be used in the next section.

Definition 7.16: If W, and W, are linear spaces, then an operator

R on W), into W, is called linear if the following two conditions are
satisfied:
(1) R(wy +w,) = R(w,;) + R(w,,)

(2) R(aw,) = aR(w,) (7.35)
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eW. .

where a is an arbitrary scalar and Wis W s W EW,

Definition 7.17: If R is a linear operator, then the inverse of R,

denoted R‘l, is such that

R(R"Y(w)) = w
and

R-UR(w ) = w (7.36)

for all w. (Note that the inverse does not always exist.)

Definition 7.18: If W1 and W2 are normed linear spaces, a linear
operator R on W1 into W2 is bounded if
sup ||R(w1)|| < o,
| [y ] <2

We define the norm of R, denoted ||R||, by

[IR[| = su [R(w )] (7.37)
ol
1 —
if it exists. (It can be shown¥* that the norm of R is also given by
ECNIT
w130 || ||

Definition 7.19: If W, and W, are normed linear spaces and R is a

bounded linear operator on W; into W,, it is said to be completely con-
tinuous if it has the following property: If {w, } is any bounded se-
quence of elements from W,, i.e., l|wln|| < M for some finite M and all
n, then, the sequence {R(wln)} contains a convergent subsequence.

Definition 7.20: If W is an inner product space, an operator R on

W into W is said to be positive if

*¥See Ref. L4, p. 86.
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(R(x),w) > O (7.38)

for every weW. It is positive definite if

(R(w),w) > O (7.39)

for every nonzero wewW.

Definition 7.21: If W, and W ,are inner product spaces and R is a

linear operator on Wi into Wy, then the adjoint R¥ is defined on W2 into

Wl by
(R(wy),wp) = (wy,R¥(wz)) (7.%0)

for wieW; and wyeW,. If W;=W, and R¥ = R,we say that R is self-adjoint.

Definition 7.22: Let R be a positive self-adjoint operator on W into

W. A square root of R, denoted Rl/2, satisfies
RY2(rY2(w)) = R(w) (7.11)

for every weW. (Every positive self-adjoint bounded operator possesses
a unique positive self-adjoint bounded square root.¥)

Having made the above definitions, we will now state several theorems
which will be useful in the following development.

Theorem 7.16: If R is a bounded linear operator defined on a dense

subset of a Hilbert space W into W, then there exists a unique bounded

linear extension R' of R to all of W, i.e., R' is bounded and
R'(w) = R(w) (7.42)

if weéﬁé, the domain of R.

Proof: If weW, there exists a sequence {wn} such that wnezﬁé for

each n and

*¥See Ref. 52, p. 62.
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| | =w|] >0
since JaR is dense in W. Define

R'(w) = 1lim R(wn) = z

nN->o

1

which exlsts because R is bounded and W is complete. Then
[ IR (w)]] | |RGy) ||

= 1lim <
| v nwe | v ||

since the norm is a continuous¥* function. Now assume that there exists

another bounded extension R" such that
R"(w) = z,.
Then

Hzg-z2ll = JIR'GO-R"GOI] = 2tm [|RGey) - RO)[| = 0
m, oo n

and we see that R' is unique.
Q.E.D.

Theorem 7.17: If R is a bounded self-adjoint linear operator defined

on a Hilbert space W into W with its null space¥*¥* consisting of the zero

element only, then the inverse R-! is densely defined.¥¥¥

Theorem T7.18: Let Rjk,j,ke{l,2,...,K}, be a finite set of completely

continuous operators, each defined on the Hilbert space W into W. Then,
K

the operator R defined on the product space wk = T Wg,Wy =W for all k,
k=1

into WK by

wy = R(w,) (7.43)

¥See Ref. LL, p. 8L.

¥¥The null space of an operator R defined on W consists of all weW such
that R(w) = 0.

*¥¥¥See Ref. L4, p. 226.
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K -
where Wy = (W)1,Wypsee-sWig)eW s Wy = (W, 500,00 ,W,g) €Wy, and
11

K
g = L Ryl (7.41)

is completely continuous.¥*

Theorem 7.19: If R is the operator defined on L, [T] into L, [T] by

R(f) = fr(t,v)f(v)dv, (7.45)
T
then the condition

S re,v) |2t av < = (7.46)
T T

is sufficient to ensure that R is completely continuous.**

Thus, if the transformation defined by Eq. (7.34) has a kernel which

satisfies

W ~1R

ffl[r(t,v)]jkfdt dv < = (7.47)

Jok=1 T T

where [r(t,v)]jk

tinuous by the above two theorems.

is the jkth element of [r(t,v)], it is completely con-

The next two theorems are known as the Spectral Theorems for com-
pletely continuous self-adjoint operators and bounded self-adjoint op-
erators, respectively. In order to write these theorems, we must recall
that a closed linear subspace of a Hilbert space is a linear subspace in
which all Cauchy sequences converge to a limit which is in the subspace.
Also, if Wj is a closed linear subspace of a Hilbert space W, every ele-
ment of W can be written as the unique sum of two elements, one in Wj and

one in the orthogonal complement of Wj which is the set of all weW which

satisfy (wj,w) O for all wiely.

¥See Ref. 53, p. 316.
¥*See Ref. 53, p. 320.
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Theorem 7.20: (Completely continuous self-adjoint case). Let R be

a completely continuous self-adjoint transformation defined on a Hilbert
space W. Then, the null space (a closed linear subspace) of R is orthog-

onal to its range, i.e., if w] is contained in the null space of R and w,

in its range, then (wl,wz) = 0. Furthermore, there exist a sequence of
distinct real numbers MysHy,-+., and an associated sequence of closed
linear subspaces WisWy,..., each having nonzero dimensionality with the

following properties:

(1) On Wy, R = uyTs i.e., the vectors of W,

3 are the eigenvectors of

R corresponding to the eigenvalues My
(2) If j$k, then wj_Wk’ i.e., (Wj’wk) = O for any wjeW; and w, eW,.

(3) The closed linear subspaces {Wj} span the range of R in the sense

that any w in the range of R can be written as the sum
Vo= oWt W, f oL, (7.48)

where Wjewj for each j, and with the series converging in norm to w.
(L) The subspaces {Wj} each have finite dimensionality.
(5) The sequence {uj} converges to zero.

The numbers {uj} and the subspaces {Wj} are uniquely determined by R.*

Note that the above theorem implies the existence of a sequence of func-
tions which are eigenfunctions of R and which form an orthonormal basis
for the range of R.

Theorem T7.21: (Bounded self-adjoint case). If R is a bounded self-

adjoint linear transformation on a Hilbert space W and if

m(R) = inf  (R(w),w) (7.49)
| [wl[=1

¥See Ref. 5L, p. 115 and Ref. Lk, p. 336.
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and

M(R) = sup  (R(w),w) , (7.50)
| [wl]=1

then there exists a family of projections {Eu} defined for each real u

having the following properties:

(1) By By, = By By = By 4wy <oy,

(2) u%i$1+E“2(w) = EU1(W)’

(3) Eu =0if pu < m(R), EU =1 if M(R) < u,

(L) E R = RE,. (7.51)

For each w, and w, in W, (E (w;),w,) is of bounded variation as a func-

u
tion of u, and
82
[
(RGwy)swy) =\ wd(E () ,w2). (7.52)
Bl

The integral is an ordinary Stieltjes integral over any interval [81,82]

such that B! < m(R), M(R) < 2. Also, the formula
R = ( yaE (7.53)

holds, the integral on the right being defined as the limit of Riemann-
Stieltjes sums with convergence in the norm of W.¥

Corollary T7.1: If R is a bounded self-adjoint operator on the Hil-

bert space W whose spectrum is discrete, i.e., if there exists a sequence

of real numbers {uj} for which the family of projections {E,} discussed

in the previous theorem has the property, for every j,

E“(w) = E“i(W)

¥See Ref. Lk, p. 3L45.
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when weW and uj <upo< uj+l’ and if

Howy =0 (7.54)
with the range of EM_EM‘ being finite for all p, then R is completely con-

tinuous.¥

The Spectral Theorem for completely continuous operators can be ap-
plied to prove the following theorem.

Theorem T7.22: (Mercer's Theorem). Let the kernel [r(t,s)] of the

operator R defined in Eq. (7.34) be the covariasnce function of a K-dimen-
sional vector valued random process with each element of [r(t,s)] being
continuous and bounded on TxT. Then, there exist an orthonormal sequence
of functions {[g,l}, [gn]efé[T] for each n, and a sequence of real num-

bers {u,} that satisfy

R([g, 1) = w,leg,] (7.55)

n
for all n and such that

T

[r(t,s)] = (s)] (7.56)

N~ 8

u ley ()] -lgy

n=1

where the series converges uniformly for all t, seT.*¥

This theorem gives us a "decomposition" of the kernel [r(t,s)] which sep-
arates its variation with t and s into functions which are dependent on
a single variable.

One additional type of operator will be of interest in the following
treatment, the so-called Hilbert-Schmidt operator. The integral operator

R defined on L,[T] by (7.34) and such that

*¥See Ref. 55, p. 23L.
¥¥See Ref. 56, p. 215.
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K -
g:l éj % [Trt,8) Iy [Patas < = (7.57)

Js
is an example of such an operator (see Lemma 7.1). To characterize these

operations, we make the following definitions.

Definition 7.23: If W is a separable Hilbert space, the trace of

an operator R on this space is defined by

tr(R) =

iHo~18

(R(w,),w,) (7.58)
1 o

J
where {wj} is an orthonormal basis for the Hilbert space.

Definition T7.2L4: The Hilbert-Schmidt norm N of an operator R on a

Hilbert space W is defined by

p

o /
N(R) = (tr(R*R))T/? = ) IIR(wj)l|i> (7.59)
3=1

where {wj} is an orthonormal basis for the space. A Hilbert-Schmidt
operator, then, is any operator R for which N(R) < .

The following theorems for the Hilbert-Schmidt operators will be
necessary for the solution of the estimation problem.

Theorem 7.23: The Hilbert-Schmidt norm has the following properties:

(1) N(R) is independent of the basis used in its definition.

(2) [tr(RyR,))| < N(RN(R,),

(3) N(R,R,)

| A

17| 1(E,)
N(RyRy) < |[R, | |N(R,),

() |IR]] < nw(R), (7.60)

when R,R;,Ry are Hilbert-Schmidt operators.¥

Theorem 7.2L4: Every Hilbert=Schmidt operator is also a completely

continuous operator.¥¥

*¥See Ref. 49, p. 1012.
¥¥See Ref. L9, p. 1010.
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It will be shown later* that the operator defined by Eq. (7.34) and
satisfying (7.57) has a Hilbert-Schmidt norm equal to (7.57) and, as a

result, is a Hilbert-Schmidt operator.

7.3 SOLUTION

Having stated the above mathematical preliminaries, we are now in a
position to apply these ideas to the solution of the direction finding
problem as discussed in Chapter 6. Let us begin by defining an observa-
tion space to be the space Q = § R; where, for each k, R; is the space

k=1
of all real~-valued functions on the observation interval T = [d,Tf]
and K is the number of receiving elements in the antenna array. Due
to 1its frequency of occurrence in the remaining chapters, we are de-
note the interval [O,Tf] with the symbol T. Then, an observation, a
point in the observation space, takes the form of the vector valued func-
tion [y(t)] = (yl(t),yz(tk,,,,y(tK))T, teT, with yk(t)eRg and representing
a possible signal received by the kth antenna of the array.

Initially, instead of allowing the angle of arrival to have any
value within a specified sector, let us consider the case in which this
unknown angle is limited to a finite number of specific values,
{al,az,...,aM}. In this case, a solution takes form of a disjoint parti-
tion (AO’AI""’AM) of observation space 9 with the understanding that if
yaAi,ie{l,E,...,M}, we will make the decision that the true angle of ar-

rival is given by a;

i and if yer, we will make the decision noise alone

is being received. An optimal solution is then defined to be the dis-
joint partition of Q which satisfies the "MPE" optimality criterion dis-
cussed on Section 6.3. (It will be shown later that this solution is also

optimal with respect to the "MAP" optimality criterion mentioned in Sec-

*¥See Lemma T.1.
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tion 6.3.) This criterion requires the minimization of the probability

of error P,, which, in this case., 1s defined bv

|
o~ 2

. Pria, )Pr (Q-A ) + Pr(a )Pry(0-A ) (7.61)

i=2
where Pr(ao) is the a priori probability of receiving noise alone,
PrO(Q—AO) is the probability of an incorrect decision being made when
noise alone is present, and, for each ie{l.,2,...,M}, Pr(ai) is the a
priori probability that a; is the true angle of arrival while Pri(Q~Ai)
is the probability of an incorrect decision being made when a; is the
true value of the parameter. Thus, the optimal partition of Q is that
partition of the observation space which results in a minimum probability
of error.

At this point, due to their repeated occurrence in the following dis-
cussion, let us agree to denote the sets {1.,2,...,M} and {0,1,2,...,M}

with the shorthand notation M and M., respectively. The fact that we

o
are using the symbol M to represent both the integer M and the set of
integers {1,2,...,M} will not result in confusion since it will be obvious
from the particular application to which quantity we are referring.

There is one obvious difficulty with the above formulation, however,
and it is concerned with the interpretation of the probability Pri(Q—Ai).
For example, does this probability exist for all partitions of Q@ and when
it does exist, how do we evaluate it? To answer these questions, let us
recall that [y(t)], teT, is a sample function of one of the vector valued
random processes [Y1] = {[Yi];teT}, ieM,,as discussed in Section 6.3.

(The process [Yi] should actually be denoted as [Y%] according to the

notation of Section 6.3 but, for convenience, we have replaced the super-

script ai by i.) Then, as a result of the discussion of Section T7.2.1,
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we know that there exists a probability space (ﬁi,éiiji) on which Yi]
is defined. Note that the probability measure §i and the o-field 13i are
dependent on the true angle of arrival since the covariance function which
determines this measure and o-field is dependent on a; . We then see
that, by Pr;(Q-A;), one really means f&{w;[Yi(w)]eQ—Ai}. It is now obvious
that all possible partitions of Q are not necessarily possible since all
sets of the form {w;[Yi(w)]EQ—Ai} need not be measurable. Therefore, let
us now determine for which subsets of Q, the probebilities of their in-
verse images under [Yi] are defined, i.e., let us determine the subsets
of @ which are possible candidates to be members of the optimal partition
of Q.

The knowledge that a particular process, say [Yi], is Gaussian with
a specified covariance and mean value function provides the probabilities
of the sets in the minimum o-field with respect to which each random var-
iable [Y%] is measurable when teT. Let us denote this minimum G—field‘ééi
and the measure defined on it by'ﬁi. According to the discussion of Sec-
tion T7.2.1, let us also make the standard construction which completes
this measure so the o0-field of sets of known probabilities can be en-

larged slightly, by completion, to i?; with the associated measure being

—

~ _l
Pi' Note that i1f the inverse image of a subset of Q under [Yi] 1s con~

tained in B, , 1t need not be in {% under [¥J]™1 when i+j. This detail
will be considered in the next paragraph where we shall construct prob~
ability spaces which contain all the information that is necessary for
obtaining an optimal partition of § and whose sample points are elements

of Q.
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Let us now define Q;to be the o-field of subsets of ( generated by

the class of sets E;of the form

D = {[rleq; [£(t))] <a, [f(t,)] <&

1 Sle(t) ) <8y ) (7.62)

where n is any arbitrary finite positive integer, tjET for je{l,2,...,n},
and gﬁ,je{l,Z,...,n}, is any real vector in K-dimensional Euclidean space.
In Appendix I, it is shown that [Yi]"l (B) = iﬁi where 1 is any ieM;.

Then, if we define a measure Pi such that
w/
= . .6
P, (B) B () (7.63)

when Be®3 and ﬁi = [Yi]_l(B), we see that (Q,lﬁ,Pi) is a probability space

with a measure defined on {3 that is consistent with the measure on ‘égi.

Furthermore, if we complete Pi to P, on 13i, we find (Q,f%)fg) possesses
i

the desired property that every subset of @, whose inverse image under

—
2

(Y1] is measurable with respect to GBi, is an element of i?i. This fol-
lows from the fact that [Yi171(8,UB,) = [¥117}(8)U (¥} 171(8,) for By,
B2eéz The measures of the corresponding elements of these two o-fields
are easlily seen to be equal. In a similar manner, the probability spaces
(9,£§i,§£), ieMy, can be constructed.
To summarize the above discussion, the probability spaces (Q’£§i’§i)’

ieMy, can be constructed so as to have the property that any subset of Q
whose inverse image under [Yi] is contained inAégg is an element of Zgz

and the probabilities of the subset and its preimage are equal. Also,

— ~

any element in Qﬁ; has a preimage in &fﬁ_of‘eqpal measure. As a result,

the sets that make up the optimal partition of Q must be elements of the

-—

appropriate o-fields zél, ieM,.
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It will be shown later that, in the case of most practical interest,
the above measures have the property Pi = Py, 1ieM, i.e., these measures
are equivalent. For this case, the following theorem with &§= égo gives
us a clue to the construction of an optimal partition of the space Q.

Note that, if P, =P , then P, << P_, P << P, and B, = & .
i o i o’ "o i 5 o

Theorem T.24:¥ Let (Q,i?,?&), ieMy, be probability spaces such that

P ieM

Pi’ 52 is absolutely continuous with respect to ?g, i.e.,

P, << P, ieM_ . (7.6L4)

Let a; , ieM_, be such that O < a; <1 and 'Z a; = 1 and let (Ag,Ap,...,hy)
be a partition of @, i.e., L«) A =, Aiiigpfor each ieM, and AimAj = ¢
if ij. Let dP;/dP,, ieMo,lge the Radon-Nikodym derivatives of P; with
respect to P_, and let (Ag,AT ,...,Aﬁ) be the partition of Q whose ele-

ments are defined by

ap. ap.
A¥ = {w;ai-j:l (w) > aj-ﬁjl (w),j < i}
* P apP
dPs dpP s
N {w;ai-ij (w) > ay —d (0),5 > i} (T7.65)
P, dp,

for all ieM,. (Note, in writing Eq. (7.65), we have treated the sub-
script o as the number O so that j < i and j > 1 are meaningful.) Then,
for any partition (AO,Al,...,AM) of 9, we have
VooaP.(0-A*¥) < ) a P (a-Ay) . (7.66)
. 1 i T . 11
ieMy ieM
Proof: Since the Radon-Nikodym derivatives are measurable functions,

it can be seen that the sets Af, ieM,, are measurable. Moreover, we have

*The remaining theorems and lemmas of this chapter are gxtensions to, the
vector caﬁg of results_originally obtained by Kadota,5 =29 Pitcher,
Bharucha, *© and Root.>1 o
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z a-P. (A¥) - z a.P.(A,) = z la:P. (A¥* N A )-a.P.(A¥,) ]
ieMy e ieM, Al i,jeMb o g d J
ap ar —
. o B -0 )|,
1,JeMy AFNAS[ " dP, P,

v
(@]
—~
-3
[0)
]
S~—r

,...,A;I)

..»0y) are partitions of Q and the inequality follows from

where the first equality follows from the fact that both (A*,AT
o
and (Ao’Al"

the definition of the sets A¥, ieMo. Then, because of the relation
i

.z aifi(Q'Ai) = 1 - E a:P.(A,), (7.68)

1 aPie-a)) < T aB(0-ny). (7.69)

Q.E.D.

