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1. INTRODUCTION

A review of the literature in queueing theory reveals an abundance of results for steady-
state conditions and relatively few results for the transient phase of a queueing system. One
reason for this is the complexity and intractability of the mathematics involved in solving
the transient problem, and it is not uncommon to see results stated in terms of transforms
which are very difficult, if not impossible, to invert. Results, when left as transforms, seem
somewhat less satisfactory in terms of ease of interpretation. Analytical solutions for the
transient characteristics of queueing models are useful for studying the finite-time properties
of systems that are accurately represented by such models. Even if exact analytical transient
results are not known, it would be useful to know, in some fashion, the rate and manner

(e.g., monotonic or oscillatory) of convergence of the system to steady-state.

Analytical transient results are also valuable in the evaluation of alternative start-up
strategies for simulations aimed at estimating steady-state parameters. Kelton and Law [6]
and Kelton [5] present transient results for M/M/s, M/E;/1, and E;/M/1 queues and use
them as benchmarks to evaluate alternative initialization methods for simulation of similar
systems. Enlarging the range of benchmark models to include systems with multivariate
state spaces and multiple servers with non-exponential service times served as the main

motivation for this paper.

Another simulation-related area where transient results can be applied is the external
control variates technique for variance reduction. When examining the transient behavior
of a complex, analytically intractable system in a terminating simulation, a simpler system
with known transient behavior is simulated alongside the system of interest. The results
from the two systems, assuming the use of common random numbers, would be expected to
be correlated, leading to a variance reduction. The larger the class of systems for which tran-
sient results are known analytically, the greater the similarity possible, leading to stronger

variance reductions.

Known transient results can be classified according to whether or not the time mea-
sure is continuous (real time) or discrete (indexing by customer number). Continuous time
results for various queues can be found in Saaty [15], Kleinrock [9], Odoni and Roth [12],
Grassman |[3], Pegden and Rosenshine [13], etc. Continuous time results describe the be-
havior of the parameters of the system, e.g., the number of customers in the system, at

every point in time. Discrete time results, on the other hand, focus on the state of the
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system at certain transition points, e.g., at the point of arrival of the n'* customer, or at

the point of departure of the n* customer.

The treatment of queues in discrete time is especially relevant from the standpoint
of simulation. Standard measures of performance of general GI/G/s queueing systems
include the expected delay in queue (excluding service time), denoted by d, the expected
wait in system (delay in queue plus service time), w, the expected number of customers in
the queue, @, and the number of customers in the system, L. Estimates for all of these
quantities can be made directly during a simulation, but Carson and Law [2] have shown
that it is preferable (in terms of achieving a reduction in variance) to estimate w , @, and
L indirectly from a direct estimate of d using the conservation equations: w = d + E(S),
Q=Adand L= \(d+ E(S)) where E(S) is the expected service time and ) is the arrival
rate. For this reason, most simulation application and methodological research has focused
on the delay-in-queue process, which clearly is in discrete time. Hence, analytical results
for queueing systems in discrete time can be more easily related to simulation methodology.
Morisaku [11], Kelton and Law [6], Kelton [5], Moore [10], Heathcote and Wiener [4],
Stanford et.al. [16] and Bhat and Sahin [1] present discrete-time results for various queueing

systems.

In this paper, we present discrete-time transient results for an M/E;/2 queue, where
E) denotes the k-Erlang distribution. The state variable for this system has to be expressed
as a tuple. The method of analysis used here admits arbitrary (deterministic) initial states
for the queue; this allows a numerical evaluation of the effect of alternative ‘initial states
on the nature of convergence to steady-state, a general question of interest in simulation

aimed at estimating steady-state parameters.

In Section 2 the analytical results for the M/ Ey/2 system are derived. Section 3 reports
some of the results based on the numerical evaluation of these results. Section 4 contains

some conclusions, and the Appendix contains proofs of the results presented in Section 2.



