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ABSTRACT: We survey some results on faces of a convex polyhedron
incident at a degenerate extreme point. We discuss applications of these
to the problem of enumerating the efficient faces in a multi-objective

linear program.

KEY WORDS: Faces incident at a nondegenerate or degenerate extreme
point, dimension of a face, canonical tableau oriented enumeration, type 1

subsets, efficient faces in a multiobjective linear program.

1. INTRODUCTION
Let K +¢be the set of feasible solutions of

Ax = Db
(1)

v

X 0

where A is a given matrix of order m x n and rank m. The dimension of
Kis=n - m. Let X be a given extreme point of K. Define

P(R) = [j: %5 = 0]

Z(%) {i: %5 = 0}

The extreme point X is a nondegenerate extreme point of K if the

cardinality of P(X), [P(i)l = m; a degenerate extreme point if
l P(x) l<m.- See Dantzig's book [2].
A hyperplane H = {x: cX =<1} where ¢ is a row vector in RP, ¢ =f
0, is said to have K on one of its sides if either cx= o for all x €
K, or cx= o for all x € K. The hyperplane H is called a supporting

hyperplane for K if H has K on one of its sides and H N K # ¢ A



face of XK is either the empty set Qb, or K itself, or the intersection
of K with a supporting hyperplane. A well known result (see [9])
states that every nonempty face of K is the set of feasible solutions
of a system of the following form for some J C { 1, ..., n}

Ax = b
x: =0 for all j ¢ J

]
=0 for all j € J

Extreme points of K are faces of dimension zero, edges of K are faces
of dimension one, etc. In Figure 1, x is the top vertex of a pyramid
K in R3. X is an extreme point of K. The edges e1, €9, €3, €, of K
contain x. The boundary triangular regions ejegey, eje,eq, e eqec,
ejejeg are the four two-dimensional faces of K containing

x. The only other face of K containing x is K itself.

Figure 1,
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An important mathematical problem encountered in optimization
studies is that of enumerating the faces of K containing a specified
extreme point of K. We show that the simplex canonical tableau
oriented approaches (which are based on the canonical form tableau
representations of the extreme point X as a basic feasible solution)
may fail to generate all the faces of K containing X when x is a
degenerate extreme point. We define subsets of Z(%X) called type 1
subsets, and show that faces of all dimensions incident to a degen-
erate extreme point can be generated and are uniquely identified with
maximal type 1 subsets.

A well studied problem in multiobjective linear programming is to
identify all maximal efficient faces. For example, in [4] J. G.
Ecker, N. S. Hegner and I. A. Kouada show how this can be done in the
nondegenerate case. In particular, each maximal efficient face of
dimension d incident to a nondegenerate efficient extreme point x is
identified with a unique set of d nonbasic variables in a canonical
form that can be increased from their zero value in x. In [4, P.

356] the following statement is made about this canonical tableau
oriented procedure "to handle a degenerate problem, all that is
necessary is the introduction of a tie-breaking rule for the choice of
the pivot row". This is false; our examples show that in the
degenerate case, this canonical tableau oriented enumeration may miss
some efficient faces even if all canonical form representations of a
degenerate extreme point are considered. As an application of our
results, we show how all efficient faces incident at a degenerate
efficient extreme point X can be enumerated using the concept of type

1 subsets of Z(x).



NOTATION AND PRELIMINARIES

If 8, T are two sets 8 \ T denotes the set of elements of S not in

T and ls l = cardinality of §.
I is the unit matrix of order m. For p ¥ m, we denote the unit matrix
of order p by Ip'
If G is any matrix, define
G.j = the jth column vector of the matrix G
th

G: = the 1

i. row vector of the matrix G

In (1), the column vector A; is associated with the variable X3 j =
1 to n. A basic vector for (1) is a vector Xg of m of the variables
X]5 eeey Xp in (1), such that the set of column vectors A.j
corresponding to them is a linearly independent set. When considering
the basic vector Xp» variables in it are called basic variables,
variables not in it are called nonbasic variables, and the square
matrix B of order m consisting of columns of A associated with the
basic variables in the order they are listed in Xy is called the
corresponding basis. The basic solution of (1) corresponding to the
basic vector Xp and basis B is defined by
all nonbasic variables = 0
xg =37 lp =5
The basic vector xp, and the basis B are said to be feasible if 5 =
0, infeasible otherwise. When Xy is feasible the basic solution
corresponding to it is called a basic feasible solution (BFS) for (1).
Given the fasible basic vector Xg, and the associated basis B,
define
B = {j: x: is a basic variable in xB}

j
F= {1, ...,jn \B.