As a result, the above theorem tells us that if the measures Py, 1eM,, are
each absolutely continuous with respect to ?g which is implied by the
statement Pi = Po’ ieMo, then knowledge of the Radon-Nikodym derivatives
dﬁi/dﬁg, ieMy, is sufficient to provide an optimal partition of the ob-
servation space Q. Thus, the problem reduces to that of obtaining these
derivatives. The following theorem will allow us to extend these results

to the general direction finding problem in which ai's are not limited to

a finite set of values.

Theorem T7.25: Let E& and A;, ieMO, be as in the previous theorem

but with M no longer finite and define

THE UNIVERSITY OF MICHIGAN
~ ENGINEERING LIBRARY
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N = {w; sup 8, Eﬁ; (0) F a Eiﬁ (w), ieMy} (7.70)
JeMy ap, o
where Mé = {0,1,2,...}. Also, define
_g = AgUﬁ
and
K: = A¥, ie{1,2,...}. (7.71)
Then {K?}is a partition of Q and
iZMé ai§;(9—1§) i'izMé aiig(Q_Ai) (7.72)
for all partitions (Ag,A;,A,,...) of Q.

Proof: Clearly, the sets A;, ieMé,are disjoint and measurable. How-

ever, their union () Ar is not necessarily equal to @, i.e., for every
ieM!
we®, sup  a; (deYGPb? (w) may not be achieved for any jeM) so that w
JeMj

need not belong to any A;. The set N is this set of exceptional w points.

Since dfﬁ/dfg > 0 a.e.(Fg), Theorem 7.5 tells us

dP: — ars —
fza—_.id?o=zajf—_id?o=l
Q jeMl ° dP, JeM! Q ap_
Thus ,
dr
I ey =hem e (R
JeMy 1
and
ar. —
lim a, —L >0 a.e.(P ),
o 0 °
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As a result, E;(ﬁ) = 0 and the remainder of the proof follows that of
the previous theorem.

Q.E.D.
Thus, even when the true angle of arrival can achieve any one of a count-
able set of values, the Radon-Nikodym derivative is the key to the op-
timal partition of the observation space Q if Pi = PO for all ieM].

In order to provide a proof of the next theorem which specifies, for
any arbitrary index ieMé, the functional form of the Radon-Nikodym deriva-
tive d?i/dﬁ; as well as the conditions under which the measure Pi is
equivalent to Py, we will need the results of several lemmas. These lemmas
will require the use of two auxiliary random processes, [Z1] and [Z°], de-
fined on the probability spaces (Q,ég,Pi) and (Q,QB,PO), respectively,
where i is any index ieM) for which the particular Radon-Nikodym deriva-

tive dﬁi/dfg 1s desired. Before specifying these processes, however, sup-

pose [Z'] = {[z{]1;teT} is defined on Q by

[zL(leD] = [£(t)] (7.73)

for all [f]eQ. It can be seen that [Z'] is a random process on (Q;ﬁg,Pi)
for each ieMé and that'igis the minimum o-field for which this is true. It
can also be seen, for any finite subset {t),t,...,t,}CT, the distribution
function of [Z%l],[Zéz],...,[Zén] when [Z'] is assumed defined on
(Q,&%,Pi) is equal to the distribution function of [Y%l],[Y%ZJ,...,[Y%n].
It then follows, [Z'] is a Gaussian process with a mean value and co-
variance function identical to that of the process [Y1] when [Z'] is de-
fined on (Q,?B,Pi). (These common mean value and covariance functions

were discussed in Section 6.3.) Moreover, according to Theorem 7.9, there

exist measurable processes defined on [(Q,QgiPi);ieMg} which are equivalent
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to [Z'] when defined on {(Q,i?,Pi);ieMé},respectively. The equivalent
processes defined on (Q,j?,Pi) and (Q,iggPo) are the auxiliary processes
referred to above and denoted by [Z1] and [7Z°], respectively. Further-
more, due again to Theorem 7.9, we can assume without loss of generality
[z2(t,[£1)] = [29(t,[£])] for all teT and [fleq. (Even though [z}] ana
[Z°] have identical values on the probability spaces, the separate super-
scripts will be retained to distinguish the underlying probability meas-
ure.) The equivalences mentioned above can then be applied to show [2Z1]
and [Y1] as well as [2°] and [Y°] have identical mean velue and covariance
functions. Finally, let us define‘ig' to be the minimum o-field with re-
spect to which [Z%] and [Zg] are measurable for all teT. It then fol-
lows, again due to the above equivalences, the elements generating the
o-field B3’ (and, hence, the elements of 13') differ from the elements
generating {3(and, hence, the elements of ?3) by sets of measure zero
with respect to 5; and 5;, i.e., for any element in the generator of‘1g'
(and, hence in %9'), there exists an element in the generator of ‘f(and,
hence, in 13) for which the symmetric difference of these two sets is a
subset of a set in.ébwhose P; measure is zero and similarly for Po. Thus,
for any element Bef}, there exists sets Bi, eig', Bée‘iB', Nf:_Nie‘igfor

vhich P;(N1) = 0, and N,CNe B for which P (NQ) = O such that B = BAN

2 1

A
and B = B)AN,. But this implies, defining ¥' to be the class of sets of

the form B'AN where B'e ' and NCN;e 5, NCN_ef3 , with Py(N;) =

B . (7.7%4)

In the following lemmas, we will also have need of the integral opera-

tors R,, ieMé, defined on LQ[T] by



R ([£]) = ); [x'(t,v)1[£(v) Jav (7.75)

where [ri(t,v)] is the matrix covariance function common to the processes
[Y1] ana [Zi] and [f(v)] is any vector valued function from EQ[T] which
was discussed in Section 7.2.2. (Note that [ri(t,v)][f(v)] denotes the
matrix multiplication of [ri(t,v)] and [f(v)].) The properties of these
operators which will be of interest to us are summarized in the next lemma.

Lemma 7.1: The integral operator R; defined in Eq. (7.75) takes ele-
ments of fé[T] into elements of Eé[T] and is self-adjoint, positive de-
finite and Hilbert-Schmidt.

Proof: See Appendix II for a proof of this lemma.

Note that since R; is positive definite, self-adjoint and completely con-

tinuous, there exists a unique, positive, self-adjoint, bounded, square

root operator R%/Z defined on L,[T] (see Definition 7.22). In addition,

(R1/2(LeD),B/2(0eD) = (B ([£]),[£]) > O (7.76)

1

for all [f] = O so that Ri/z has a zero null space. Then, due to Theorem

7.17, BH/2 = (rE/3))

is densely defined.

The next three lemmas will be concerned with the relationships that
exist between different probability measures defined on identical o-fields.
In particular, we shall be concerned with the o-field %5 defined in Eq.
(7.62) and the two probability measures, P, and P;, induced on @gby the

random processes [Y°] and [Y1] as defined in Eq. (7.63).

Lemma T7.2: Let%é'be a 0-field of subsets of Q such that

BB (7.77)
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1
A A
and let P, and Pi be the restrictions of P, and P; to B . Then,

ﬁo_ng‘iﬁPoJ_Pi ) (7.78)

A A
Proof: If PolPi’ Definition T7.12 says that there exist disjoint sets

A
A,Be®B such that AUB = Q and

But, due to (7.77), A,Be ﬂ}and, since ﬁo and ﬁi are restrictions of Pj

and Py,

which implies PolPi'
Q.E.D.
q
Lemma 7.3: Let «3 be a o-field of subsets of € such that 1@C1E3,
A a
and define é@ to be the class of subsets of Q of the form %AN where Bei%,
A

NcNOew@, NC NieB and Po(Ny) = P;(N;) = 0. (Note that {? is contained
in 1@% and 1?;.) Let P, and P; again be the restrictions of P, and P; to

é? and assume

B, = B, (7.79)
and
A
Ec B (7.80)
Then,
(1) P, =P, P
(2> @O - @i = é
(3) dP;/dP, = aP;/af, a.e.(F)
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A
Proof: It follows from (7.80) and the definition of “# that, for
A — -

1
any Be ‘6, there exist sets B and N such that ﬁe 6, Ne (@o, Ne‘ﬁi,

0 and

g
o’\
=2
o
2
n

Bav .

=
jny
()
s
'_l
Hy
av]
oo
|
(@]
=
o
jn g
o
<
(1)

because of (7.79) which implies P, << P;j. Conversely, it can be shown

that P; << P_ so the assertion of (1) follows.

To prove (2), note that (1) implies “Bo = ..

i Moreover, it follows

from (1) and (7.80) that
= A\
HCP -

A é\ VoR
But, from the definition of ‘é, we have C @o so that

B>

"

=N

i Py ab;
d

pal
O
o Ban dP,

—

A A A = —
where B = BAN with Be¥8 and Ne“v’:?o, Ne #5; with P (N) = P,(N) = 0. It then

follows from Theorem 7.lh that
dP;

—_— = — a.e.(P.)

o dp ©

Q.E.D.
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Lemma T7.4: Let {Oj;jEM'}, M' = {1,2,...}, be a sequence of jointly
Gaussian random variables defined on the probability spaces (Q,%B,PO)

and (,%5,P;) such that

Eo{e,} = Ej{e;} = 0
Eo{e 6t = dejk
Ei{ej ek} = Bjajk

where E, and Ei denote the expectations with respect to P, and Pi’ respec-
tively, ij is the Kronecker delta, and Yj,Bj,jeM', are arbitrary posi-
tive numbers. Let f? be the minimum o-field with respect to which all

the 935 are measurable, and let 30 and ﬁi be the restrictions of P, and

P; on f%. Then,

, A A A
(1) either P, = P; or ﬁolpi .

4
(2) P, = P; iff
= Yi\ 2
z <é —‘4%> < e
j=1 3
R
(3) ir P = Py,
dp. e .
— = exp Y [i(i_..l—>eg:+%log LL:' a.e.(Po)

Proof: Let each faj, JeM' = {1,2,...,}, be the minimum o-field with
respect to which the random variable ej is measurable. Then, define 59
to be the class of sets of the form B, NB; /) ...NB. where B, eig. s

J1 Tdo Jdn Jp Tk
ke{l,2,...,n}, n is an arbitrary finite positive integer, and jyreM!

/ A U
(Note that R (D) = iﬁ so P, and P; are probability measures on #() )

Now consider the product probability* spaces (Q*,&S*,Pé) and (Q*,%B*,P;)

¥See Ref. 30, p. 157.
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(o] (o]

where Q¥ = ,gl Qj,Qj = Q, B* = .Hl i% and Pﬁ = .El ij,me{o,i} with
ij being tﬂ; restriction of PmJ;o Bj. Rememberz the o-field ‘ﬁ;* is
generated by the class of sets & ¥ of the form (B,xB,x...) where

Bje é%, jeM', and all but a finite number of the Bj equal Q. Also, the
product measure P; is uniquely defined by specifying, for each set
(ByxByx...) in o9 *,

A

A
PX(B,xByx...) = ﬁm(le)-Pm(sz) ... P

m(Bjn)

where BJl,BJ.Z,...,BJn are the sets BJk€ ng, JereM', which are not equal to Q.
We can now see, since the random variables {ej} are independent, there

exists a natural mapping ¢ from %D* onto g)

Z;(leBzx...) = leﬂszﬂo..nBjn .

with (leBzx..,) as described above, which preserves measures, i.e.,
P*(B ) % (B, NB: N ...N1B, )
m 1}{B2Xooa - m jln :'2 oo 0 J-n

for Me{o,i}. Then, since the probability* measure of the limit of an in-
creasing sequence of sets is equal to the limit of the probabilities of
the sets and since gll sets¥*¥ in ﬁ?(fa) and ﬂQ(QD*) are disjoint unions
if@g Eﬁf

and P |P. if P¥|P¥. Assertion (1) is now an immediate consequence of

A
of sets in <9and.%9*, respectively, it follows that ﬂo =Py

Theorem T.15.

Since Poj and Pij are Gaussian, we can write

1/2
dP; ; Y5 1/1 1 )
ap . exp2\y; "8, ) %"
0j B3 it

¥See Ref. 30, p. 38.
¥¥See Ref. 57, p. 22Lk.
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Then

= 8
—
&
'_l
~
}_J
~
™
=
I
= 8
=
™
~
~
=

which converges to a positive number if

by .B.
Y5P3 (7.81)

1 2
(Yj+Bj)

= 8

J

converges to a positive number. But (7.81) converges* to a positive num-

Z [: (7.82)
Y +B

2
hYJBj - (l_YJl/BJ)
2 2
(Yj+Bj) (1+Yj/3j)

ber if and only if

and, since

1 -

the inequality of (7.82) is satisfied if and only if

nes 8

(l_Yj/Bj)z < @,

Assertion (2) then also follows from Theorem T.15.
n n

To prove (3), let f3 = 79(631;6%,.,.,‘61) and note, for any anég .
there exists a Bﬁ which is a Borel set in n-dimensional Euclidean space

such that

A ~ n
P.(B,) = P%(B,) = Sﬂ P, (81,855...,6,)d0,d6, ... a8 (7.83)

¥See Ref. 58, p. 381.
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| A . .
where P? is the restriction of Pi to 13n and p?(el,ez,...,en) is the joint
density, with respect to the probability measure P;, of the Gaussian ran-

dom variables 6,,8,,...,0 (See the discussion concerning Egs. (7.3)

n
A
and (7.11).) Since a similar expression can be written for Po(Bn), (7.83)

is also given by

n
p(el 92 “ e 9 )
L TR p(6),0;,...,0,)d0, A6, ... by

BI"l prol(el’GZ”"’en)

ﬁi(Bn)

A
pn(el,ez,...,en)dPg

i
ja]

where p2(6,,62,...,0,) is the joint density, with respect to the prob-

ability measure P_, of 6136,,-.-,6 and Pt = p?/pg. However, due to

Theorem 7.14 and Definition T.11l, we can also write

A
, n  /3p.
lé]i(Bn) = ‘gEf <—71—>dP42
n dPO

n
A A
where Efg (dPi/dﬁo) is uniquely defined a.e. (Pg) so that

A
ab, p
Ezgn _7£ = pt a.e. (Pg).
dPO

n
(The subscript of EZ? denotes the fact that the underlying probability

measure is PO.) Then, by Theorem T.13, we have

no g, af, A
linp® = un g¥ =i = Z1 ace. (P) (7.8M)
n-e n-> dpP, dPO

A
. A AR . .
since dPi/dPo is measurable with respect to 3. Assertion (3) now fol-

lows from (7.84) and the fact that
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PP( 07465 ,...,0,)
1 > > °*¥n _ 4 62+Elog-i
p3(6, 8,50+ 50p) 3= l

Q.E.D.

The following lemms shows that the "inner product" of the measurable
random processes [(z}] and [2z°] discussed previously and eny fé[T] func-
tion results in a Gaussian random variable.

Lemma 7.5: If [z1] and [Z°] are the K-dimensional, zero mean, meas-
urable Gaussian processes discussed following Theorem T.25 and {[gj]} is
any sequence of elements from Eé[T], then the sequences of random var-

iables {63} and {e;} defined for all [fleQ by

LD = f 1A D gy () Jas
and

0°(le]) = [2°t,0s) 1 [gy(t) las

J T

are jointly Gaussian on (Q,z?,Pi) and (Q,fgﬁPo), respectively. (Note
that eﬁ([f]) = 63([f]) for all [£leq since [21(t,[f])] = [2°(t,[f])] for
all teT and [fleQ.)

Proof: ©See Appendix III for a proof of this lemma.

The next lemma specifies a condition, in terms of the integral op-
erators defined in Eq. (7.75), under which the measures Po and P; are
mutually singular, i.e., PolPi’

Lemma 7.6: Let R, and R; be integral operators of the type defined
by Eq. (7.75) and let [z°] and (z1] be the random processes referred to

above. If either Rl/2 -1/2 or RY/2 R71/2 is unbounded, then P_|P: .
o 9] 1 o1
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Proof: Note that R%/QRgl/E and Rg/2R51/2 are densely defined op-

erators on fé[T] and suppose R%/gRgl/e is unbounded. Then, there exists

— 1/2

a sequence of L,[T] functions {[fj]} in the domain of Rj satisfying
112,111 = 1 ana [[}/2R5/2(1e5 D)) | > 53, ret
ol(1e]) = & 5 (zi(e, e 1MR2( e, D) )t )at
J J T o J

o°([£]) = ?- J( [Z°(t,[f])]T[R;l/2([fj])](t)dt
T

be random variables defined (Q,ég,Pi) and (Q,dg,Pol, respectively. (Note
that these random variasbles are Gaussian due to the previous lemma.) Then,

since eg([f]) = 0°([f]) for every [fleQ, it can be seen that the func-
J

tion defined on Q by

o,([£]) = &°([£]) = or([£])
J J
is a Gaussian random variable on both (Q,z?,Pi) and (9576,P0)~ Moreover,
2y = L -1/2 -1/2 = L
E, {05} ¥ (Ro (R " [£51),R5-L2, 1) 72 (7.85)
and
Bilog) = 3 (RN 2 (7.86)

where E_ and Ei denote expectations with respect to the measures P, and
P;. (To obtain (7.85) and (7.86), the order of integration with respect
to the probability measure and the time variable was interchanged. This
interchange can be justified by an argument similar to that used to
Justify the interchange in Eq. (II.L4).) But, by Theorem 7.7, for any

€ > 0, we have



o €2j2
so that ,* by Theorem 7.8,
P {[f]; lim |e,([f])] > e} = ©
o P J
which implies
Po{l£]; Tm Joy([£D)] = 0} = 1.

j—)co
Also, since each ej is Gaussian with respect to Pi by Lemma 7.5, for any

finite positive ng,, we have

1 Yo
Pi{lels Jo,([£D] < ng) < Bn3T -j:n =

and, again by Theorem 7.8,

P;{[£]; E Iej([f])l >n} = 1
which implies

P.{[f]; ifﬁ'lej([f])l = o} = 1

j-)oo

Thus, if we 1let

A = {[f]; 1im Iej([f])l = 0},

j-—)oo
we obtain
P,(A) = P;(R-A) = 1

Tim |6 ([£])] = inf sup |6.([£])].
Joo ko gk
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and POlPi.