2. THE M/E,/2 SYSTEM

The arrival rate to the queue is denoted by A, and the service times have a k-Erlang
distribution with mean 1/u. The service time distribution at both servers is assumed to be
identical. It is also assumed that a customer professes no preference for one or the other of
the servers, but enters service at the first available server. An arriving customer who finds

both servers idle chooses one of the servers at random.

For purposes of analysis, each complete service period is modeled as k consecutive
independent exponential stages, each at rate ku. The traffic intensity is p = A/(2u). Let
T.,n=1,23... bearandom variable that represents the time of arrival of the n** customer
to the system. Let A, be the number of service stages yet to be completed at server 1 at
each point of continuous time t,¢t > 0, and let B, be the total number of service stages
present in the system at time t. (Server 1 is idle at time ¢ if and only if 4, = 0.) The
pair X(t) = (4, B) is sufficient to describe the state of the system at time ¢, since other
quantities, such as the number of customers in queue at time ¢t or the number of service
stages yet to be completed at server 2 at time t, are functions of X(t). Note that 0 < 4, < k
and 4, < B,. The process X(t) renews at each point of continuous time ¢ (i.e., the evolution
of (A,, B,) for s > tis a function only of (4, B;), and is independent of all that happened in
[0,t) ), because both the interarrival time and the service stage distributions are exponential.
X(t) is, in fact, a continuous time Markov chain. It is easily seen that the T,’s are stopping
times for the process X(t), and X(t) therefore renews at each time T,. In other words,
X, =X(T,) = (Ar,, Br,) is a Markov chain. Similarly, the process X(t) also renews at

each (random) epoch in time when a service stage is completed.

In the next Section, the transition probabilities for X, are presented. In Section 2.2

various quantities of interest are derived in terms of these transition probabilities.



2.1 Transition probabilities

The process being analyzed is defined as X, = system state at T,, including the &
stages of the n'* arriving customer, for n > 1. Let x, = (ay, by) be the system state at

time 0. The probabilities of interest are:
Py, (x;n) = P(X, =x| Xo =xq), n=123...

Note that the range of values x can take is determined by x, and n. The first arrival occurs

at Ty, which is exponentially distributed with mean 1/A.

The following Propostions, the proofs for which are given in the Appendix, are sufficient
for the computation of the P, (x; n)'s. For convenience, let a; = A/(A+tu) and §; = 1-ay,
for 1 = 1,2. o, is the probability that, given only one server is busy, the next customer
arrives before the next service stage completion. Similarly, o, is the probability that, given
both servers are busy, the next customer arrives before the next service stage completion.
B and B, are the probabilities of the complementary events.

(Note: xy = (a,, by) and x = (a, b) below.)
Proposition 1: Puoo ((k K);1) =1
Proposition 2:
(a) for1<b, <k
P(o.l»(.)((k; k); 1) =p"

(b) for 1< by <kand k+1<b <bo+k

Pio.1) ((kl bi); 1) = alﬂlbo_bl+k

This propostition represents the initial condition where server 1 is idle, server 2 is busy, and
there is no queue.
Proposition 3:
(@) for 1< by <k
Piig.tg) (K K);1) = 81"

(b) for 1< <<k

Piig.19) (5 + B); 1) = a0
This proposition represents the initial condition where server 1 is busy, server 2 is idle and

there is no queue.



Proposition 4: For 1 < a, < b, < k+ 1,

(a) |
P('m-'m((k: k); 1) =B," 48,07 — 1

tl.ﬂ IIIO 1 +
+ Y aa(Ba/2)" 7™ <"‘ "’2>

nl-() M_O

(b) for 1 <5 < g,

Pl"n-"o) ((j:k +j)§ 1) =a,f, I

- aalBaf7 ""i‘ﬁi (8:/2)" <n1 + a9 —j)

n1=0 nl
(c) for 1 <7 < (by - a),

Pragig) (k& +5);1) = 0, 8,070

by = ap—j = (Mt bo—ag—3
AR W R

ny; =0

(d)for 1< e<agand a+ k+1< by +k,
) = h<+ b - b":‘ k
P("O-“ol((a' b)§1)) =0‘2(52/2)l( , k( 0 - >
a6 —a
This Proposition holds for the initial conditions where server 1 and server 2 are both busy

and there is no queue waiting for service. The Proposition also holds for the case when

bo > k+ 1 as long as b, — a, < k.