(B,N) is the partition of {1, cees n} into basic and nonbasic parts



corresponding to xg. Rearranging the columns of A into basic and
nonbasic parts, A will become (B,N) where N is the m x (n-m) submatrix
of A consisting of nonbasic columns. Let xy denote the vector of

nonbasic variables. Rearranging the variables in (1), it can be

written as

XB XN

B N b.

xB, xN ;0.

The canonical tableau (or canonical form) of (1) corresponding to the

-1

fasible basic vector xg is (where N = B™°N, 5 = 3”lp)

xB xN
I K b

xg, Xy =0

The BFS corresponding to this canonical form is given by (xB = b,
xy = 0).

It is well known (see Dantzig's book [2, p. 154]) that every
extreme point of K is a BFS and vice-versa. If X is a nondegenerate
extreme point, it can be represented as a BFS in a canonical tableau
form in a unique manner, this corrsponds to the basic vector (xj: j €
P(x)). If x is a degenerate extreme point, there may be several basic

g~

. il
vectors of (1) corresponding to it, each of them eemtsaim “all the

variables x5 for j € P(x) as basic variables.

EXAMPLE 1 (I am thankful to J. G. Ecker for providing this example during

the refereeing process):
The convex polyhedron is the pyramid in B3 in Figure l, defined by
{x:x€R3,x;0andxl-x3_Z_0, Xy - x3 =0, x; + x4 gl,x2+x3§

1 }. Introducing the slack variables X, to Xy, the constraint system



becomes

*1 X2 *3 X4 X5 6 X7

1 0 -1 -1 0 0 0 0
0 1 -1 0 -1 0 0 0
1 0 1 0 0 1 0 1
0 1 1 0 0 0 1 1

X §0wfor all j.
Consider the top vertex of the pyramid X = (1/2, 1/2, 1/2, 0, 0, 0, O)T.
(xy, %9, X3, X;) is a basic vector associated with x. It corresponds
to the basic, nonbasic partition (B = {1, 2, 3, 7}, N = {4, 5, 6} ).

The canonical tableau corresponding to it is

Canonical form Tl

bas?c X X Xq Xy, Xg Xg Xq
variable
X 1 0 0 -1/2 0 1/2 0 1/2
Xq 0 1 0 1/2 -1 1/2 0 1/2
Xq 0 0 1 1/2 0 1/2 0 1/2
Xq 0 0 0 -1 1 -1 1 0

X is a degenerate extreme point, and the basic vectors (xl, X9, X3,
x4), (%1, %5, x5, x5), (%1, %, X3, X¢) are also associated with X.
Hence in this case, the degnerate extreme point x has four different

canonical form representations.

FACES INCIDENT AT A NONDEGENERATE EXTREME POINT
Let x be a nondegenerate extreme point of K. VLet Xg =

(xj:j € P(x)) be the basic vector of (1) corresponding to X.



This basic vector corresponds to the basic, nonbasic partition (B =
P(x), N = Z(x)) for (l1). We have the following results.

(i) The dimension of K is n - m (a sufficient condition for the
dimension of K to be n - m is that (1) have a nondegenerate
extreme point, see [6, 9]).

(ii) Each nonbasic variable xj, j € N enters Xp with a strictly
positive value, generating an edge of K containing Xx;
conversely all edges of K containing X are obtained this
way. See Dantzig's book [2, p. 155].

(iii) Each subset J < N, l J ] = r, determines a unique r-

dimensional face of K containing X,

F(%,3) = [x: x €K, x; = 0 for all j € N\J|

Conversely every r-dimensional face of K cdntaining X is
obtained this way. The set F(X,J) can be viewed as the
face obtained when the nonbasic variables x5 for j € J are
allowed to increase from their current level of zero im X
in the basic, nonbasic partition (B,N).

(iv) If K has a nondegenerate extreme point, and a new
nonnegative variable X041 associated with a column vector
A 41 is introduced into (1), it has the effect of
increasing the dimension of the set of feasible solutions

by 1 to n - m+l.