A similar argument can be used to prove POlPi in the case where
Ré/eRzl/g is assumed to be unbounded.
Q.E.D.
The following lemma will be necessary to the proof of Lemma 7.8.
Lemma T.7: Let {[fj]} be a sequence of functions from L,[T] and, for
every [fj] in this sequence, suppose {[fjk]} is another sequence of func-

tions from the domain of R;l/2 such that
lim l[[fj] - [fjk]ll = O. (7.87)
Koo

Then, if R%/2R51/2 is bounded and if we defined a sequence of random var-

iables {ij} on Q by

o = S (28 (e, [e1) 1P RGM/2 (L2, D 1(e)at = 5; [2°(t, [eD 1T (RS2 (Lo 1) ) at,

there exists & sequence of random variables {ej} which are measurable with

respect to zg, Jointly Gaussian with respect to P, and P;, possess finite

variances, and such that

6; = l.im. 84 (Py,P;) .

Proof: According to Lemma 7.5, the random variables {ejk;j=l,2,...}
are jointly Gaussian on both (Q,ﬁ?,Pi) and (Q,&?,Po). In addition, we

have

E_ {6 }

o jkejn

(RGL/2le5 ] Ro (RG22, 1))

(EFRNE )P

Again, the order of integration has been interchanged which is justifiable

by an argument similar to that used to Justify the interchange in Eq.
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(II.L4). Hence, we find

Lin Eo{iejg-ejnlz} = Lim {[] [ep 1|2 + [0y, 0017 - 2(le5y ), [£5n 1D} = O

k,n k ,n>e J
(7.88)
since 1im ||[f, 1|2 = ||[£;]]|? and 1im ([£, (£, 1) = ||[£.]]|? es
k-0 Jk J K ,now Jk* " jn J
a result of (7.87). Also,
Ei{0505m} = (RgM2[£y),RiR51/2085,])

= (R}/2R31/2[£5, 1,RE/2R5L/2 (24, ])
and, because R%/2Rgl/2 is bounded and therefore continuous,

lim E;{|ey-05]%} = 0. (7.89)

k ,now
Then, combining (7.88) and (7.89), we see that {ejk}k, for each j, is a
mean fundamental sequence with respect to both P, and P; and, hence, with
respect to the measure P+P;. If Theorem 7.3 is now applied, we see that
there also exists a sequence of random variables {ej}, each of which is

measurable with respect to 3 and square integrable on (Q,é?,Po+Pi), such

that
QJ = l.i.m. ejk (PO+P1)
k>
which implies
6. = l.i.m. 6, (p_,P.).
J Je-sen Jk o°"i

Then, since the integral of a positive function over (Q,ZQ,PO+Pi) is equal
to or greater than its integral over (Q,f?,PO) and (Q,ﬁB,Pi), we see

that each ej is square integrable over (Q,QE,PO) and (9, {>,P;). More-
over, since Eo{ej} = 0 and Ei{ej} =0, ej has a finite variance with re-

spect to both P, and P;.
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Finally, since the sequence {ij}k converges in the mean to Gj with
respect to both measures, it converges in measure to Gj with respect to
both measures. This implies,¥* the characteristic function, with respect

to either measure, of (ejl,e .,ej } 1s the 1limit of the corresponding
n

32’--
characteristic function of the Jjointly Gaussian variables
{8

ngk""’ejnk] when jpe(1,2,...} for me(1,2,...,n} and n is an

Ji1k’
arbltrary positive integer. Then, since the mean values and covariances
of these random variables approach finite limits as k + o, it follows

from the general form of Gausslan characteristic functions that the limit-

ing characteristic function 1s also Gaussian.

Q.E.D.

Lemma 7.8: If R%/2R51/2 is bounded, then, for any sequence of func-
tions {[fj]} from L, [T], there exists a corresponding sequence of jointly
Gaussian variables {6 }, defined over Q and measurable with respect to

J

{?, such that

Boleso b = ([fylle])
Ei{ejek} = ([£y],x¥x[ 1 ]) (7.90)

where X is the bounded extension of R%/eRgl/z to the whole of EQ[T] and

X¥ is the adjoint of X.

1/2

Proof: Since Rj is densely defined on fé[T], there exists a

sequence of Ly [T] functions {[fjk]}k’ for each j, such that

¥See Ref. 28, p. 169.
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lim Il[fj] - [ro ] = o
J
k>
This, in turn, implies
vm ([f5,008, D) = ([g],0£,1) (7.91)
m, 0>
since* the inner product is a continuous function on T2[T]xL, [T]. More-
over, we can define, for each j, the sequence of functions {ejk} on &

which satisfy

5& (2t (6, 12D 1TIRZ/2( Loy, D M(#)at

5; [2°(¢, [£1) 1T RG22 ([£5, D) M (t)at.

ejk

Then, by Lemma 7.7, there exists a sequence of random variables {ej} de-
fined on Q, each of which is measurable with respect to éﬁ, Jjointly
. Gaussian with respect to P, and P;, square integrable on.(Q,ﬁglPo) and
(2,43,P; ), and such that
oy = 1.i:2aejk (PgsPi)-
Let us now show that the sequence {ej} satisfies (7.90). Since [Z°]

is a zero mean process and

in

{Jej-ejkldpo

L 2 \l
i d] 6 -0y | 7aP, ¢
Q J

| é:(ej-ejk)dpol

/2

| A

where the last inequality follows from Theorem 7.6, we have

Eo{ey} = lim Ejles} = 0.
K o0

*See Ref. LL, p. 108.
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Similarly,
E; {63} = o.
Also, because Eo{eg} < o and Eo{ein} <o for all j, k, and n,

| ?g(ejek-ejmekn)dpol

| A

—£{|ej(ek—ekn)|+|ekn(ej_ejm)|}dPO

1/2
[Eo{eg}]l/2 [ﬁ;lek-eknlzdpé]

0 1/2
[Eo{efm}]l/2 [;g |ej—ejm|2dP9J
Q

| A

+
which implies
Eo{ejek} = lim Eo{ejmekn} .
m,n-
Similarly, it can be shown
Ej {66} = lim E;{eyp6n} -

m,n—)oo

Then, applying Eqs. (7.91), (7.92), and (7.93), we find

lin ([£3n],[8,1)
m,n-e

(Lr51,05.1)

E; {6561} lim (R%/gRgl/e[fjm],R%/2R51/2[fkn])

m,n->o

[t}

(x(£,1,x[5])

where X is the bounded (continuous) extension of R%/eRsl/e.

(7.92)

(7.93)
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In the next lemma, we shall obtain an expansion for the processes [Z°]
and [Zi] in terms of a countable set of Gaussian random variables, each
of which is measurable with respect to 13.

Lemma T7.9: Assume R%/gRgl/z is bounded and denote its bounded exten-
sion to the whole of EZ[T] by X. Then, if the identity* is denoted by I

and if the self-adjoint operator I-X*X is completely continuous,

n n
[2°] = 1.i.m, [j L [RYPlogliny + ] [R/PIay0In, | (expy)  (7.9%)
ne | g=1 =1
and¥*¥
. n n — —
(2] = Lim | T (RPLegling + ) IRE2(6,00,| (wp)  (7.95)
e | §=1 3=1

where {[¢j]} are the orthonormal eigenfunctions corresponding to nonzero
eigenvalues of I-X¥X, {[Eﬁ]} is an orthonormal basis for the null space
of I-X¥X, {nj} and {ﬁﬁ} are square integrable, measurable with respect to
ﬁg, Jjeintly Gaussian random variables that satisfy

ny = Lm0 (s, [eD ITIRZ 2 (Toy 1) 1 (8)at
k- T

ny = l.i.m. é; (22 (6, 0D 1T IRZY/2( [0y ]) 18 ) at

k>0
with {[¢jk]}k and {[Eﬁk]}k being elements of Ly[T] chosen such that they
are elements of the domain of R;l/e and such that

im | [[o,] - Loyl = o

koo

Lim ||[6,] - [,

0
k>0 J ’

¥The identity operator maps every element of its domain into itself.
¥%Tf (7] and [Z,] are vectors,

[2]=1im(2,)(exp ) <= 1im §  [[2]-[2,117[[2]-[2,]]a(txp ) = O.
- n>o  QxT
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and (txP,) and (txP;) are the product measures on (0xT).

Proof: Note that X is uniquely defined since R%/2R51/2 is densely
defined and bounded (Theorem T7.16). Also {nj} and {ﬁg} exist as a result

of Lemma 7.7 and

Eo{njnk} = ([¢J]’[¢k])

Eo{ﬁﬁﬁk} = ([¢j],[3£])
Eitngmed = (Lo, 1,x%x[o, 1)
Bi{nyne} = ([o;1,x*x[¢,]) (7.96)

by Lemma 7.8. In addition, {[¢j]} and {[65]} exist since I-X*X is com-
pletely continuous and self-adjoint (Theorem T7.20).

Now consider

+ 4l

1/2 Y orel/2iT e J !
Ry/“[¢41Iny - jzl [Rg/“Los1In,

Ne~—s

[
1

n n
: 2 /27 117
[EZOJ - jzl [r2/ oy20ny = I[85 [¢j]]n;J ap_at.

(In this case, the interated integral jtf-is equal to /( due to Theorem
T Q TxQ
7.10.) Then, performing the  integration and substituting (7.96), we

find

n
- 2 ] (IRYPLey 1, (B, (12010, 1))
J=1
T 1/2 1/2 T ol/2— 1/2—
v L RS PLeg 10, IR/2Leg 1) + ] (IRV/213,10, 1822511 (7.97)
3=1 3=1

where the symbol Tr{ } has been used to denote the trace of the indi-

cated matrix. Furthermore, since



1/2 1/2
| f 1) ngngarel < (1902 4 ) T () Ingngl2ans}
we have
[Eo{[zQIn.}] = 1lim jf[z°][zg]T[R-l/2[¢jk]]<s>asapo
J koo O T
= lim [R%/2[¢jk]]
koo
= [B}/216,1] (7.98)

when the order of Q and T integration is interchanged. ([Z_‘é]q denotes
the qth element of the wvector [Zg].) This interchange can be justified

by an argument similar to that used in the previous lemmas. Similarly,
—_ 1/2__
o =
[B,{lzg]n 1] (R, los1]. (7.99)

Now, since RO is completely continuous and has a zero null space, there

exists an othonormal basis for Lp[T], {[wﬁ]}, which satisfies

(R, [¥21] = A2[u]

n
[x°(t,s)] = Lim  § A[¥O(t) - [vR(s) 1T
n>o k=1

with the sum converging uniformly (Theorem 7.22). As a result, we have

Tr U [ro(t,t)]dtg
T

v T
Tr?lim D a2 f R 111} s

n-e k=1 T
n
= lim ) A2 (7.100)
n>e k=]

To justify the last statement, see the discussion concerning Eq. (II.11)

and note that
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This last summation of Eq. (7.100), however, can also be written as

I (RDRILIED = T (IRS1uC11, [RY/214010)
k=1 k=1

which becomes

I T LRY21eR10, 06 1)2 + ([R3/214011, (6,121 (7.101)
k=1 j=1

1/2[

when [R wk]] is expanded in terms of the orthonormal basis {{[

1/2

{[Es]}}. Moreover, since Rj

651,

is self-adjoint and the order of summation can¥

be interchanged, (7.101) becomes

I C(RE/21e,11,[RE216501) + (1RY2(5,10,(B2(5,1D).  (7.102)
3= J Fo J J

l J

Then, substituting (7.98), (7.99), and (7.102) into (7.97), we find

Lo = 1 IIRY2Leg1001% + T |I1R3/2(08,1112
J=n J=n
and
lim I = 0
n-»o

since (7.100) which equals (7.102) is finite.

In a similar manner, it can be shown that

([Rg/2[¢j1],[ng/2[¢j]]>([x*x[¢j]],[¢j])

e 1/2,— gL/2 -1 =
- Z ([R5 Lo, 11, [R5 “[e5 1) (x*xLo, 1, [o, )

¥See Ref. 59, p. 161.
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where Ai satisfies
i

[R; [wg]] = ablui]

and {[wi } is an orthonormal basis for fé[T]. Also,

L o= € (IR 11,00 )
= 7 (RY2eeml P i, D). (7.103)
k=1

Then, expanding [R%/Q[wi]] in terms of the basis {{[¢j] R {[Ek]}},

(7.103) becomes

(o] (o]

L jzl ([RL/2[w} 11,00, 1)2([x*xT 0510, [¢5])

v v 1/2,.,1 - 2 - —
+ kzl kzl ([R5 = Lui 11, [o, 117 ([x*xT041], [651) .

Finally since Ri/g is self-adjoint, interchanging the order of summation¥

results in

(827210511, [RE/2 1651 ([x*x[451], L6, 1)

o~
i
1]

e~ 8

k=1 3=1

+ ([RS/2[9, 11, [R3/2 L8] D (Lxxx (3,11, (o,

J D

and we see again that

1im 13 = 0.
nso 2
Q.E.D.

The final lemma of this section proves the o—field75is contained

in a slight enlargment of the o-field generated by the random vari-

¥See Ref. 59, p. 161.
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ables {”j} and {ﬁs} defined in Lemma T.9.

Lemma 7.10: Under the hypothesis of Lemma 7.9,

A

RLc 13

A 4
where B 1s the o-field of sets of the form MN, fe®B, NCNoels, Po(N) = 0,
NCZNieGZ, Pi(Ni) = 0, andié is the minimum o-field with respect to which
the random variables {nj} and {;5} are measurable.
LA ,

Proof: Let us first prove 63 C:_é?. (Remember,*(3 is the minimum
o-field with respect to which [ZP] and [Zi] are measurable for all teT.)
To prove this proposition, is suffices to prove [Z(t,[f])] = [2°9(t,[f])] =
[Zi(t,[f])] is measurable for every teT.

Define

¢, 11(¢t)n, ([£])}.

n
(Sa(t,[eD] = ] (IRy2loy1)edn ([2]) + [RY/2(5, 3

1 J J

Then, since {[S,(t,[f])]} converges to [2(t,[f])] in the mean with re-
spect to (txPo) and (txPi) by the previous lemma, [Sn(t,[f])] also con-
verges in the mean to [Z(t,[f])] with respect to the measure (tx(Po+Pi))c
As a result, there exists a subsequence {[Snk(t,[f])]} which converges
to [Z(t,[f])] a.e. (tx(P_+P;)) and, hence, a.e. (txP_) and a.e.(txP;).

(See Theorem 7.1.) Thus, if

¥ o= (e, leDsla(s,0eD] 4 Tm (S, (6,0£D])
we have x
(txp ) (M) = (txp)(F) = o.

Then, due to Theorem T7.10, there exists a set T'C. T such that, for teT',



Po(Ng) = Py(Ng) = 0O (T.104)

N
when N is the section of N determined by t and t(T') = Te, i.e., the

measure of the set T' equals the measure of the interval [0,T¢]. Now de-

fine
By = {[f]; z(t,[£])en}
and
4 -
B, = {[f]; lim Snk(t,[f])sA}
Ny >

for teT' and A an arbitrary Borel set in K-dimensional Euclidean space.

A A
(Note* that Bie RB' and Bye B). Then, since

By = (B, NH,)U(EBNKS)
B, = (Bynf,) VBN

and

Btf\Nt = g‘tﬂ NT
if we denote the complement of N, by NE, and since

~ ~ ~ A N
P.(B,NN) = p (B,NF,) = p;(BNN,) = pi(BNE,) = 0
A
due to (7.104), when we form ByAB,, we find

(B,aB,) = P.(B,AB,) = O
PoBtt—PitAt- .

It can now be seen, since

A A
By = ByA(ByABy),

P

2 A
Byed for tel', i.e., [2Z(t,[f])] is B-measurable for almost every teT.
*¥See Ref. 30, p. 8.
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N
. A ]
Let us now prove [Z(t,[f])] is B-measurable for every teT. Since

[x°(t,s)] and [ri(t,s)] are continuous by Assumption A6.3.1 of Section
6.3 and T' is dense in T, there exists, for every teT, a sequence {tn},

t,eT', converging to t such that

lim E_{| | [2(t,[£D)] - [2(t,,[£D][[2} = o0
n->o

and
lim B {[|[2(t,[£])] - [2(tn, [£D][|?} = o.
n->oo

Hence, there exists a subsequence {tp,} such that [Z(tnk,[f])] converges

to [2(t,[£])] a.e. (P,) end a.e. (P;). Then, since each [Z(tp,[f])]

o)
is'ﬁ-measurable for every tn, the same argument as used above shows
[z(t,[f])] is Bmeasursble for every teT.

If we now return to Eq. (7.75), we see
/l'
LCB

and, due to the definition of 4§' and the above discussion,

A4

B C

D>

which together imply

N>

3 C
Q.E.D.
We now have all the lemmas that are necessary to prove the principal
theorem of this chapter. This theorem specifies the conditions under
which Py = Pi’ ieM), and the form of the Radon-Nikodym derivatives,

dP; /Py, i€MY.
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Theorem 7.26: The following three properties relating Py and P, are

true:

(1) Either P,z P; or P_|P..

(2) By = P; if and only if RI/R71/2 is bounded and I-X*X is a Hil-
bert-Schmidt operator where X is the bounded extension of R%/‘?R'o'l/2 to

all of EQ[T].

e} i?®
dP. n i
i 0s _
—— = lim exp %— Z (;—J—- n§ - log (l-pj) a.e.(Po)
dPO n->o J':l pj_l

where Py je{l,2,...}, are the eigenvalues of I-X*X and nys je{l,2,... 1},
are defined as in Lemma 7.9 with [¢j] being the eigenfunctions of
I-X*X.

Proof: Let us first prove (2).

Necessity: Assume Po = Pi' Then, from Lemma T.6 and Theorem

7.16, R%/QRSl/e is bounded and possesses a unique bounded extension to
all of Lp[T] which we are denoting by X. Furthermore, it is easily seen
that X*X is bounded, self-adjoint and positive. Theorem T7.21 then guar-
antees the existence of a spectral decomposition of X¥X which we can
write as ‘gm vdEv where Ev represents a resolution of the identity. We
shall now show, by contradiction, X*¥X has a purely discrete spectrum.