Proposition 5: For 1 < ay < k and b, > 2k,
(a) for b> 2k + 1,

!
n

Plag.t) (3, 8);1) = a(B2/2)"" b+k2( ~b+ k)

— nk+ ¢

where:
c=a—aifey>aand c=a,—a+kifa,<a
n'=|(by— b+ k- c)/k| (|z])denotes the greatest integer < z.)
and, if b < by, then 1 < a <k,
else, if b> b, then a € {a;,7 =0,1,2,...,5'}, where
=b-b+k



e =ay—Jifa >
a;=ay— )+ kif ay < j.

(b) for b< 2k+1,

-kt S~ T (b = k-
Pragnr ((2,0):1) = (Ba/2)° ™ 30 3 ("‘nH . 1) eE(C)

ar=1n=0

where:

Pluj ks ((a, b);1) is found from Proposition 4.

c=a—-a if a>a andc=a-a+k if q<a, and,

n' = |(by—k—1-c)/k|.
This proposition represents the initial conditions where both servers are initially busy, and
there is at least one customer in the queue. The proposition also holds for the case with

bOSZkaslongasbo—aO>k.

Propositions 1 through 5 have covered the cases where b, < k+ 1 or b, > 2k. There
are two subcases when k+2 < b, < 2k : (a) if b, — a, < k, then both servers are busy and
the queue is empty initially, hence Proposition 4 applies, and (b) if b, — a, > k, then both

servers are busy and there is one customer in queue initially, hence Proposition 5 applies.

Proposition 6:
byt+{n—-1)k &

Piag.1g) ((2,0); 1) = Z ZPMO_,,O,((i,j);n—l)P(,;,-,((a,b);l)

This follows directly from the fact that the process X(t) renews at every T. The quantities
Pii;) ((a,6);1) can be found using Propositions 1 through 5.



2.2 Applications

If the probability mass function P,,(x,;n) of X, is known, then formaulae for several
standard measures of queueing performance can be developed easily. Some examples of
these measures are : the expected total number of stages present in the system just after
T,, the expected number of customers present in the system just after T,, the expected
number of customers in queue just after T, and the expected delay in queue for the n'*

customer. Only the last performance measure is considered in detail below.

Let D, denote the delay in queue of the nt* arriving customer. Then,
E.( ZED | Xo = X,) Py (Xn5 1)

The quantity of interest is therefore E(D, | X, = x,). Obviously, if b, < k+ 1, then
E(D, | (ax,b,)) = 0. Also, if (b, - a,) < k, then E(D, | (as,b,)) = 0.

Suppose X, is such that the n** customer has to wait in queue before being served. The
earliest time when this customer can enter service is after b, — 2k service stage completions,
and the latest time when this customer can enter service is after b, — (k+ 1) service stage
completions. Let Q(a,b) be the probability that there will be exactly a service stages
remaining at server 1 and (b— a) service stages remaining at server 2 when the n®* customer

enters service. It is clear that either a or (b — a) or both will be equal to k.

Let EZ; = Expected time for j service stage completions, when both servers remain
busy throughout the period required for these j stage completions. The rate of service stage
completions when both servers are busy is 2ku, so EZ; = j/(2ku).