Suppose for some € > O, I-E{4¢ is infinite dimensional. Then, there

exists a sequence of real numbers {vj} such that 1+e < v] < vy, < ... and

a sequence of orthonormal functions {[fj]}, from L, [T], such that

(1B [r,] = [1,]

where v' i_vj < v" and
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(Ev"—Ev')[fj] = 0

when vy < v' < v" or v' < V" f-vj' It then follows

oo

(£, 1,0%x[5 1) = 50 va(E, e, 1,05 1)

|v

138

v

6jk(l+€) . (7.105)

But, due to Lemma 7.8, there also exists a sequence of random variables
{ej} which are measurable with respect to fa, Jjointly Gaussian with re-

spect to both P, and Pi and such that

Boley) = Ejfegr = 0
Eo{ejek} = ij
E; {656} = ([fj],X*X[fk]). (7.106)

"
Now let # be the minimum o-field with respect to which the sequence

{Oj} is measurable, and let Pg and Pg be the restrictions of P, and P; to

%)

"

Then, from Lemma 7.4 and Egs. (7.105) and (7.106), Pgl?g since

o g 2 2
) _ EQ{93}> = . (7.107)

-=l 2

J Ei{Gj}
But, by Lemma 7.2, we also have POlPi which is a contradiction. There-
fore, I—El+€ is finite dimensional for every € > O. Similarly, it can
be shown that El—e is finite dimensional. Hence, X*X has a purely dis-
crete spectrum with 1 being the only possible limit point of the spec-

trum. This implies I-X*¥X also has a discrete spectrum and its only pos-

sible limit point is zero. Therefore, by Corollary T.l, I-X*X is com-
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pletely continuous.

If we now look at the equation

(I-x*x)[¢] = ol¢],

we see that the eigenfunctions of I-X¥X are also eigenfunctions of X*X
with the eigenvalues of X*X being one minus the corresponding eigenvalue
of I-X*X. As a result, the {n;} and {Hﬁ} defined in Lemma 7.9 can be

shown to have the following properties:

Eofny} = Eofng} = Ejlny} = Ej{ny} = O,

Botngnk} = (Lozlilo 1) = 6xs

Bofngnk} = (Lgylileed) = 5% >

Eofngnk} = (logl.[D) = o,

Ei{nyngd = (loy).x*x[g 1) = o,

Ei{ngnk} = (Loy],X*X[¢] = (1-pj)5jk,

B dnymedr = (Lo31Lx*x[g 1) = 6y, (7.108)

To verify these properties, an argument analogous to that used to prove
Eq. (7.90) of Lemma 7.8 suffices.

Now let“é be the minimum o-field with respect to which {nj} and
{n.} are measurable and let %o and ﬁ; be the restrictions of P, and P;
to é?, Then, it follows from Lemma 7.4 that either ﬁg = ﬁi or @Olﬁi,

N
and ﬁo = P,

i if and only if

o /7 2
) Ql——ll > < @ (7.109)
J=1 —Dj
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Furthermore, from Lemma 7.2, ﬁolﬁi > POLPi. But since Po = Pi from the
hypothesis, we must have ﬁ; = ﬁi‘ Hence, (7.109) is satisfied, or
equivalently,
L 02 < e (7.110)
j=1 4
which implies, by Definition T7.24, that I-X*X is a Hilbert-Schmidt operator.
Sufficiency: Assume I-X*X is a Hilbert-Schmidt operator on fé[T].
We can then establish {nj}, {;5} and (7.108) as previously done. Moreover,
since I-X*X is Hilbert-Schmidt, (7.110) and hence (7.109) is satisfied.
It then follows from Lemma 7.4 that ﬁo = ﬁi which, together with Lemmas

7.3 and 7.10, imply

Lew us now prove (1). Assume P, and P, are not equivalent. Then,
according to (2) proved sbove, one of the following three cases must hold:

(a) R5iL/2R51/2 is unbounded,

(b) I-X*X is bounded but not completely continuous,

(c) I-X*X is completely continuous but not Hilbert-Schmidt.
In case (a), POlPi by Lemma 7.6. In case (b), X*X has a spectral repre-
sentation and either I—El+E or El+a must be infinite dimensional for some
e > 0. Then, Polfi, as shown in the paragraph which contains Eq. (7.107).
In case (c), I-X*X has the eigenvalues and eigenfunctions {pj} and {[¢j]}.
Also, the random variebles {nj} and {H&}, as described previously, are
well defined. But, since I-X*¥X is not Hilbert-Schmidt, (7.110), and,
hence, (7.109) do not hold. Then, according to Lemma 7.k, ﬁglﬁi and,
from Lemma T.2, Polfi. Therefore, we conclude that if Po and Pi are not
equivalent, then, they must be singular. This trivially implies that if

Py and P; are not singular, then, they must be equivalent.
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Let us now prove (3). This assertion, however, is an immediate con-

sequence of Lemma 7.4 (3) and Lemma 7.3 (3).
Q.E.D.

The next two theorems provide, under certain conditions, an alter-
nate functional form for the Radon-Nikodym derivatives, dfi/dfg, ieM,.
This alternate form will allow us to determine, by the use of linear fil-
ters and correlators, in which set of the optimal partition of the obser-
vation space a particular sample function belongs.

Theorem 7.27: The measures P, and Pi are equivalent if an only if

there exists a Hilbert-Schmidt operator U defined on ié[T} which satisfies

1/2ypl/2
Ry/“URS/® = Ry - Ry . (7.111)

Proof: If P, and Pi are equivalent, let

U' = I - X¥X

where X is the bounded extension of R%/eRgl/E. (R%/zRal/2 s bounded due
to Lemma 7.6.). Then, since U' can be seen to satisfy (7.111) and, by
Theorem T7.26, U' is Hilbert-Schmidt, we see that the conditions of the
theorem are necessary.

To prove these conditions are sufficient, assume U is a Hilbert-

Schmidt operator that satisfies (7.111). Then U also satisfies
_ 1/2 1/2
R = RO (I—U)Ro

and, as a result, on the dense subset of Eé[T] where Rgl/eRiRgl/g is de-
fined, R51/2R1R51/2 is equal to I-U. Furthermore, since U is completely
continuous by Theorem T.2U4, U is bounded as is I-U so that Ral/gRiRal/g

is also bounded. Finally, since the bounded extension of a densely de-
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fined bounded operator is unique by Theorem T7.16, we see that

X¥X = I-U.

Thus, I-X*X is Hilbert-Schmidt and the application of Theorem T.26 com-
pletes the proof.
Q.E.D.

Theorem T7.28: If there exists a bounded self-adjoint operator Hj

on L, [T] satisfying

RHiRi = R;i-Ro, (7.112)

then P, and Pi are equivalent. Moreover,

n 1
P log(l—oj‘)' =

J=1

lim exp

n->o

N |-

exists and is finite and

dpr; —
— = 0t expl 2 (H([£]),[£])} see.(F)

P,
where {pj} are the eigenvalues of I-X¥X and [f] is any observation from
the observation space Q. (If [f]¢fé[T],(Hi([f]),[f]) is defined to be

zero. )

Proof: If (7.112) is satisfied, we can write

Ri = R (I+H;R;) = (I+R;H;)R,

which shows that Rgl/zRiRgl/e is bounded and densely defined on the sub-
set of EQ[T] where Rgl/g is defined. As a result, we can define an op-

erator U to be the uniquely defined bounded extension of

I - RgL/2RiR51/2 = - Rl/2m.R.R-1/2 = RoL/2R H, R51/2
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Furthermore, since R,y is positive definite and completely continuous, we
can assume the sequence of eigenfunctions {[wg]} of Ry form an orthonormal
basis for Eé[T]. Then, if we let {A?} be the sequence of eigenvalues

that correspond to {[wg]}, we find

[fuCl D12 = _Zl <Rg/2HiRiRgl/2<[wgb,agl/2RiHiR¢Rg/2([w31>>
J:

[v(v) 12

1]
o~

= I O9TE0NTRRY PR (189D, B3R, ([99)))

= tr(RiHiRiHi)

< N(RON(H;RiH;) < |8 [|2[H(R)) ]2 < =

when the results* of Theorem 7.23 are applied. Furthermore U satisfies
(7.111) and, from Theorem T.27, we see that P, and P; are equivalent.
Now let X be the unique bounded extension of R%/zRgl/z. (Again,
R}/?R-1/2 is bounded due to Lemma 7.6 and the fact that P, =P;.) It
can be seen that U = I-X*X since U is the unique bounded extension of

I-Rgl/gRiRo'l/Z. Furthermore, if ASL,[T] denotes the dense subset of

fé[T] on which Rgl/g is defined, we have

(x*x) (R/2m, RL/2) (RgY/2R;R51/2) (RL/2H,RL/2)
MY

= R;M/2RH;RR;1/2 on A

= R;MPRR;L/2 -1 on A

= X¥X -1 (7.113)

*The symbol N(U) denotes the Hilbert-Schmidt norm of the operator U.
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since (X*X) (R%/gHiR%/g) is bounded and the bounded extension of

I—R51/2RiR51/2 is unique. Similarly, we find
(RI/2H,RI/2) (x%%) = x%x - 1
which, together with (7.113), implies
I - RY/PH;RL/2 = (xex)-1
or
rRL/2m;Rr1/2 = 1 - (xxx)7 . (7.114)

Then, if {[¢j]} and {Dj} are the eigenfunctions and eigenvalues, respec-

tively, of the Hilbert-Schmidt operator I-X*X and [éj]is a basis for its

null space, we have
wx)-1 (2 >
(x¥x) ™" (o, ] </_p_ [¢,]
J
and
(x*x)75.1 = [3.]
J J
Finally, this implies, because of (7.11L),
1/2 1/2 _ P3
(H;R3/ [¢j],RO/ [¢,1) = __i_> P (7.115)
Py 1
1/2:
(1; RS/ (3,182 10, 1) = o, (7.116)
and
1/2r= /2= _
(H;R57“le, LR (e 1) = o. (7.117)
Returning now to Lemma 7.9, we see that
[z°] = 1.i.m.[20] (txP ) (7.118)
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where

T 1/2
(23] = I (Rg/2(Loy D) Iny + BS([oy D) Iy} (7.119)
=1

Then,if we define [ZQ) by [Z]] = [2°]-[28] and let H; be zero off Ip[T],

we find
lim ,/’ ])]T [H, (z°] )]a(txP ) = 1lim ) [Z 1) ]1[H ([ 21) Jatap
n-»o Tx n» QT
< im [|5]]2 f/ (7017122 Jatap
n-c

= um |8 |12 [ (221720 )a(¢xp),
1 n o
n-o TxR
= 0

by the application of Theorem T7.10, the definition of the norm of H;, and

Eq. (7.118). But this implies

H; ([2°0) = 1.im. Hy([22]) (txP) (7.120)

n-r

Furthermore, as shown in Appendix IV, we can write¥*

¥Note that m(Po) denotes convergence in measure.
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vm f (2906,0e)) 171, ([22D) 1(8) at n(B,)

{12005, 021) 17 m; ([2°D) )(v)at
T

m(PO) (7.121)

n .
= lim z J n
n>e  j=1 p,
when we make use of Egs. (7.115)-(7.120).
Let us now obtain the relation that exists between

{izo(t,[f])]T[Hi([ZQU]&)dt and dP;/dP,. In Theorem 7.26, it was shown that

ar: —-
lim {2%-log D?} = log-——£ a.e.(P )
1 = o
n->o ap
o
where
n 0.
B = L 2 — n2
i 2 Lt J
=1 \p,
J-1
and

n
Dy = E (1-0,)

Let us now assume the sequence {log D?} does not converge to a finite num-
ber. Then, since {Zg—log D?} converges a.e.(ﬁg) to the finite wvalued
function dP;/dP _, {#®} must converge only on a set of measure zero. Thus,

for every n_ and € > O,

o

) . n m —
PO{[f],lzi—zjl >e} = 1 (7.122)

for some n, m > n_ . But, from (7.121) we see, for every € > 0O, there

exists an ng such that if n,m > n,, we have
P {[£];] 222" > e} < ¢
% i i

which is a contradiction when we look at (7.122). As a result, {log D?}
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must converge to a finite limit, call it log D;. Furthermore, since {Q?}n

dapP
converges in measure to both L f[ZO(t,[f])]T[Hi([ZO])](t)dt and log —L
2

T ap
+ log Di’ we see from Theorem 7.2 that

4P
E%i = D;l exp i' 4/ [Zo(t,[f])]T[Hi([ZO])](t)dt a.e.(PO)-

But, as can be seen from the proof of Theorem 7.9, we can write
[z°(t,[£D] = [2'(£,[£D] = [£(2)]

for all [fl]eQ which are continuous on [0,T¢]. Moreover, since the noise
process [N(t)] is separable and there exist two constants C > O and & > O

such that
Tr{[rO(t,t)] + [rO(t',t')] = [x°(t,t")] - [x°(t',5)]} < c|t-t']®

for all t,t'eT as stated in Assumption A6.3.1, there also exists* a set
NTQ for which FO(N) = 0 and such that all [f]eQ-N are continuous. Finally,
this implies

= pilexplz (1 ([£]),[fD)}  a.e.(B)

dPy

ap

o

when (Hi[f],[f]) is defined to be zero if [f]#f&[T].

Q.E.D.

T.4 SUMMARY AND DISCUSSION OF RESULTS

In this chapter, we have obtained a decision scheme for providing an
estimate of the direction of arrival of a stochastic signal which is re-
ceived by an arrasy of receiving elements in the presence of noise. This

scheme makes use of the a priori probabilities of the possible angles of

¥See Ref. 50, p. 98.
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arrival and requires knowledge of the covariance functions of the signal
and noise processes. Moreover, it is an optimal decision scheme in the
sense that it results in a minimum probability of error as discussed in
Assumption A6.3.1 of Section 6.3. (This scheme is also optimal with re-
spect to the "Maximum A Posteriori Probability" optimality criterion men-
tioned in Assumption A6.3.1 so that it results in the specification of
the direction of arrival which is "most probable" based on the received
signals and the available a priori information. Optimally with respect
to the "MAP" optimality criterion is discussed in Appendix V.)

The decision scheme is as follows:

(1) Determine, for each possible direction of arrival oj , a bounded

self-adjoint operator Hi which satisfies the operator equation
RH.,R. = R, -R (7.123)

where R, and R, are the integral operators defined in Eg. (7.75).
n y1/2

Determine also, for each i, D; = lim I (1-P, where {pj}
n-eo  j=1
is the sequence of eigenvalues of the bounded extension of the
operator I-R31/2R,RZ1/2.
(2) Evaluate, for each i, the expression

. 1
I = {Pr{ai}}{pglexp [% (Hi([y]),[y]iH» (7.124)

where [y] denotes the vector of signals received by the array on

the interval [0,T,] and Pr{a;} is the a priori probability of

a; being the true angle of arrival. In addition, let IO = Priog}

where Pr{ao} is the a priori probability of receiving noise

alone.
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(3) Finally, make the decision 05 is the true direction of arrival
if i is the smallest index of Ii for which I i_Ij for all j.

(If 1, > 1,

j for all j, make the decision noise alone is present.)

This decision scheme possesses certain anomalies when the "no signal pres-
ent" hypothesis has a nonzero a priori probability, however. For in-
stance, when the number of possible angles of arrival become large, each
of the a priori probabilities Pr{ai} approach zero. This implies the de-
cision "no signal present" will be made for "nearly all" received samples
[yl if Pria } + 0. This difficulty has arisen because we are comparing
the hypothesis "no signal present” with the individual hypothesis "signal

' whose a priori probability is going to zero. An alternate,

at an angle ai'
but more reasonable, decision procedure first makes a choice between the
hypothesis "no signal present" and the composite hypothesis "signal at

one of the angles a,."

Then, if the latter is chosen as the true hypo-
thesis, it makes a decision as to which from the sequence of hypotheses
"signal at an angle ai" is the true hypothesis. If this alternate de-
cision procedure is adopted and if each of these decision are made so as
to minimize the probability of error, it follows easily that step (3) of

the above decision scheme should be replaced by the following:

(3') Make the decision "no signal present" if

Pria_} > ‘ZMfPr{ai}}{Dilexp{%-(Hi([Y])a[Y])}}
ie

Otherwise, make the decision a; is the true direction of ar-

1

rival if i is the smallest index of I; for which Ii 3-Ij for
all j.
It should be added that, if no such solution Hi exists for the Eq. (7.123),

it is not clear what procedure is optimal for obtaining an estimate of



141

the direction of arrival of the signal. However, in most practical prob-
lems it appears that (7.123) has the required solution.

Assuming the sequence of operators {H;} and constants {Di} can be
found, attempts to apply the agbove procedure in a practical direction find-
ing problem will still meet several difficulties, however. In the first
place, the received signals normally can have an infinite number of pos-
sible directions of arrival. Even if we assume this number is finite,
say ngy, it is still necessary to have either n, processing systems oper-
ating in parallel to evaluate (7.12L4) or the signals must be recorded and
then processed at a later time. In either case, the optimal procedure
appears to be an impractical approach to the problem. This procedure
does, however, suggest suboptimal techniques. For instance, the interval
of observation [O,Tf] can be divided into né disjoint subintervals so
that Eq. (7.124), for various values of i, can be sequentially evaluated
over these subintervals. Although this does not use all availsble infor-
mation, it still appears to be a plausible technique when it is imprac-
tical to record the signals or have a great redundancy of equipment. It
must be realized, though, in most practical problems ng > né so this
technique necessitates the need for a policy which selects the particular
1, ie{l,2,..,,no}, to be calculated during each of the né subintervals
of [O,Tf]. A search for policies that are optimal would probably follow
very closely the discussion presented in the first five chapters of this
thesis.

In at least two special cases of tremendous practical interest, how-
ever, the above difficulties do not exist. These cases, which restrict
the class of possible noise and signal covariance functions to those which

are stationary and "band-limited," are the subject of the next two chapters.



CHAPTER 8

SPECTAL CASES

8.1 INTRODUCTION

In the previous chapter, we derived an optimal decision scheme for
choosing between the hypothesis of "no signal present" and the sequence
of hypotheses {"signal at an angle a;"}. This decision scheme required
us first to obtain the operators {H;} and then to calculate, for each i,

the value of

23 = (H;([yD,lyD (8.1)

where [y] represents the observation. Unfortunately, even if we assume
the sequence of operators {Hi} is known, this necessitates the need for
either recording the observation [y] so that L;, for all @;, can be cal-
culated at a later time, or a bank of filters, one for each possible o,
so that the entire sequence {Qi} can be calculated simultanecusly. In
this chapter, we shall consider the special cases discussed in Section 6.4
and Sections 6.4.1-6.4.2. The solutions that will be obtained, while
being more restrictive in their application, are, nevertheless, of great
practical importance since the restricting assumptions typify, in many
ways, the environment of realistic direction finding problems and since

a greatly simplified implementation is possible. We shall find, in these
special cases, a single matrix of 2K? numbers provide all the information
given by the sequence {Qi}. (Remember K denotes the number of elements
in the antenna array.) Each of these 2K? numbers can be obtained as the

output of a realizable filter operating on the received data. We will

1k2
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be able, for these special cases, to eliminate not only the need for re-
cording the received signals or having available a large bank of parallel
processing systems but also the need for solving individually for each of
the operators in the sequence {Hj}.

In addition to the sequence {%;}, the sequence of constants {D;}
must be available before an optimal estimate can be made. The problems
associated with the calculation of these constants will also be considered

in this chapter.

8.2 INDEPENDENT, IDENTICALLY DISTRIBUTED NOISE

Let us consider, first, the problem in which Assumptions A6.L4.1 and
A6.4.1.1 together with A6.3.1-A6.3.3 are valid descriptions of the environ-
ment of the direction finding system. Before obtaining a solution for
this problem however, let us investigate the consistence of these assump-
tions. In particular, let us shown the existence of constants C > O and

§ > O such that

{ z [ro(t,t)]kk + [ro(v,v)}kk - [ro(t,v)]kk - [ro(v,t)]kk} < C|t—vl(S

keK
(8.2)

when t, veT is consistent with the "narrow-band" assumption. Since the
noise process driving each array element is now stationary, independent
of all others, and possesses a covariance function ry(t), if we let

K = 1/2X, Eq. (8.2) reduces to
|rg(0) = ry(7)| < Kelc|® . (8.3)

Furthermore, since rN(T) is continuous and bounded, a question as to the
existence of the constants C > O and 8§ > O such that Eq. (8.3) is satis-

fied arises only when 1+0. Moreover, if Eq. (8.3) is satisfied for § > 1
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and any t < 1, it is automatically satisfied for § = 1 and any 1 < 1.
Thus, we need only investigate the implications of Eq. (8.3) for C > O
and O < § < 1. Suppose, now,

lim w? FN(w) < Kc (8.4)

>
where Fy(w) is the Fourier transform of ry(t). Then, applying the Initial
Value Theorem* from the Theory of Fourier Transforms, we find that Eq.

(8.4) implies

ry(0)=Tp(T) _
1im | AN ) <&
>0 T

which implies
|7g(0) - ry(7)| < Ke|x|®

for 0 < 6 <1 and 1 sufficiently close to zero. Thus, we see the condi-
tions under which there exist constants C > 0 and § > O such that Eq.
(8.3) is satisfied are related to the manner in which the power spectrum
falls off for large w and, therefore, are consistent with the narrow-band
assumption.

Turning now to the problem of specifying an optimal estimation pro-
cedure when the above stated assumptions are valid, we see, according to
the discussion of the previous chapter, an optimal estimate requires the

use of a bounded self-adjoint operator H; which satisfies

But, referring to Assumption A6.k4.1, we find there exists a symmetric

kernel [h?(t,s)] which satisfies Eq. (6.6) and which is square integrsable

*¥See Ref. 60, p. 267.
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on TxT. Then, since [hg(t,s)] is symmetric and square integrable, the
integral operator Hg with [hg(t,s)] as its kernel is self-adjoint and
Hilbert-Schmidt which, in turn, implies Hg is self-adjoint and bounded.
The proof establishing these properties follows exactly the proof pre-
sented in Appendix II where R; was shown to be self-adjoint and Hilbert-
Schmidt. Moreover, since [hg(t,s)] satisfies Eq. (6.6), it is easily

shown that HE satisfies

H:R R. - R

Pl—]

so Hg represents a realization of the desired operator H; .

At this point, it is instructive to note that there actually are co-
variance functions [ri(t,s)] and [r®(t,s)] for which we can find symmetric
square integrable kernels satisfying Eq. (6.6). For example, suppose the
orthonormal sequences of eigenfunctions for the operators Ro and R; are
identical and given by {[wg]} while the corresponding eigenvalues are

{2} ana {Aﬁ}, respectively. Then, it is easily shown that

= 039
L S W)

1 aLo

J "3

is a solution of Eq. (6.6), is symmetric, and, if

Mgy
< s
J= l< >\1>\°>

is square integrable on TxT.

Returning now to Eq. (6.6), the fact that a kernel with the desired
properties is known to exist does not provide us with a method for ob-
taining this kernel. On the other hand, Eq. (6.7) which has a similar

form can be solved easily for [h?(t-s)] by the use of Fourier transforms
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when the signal and noise covariance functions are known to be stationary.
The assumption which states that [h?(t,s)] can be approximated by
[h?(t—s)] for t, seT when T, becomes large is then intended to replace
the necessity for solving a difficult integral equation, Eq. (6.6), with
the necessity for solving the much simpler integral equation,Eq. (6.7).
To justify this assumption on a basis other than its expedience, though,
let us refer to Eq. (T7.124) where it can be seen that the usefulness of
the operator Hf stems from the fact that it allows us to obtain the sta-
tistic

8, 0= (HAylIyD
since H? is a realization of the desired Hi' Thus if the integral op-
erator H: whose kernel is [h:(t-s)] for t, seT can be shown to provide
"substantially" the same statistics when substituted for H?, it would be
unnecessary to make this assumption and H: could be used directly when
making an angle of arrival estimate. Unfortunately, attempts to produce
conditions on the observation interval [O,Tf] and the covariance func-
tions of the signal and noise processes which guarantee this property
have not met with any degree of success. Intuitively, however, this as-
sumption is not unreasonable when we note that Hi[y] can be obtained as
the output of a linear filter whose impulse response is [hz(t,s)] and
if we remember that the optimal Wiener impulse response for finite data,*
whose defining integral equation is very similar to Eq. (6.6) if white
noise is present, approaches the solution for the infinite interval

with only minor variations near the endpoints of the interval.¥¥

Turning now to the problem of solving Eq. (6.7), the kernel

*¥See Ref. 43, p. 2kO.
¥¥See Ref. 61, p. 1087.
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.

Lhi(t-s)], due to Egs. (6.3), (7.75) and Assumption A6.L.1, satisfies

[ ] e 1D e et atas = (20 (uv))

or, equivalently,

* * o] oo (-) o
j,geK j_m J_m [r (u—t)]mj[hi(t—s)]jk{[r 1 (s—v)]kn + [r (S_V)]kn}dtds

for all m, neK. Furthermore, if we let u+Tm(ai) =u', v+Tn(ai) =v',

t+t.(a,) = t' and s+, (a.) = s' and assume
J i ki

[y (t-8)]yy = nlt-str () - 7, (a,)), (8.5)

the above equation reduces to

S
(8.6)

J j {rN(u'—t')}{h(t'-s')}{KrS(s‘-v')+rN(s'—v')}dt'ds' = r (u'-v')

-0

when we apply Eq. (6.2) and Assumption A6.4.1. (The scalar K denotes
the total number of antenna elements in the array while Tu(ai)—Tk(ai),

as defined in Assumption A6.3.l,is the propogation time of a signal be-
tween the jth and kth array element if a, is its true direction of ar-
rival.) Thus, by anticipating the form of the kernel [h;(t—s)], the
requirement for solving K simultaneous integral equations can be replaced
by the need for solving only one integral equation. By introducing the
proper delays as indicated in Eq. (8.5), the kernel [h:(t—s)] can be
constructed from the solution h(t'-s') of Eq. (8.6). Moreover, taking

the Fourier transform of both sides of Eq. (8.6), the Fourier transform

of h(t) is found to be



F
F (0) = S (8.7)
N

where Fh(w), FS(w); and FN(w) are the Fourier transforms of h(r), rg(T),
and ry(T), respectively.

To obtain a physical interpretation of the operator Hj, let us ob-
serve Eqs. (8.5) and (8.7) where it can be seen to perform two distinct
operations. First of all, H: delays the individual components of [y].
These delays, as illustrated in Fig. 8.1, are such that the various com-
ponents of [y] are in phase if a, is the true direction of arrival. (Re-
member, Tf is large compared with the propagation time of signals across
the array so the fact that the delayed signals are not "quite" defined
over the same interval can be neglected.) These delayed signals are then
added and filtered by a nonrealizable filter whose impulse response is
h(t). Looking at Eq. (8,7), it can be seen that this filter has an im-
pulse response which is very similar to the impulse response it would
have if its output was required to be a best (minimum mean square) esti-
mate of the signal received by each array element when no delays are
present. (The Fourier transform of the impulse response of such a Wiener

filter would have the form

Fs(w)

FN(w)+KFS(w)

Finally, the filtered signal is again delayed to produce the vector
[H:[y]] whose kth component is in phase with the signal received by the
kth array element when ui is the true direction of arrival. As a re-
sult, we see that (H:[y],[y]) is the sum over j, keK of the correlation

of the signals received by the jth and kth antenna, the Jth antenna sig-
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nal being filtered and delayed so that it is in phase with the kth antenna
signal when o3 is the true direction of arrival. Thus, when we calculate
the sequence {(H?[y],[y])] which approximates the sequence {45}, we are
actually "scanning" the array and obtaining a measure of the signal en-
ergy received by the array from each possible direction of arrival Q.

Let us now see now the band-limited condition of Assumption A6.k4.1
affects Eq. (8.7). As shown by Kelley, Reed, and Root,ho when the Fourier
transform of the signal covariance function has the form illustrated in

Fig. 6.3, it can be written as

rg(r) = Re(rg (r)el?e™) (8.8)
o

+ + .
where rg (t) is the inverse Fourier transform of F (w+mo), F.(w) being

o ] S
defined by

Fi(w) = Fglw) w20

and where Re( ) denotes the "real part" of the indicated quantity. It

+
can be seen that Fs(m+mo) is a "low-pass'" function so rg (t), when com-

o

pared with cos W, T, is a slowly varying function of t. Kelley, Reed,
40

and Root have also shown

(8.9)

r. (t) = r. (-1)

where the bar indicates the complex conjugate. Then, since¥*

*See Ref. 43, p. 365.
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1 ” Jlw-wg)T _
5 J °°e at = §(w-wg)

with ¢ representing the Dirac delta function, we can write

FS(w)

7{R6(rS (1)ed®0T))
O

5 (1)ed®" + (1/2)?é (1)e™I%oTy
(@] O

Zi(1/2)r

W{FS (w)*é(w-wo) * FS
o o

(-w)* (w+wo)} (8.10)

by applying Eq. (8.9) and letting Fq (w) = ?%rs (0)}. (The symbol 57{ )
) o
denotes the Fourier transform of the indicated quantity while "¥*" denotes

convolution.) Furthermore, substituting (8.10) and a similar expression

for F, (w) into (8.7), we find

N
Fh(w) = Fhl(w)*s(w—wo) + th(w)*é(w+wo) (8.11)
where
Fso(w)
Fo(w) = R
By Fy (w)[FN (m)+KFS (w)] (8.12)
o o o
Fy (-w)
Fp, (@) = 2 s (8.13)
Fyy (-0)[Fy (~0)+KFg (-w)]
o o o
and FNO(w) = Fg(w+wo), Fg(w) being defined by
Fy(w) = Folw) w20
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Finally, since F, (w) = F_ (-w), the inverse Fourier transform of Fh(w),

ho h,

h(t), is given by

h(t) = Re(hl(T)ejon)

Re(hj(t))cos w. T - Im(h;(T))sin w T (8.14)
-1

where hl(T)%E? (Fhl(w)) is the inverse Fourier transform of Fhl(w) and

Im( ) denotes the "imaginary part" of the indicated quantity. Thus, ac-

cording to Eq. (8.1k4), the kernel of the desired integral operator can

be separated into high frequency and low frequency terms, h;(t) being

slowly varying when compared with cos wOT and sin wOT. Note that hl(T)

is real if the signal and noise power spectrums Fq (w) and F_ (w) are

N

symmetric about the point w = 0. This will be truz when FS(w? and FN(w)
are symmetric about w = w_ and fall off sufficiently fast so FS(O) 2 0
and FN(O) # 0. As a result, we caninterpret Im(hj(t)) as a term which
compensates for any lack of symmetry that might exist in these spectrums.

Let us now investigate what happens to the sequence {(H:[y],[y1)}
when H? is the integral operator whose kernel is obtained by substituting
(8.14) into (8.5). Since h;(t) is slowly varying compared with cos w T
and the propagation time of signals across the array is small compared

with the inverse of the bandwidth (Assumption A6.4.1), Eq. (8.5) be-

comes
[h:(T)]jk = hlr(T)COS(wOT+wO(Tj(ai)4Tk(ai))

- hli(T)Sin(on+wo(Tj(ai)_Tk(ai)) (8.15)
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where "®'" denotes an approximation, hlr(T) = Re(h;(7)), and h_ (1) =

Im(h;(t)). Then, applying the identities®

cos(¥1+¥y) = cos Y cos Y - sin ¥; sin ¥y (8.16)
sin(¥1+¥2) = sin Y; cos Yy + cos ¥; sin Vs, (8.17)
we find
T T
o Tr{[Al(ai)] [v,1} - Tr{[Az(ai)] (Y51} (8.18)

where Tr{} denotes the trace of the indicated quantity while [Al(ai)],

[Ag(ai)], [Y;], and [Y,] are KxK matrices whose jkth elements are given

by
[Al(ai)}jk = cos wo(Tj(ai) - Tk(ai)) , (8.19)
[Az(ai)]jk = sin wo(Tj(ai) - Tk(ai)) s (8.20)
[Yl]jk = jT JT [Y(t)]j[y(s)]k{hlr(t—s)cos'ab(t-s)-hli(t-s)sin'ab(t—s)}dtds3
' (8.21)
and
sz]jk = JT JT [y(t)]j[y(s)]k{hlr(t—s)sin wo(t—s)+hli(t—s)cos wo(t—s)}dtds,
(8.22)
respectively.

Observe, now, the fact that the matrices [Y;] and [Y,] are independent

*¥See Ref. 62, p. 3klk,
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of the parameter a, . The utility of this fact becomes apparent when we
realize, if [Y;] and [Y,] are known, the calculation of our approximation
to the sequence of coefficients {Ri} reduces to a simple matrix opera-
tion on known matrices which is easily handled by a digital computer.

To approximate %5 for example, we need only form the matrices [Al(ai)]
and [Az(ai)] which are known functions of the parameter a, and substitute
into Eq. (8.18). Therefore, if we know [Y;] and [Y,], it is unnecessary,
as in the previous chapter, to record the received time signals or have
a large number of parallel systems, each calculating li for a particular
a,. The matrices [Y;] and [Y5], each with K?elements, contain all the
information necessary to construct an approximation of the sequence {Ri}.
This means we are able, at any later time, to "scan" the array and ob-
tain a measure of the signal energy received by the array from any par-
ticular direction of arrival during the time interval [O,Tf]. The ad-
vantage of this method of operation becomes apparent when we compare it
with the normal mode of operation of existing direction finding systems
where scanning takes place sequentially and, therefore, only a single
direction is under surveillance during a particular time interval.
(Similar results have been observed by Ksienski63 for the "sure signal'
case where the signal is representable as a sinusoid of known frequency
but whose amplitude and phase, while being constant, are unknown in mag-
nitude.)

Let us now investigate the matrices [Y;] and [Y,] further and deter-
mine just how they may be evaluated. In Eq. (8.21), let us split the
integral over the two-dimensional subspace (t,s)eTxT into the sum of two
integrals, one over each of the regions I and II indicated in Fig. 8.2.

)

We can then write (a similar expression can be found for [YZ]jk
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T.rt
(1,1, = J fj [y(6)] Iy ()], {h, (t-s)cos w (t-s)-h , (t-5)sin u_(t-s)}atas

s
+ j fJ [y(t)].[Y(s)]k{hlr(s-t)cos wo(s—t)—hli(s—t)sin wo(s—t)}dtds
0“0

J
(8.23)

since h(t) = h(-t), which can be realized by the use of the hardware ill-
ustrated in Fig. 8.3. 1In this figure, the Jth and kth received signals

are fed into filters with the realizable impulse response

hi(t) = hy (1) cos w1 - hp;(t)sinw 1 120

= 0 T <0 (8.24)

and then correlated with the kth and jth received signals, respectively.
The outputs of these correlators are then added to obtain the matrix ele-

ment [Y;]. Thus, by the use of K? devices of the type illustrated in

Jk°
Fig. 8.3, we are able to produce the K? elements of the matrix [Y,].
Moreover, a similar procedure shows the jkth element of the matrix [Y,]
can be realized by the use of the device illustrated in Fig. 8.L where
A

the %block containing hy is a realizable linear filter whose impulse

response is given by

ho(t) = hlr(T)31n w T+ hli(T)cos wT T20

= 0 T <0 . (8.25)

Note that the outputs of the correlators are subtracted in this case.
The element of the matrices [Y;] and [Y,] can also be produced by

using mixers and local oscillators rather than the band-pass filters
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T, y
) S
/
d
7 I
/7
0 }—— Tf

Fig. 8.2. Regions of integration for Eq. (8.23).

[y] . G Correlator
]

[y] ﬁ : Correlator

Fig. 8.3. Device for computing [Yl]jk'
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ﬁz Correlator
A
hy Correlator

[,

Fig. 8.4. Device for computing [Yz]jk.
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suggested in the previous paragraph. To show this, substitute (8.16)

and (8.17) into (8.21) and (8.22) to obtain
Tf t ¢] S s
(Y] = J j {(ly() I [y(s)], + [y(t)]j[y(S)]k}hlr(t—S)dsdt

Jk

+ JTf jt{[ c s s c
y()15Iy()13 - [y(6)130x(s)1SIn,, (t-s)asat

o ‘o ! k J
+ ij js{[ (£)15Iy ()1 + [y(+) 15[y (s) 15 n. (s—t)ata
o Jo AR gty Tyt iy ts )y thy (s- s

T S
+ j f J Uy ()13 y(s) ]y - [y(t)];[y(s)];}hli(s—t)dtds (8.26)

where

[y(t)]; = [y(t)] cos w_t (8.27)

and

[y(£)]} = [y(t)]sinw t . (8.28)

In Fig. 8.5, the hardware and circuitry necessary to implement Eq. (8.26)

is illustrated. The blocks containing either ﬁlr or h represent real-

1i

izable low-pass filters with impulse responses of either

A

h (1) = n (1), >0, (8.29)
= O otherwise
or
h (1) = (1)
hli T = hli T), T >0,

1]

0 otherwise. (8.30)
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Even though Fig. 8.5 is more complicated than Fig. 8.3, from a practical
standpoint, this latter approach appears to have an advantage over the
one indicated in Fig. 8.3 (at least for microwave signals) in that mixers
and local oscillators are usually easier to build and regulate than are
band-pass filters.

A similar technique can be used to realize the elements of the matrix

[Y,]. Proceeding as above, we find

T t
[Yoly, = L)f L} (y()15l(s)]g - [y(£)15Iy(s) Igny (s-s)dsat
Tf t . .
+ JO Jo {[y(t)]J[Y(S)]k + [y(t)];’[y(s)]i}hli(t_s)dsdt

T S
- f g f Uy () I5Iy(e) )} = Iy(e) 150y () ] Iny (s=t)dtds

T S
- Jf jo Iy () 15r() ]y + [y(e)150y(s) IPtn, ; (s=t)dtds  (8.31)
which can be implemented as illustrated in Fig. 8.6.