Conditioning on the total number of remaining service stages at server 1 and server 2

when the n** customer just enters service, it can be seen that
)

2k-1
E(Dy | (an,bs)) = > EZy,—o(Q(k, b) + Q(b - kb)) + EZ,, -0 Q(k, 2K)
b=k+1
b, — 2k
= Z Q(k, b) + Q(b— k, b)) + (—m-—lQ(k,zk)
b=k+1

The formulae for Q(a, ) are given and derived in the appendix. Finally,

2k-1 b,,, -k
Exo(Dn) = Z Pxo(xn; n){ Z (Q(kl b) + Q(b - k} b)) W
xn:(bp—an)>k b=k+1
b, — 2k
+ Q(k, 2k) = 2k }



The cumulative distribution function of D, can be calculated in a similar manner, using
the Q(a, b)’s.

We empirically confirmed our results by simulating an M/E,/2 queue, initially empty
and idle, with p = 0.7 and A = 1. The delay in queue of the first 25 customers was
computed by averaging over 100,000 replications and the difference between the observed

and theoretical values was less than 0.7%.

3. IMPLICATIONS FOR INITIALIZATION OF SIMULATIONS

In general, the goal of steady-state simulation is to estimate properties of the steady-
state distribution. A judicious choice of the initial state can result in a reduction in the
time required to reach steady-state. Clearly, the best choice for the initial state would be

the steady-state value(s), but lack of knowledge precludes this choice.

Kelton [6] and Kelton and Law [7] present results for systems with a one-dimensional
state-space (i.e., X, is a scalar), and show that it is better to choose an initial state other
than the popular empty-and-idle state to promote convergence to steady-state. The results
in this paper extend the work to include two-dimensional state space systems, which require
a bivariate initial state. The assumption of Erlang service time distributions lends realism
to the model, since it appears that for many processes an Erlang-shaped histogram arises

from the service time data.

Figure 1 shows a plot of E, (D, ) as a function of n, for an M/E,/2 system with traffic
intensity p = 0.7 and A = 1, and x, = {(0,0),(2,4),(2,6),(2,8),(2,10),(2,14),(2,20) }.
Kelton and Law (7], Kelton [6] and Bhat and Sahin [1] took advantage of the special struc-
ture of the transition matrix for systems with a one-dimensional state-space and efficiently
computed results for large values of n. We could not find a similar efficient computational
algorithm for our results. Obtaining the numerical results, therefore, was computationally
very expensive. ¥ The value for the expected steady-state delay in queue for this system

(dashed line) was found from tables in Hillier and Yu [5].

The convergence of E, (D,) to steady-state is highly dependent on x, and is non-
monotonic in some cases. Similar behavior was observed using discrete time analysis by
Kelton [6], Kelton and Law [7] and Stanford et.al., [16], and using continuous time anal-
ysis by Grassman [3] and Odoni and Roth [12]. Odoni and Roth identified four types of

* We were limited to maximum values of n & 30. A program written in Fortran 77 took & 200 mins. of CPU time
to evaluate the delays of 30 customers on a Harris 800 computer and the VOS operating system.

8



behaviour: i) monotonic convergence from below, the function being concave in time, ii)
initial decrease in the function, followed by a monotonic increase to the steady state value,
1ii) monotonic convergence from above, the function being convex in time, and, iv) mono-
tonic convergence from above, the function being convex in time, but with a linear decrease
initially. No claim was made that these types of behavior were exhaustive, and the basis for
the characterization was empirical observations. The four types of behavior were observed
for: i) an empty and idle or near-empty initial state, ii) initial state near steady-state value,
i) initial state > steady-state value, and iv) initial state > steady-state value, respectively,

as illustrated in Fig. 1.

It is clear, as in Kelton [5] and Kelton and Law [6] that the time for the expected delays
to fall within a specified tolerance zone around the steady-state value is greatly influenced
by the initial state. It is therefore advisable to investigate alternative initializations for
simulation of systems such as these, in order to reduce bias and to shorten the length of the
non-productive warm-up periods. A method similar to the one discussed in Kelton [5] that
uses a series of preliminary runs, can be employed to find reasonable values for initialization

of actual production runs.