Let us now turn our attention to the problem of calculating the
sequence {Di} which is necessary to the decision scheme presented in Sec-
tion T.4. Although techniques are available for estimating each Di when
the sequence of eigenvalues {pj} corresponding to each particular "ai"
is known, this is an unsatisfactory approach since, normally, we do not
know {pj}. The ideal situation would be where D(ai), D(ai) = D, for all
i, is some simple function of the kernels of the operators Ri and RO since
these functions are known. Although a search for such a function has not
met with success, it is possible, for the special cases being considered

in this chapter, to determine properties of this function which provide
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"essentially" the same information as would be available if D(ai) was
known exactly. In particular, we can show it is reasonable to assume
D(ai) is independent of ai so that only the detection problem requires
knowledge of the exact form of D(ai). But, since the a priori probabil-
ity of noise alone is chosen somewhat arbitrarily anyway, it can be

seen that, even in the detection problem, little is gained by knowing the
exact numerical value of D(ai). Thus, an experimental approach which
sets the level D(ai) so as to obtain desired "false alarm" and "detec-
tion" probabilities appear most tractable for a real direction finding
situation.

To demonstrate the relationship that exists between D(ai) and o,
return to Theorem T7.28 where Di = D(ai) is defined. According to this
theoremn,
p2 = T (1—pj)

=1
where {pj} is the sequence of eigenvalues corresponding to the operator

1/2R71/2 by

I-X*X. But, since X_l is the unique bounded extension of Ro

Lemma 7.6 and Theorem 7.16, it follows that

0F = f o (8.32)
j=1 Y
where
1
pt = —
J
1-p,
J
and {pé} is the sequence of eigenvalues corresponding to (X*X)_l which
( . . -1/2, _-1/2 P
is unique bounded extension of Ri RoRi . The infinite product of the

eigenvalues of an operator as specified in Eq. (8.32) is sometimes re-

ferred* to as its "determinant" so that

*See Ref. 49, p. 1029.
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D;2 = det {(x*x)71)

where det{} denotes the determinant of the indicated operator. Moreover,
since

r71/2g g71/2 | pm1/2p g-1gl/2 R;1/2(

. R R, I-R H.)R:.L/2
o 1 1 o 1 o1 1

when we apply Eq. (7.112), it can be seen that the eigenfunctions and

eigenvalues of (X*X)_l, ROR£¥,and I—ROHi are identical so

det{(X*X)_l} = det{R R7'} = det{I-R H.} .
o 1 o 1

Let us now investigate the effect of substituting H: for Hi which
has been assumed to approximate Hi throughout this chapter. Suppose the

operator Sf; is defined on ié[T] so that, for each keK and [fleL,[T],

1}

[s£7([£1)] [£(t-7, (a,))]

k ki k ki f}

[f(t+Tf-Tk(ai)]k te[O,Tk(ui))

where the subscripted k denotes the kth component of the indicated ele-
ment of Ly[T]. It can be seen that Sf; maps Lo [T] into L,[T] by shift-
ing the individual components of the EQ[T] elements forward in time with
a slight distortion near the endpoints to ensure an fé[T] range. In a

similar manner, let us define the operator Sf; by

[se7([£1)], = [e(t+r,(a,))]

. te[O,Tf-Tk(ai)]

k

[f(t-Tf+Tk(ai))] te(T -1 (ai),T ]

k f 'k f

for each keK and [flel,[T]. Referring now to the discussion of Fig. 8.1,

we see, since T >> max Tk(ai), the operator H; can be "approximated" by
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setouosfT
1 1

where H is the integral operator on IL,[T] into L,[T] for which the jkth
element of its matrix kernel is given by h(t-s). This approximation

for H: appears valid and we shall not pursue further the manner in which
it converges to H: since H: is, itself, an approximation to Hi' If we

+ -
now form I-R Sf HSf.,, we find
(e} 1 1
+ - -
I - R SfTHSf. = Sfi(I-R H)Sf.
(@] 1 1 1 (@] 1

+ -
since RO has a diagonal kernel. As a result, it can be seen I—ROSfiHSfi

and I—ROH have identical eigenvalues and eigenfunctions since
se¥srT = seTsfl = I
i i i1
But this impiies
det{I-R Sf¥HSFI} = det{I-HR }
o i i o)

which is easily seen to be independent of a, . Finally, since SfIHSf;
"approximates" Hi’ we see that it is reasonable to assume I-ROHi and,
hence, Di is also independent of a, .

An alternate and possible more intuitive argument for assuming
D(ai) is independent of o, can be given if we rewrite Eq. (7.124) in

the form

1, = Pria expl 3 {(8,[y],[y])- Bla;))) (8.33)

where B(ai) =2 log D.. In Eg. (8.33), it can be seen that B(ai) serves
to introduce a bias of the statistic (Hi[y],[y]). Moreover, the approxi-
mation to this statistic developed above, as shown in the next chapter,

is the sum of two statistics which depend on a and oy the true and assumed
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directions of arrival, respectively. One of these statistics achieves
its maximum value when a, = o while the other is a noise term which tends
to distort the sum causing the maximum of our approximation of the se-
quence {(Hi[y],[y])} to be achieved when o, is different from a. Sup-
pose, rather than requiring B(ai) to equal 2 log D,, we substitute for
B(ai) the function of a, which equals the expected value of the distorting
noise term so that the term in the exponent of Eq. (8.33) is unbiased by
the noise, i.e., the expected value of this term is maximum st the true
direction of arrival. This approach, though possibly suboptimal, has
merit since we would expect, if our original estimation technique was any
good, approximately the same answers should be obtained using either bias.
The advantage of using the latter bias is that it can be obtained easily.
Moreover, as we shall find in the next chapter, the expected value of
this noise term is independent of a, which tends to reenforce the state-
ments made in the previous paragraph concerning the independence of
D(ai) and o, .

The summarize, the discussion of this chapter has produced a tech-
nique for approximating the sequence {Ii} which is the crucial element
of the optimal decision scheme presented in Section T.4. This technique
requires us first to obtain the KxK matrices [Y;] and [Y,] whose ele-
ments can be realized by the use of the devices illustrated in Figs.
8.3 and 8.4 or Figs. 8.5 and 8.6. Then, substituting into Eq. (8.18),
the sequence {Qi} can be easily approximated for any desired set of pos-
sible angles of arrival {ai}. Finally, it is a simple matter to sub-
stitute this approximation to {zi} into Eq. (7.124) letting D(ai) be a
preassigned constant level to be determined as discussed above and ob-

tain the sequence {Ii}'
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8.2.1 Example

It is instructive at this point to consider an example which applies
the above techniques to the design of a signal processor. Suppose K ele-
ments of a receiving array are equally spaced along the y-axis as illu-
strated in Fig. 8.7. Suppose, also, there is a Gaussian signal source
located in the x-y plane at an angle o relative to the y-axis and pos-—

sessing a power spectrum

E
F (o) = —o (8.34)

(w—wo)2+bg

where ES is a constant which depends on the signal strength and bo << W
(This last inequality will allow us to apply the "band-limited" condition
discussed in Section 6.4.) A wavefront due to this signal is shown in
Fig. 8.7 together with a unit vector u which is drawn orthogonal to it.
Finally, suppose the observation interval [O,Tf] is long compared with
l/bo (bO being a measure of the bandwidth of the signal) while the noise
corrupting each received signal is Gaussian, independent, and identically
distributed with a power spectrum which is much wider than the power spec-—
trum of the signal. The noise spectrum can then be approximated as shown
in Fig. 8.8 where EN is the height of the spectrum and a_ >> bo. It can
now be seen that this model satisfies all the hypotheses of the Special
Case Solution presented in Section 8.2 except possibly the conditions
relating to the existence of a symmetric square integrable solution to
Eq. (6.6) which can be approximated by the solution to Eq. (6.7). How-
ever, since these conditions are very difficult to verify, let us design
a signal processor according to the techniques presented in the previous
section even though it may be suboptimal. We can then evaluate its per-

formance later by calculating the expected value of the square of the
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Fig, 8.7. Geometry of the receiving array relative
to the incident wave.
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Fig. 8.8. Noise power spectrum.
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resulting error. Observing the forms of FS(w) and FN(w), it can be seen

that

Es

o w2+b?
o

(8.35)

while FN (w) has the form illustrated in Fig. 8.9. Then, substituting
o
these relations into (8.12), we obtain

(E./E2)
F.(w) = S N : (8.36)
w2+bg+KES/EN

If we now teke the inverse Fourier transform of (8.36), we find

hli(T) = 0 (8.37)
and
hy (1) = h(r)
Eq
= exp{-|t|/bZHES/Ey } . (8.38)
2E§/bg+KES/EN °©

Finally, substituting (8.37) and (8.38) into (8.29) and (8.30) we obtain

A
b (1) = o (8.39)
and
A Es
hlr(T) = : exp{—Tng-i-KES/EN }s1 >0, (8.40)
2E§/bg+KES/EN

0O otherwise

which are the impulse responses of the low-pass filters required in Figs.

8.5 and 8.6 to provide the elements of the matrices [Y;] and [Y,].
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Fig. 8.9. Low-frequency noise power spectrum.
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A1l that remains now, assuming we have the devices for realizing
[Y;] and [Y5], is to provide a method for approximating the sequence

{Qi} by the use of Eq. (8.18) where, for this case,

[Al(ai)]jk = cos[(k-3) ng cos a,] (8.41)
and
w D
[A2(a)],y = sinl(k-j) —- cos o] (8.42)
since
Tj(di) = —j(wOD/c)cos o, . (8.143)

(In Egs. (8.41) and (8.42) we have indexed the antennas from -(X-1)/2 to
(K-1)/2 as shown in Fig. 8.7 with the element at the origin being the

Oth antenna.) Then, if all possible angles of arrival have equal a
priori probability, our estimate of the true angle of arrival becomes the
a, corresponding to the li possessing the largest approximation. (The
modification of the above statement to handle the case where not all
possible angles of arrival are equally probable is obvious.) But, as-
suming a digital computer is available, it can be seen that no additional
hardware is necessary to produce this estimate since all the operations
mentioned in this paragraph can be performed easily by such a computer.
(If the detection problem is also of interest, the experimental technique

mentioned above can be applied to obtain a level to be substituted for

D(a.).)

1
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An evaluation of the performance of the above estimation technique
will be discussed in Section 9.3.1.
8.3 INDEPENDENT, IDENTICALLY DISTRIBUTED (EXCEPT FOR AN AMPLITUDE

FACTOR) NOISE

Let us now consider the problem in which Assumptions A6.4.1 and
A6.L4.2.1 together with A6.3.1-A6.3.3 are valid descriptions of the en-
vironment of the direction finding system. As noted in Section 6.4.2,
this problem is very similar to the problem discussed in Section 8.2. In
this case, however, we shall allow the noise levels to vary between an-
tenna elements.

Following the procedure of the previous section, if we let

h'(t-s+1,-1. )
[0 (t-8)],, = L5, (8.14)

jk
ajak

we find the Fourier transform of h'(t), Fh,(w), must satisfy

Fe(w)
Fh,(w) = (8.45)
FN(w)[FN(w)+K Fs(w)]
where K' = ) (l/aj). Observe, the only difference between Eq. (8.45)

JekK
and Eq. (8.7) is the replacement of the scalar K by the scalar K'. If

we then solve for hir(T) and hii(r) as in Section 8.2, we also find

o= Tr[A{(ai)]T[Yi] - Tr[Aé(“i)]T[Yé]

where [Yi] and [Yé] are defined as [Yl] and [Yz] in Eq. (8.21) and Eq.

(8.22) with h! (1) and h!

1y 13 (t), respectively,

(t) replacing hlr(T) and hli
[Al(ai)]ak

' = —_—1 JX j
[Al(ui>]jk - ajak ’ (8.46)
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and where

, _ i’ 3k
[aya)]y, = —ajak—é—. (8.47)

It can now be seen that the entire solution obtained in Section 8.2
carries over to this problem with only minor variations. As a result,

we shall not pursue this problem further.



CHAPTER 9

ERROR ANALYSIS

9.1 INTRODUCTION

In this chapter we shall consider the variance of the error result-
ing from the use of the estimation techniques discussed in the two pre-
vious chapters. Expressions relating this variance to the number of
elements in the antenna array and the "signal-to-noise'" ratio will be
presented for the example of Section 8.2.1 in which the array elements

are collinear and uniformly spaced.

9.2 ERROR ANALYSIS (General Case)
In Section T.4, it was found that the optimal estimate of the angle

of arrival corresponded to the o, which maximized the sequence {Ii} where
= i
I, = {Pr{ai}}{exp > {(Hi[y],[y]) - 2 log Di}} (9.1)

with Hi being dependent of a, and [y] denoting the observation. Let us
now consider the error that results from the use of this technique when
the a priori probability distribution of the angles of arrival is uni-
form, i.e., Pr{ai} = Pr{aj} for all i and j. This choice of distribu-
tion has been made as a matter of convenience and it is possible to ex-
tend our discussion, without difficulty, to cases where this distribution
is other than uniform. Moreover, since the exponential function is a
monotone function of its argument, the ai that maximizes {Ii} also maxi-
mizes the sequence {2(ai)-B(ai)} when l(ai) = (Hi[y],[y]) and B(ai) =

2 log Di' As a result,our optimality criterion reduces to that of

choosing the o, which maximizes the sequence {z(ai)—B(ai)}.

173
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Now, to obtain an estimate of the resulting error, let us assume
there is a continuous range of possible angles of arrival. Furthermore,
let us assume the noise is "small" so that the optimal estimate & is
approximately equal to the true value a. If we then expand Z(Qi)-B(a.)

1

in a Taylor series, about a, retaining only the first three terms, we

find

i i 5
+ <% [(Hl[Y],[y])-B(a.)]]ai > (ai-a)
32
+ ;;; [(Hi[y]’[y])_B(ai)]Li=a (ai-a)2/2 (9.2)

A oo (9.3)
where
5—2_ [(Hl[y]’[y])—B(al)]!a-‘_‘o‘
. 21 i . (9.Lh)
9
;;—-[(Hi[y],[y])‘B(ai)]|ai=a
i

Finally, if we replace the sample function [y] in Eq. (9.L4) by the ran-
dom process [Ya], the various statistics of this approximation for the
error can be considered. In particular, the second moment of this ap-
proximation can be used as a measure of the performance of the system
for the limiting case where the received signal energy is "large" com-
pared with the received noise energy.

The above procedure for obtaining a measure of the system perform-

ance, although intuitively meaningful, leaves several questions un-
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answered however. For instance, "Over what range of values of o, and o
does Eq. (9.4) represent a "good" estimate of the error?" The more fun-
damental question concerned with the legality of the power series ex-
pansion also exists since the functional relationship between Z(ai) and
ai is not known at this point. Finally, the problem of calculating the
second moment of this approximation is not trivial since it is the ratio
of two random variables.

In the next section, we shall examine the error resulting from the
use of the estimation technique developed in Section 8.2. To obtain a
measure of the system performance, the procedure discussed in the previous

paragraphs will be modified slightly due to its above stated difficulties.

9.3 ERROR ANALYSIS (Special Case Solution Presented in Section 8.2)

Let us now restrict our attention to the Special Case Solution of
Section 8.2. Recall, in this case, Assumptions A6.L4.1 and A6.L4.1.1 to-
gether with A6.3.1-A6.3.3 characterize the operating conditions of the
direction finding system. Let us further assume the Fourier transforms
of the signal and noise covariance functions are symmetric about the
frequency W, i.e., Fs(wo+w)= Fs(wo—w) and FN(wo+w) = FN(wo—w) for w > O.
Because of this last assumption,it follows from Eq. (8.12) that h;(t) is

.(t) = 0. (Actually, allowing h..(t) to be nonzero

real and, hence,hll

1i
does not significantly alter the error calculation other than causing an
increase in the necessary bookkeeping. It might also be added that this

assumption is valid in most realistic problems.) But this implies the

matrix elements [Y;],

ik defined by Eq. (8.12) can be written as

{Yl]jk = [sl]jk + [Nl]jk (9.5)
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where
[slljk = JT JT [s(t)]j[s(s)]k{hlr(t—s)cos wo(t—s)}dtds (9.6)
and
(1, = JT JT (Ls(6)],[n(e)], + [a(8)][s(s)], + [n(6)][n(s)])
(x) {ny .(t-s)cos w (t-s)}dtds . (9.7)

(A similar expression can be written for the matrix element [Yo]., defined

Jk
in Eq. (8.22).) 1In Eq. (9.5), [Sl]jk represents the pure signal compon-
ent of [Yl]jk while [Nl]Jk represents its distortion due to the presence
of noise.

Suppose, now, the sample function of the signal process during the

observation interval [O,Tf] is given by
s(t) = s1(t)cos w b+ so(t)sin w t (9.8)

where s1(t) = s;(t+1) and sy(t) = sy(t+1) if = f_?gx Tj(ai), i.e., the
signals s;(t) and s»(t) do not vary significantly in the time it takes
a wavefront to propagate across the array. This is a very realistic form
for a sample function since, in most communication problems, it can be

written as

s(t) = A(t)cos(wot+¢(t))

[A(t)cos ¢(t)]cos ot - [A(t)sin ¢(t)]sin Wt

where the "widths" of




1T

and

E)

as a function of w,indicate the maximum rate at which A(t) and ¢(t) can
vary with time. Moreover, if A(t) and ¢(t) are samples from ergodic¥

processes (an assumption often made in such problems) and T, is large com-

f
pared to the reciprocal of these "widths," it is reasonable to approxi-
mate these "widths" by the "width" of FS(w) which implies (Assumption
A6.L4.1) A(t) and ¢(t) as well as A(t)cos ¢(t) and A(t)sin ¢(t) do not
vary significantly in the time it takes a wavefront to propagate across
the array. Let us now investigate the error that results when the sam-
ple function of the signal process during the interval [O,Tf] is given
by Eq. (9.8).

If Eq. (9.8) represents the sample of the signal process during

[O,Tf], the sample received by the jth array element during this inter-

val is given by

[y(t)]j ~ s7(t)cos wo(t+Tj(u)) + s,(t)sin wo(t+Tj(a)) + [n(t)]j

(9.9)
where o represents the true direction of arrival of the signal. This
follows from the above stated fact that s;(t) 2= s;(t+t) and
sp(t) = sp(t+1) if 1 < max Tj(ai). Then, substituting Eq. (9.9) into

ij
Eq. (9.6), we find

(811, = (P sla@)],, (9.10)

*See Ref. 43, p. 67.
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where
s = J J {s1(t)s1(s) + sz(t)sz(s)}hlr(t—s)dtds (9.11)
T/T

and [Al(a)]jk is defined in Eq. (8.19). (To obtain this approximation,
we have used Egqs. (8.16) and (8.17) and the fact that sj;(t), s2(7) and
hlr(T) are slowly varying when compared with cos wor.) From Eq. (9.11),
it can be seen that S is dependent on the received signal energy while
being independent of the true direction of arrival of the signal. More-

over, if we write

(Y21, = [S5],

ik gt [Nz]jk (9.12)

where [Sg]jk and [Nz]jk are defined as [Sl]jk and [Nl]jk with sin wo(t-s)

replacing cos wo(t—s} in Eqs. (9.6) and (9.7), respectively, we find

also

(821, = (- Pslazle)], . (9.13)

(The matrix element [A,(a)] is defined in Eq. (8.20).) As a result,

Jk
Eq. (8.18) reduces to

2(ui) 2 (

==

)siTrilar(e) 1T (a1(a) I [Az(a,) 17 (A2 (@) 1}]

+ Trilay (e )17 - [a(a) ]I (9.14)

Let us now investigate the variation of the terms on the right of
Eq. (9.14) as a function of a, . If we let 2'(ai) be the function enclosed

in brackets which multiplies S, i.e., if we let

p(ag) = 1A ()1 0] - [Ap(a) T TA2(0)]) (9.15)
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the application of Eq. (8.16) reduces this expression to

(a)] (9.16)

2'(ai) = j,EEK cos[wo(rj(ai)—Tk(ai)-Tj(a) T,

which is easily seen to be maximum when ai equals the true angle of
arrival o. It then follows that the first term in Eq. (9.1L4) is the
product of a term which depends on the signal energy and a term which de-
pends on the geometry of the array in such a manner that it achieves a
maximum value when @, equals a. The second term of Eg. (9.14), on the
other hand, distorts this approximation of Z(ai) so the a, which maxi-
mizes 2'(ai), i.e., the true direction of arrival o, is not necessarily
the o, which maximizes the approximation. Thus, in order to compute the
error that results from the use of the estimation techniques derived in
Chapter 8, it is necessary to investigate this distortion since our
estimate of the true direction of arrival is the a, which maximizes
l(ai)—B(ai).

At this point, let us again consider the functional form of the
"pias" B(ai). In Chapter 8, two arguments were given to demonstrate the
independence of B(ai) and a, in the Special Case Solutions of that
chapter. One of these arguments made reference to the results we have
Just derived. At that time, it was stated that an approximation could
be written for l(ai) which was the sum of two statistics; the first
statistic was maximum when o, and the true angle of arrival a were equal
while the other statistic tended to distort the sum so the maximum of
the approximation was not necessarily o. This property has now been
verified. In addition, it was stated that a reasonable (though possible

suboptimal) form for B(ai) is the expected value of the distorting term

in the approximation of Z(Gi) since an unbiased estimate then results,
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i.e., if B(ai) has this dependence on a,, our estimate equals the true
angle of arrival o when the distorting term is equal to its expected

value. If we now refer to Egs. (9.7) and (9.12) where [N;],

3k and [N, ]

Jk

are defined and replace the sample functions [n]j and [n]. by the proc-

k
esses [I\T](j and [N]k’ respectively, it can be seen that the expected value
of these matrix elements are zero except when J equals k. Moreover, if
this result is substituted into Eq. (9.1L4), it is easily seen that the
expected value of the second term of this equation (the distorting term)
is independent of ai which then justifies the statements made in Chapter
8 concerning this independence.

It is now possible to estimate, for a limiting case of special in-
terest, the error that results from the application of the estimation
technique derived in the previous chapter. In particular, if we consider
the case where the received signal energy is much greater than the re-
ceived noise energy, it follows from the above discussion that the first
term in Eq. (9.14) dominates and the maximum of this sum is achieved when
oy is "near" o since 2'(ai) is a continuous function of o, which achieves
its maximum value at a, = a. Moreover, because of the form of l'(ai) as
a function of a,, we can approximate %£'(a) in the vicinity of o by the
first three terms of its power series expansion about a. (In the next
section where a specific array geometry is considered, it will be pos-

sible to determine the range of values of ai over which the approximation

is valid.) As a result, Eq. (9.14), in the vicinity of a, becomes

Iyeo, 1y, 82 (a;-a)?
z(ai) = (ﬂJSR (a) + (EOS Sag‘ [2 (ai)]ai=a -—;;———‘+ N, (9.17)

where

N,o= Tella ()] M ] - [Ag(ai)]T[NZJ} . (9.18)



(Note that the second term
o is not present in Eq. (9.

a.)

o Then, taking the

i

spect to o, and setting it

for R(ai)—B(ai) to achieve
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of the power series expansion of Q'(ai) about
17) because the slope of Z'(ai) is zero at
partial derivative of Q(ai)-B(ai) with re-
equal to zero to obtain a necessary condition

its maximum, we find

where

[o4

(9.19)

=lm

and & represents the optimal estimate. This approximation for the error,
as stated above, remains valid as long as € is not greater than the max-
imum value of |ai—a| for which the first three terms of the power series
expansion of 2'(ai) remains a valid approximation of 2'(ai).

To obtain a measure of the error in the above case, let us now

evaluate the expected value of the square of the error approximation given

by Eq. (9.19). Applying the identities of Egs. (8.16)-(8.17) and the

fact that sy(7), sp(t), h. (1), and r_ (1) are slowly varying when com-

1r No

pared with sin w,T and cos woT, We find

2y mis 2 [ - e
E{e?} ={s > [2 (ai)]|ai=a} {LN j kZmEK{cos wO(Tj(a) 7, (@) Tjka)+rk(u))}
i 9+
9 A 9 A ~2 9 Ayy 12
(X){aa (Tj(a)—rk(a))} {a& (t (8)-t, (a))}+2N i EEK {3& (rj(&)—Tk(a))} }
(9.20)

where¥*

¥See Ref. 6L, p. Tl for a discussion of the expectation of
Gaussian random variables.

a product of
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=1 (
N = JT JT JT JT{Sl(t)Sl(u)+S2(t)sz(u)}rNO(S—V)hlr(t_S)hlr(u—v)dtdeudv
(9.21)
and
ﬁzJJJJ (t-u)ry (s-v)h, (t-s)h, (u-v)dtdsdud
) Ty \t-w/ry {s=v/n, (t=s/n, u-v sdudv .
T /T /T T o o r (6.29)

(Remember, this expectation has been calculated assuming sj(t) and s,(t)
are known functions of time with only the noise processes being allowed
a random nature.) Thus, the above measure of system performance is seen
to be a function of terms which are independent of the geometry of the

array, i.e., ﬁﬂ, ﬁﬁ, and S, and terms which depend only on the geometry,

2
i.e., %—g-[l'(ai)]la =0 and the two indicated summations.
i

Qs

Befo;e evaluating a specific system by the use of Eq. (9.20), let
us derive an additional property of the function Z’(ai) which appears in
this equation. Applying the identity of Eq. (8.16) to Eq. (9.16), we
find

q 2 2

l'(ai) = kZK cos wO(Tk(ui)—Tk(a)) + kgK sin wO(T (ui)—rk(a))
Let us now assume the receiving antenna array possesses the geometrical
symmetry, when a vector is drawn from a particular point (a point of
symmetry) to any element of the array, there exists another element of
the array for which a vector drawn from the point of symmetry to this
element is the negative of the first vector. The position occupied by
the center element of a linear array of an odd number of equally spaced

elements is an example of such a point of symmetry. If this symmetry

exists, with a little reflection we can see the second term in Eq. (9.23)
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is zero. For every element in this sum, there exists another element
also in this sum whose value is the negative of the first. Thus, for
this case, we have

L'(a,) = ) cos wo(T

i Lo (ai)—T (a))]| . (9.24)

9.3.1 Example

In this section we shall evaluate the performance of the system which
was designed in Section 8.2.1. This evaluation will use Eq. (9.20) to
demonstrate the variation of the expected value of the squared error with
various parameters such as the 'signal-to-noise" ratio and the total num-
ber of antennas in the receiving array.

Let us begin by simplifying the expression for 2'(ai) which, in this
case, has the form presented in Eq. (9.24). Substituting Eq. (8.43) into

Eq. (9.24), we find

~

K' 2
2'(a,) = t ) cos kF(ai,a)]. (9.25)
k=-K'
where XK' = (K-1)/2 and
w D
F(ai,a) = —%— (cos a-cos ai) . (9.26)

But Eq. (9.25) can also be written as
2K' 2
L' (a,) = Ré[ggp{—jK’F(a.,a)} Y exp{ij(a.,a)i} (9.27)
i i i
k=0
where j is the complex number v-1 and Re[ ] denotes the "real part" of
the indicated quantity. Then, since the sum on the right side of Eq.

(9.27) is a Geometrical Progression,* it reduces to

*See Ref. 61, p. 317.
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[1-exp{j(2k'+1)F(a, ,a)}] 2

[l—exp{jF(ai,a)}]

so that 2'(ai) becomes

N2
exp{(K' + 2)F(a,,a) b-exp{-3(K' + D)F(a,,0)}
£'(a;) = {Re 2 1
exp{j(1/2)F(ai,a)}—exp{—j(l/2)F(ai,a)}
2
sin[(K' + i?F(a.,a)]
= SR (9.28)

sin[ (1/2)F(ai,a)]

Finally, taking the second partial derivative of the expression in Eq.

(9.28) with respect to a, and evaluating it at a, = a, we obtain

' 2
& ara )] = —(D'sin a)? <fK6*1;> [(2K'+1)2-1]
i

L
A~ -(D'sin a)2 %— , (9.29)

since (2K'+1l) = K >> 1, where D' = woD/c.

It is now possible to answer the question that was posed earlier con-
cerning the range of values of a, and a for which the first three terms
of the power series expansion of 2'(ai) remains a valid approximation of
2'(&1). Comparing the value of 2'(ai) as specified in Eq. (9.28) with

its series approximation, we find the approximation to be "good" as long

as
cos a, - cos a| < == (9.30)
i w DK
o
and
2c
1 - cos a| > ~F (9.31)

(¢}
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The region specified by Eq. (9.30) is approximated by the region between
half-power points of the antenna pattern of the array when operating as
a phased array and oriented in the & direction. However, o must be
greater than a '"beam-width" from the a = O direction as stated by Eq.
(9.31). (If a = 0, the third term of the power series expansion is zero
as can be seen from Eq. (9.29).)

Turning now to the summation multiplying the T term in Eq. (9.20),

we find
K A ) A A 9 A A
!j kzm=—K' {cos wo(Tj(a)-Tm(a)—Tj(a)+Tm(a))}{ ;5 [wo(rj(a)_rk(a))]}
]
{ ;5-[wo(rm(&)—rk(&))}l
K 3 A A 9 A
S . g=-K’ | { 55'[wO(TJ(a))—Tk(a))]}{ 55-[wo(rm(a)-rk(a))]}|
= (D'sin &)2 I (9.32)
where
K'
Iy = ) [(3-k)(m-k)| . (9.33)
J.k,m=K'

- . . . =2 . . .
Similarly, the summation multiplying the N term in Eq. (9.20) is given

by
K d A 2

. Z_ ’{ ) [wo(Tj(&)—Tk(a))]} = (D'sin )2 I, (9.34)

J 3k“—K
where

K'
£, = R = D (9.35)
j sk=_K !

We are now in a position to present an explicit expression which

bounds the expected value of the squared error in this example. Sub-
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stituting Egqs. (9.29), (9.32), and (9.34) into Eq. (9.20), we obtain the

2 [ =,z TR
E{e?} < ﬂ) 2N— —1> + L = . (9.36)
D'sin a 82 \g8 g2 \ g8

which shows clearly how an upper bound on E{e?} varies with the amount

relation

of signal and noise present as well as the number of elements in the an-
tenna array. (The quantities ﬁq and ﬁQ will be shown later to be posi-
tive.) The terms (ﬁi/Sz) and (ﬁQ/SZ) represent generalized "signal-to-
noise" ratios while the terms (£;/K8) and (5,/K8) depend only on the size
of the array.

In order to give Eq. (9.36) a numerical interpretation, let us
further assume s)(t) and s,(t) are samples from independent Gaussian

processes whose power spectrums are each equal to FS (w). If this is
o

the case, the sample function s(t) defined in Eq. (9.8) is a sample func-

tion from a Gaussian process whose power spectrum is F_(w). Let us also

S

assume s;(t) and s,(t) have Fourier transforms whose squared magnitude
equal the expectation of the squared magnitude of these transforms over

the probability space. We can then write¥

lim | 3H{ %r-sl(t')}|2 = 1lim Ii}{ %— so(t")}]?2 = Fy (w)
Tf+w f Tf»m £ o

where é¢{ } is the Fourier transform of the indicated quantities and
' = t—Tf/2 with s1(t') and sp(t') defined to be zero outside the inter-

val [—Tf/2,Tf/2]. Moreover, since T_ has been assumed "large" compared

f

with the reciprocal of the "bandwidth" of F_. (w), it is reasonable to

So

approximate l;;{sl(t)}|2 and LSL{sz(t)}|2 by T Fgq (w).
o

¥See Ref. 43, p. 108.
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Substituting the above approximation for Léf{sl(t)}|2 and

L£¥{sz(t)}|2 together with Eq. (8.36) into Eq. (9.11), we find

S = Tf J FS (w)Fhl(w)dw
Te B3\ |1 1
= e (57) 15 - - . (9.37)
N o) ng+KES/EN

To evaluate the quantities N' and N° which are defined in Egs. (9.21)

and (9.22), let us first realize that hlr(r) has "approximately" the same

form as rq (t). Then, since ry (1) has a Fourier transform which remains
o o

flat until w~ & and since a_ >> bo (see Fig. 8.9), it follows that Ty (7)
o

is very "narrow" compared with ISO(T) and hlr(T). Applying this fact,

Egs. (9.21) and (9.22) reduce to

TR Ey JT JT JT {sl(t)sl(u)+sz(t)sz(u)}hlr(t—v)hlr(u—v)dtdudv

(9.38)

52 2 2
N° = (EN) JT JT {hlr(t—s)} dtds, (9.39)

respectively. Then, substituting the approximation for [5}{sl(t)}|2
and |£}{sz(t)}|2 discussed above together with Eq. (8.38) into Eq. (9.38),
we find

N =~ ET Fq (w){Fh (w) }2dw

N°f 1

-
i

(¢]
T. /E K(EL,/E)
L ) s e TR
N e} 'bO+KES/EN (bO+KES/EN)

(It can be seen from Egs. (9.39) and (9.40) that T and N are positive
b

quantities as stated earlier.) Moreover, if we let t=t-s, Eq. (9.39)
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becomes

Tt
¥ o (8 ) J £ J {n. (7)}2arat

N 0 1r
2T, ;> [:: exp{-2T /oZ¥KES/E )
) (b2+KE /E 3/2&\E b +KEg /E
_ 1
2Tf/5g+KES/EN
2
N /E-Tf <?§i> . (9.41)
(v2+kE_/E_)3/2 \ By '
o S'™N

To obtain this last result, we have substituted Eq. (8.38) and performed
the indicated integration. Finally, since we are considering the large

signal case, Egqs. (9.37), (9.40), and (9.41) reduce to

T E
s ~ nﬁi}(%-ﬁ) (9.42)
o N
- mT E
No® o i i;i , (9.43)
o
and
, V2T /E 1/2
N o= £(=5 LY
K N
respectively.

The only quantities in Eq. (9.36) which still require further simp-

lification are the summations IZ; and Z,. But, since¥

]
K K'(K'+1)
) x o= E5E
k=0 -

*¥See Ref. 62, p. 317.
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K'
Z k2 = K
k=-K'

(K'+1)2K'+1)
3 9

and K >> 1, it follows easily that

. K'(K'+1)(2K'+1)3

Ty < 3(2K'+1)(K')2(K'+1)2

3
5
~ %_ (9.45)
and
' ' 2
5, = oK' (K'+1) (2K'+1)
3
"

~ %— , (9.46)

Finally, substituting Eqs. (9.42)-(9.46) into Eq. (9.36), we obtain

the desired relation

oy _ 1(1 6 ° 5V e
Ele®} < F(F)(D'sin cx> <§><E_S_> (9.47)

which illustrates an upper bound on the expected value of the squared

E., K, b, T

g ° £ D', and a.

error as a function of the parameters EN’

Remember, however, this expression is valid only in the "large'" signal

case where o is greater than a "beamwidth" from the a = O direction.



CHAPTER 10

SUMMARY AND CONCLUSIONS

The research described in this dissertation is concerned with the
determination of optimal procedures for estimating directions of arrival
of signals emitted by stochastic sources. To make these estimates, it
is assumed that an array of K omnidirectional antennas is available for
gathering data. Two distinct approaches to the problem are pursued which
are described in Chapter 1 along with a general discussion of existing
Direction Finding techniques. The first approach which is investigated
is Chapters 2-5 applies "Stochastic Optimal Control Theory" and assumes
the array is operating as a phased array whose control laws for directing
the pointing angle and specifying the beam width of the array are de-
sired. In addition, the forms of optimal filters for processing the re-
ceived signals of the phased array are investigated. In Chapters 6-9,
the array functions only as an information gathering device and "Estima-
tion Theory" is applies to determine the processing that is necessary to
produce optimal direction-of-arrival estimates.

In Chapter 2, a greatly simplified model of a phased array direc-
tion finding system is constructed in hopes of obtaining a model which
approximates the operating conditions of a realistic system and which
allows a meaningful analysis. In Chapter 3, this model is investigated
under the open-loop operation conditions where the control laws are re-
quired to be independent of past controls and past signals received by
the array and, thus, are chosen a priori. Results are obtained for this
case with the added assumption that the a priori probability density of

the possible angles of arrival is concentrated in a "narrow" region

190
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about the a priori expected value of this angle. These results indicate
the system should operate with the array pointing angle directed so the
maximum slope of the antenna pattern is oriented in the a priori expected
direction of arrival. In addition, if the signal level is unknown and
the antenna pattern is symmetric, the two orientations which satisfy this
condition should be used for equal time intervals. In Chapter U4, this
model is investigated under the closed-loop conditions where the control
laws are allowed to be dependent on past controls and past signals re-
ceived by the array. An optimal filter of the signals together with an
integral equation whose solution represents the optimal controls are
derived. In Chapter 5, the results of Chapters 2-L4 are discussed more
fully.

In Chapter 6, a new model for a direction finding system is con-
structed which employed the antenna array only to gather information.
Various special cases which restrict the possible forms of the signal and
noise processes of this model are also discussed. These special cases
all require the signal and noise processes to be narrow-band and the ob-
servation interval to be long compared with the reciprocal of the band-
width. Chapter T contains a derivation of an optimal estimation tech-
nique for this model without the narrow-band and observation interval
constraints. It is found that the Radon-Nikodym derivative of a par-
ticular Gaussian probability measure with respect to another Gaussian
probability measure plays a key role in this technique. Forms for this
derivative are found which allow an evaluation by the use of physical
devices. In Chapter 8, the narrow-band and observation interval con-
straints are introduced and result in a greatly simplified solution for

cases which are of engineering importance. Finally, Chapter 9 contains
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an analysis of the errors that result when the estimation techniques cf
Chapter 7 and Chapter 8 are applied.