4. CONCLUSIONS

Results for the transition probabilities for the transient, discrete time M/E;/2 system
have been presented in this paper. Further results using these transition probabilities have
also been derived. It is shown that the results are in close agreement with previously

published results, which were solely for single dimensional state-space systems.

A significant conclusion is that the method of analysis used here, though efficient for a

scalar state-space appears computationally inefficient for higher dimensional state-spaces.

Simulation of models like the one investigated is greatly influenced by the choice of the
initial state, thus warranting some experimentation to identify good starting conditions.
Good starting conditions would result in a quicker approach to steady state and consequent

reduction in computer run-time for the simulations.

The same method of analysis can be used for the M/E}/s system for s > 2, but the
benefit of such an analysis is questionable, unless some method for reducing the computation

time is found. Other multi-dimensional state-space models, e.g., M/M/1/M/1 queue can
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possibly be studied in a similar manner, thereby providing more analytical test models for

multivariate initialization heuristics for simulations.

APPENDIX

In the following proofs, when the initial state x, is implicitly known, the subscript in

P

«o(%X; 1) is dropped for notational convenience.

Proposition 1 is trivially true.

Proof of Proposition 2:

(a) Let A, denote the exponential arrival time of the first customer. Let S,,n=1,2,... be
a random variable that denotes the time of the n'* service stage completion. P((k,k);1) is
the probability that there will be b, service stage completions before the first arrival. Since
by > 1, there is a service stage in progress at time 0. Betause this process is memoryless,
it renews at time 0. The probability that the completion of the service stage in progress is
before the first arrival is ku/(X + ku), since the two competing processes have exponential
distributions. At the instant of completion of the first service stage, i.e., at S, the arrival
process renews, and therefore P(S, < A;) = ku/(X + ku). Continuing in this fashion,

ku by
P(Sl < AI;SZ < Al)"‘)S"O < Al) = (m;>

(b) P((k b,);1) is the probability that there will be exactly by — (b, — k) service stage
completions before the first arrival. At the instant of the (b, — (b, — k) service stage
completion, the arrival process renews, and the probability that the arrival will be before
the next service stage completion is A/(A + kp). As in (a), the probability that there will
be by — (b, — k) service stage completions before the first arrival is (ku/(\ + ku))bo_lhl—k).

The result follows immediately.

Proof of Propositon 3:

(a) Same as the proof of Proposition 2(a).

(b) Note that if all of the 50 service stages in the system at time O are completed before the
arrival of the first customer, then (a) applies. If, on the other hand, the number of service
stage completions before the first arrival is ¢ (0 < ¢ < by — 1), then X; = (b — 1, b, — 1+ k).
Define j = by — 2. Since 0 < ¢ < by — 1, we have 1 < j < b, and the result follows using

Proposition 2(b).
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Proof of Proposition 4:
(a) P((k k);1) is the probability that the first arriving customer finds the system empty.

Define random variables C, , C, as follows:
C; = no. of service stage completions from server 7in [0, T'].

Note that as long as server 7is busy, C; is a Poisson counting process with rate ku. Further,
C, and C; are independent. Initially, there are a, service stages remaining at server 1, and
since by < k+ 1, there are b, — a, service stages remaining at server 2. If the first arriving
customer finds the system empty and idle, then C, = ay and C; = b, — a,. Conditioning

on T, the arrival time of the first customer, we get:
P(C, = a),Cy = by — ay) = Ep (P(C, = a9, Cy = by — g | T}))

(o]

—_-—/P(Cl:-ag,Cg:b()—a()\ lez)Ae—Ade

0

Since C, and C, are independent processes,
P(Clzao,nglbo—ao]T1=a:)=P(CI=a0\ T1=x)P(CZ=b0~'ao| T1:I).