Comparing the two approaches, we find the application of "Estima-
tion Theory'" techniques results in a solution which allows implementa-
tion with existing hardware while the application of "Stochastic Optimal
Control Theory'" techniques produces easily implemented results only in
very restricted situations. The difficulty associated with the control
theory approach stems from the infancy of the existing theory of "Sto-
chastic Optimal Control'" when nonlinearities are present. "Estimation
Theory," on the other hand, possesses many powerful tools which are ap-
plicable to the Direction Finding Problemn.

To summarize, the contributions of this dissertation are then the
following:

1. Control Theory and Estimation Theory Techniques have been applied
to the Direction Finding Problem with the result that only the latter
have been found to produce a solution which is easily implemented.

2. The work of T. T. Kadota on the "Optimal Reception of M-ary
Gaussian Signals in Gaussian Noise" has been refined and extended to the
vector valued signal case so that it can be applied in the design of DF
systems employing arrays of omnidirectional receiving antennas.

3. In two narrow-band signal cases, a relatively easily imple-
mented technique has been found for evaluating the Radon-Nikodym deriv-
atives which are called for by the estimation procedure following from
the above extension.

Numerous other special cases exist which restrict the applica-
bility of the general solution presented in Chapter 7 while remaining

of great practical interest. For example, the introduction of multiple
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narrow-band signal sources produces a problem whose analysis is different
from that required when a single signal source is present. Also, the
presence of noise sources which possess direction properties typify

many realistic situations. Both of these cases, conceptually at least,
fit easily into the framework of the analysis presented in Chapter T.
However, it is not clear at this time that simplified solutions of the
form derived in Chapter 8 are possible. Finally, there are several un-
answered theoretical questions which are discussed in the text of this

report and which deserve further investigation.



APPENDIX I

A RELATIONSHIP BETWEEN o-FIELDS

Let [Y] = {[Y];teT} be a K-dimensional vector valued random process
on the probability space (5, @:1'3) and let Q be the space of all real, K-
dimensional, vector valued functions on the interwval [O,Tf]. Further-

more, letﬁ be the class of sets of the form
D = {lflens[£(t)] <a ,[£(t,)] <a,....[f(t,)] < &}

where n is any arbitrary finite positive integer, tieT for ie{1,2,...n},
and 2y, Je{l,2,...,n}, is any real vector in K-dimensional Euclidean

space. Define %to be the class of sets of the form

B [y]~1(p)

]

where De /. Then

S
&
|

>

|
[l

&

>l

o
4

Proof: Let 7i= [Y]"N(H(D)). Since

S
for J, a countable set, and B, Bj eB(D), we see that ¥5is a og-field.

S
Also,% is easily seen to be contained in 8 Therefore

BR) < 7
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Now let 7)) be the class of sets MCQ such that
1L e B (S
It can be seen that 77)is also a o-field with %DC:X” so that
76(9) c 7).

Thus, we have

or

Q.E.D.

(1.1)



APPENDIX IT

PROPERTIES OF THE OPERATOR Rj;

The integral operator R; defined in Eq. (7.75) takes elements of

2
Hilbert-Schmidt.

Proof:
[glely(T].

of [g] given by

J keK T

Then, due to Theorem 7.6, we have

Lo

keK T

A

| A

1 [ [ e e {'[f<s>]§

[ri(t,s)]gk ds ‘é [f(s)]ﬁds

L [T] into elements of fé[T] and is self-adjoint, positive definite, and

Let us first show, if [g] = Ri([f]) where [f}eié[T], then

If [f], denotes the kth component of [f], the jth component

(I1.1)

where the final inequality follows from Assumption A6.3.1 and the fact

that [flgel, [T].

[g]eL, [T].

Let us now prove that R; is self-adjoint.

(R; ([£1),[g))

It now follows from the definition of fé[T] that

I ¢ lel®) ][R ((£]) ] at

jeK T
.EKgéfﬁﬁﬁHm@WHﬂﬂwkdms
J»KE

([£],R;([g]))

1
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Ir [£],[glel,[T], then

(11.2)



197

To prove that Ri is positive definite, note that R, automatically

has this property due to Assumption A6.3.1 and that, for ie{1,2,...},
[ri(t,8)] = [r9(t,s)] + [r'1)(t,s)] (11.3)

where [r°(t,s)] is the noise covariance function and [r(i)(t,s)] is the
covariance function of the signal process [S1(t)] whose angular location
is oy (see Assumption A6.3.1). As a result, if R(i) is the integral
operator defined on EQ[T] with kernel [r(i)(t,s)], it is sufficient to

prove R(i),ls{l,Z,...}, is positive since Ri = R0+R(i)' For any

[f]efé[T], we have

(Re3)([£D),[£]) = ,T(g{Qu(wu(s)('ﬁ(i)xtxs)dtds (11.4)

where U(t) = [§i(t)]T[f(%)} ;and  [S1] is a measurable, zero mean Gaus-
sian process with [r(i)(t,s)] as its covariance function. (The process
[51] exists due to Theorem 7.9.) But Eq. (II.L4) reduces to
[ [ ut)aty2a®, . > o (I1.5)
QT (1)
if the order of integration can be reversed. This order can be reversed,
by Theorem 7.11, if U(t)U(s) or equivalently, by Theorem T.L4, if
|U(t)U(s)| is integrable on the product space QxTxT. Due to Theorem 7.6,
S

|U(t)U(s)[d>\(§(i)xtsxﬂ2 < f (U(t))zdx5 (U(s))?dr
QxTxT

QxTxT QxTxT

where X is the product measure induced on QxTxT. But, by Theorem T7.10,

é (u(t))?ar ,{ff (U(t))2ap, . | dtds
XTxXT TT Q (i)

Te 1 (N0 0(6) 1 Te(8) hat . (I1.6)
j.keK T ‘
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Moreover, the right hand integral of (II.6) is finite since

fT[[r(i)<t,t>ij[fm]j[f(t)]klat < e s,00,

1/2
2 srle(e)15]%at}

/2

(x) {4 le(6)2ae) " < bi{f[f(t)lgat}l/g{fT [e(t) 2at1/?

T

again by Theorem 7.6, where bi is the bound on the function [r(i)(t,s)]jk
discussed in Assumption A6.3.1. Thus R(i) is positive and Ri,ieMé, is
positive definite.

To prove that R; is Hilbert-Schmidt, we shall first show that it is
completely continuous. But Assumption A6.3.1 together with Theorem 7.18
and Theorem T7.19 imply this statement. Then, since Ri is positive de-
finite and completely continuous, Theorem T.20 says that there exists
an orthonormal basis, {[wi]}, for fé[T] whose elements are eigenfunctions

n

of R, and an associated sequence of eigenvalues {A%}. Let us now con-

sider
§ { T [ri(t,s)]? asdt (II.7)
T T j,keK Jk
which equals
: , o
Tr {rflf/ [r'(t,s) ] [ri(t,s)] dsdt\r (I1.8)
T T

when Tr{ } denotes the trace of the given matrix. Then, applying

Theorem T7.22 and Assumption A6.3.1 which say that

8

[ri(t,s)] =

o~

L R
L () 1 [y ()17, (11.9)

(II.8) becomes

A i,1 i i T i i T 1
Tr i Il 0 ko) tuie) 1™ [y (s) 1 T (e) ] dsdtj (II.10)

m,n=1 TT
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when the order of summation and integration is interchanged which is pos-
sible due to the uniform convergence of the series. Performing the s

integration, (II.10) reduces to

N . 7
1 “31)2{ [w;(w].wl(detj

m

which equals

sz mzl (x;)z(amj) (1II.11)
when we let
oy = [wi(t)]édt . (I1.12)
T

(Note that &y 1s positive.) Then, interchanging the order* of summation

in (II.11), this sum reduces to

I ()2 (I1.13)
m=1
since
D oamy = SR diees = 1
JjekK T

But (II.13), which equals (II.T7), is also equal to the square of the Hil-
bert-Schmidt norm of R;, i.e.,
. i = ;
N (R = ] lIRglw l[12 = [ ()2
m=1 m=1 (IT.1k)

and is finite as a result of Assumption A6.3.1.

Q.E.D.

¥See Ref. 59, p. 161.



APPENDIX IIT

A PROPERTY OF THE PROCESSES [Zi] AND [2°]

If [z1] and [2°] are the K-dimensional, zero mean, measursble Gaus-
sian processes discussed following Theorem 7.25 and {[gj]} is any sequence
of elements from EQ[T], then the sequence of random variables {6§} and
{‘63.)} defined for all [fleQ by

ol([£]) = f[ziu,[f])]T[gj(t)]dt
T

<D
O
—~
H
—
~
1}

§ 12°05,0e) 17 g, (1) Jat
] (

are jointly Gaussian on (Q,é;,Pi) and (Q,QB,PO), respectively.

Proof: We shall only prove the random variables 9?,62,... are jointly
Gaussian since the proof that the random variables 9?,62,... are Jjointly
Gaussian is identical. But, to prove e%,e%,... are jointly Gaussian, it
suffices to prove ei,ei,...,e% are jointly Gaussian when n is an arbitrary
integer since the sequence {eé} can be reordered without loss of generali-
ity.

Let us first verify the fact that e;,je{l,Q,...}, is a random var-
iable. Since [21] ana [gj] are measurable on OxT, [Zi]T[gj] is measur-
able on QxT and

11241 g, 1] alp. xt) < [211Tg, 1. | a(P. xt)
LT K = jZk 5[{‘1’| L8y bl 2(Ps (ITI.1)

where [Zi]k and [gj]k are the kth components of [Zi] and [gj], respec-

3

tively, and P;xt is the product measure on the produce space OxT. Then,
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due to Theorem 7.6 and Theorem 7.10, the right hand side of Eq. (III.1)

is less than

1 1/2

Y f[gj]f{dt} 1/2 {Tf{ [Zi]idPidtj

But

A
:O\-—-\
S
e
o
l—‘-%
&
]

{ [ (t,8) J at

i
< b Tf

i
where [r (t,s)]kk is the kkth element of the matrix covariance function
of [Zi] and b* is the bound on this function as discussed in Assumption
A6.3.1. Therefore, the left hand side of (III.1l) is finite and
| [zt ]T[gj]l is integrable on 9xT by Theorem T.4. Finally,
[ 1z ’
[zt (t,[£]) 1 [g,(t) ]at

T J
is (measurable) and integrable on Q by Theorem T.10.

Let us now show 6%,6;,...,9% are jointly Gaussian. Since the con-

tinuous real valued functions¥* are dense in L,[T], for every [gj],

Je{l,2,...,n}, we can find a sequence of continuous functions {[gjk]]k
for which
1i . - . = . .
im H[ng] [gJ]II 0 (III.2)
koo

Moreover, for any k, the random variables {6§k;j=l,2,...,n} defined by

ol = 4[Zi(t,[f])]T[gjk(t)dt

are jointly Gaussian by Theorem T7.12. Also, we find

¥See Ref. 39, p. 251.
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1im E{el ot } = 1im =E{el el}
Ko Jk gk 00 Jk7J
= E{olel)
33

when the order of integration is interchanged and Eq. (III.2) is applied.
This implies, for each je{1,2,...,n}, the sequence {eﬁk}k converges in

the mean and, hence, in probability to ej. As a result, the characteristic
function of the Gaussian random variables {e}k;j=l,2,...,n}, call it @,
converges* to the characteristic function of [O§5j=1,2,...,n}, call it

®. The general form of Gaussian characteristic functions then shows that

the limiting characteristic function is also Gaussian.

¥See Ref. 28, p. 169.



APPENDIX IV

A CONVERGENCE THEOREM

Let [Z°] and {[Zg]} be as in Theorem 7.28 and define Hi([Zo]) = [W°]
and Hi([Zg]) = [Wg] with H, also as in Theorem T7.28. Then,
fT[z(t,[f])lT[WO(t,[f])]dt = iif S [2)(¢t,0£])] TWl(t,le) lat m(B)

where m(P ) denotes convergence in measure with respect to Py.
o

Proof: With the help of Theorem 7.6 and Theorem 7.10, we can write

|A

é | fT{[ZOJT[WOJ - [Zg]T[wS]}dtIdPo f{{l[zg]T{[wo] - [W1}|ap at

+ ffl[wc’]T{[zO] - [z31}]ap at
T Q

|

i—]H AN

T
(2217 [20)ap at

A
m

[WO]T[WO]GPOdt (IV.1)

+
o™
[} N}

K)R\ o) Sy

where

et = [Pl - menT(we] - (W lrap at
T Q

ed = ng{[zol - (2%, 1712°) - [22]}ap at.

Then, from Egs. (7.118) and (7.120), [z°]=1.i.m.[zg](txpo) and [W°] =

n->o
Limh[wg](txPo) so that Si and E%_approach zero as n»w. PFurthermore,

n->co
ff Twe) dP at ff [wo T [welatap

I

Ak EZ(T[[ZO]T[ZO]dthO
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and is, therefore, finite. Also, from the definition [Zg], we obtain

[ f 2o 1221apoat =

{(RL/2[5)R2/2[51) + (RS/2[9,1,R8/2[5,1)}
T Q J

nNe~—Bs

1
(Iv.2)

with {[¢j]} and {[55]} as in Lemma 7.9. But, as shown in Lemma 7.9, the
summation on the right of (IV.2) converges to Tr {§ [r°(t,t)]dt} which is
finite by Assumption A6.3.1. It can now be seen tgat the right hand
side of Eq. (IV.1) approaches zero as n-w.

Now let

A, = {l£]: |fT[z°]T[w°] - 201 W0lat| > e}

where € is any real number greater than zero. Then, if n_. is chosen such

e}

that, for n > ng, the left hand side of (IV.1l) is less than 62, it follows

that
P {A} < ¢

when n z_no and

f[Zo(t,[f})]T[wO(t,[f])]dt lim f[zo(t,[f])]T[wo(t,[f])]dt n(P,)

T no>e T

which implies

[ 12°e,LeD) P Wo(s, el Jas = 1im S [29s,[eD) 1T W0(s, [e) Jas w(E,) .
“T



APPENDIX V
COMPARISON OF "MINIMUM PROBABILITY OF ERROR"

AND "MAXIMUM A POSTERIORI PROBABILITY'" PARTITIONS

In this appendix we shall discuss the relationship that exists between
the "Minimum Probability of Error" and the "Maximum A Posteriori Prob-
ability" partitions of the observation space. In particular, we shall
find, defining the "A Posteriori Probability" in a special way, these two
partitions are identical. It should be pointed out, however, this dis-
cussion is not intended to be a rigorous proof of this relationship but
rather an addition argument illustrating the "optimality" of this parti-
tion.

In Theorem T.24, it was found that the partition of the observation
space that minimizes the "Probability of Error'" classifies the observa-

tion [y] in the subset A; if 1 is the least index for which

aig'rg; (yD) > ay = (lyD (V.1)

for all j¥i. (The set for which ag %;i ([y]) achieves max a; %gi (Iy])
for more than one index i has zero probability as shown in Theorem T7.25
and, therefore, need not be considered.) The constants {a;} represent
the a priori probabilities of the various angles of arrival.

The question now arises, "To what are we referring when we specify
the a posteriori probability of the angle of arrival given a received
observation [y]?" To answer this question, let us first restrict our-

selves to the discrete case where the noise process [N(t)] and the pos-

sible signal processes {[Si(t)]} take on only a finite set of possible
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values. Then, if [y] is an observation of one of the processes
Y (t)] = [v(&)] + [si(e)], (v.2)

Bayes¥* rules gives us

Ppr(i/ly]) = —2Pri(ly]) (v.3)
2 aiPri([Y])
i
where {ai} represents the a priori probabilities of the measures on the
processes {[S1(t)]}, Pri([y}) is the probability of [y] given [(st(t)]
is the transmitted process and Pr(i/[y]) is the conditional or "a
posteriori" probability of i being the index of the transmitted process

given [y] is the received observetion. The "Maximum A Posterior Prob-

ability" of the index is then the least index i for which

Pr(i/[y]) > Pr(3j/lyl) (Vv.h)

for all j#i. (In the general case where the noise and signal processes
are not limited to a discrete set, the measure of the set for which more
than one index can achieve this value has zero measure.) Moreover, if
we divide the numerator and denominator of (V.3) by Pry([y]) which de-
notes the probability of [y] given noise alcne is present, we find the

index i which satisfies (V.L) also satisfies

Pri([y]) Pri([y])
i > ey —d s (v.5)
Pro(ly]) Pro(ly])

for all j#i since Pro([y]) and Z aiPri([y]) are independent of the index
i

i.

¥See Ref. L3, p. 18.
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Suppose, now, the noise and signal processes are no longer limited
to a finite set of possible values. In this case, we see that both
Pr;([y]) and Pr ([y]) go to zero so, to generalize (V.5), it is reason-

able to consider some type of limit operation of the form

gre Pr ([yleag )

(v.6)

where {AE} is a monotone decreasing sequence of measurable sets contain-
ing [y] which, in some sense,approaches [y]. To obtain an expression for
this limit, let us denote by §o and ﬁi the measures induced on the ob-
servation space by Pry, and Pr;, respectively. Then, if §o and ﬁi are

equivalent, due to Theorem T.1ll4 we can write

,%n

L &b, (V.7)

ﬁl(Aa) = 5
A€ o

S

where dﬁi/dﬁo is the Radon-Nikodym derivative of ﬁi with respect to ﬁo‘
It can now be seen, if d?i/dﬁo approaches a constant value on Ae as

€+0, the limit expression of (V.6) becomes

P. ([ylea,) :
1im & e _ i .
60 B (r1eh) | & (v-8)

But, according to Theorem T.28, ﬁi and ﬁo are equivalent if there exists
a bounded self-adjoint operator H; which satisfies Eq. (7.112) and, if

such an operator exists, then

F = Diteiln ([yD,Iy1)) . (v.9)
Thus, if suchanH; exists and if we define

Ag = A{lfleq:||[£] - [y]]] < €}, (v.10)
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we see that, indeed, dﬁi/dﬁo approaches a constant value on Ag as &€-0
since Hi is a bounded operator.

Returning now to (V.5) and replacing Pri([y])/Pro([y]) by the limit
expression of (V.6) which equals dﬁi/dﬁo due to Eq. (V.8), we see that
a reasonable "Maximum A Posteriori Probability" partition of the observa-

tion space places [y] in A; if

. .. &
o

[oN}

for all j$i. But this is exactly the "Minimum Probability of Error"
partition as shown in Eq. (V.1).

This completes the discussion of this appendix which, as stated in
the opening paragraph, has been somewhat less than rigorous. Hopefully,
however, it has given some additional insight into the degree of "op-

timality" enjoyed by this particular partition.
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