Since C, cannot exceed ay,

P(Cl——_a()ilez)_—'l—P(Cl<a()|T1:$)

ag—1
=1- }: exp(— kuz)(kuz)™ /n,!
ny =0
Similarly,
P(Co=by—ay| Ty=2)=1-P(C;< by— 0| T, = 2)
I)O—ao-l
=1- Z exp(—kuz)(kuz)"?/n;!
no =0
Finally,
P(Cl a9,Cy = by — ) =
] a1 bp—ag—1
/[1 - Z e"““(ku:c)"l/nl!} [ Z B2 (kuz)™ [ny! | e dz
0 ny=0 ny=0

The result follows after integration and simplification.
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(b) P((j,j + k);1) is the probability that the first arriving customer finds j service stages
remaining at server 1, and server 2 idle. This translates to C, = ay — 7 and C, = b, — a,.

The rest of the proof follows the same lines as that of (a).

(c) P((k k+3);1) is the probability that the first arriving customer finds server 1 idle and
J service stages remaining at server 2. This translates to C, = ¢, and C, = b, — ay — .

The rest of the proof follows the same lines as that of (a).

(d) P((a,b);1)) is the probability that the first arriving customer finds both servers busy.
This translates to C; = ao— a and C; = (by — ay) — (6— a — k). The rest of the proof follows

the same lines as that of (a).

Proof of Proposition 5:
The initial state for this proposition implies that at time 0 both the servers are busy and

there is at least one customer in the queue.

(a) The case b > 2k+ 1 is examined here. Let C; and C; be as defined in the proof of
Proposition 4(a). With ¢ and n' as defined in the Proposition statement, it is easily seen
that X, = (e¢,b) ifand only if C, + C; = b, — (b— k) and C, € {c,c+ k,c+ 2k,...,c+ n'k}.
n' can be physically interpreted as the maximum possible number of customer exits from
server 1 during the first interarrival time. The rest of the proof follows the same lines as
that of Propostion 4(a). It should be noted that if 2k+ 2 < b < by, any value of a €
{1,2,...,k} leads to a feasible X; = (q, b). If, however, b> by, then let ;' = b, + k— b.
Clearly, 0 <j' < k—1. The feasible values for a are {e; : j =0,1,2,...,5' — 1} where
aj=ay—-jifay>7 and a;=ay—-7+k if ay <.

(b) If b < 2k + 1, then the process has to have passed through the state (a;, k + 1) at
some t € [0,T,) , and a; € {1,2,...,k}. Designate this intermediate state as X;; X;
is entered at some random time T; < T). T is a stopping time for X(t). Hence the
process renews at time T;. To reach the state X; requires that (b, — (k+ 1)) service stage
completions occur before the first arrival. Defining ¢ as in the proposition statement it can
be seen that in order to reach the state (ar, k + 1) two conditions need to be satisfied: (a)
by — (k + 1) service stage completions occur before the first arrival and (b) the number of
service stage completions from server 1 be ¢ plus a multiple of k. Let ¢,y = by — (k+1) and
n' = |(¢ctt — ¢)/k]. n' can again be physically interpreted as the maximum possible number
of customer departures from server 1 during the first interarrival time. Then the number of

service stage completions at server 1 must be in the set {¢,k+¢,...,n'k+ ¢}. Given that
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there were c,,; service stage completions before the first arrival, the probability that any of

these service stage completions is from server 1 is 1/2. Therefore,

P(c, service stage completions at server 1| cy¢) = <Cmt> (1/2)"tt
1

which is the symmetric binomial probability mass function.

Using this, we obtain

P{bo — (k+ 1) completions before first arrival, X; = (a;, k+ 1)}

!
_ 2ku ot & Ctot > Ctot
- <)\+2k/t> ;(nk-kc (1/2)

-(5) "2t
A\ + 2k nk+ c

1]

Now,
P(X, = (a,b) | Xo =xq) ZP{bo (k+1) comp. before first arr., X; = (a;, k+ 1)}.

P{Xl = (a, b) X() Xo, X[ (aj,k+ 1)}
Since T; < T, and because X(t) renews at T},
P{Xl = (0., b) IXO ZXO,XI = (01,k+ 1)} = P{X]_ = (a, b) !X() = (a],k+ 1)}

The expression on the right hand side of the above equation can be evaluated using Propo-

sition 4, and the result follows immediately.

Derivation of Q(a,b)’s

Q(a, b) is defined as the probability that, given the n* customer does not go into service
immediately on arrival, there will be a and b — a service stages remaining at server 1 and
server 2 respectively when the n'* customer finally enters service. Though not explicit in
the definition, Q(a, b) clearly depends on X,. All arguments below are conditioned on the
event that the n'* customer has to wait in queue. Also, service stage completions, unless
otherwise qualified, mean service stage completions since the arrival of the n customer.
Case 1: b, > 2k.

At the instant when a total of b, — 2k service stage completions have occured, the n** cus-

tomer is either the first in queue or has just entered service. Let Q'(%,2k) be the probability
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that there will be ¢ remaining sevice stages at server 1 when a total of b, — 2k service
stage completions have occured. Both servers are busy during these b, — 2k service stage
completions, and the rate of service stage completions is 2ku. The probability that any of
these completions is from a particular server is 1/2. If a, > 1, then let ¢ = a, — 1; else, if
a, < i, then let c=a, — i+ k. Let n' = [(b, — 2k - ¢)].

Then, using the same arguments as in the previous proofs,

o
a6 =3 (" H

nk+ ¢

n=0
Clearly, Q(k,2k) = @ (k, 2k).

Let @(7,7) be the probability that after b, — j service stage completions there are 1
remaining service stages at server 1, conditioned on the event that the n** customer did
not enter service after b, — 7 — 1 service stage completions. Because both servers are busy

during the (b, —j )th service stage completion, the following equations hold:

For j = 2k -1,
Q1,2 - 1) =(1/2)Q'(1,20) + (1/2)Q (2,2H)
Qk-2,2k—1)=(1/2)Q (k- 2,2k) + (1/2)Q (k- 1,2k)

Qk-1,2k-1) =(1/2)Q (k- 1,2k)
Q(k 2k - 1) =(1/2)Q'(1, 2K)

Similarly, for j = 2k - 2,
Q(1,2k - 2) =(1/2)Q'(1,2k - 1) + (1/2) Q' (2, 2k - 2)
Q(k-3,2k-2)=(1/2)Q' (k- 3,2k - 1) + (1/2)Q' (k- 2,2k - 1)

Qk-2,2k - 2) =(1/2)Q'(k - 2,2k - 1)
Q(k2k - 2) =(1/2)Q'(1,2k - 1)

And in general, for j such that k+1<j7<2k-1,

Q(L7) =(1/2)Q' (1,7 +1) + (1/2)Q'(2,5 + 1)
14



QU -k-17)=(1/2)Q(G - k-1 +1)+(1/2)Q( - kj +1)
QG -k7)=(1/2)QU - kj+1)
Q(ks) =(1/2)Q (1,5 +1).

It should be clear that for k+1 <j <2k-1, Q(kj) = Q(kJ) and QU - ky) =
@ (7 - k7). Since the @(¢,2k)’s are known, the Q(%,7)’s can be calculated.
Case 2: b, < 2k.
In this case, the n™ customer is the first in queue upon arrival. Therefore, Q(7,7) =
0 for b, < j < 2k. Using the Qs as defined in Case 1, set Q(a,,b,) = 1, and Qi b,) =
0 for i # a,, 0 € {1,2,+++, b, — k, k}. Then, @ (4,7), for k+1 < j < b, — 1, can be calculated
recursively using the formulae in Case 1.

Finally we have as in Case 1, for k+1 <j < b,—1, Q(k ) = @(k,), and Qli-kj) =
AU - k).
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Figure 1. E, (D,) for the M/E,/2 Queue with p = 0.7