4, SITUATION FOR A DEGENERATE EXTREME POINT
Let X be a degenerate extreme point of K and let xp be a
basic vector for (1) corresponding to it, with (B,N) as the basic,

nonbasic partition. The results discussed in Section 3 may not hold



anymore. If (1) has no nondegenerate BFS, the dimension K may be « n
- m. In this case, when a new variable % ., is introduced into (1),
the dimension of the set of feasible solutions may remain unchanged,

or may go up by 1 or more. Consider the following example.

LS| X2 X3 X4 X5 X6
1 0 1 1 1 1 0
0 1 0 0 0 0 1

x. 20, j=1to 6

Here n = 6, m = 2, x = (0, 1, 0, 0, O, 0)T is the unique feasible
solution, and the dimension of the set of feasible solutions is zero.
If the new nonnegative variable Xy associated with the column vector
(-1, 0)T is introduced into this system, the dimension of the set of
feasible solutions goes up to 5.

Also, in this degenerate case, if J <€ N, ' J l = r, the set { X:
x € K, x5 = 0 for all j € N\J} is of course a face of K, but its
dimension may be < r, and faces obtained this way by taking different
subsets J € N may not be distinct. Also, for r > 1, all r-dimensional
faces of K conaining x cannot be obtained by this procedure by

considering only one basic, nonbasic partition corresponding to x, or

even all the basic, nombasic partitions corresponding to x one by one.

EDGES OF K CONTAINING A DEGENERATE EXTREME POINT
Let i==(ij) be a degenerate extreme point of K. For

notational convenience, assume that P(X) = { I, «eey p ) =P, 2(x) =

\

{p+1, cees n} = 2Z. Performing pivots on columns of X3 j P

transforms (1) into



Xp Xz

3

I .

P ¢ £
P

0

0 D L]

0

Consider the homogeneous system

"
o

Dx
z (2)

v

XZ 0

Every basic vector xg for (1) corresponding to X is of the form

(Xj:

j € PU Q) where Q c Z, [ Q l m-p, and (xj: j €Q) is itself

a basic vector for (2); thus Q corresponds to a square nonsingular
submatrix of D of order m - p.

Let xp, = (x:: j €E€P UQ,),u=1¢toLbeall the distinct basic

i

vectors of (1) corresponding to x. For u =1 to L,

B, {j: Xx. is a basic variable in the basic vector Xp }
J w

N, = {1, ..., n| \B, = z\Q,

(B,, N,) is the basic, nonbasic partition corresponding to the basic

vector Xg . Define
W

S, = {j: j € N, and the updated
column vector of Xy in the canonical
tableau of (2) with respect to the basic vector
(x;: j€Q) is S0
The set 8§ is the index set of all nonbasic variables which enter the
basic vector xBu for (1) with a positive value. Thus the nonbasic

variable x,, 8 € N,, enters the basic vector Xp.. for (1) with a

10



positive value and thereby generates the edge of K, {x: X = (xj) € K,
x; =0 forall j €N\ {s}} containing x iff s € 8, Conversely,
every edge of K containing X can be obtained in this manner, and is
therefore of the form given above for some u = 1 to L and s € Su. The

same edge may appear several times in this enumeration. See [1, 9].

Example 2: Consider the three dimensional pyramid and its extreme
point x discussed in Example 1. Here n=7, m= 4 and P(X) = P = {1,
2, 3 }, Z(x) = Z = {4, 5, 6, 7} - So p =3 and m-p = 1. Choosing Q
= {7} leads to the basic vector xp, = (x;, x5, x3, x3). This
corresponds to the basic, nonbasic partition (Bl = {l, 2, 3, 7} s Nl =
{4, 5, 6 } ). From canoncial tableau Ty ve verify that only the
nonbasic variables X4, Xg can enter the basic vector XB] with a
positive value. Thus 8§; = {4, 6 }. We get two distinct edges
containing X, one by entering X, into XB] and the other by entering Xg
into xB] - Other edges containing X are obtained by repeating this
process with other basic, nonbasic partitions corresponding to X.

On the question of determining the dimension of K, it is possible
to do it from a local study at a degenerate extreme point x. The
following theorem characterizes the dimension of K using the informa-
tion contained in all the canonical tableaus for (1) corresponding to

x.

THEOREM 1: Let 8§ = U(S,: u =1 to L). Then (i) in every point x = (xj)é

K, Xy = 0 for all\j € 2\s, (ii) dimension (K) = l PUS l - rank 4A.j: i€
P U s .
PROOF: From the above arguments we know that x: = 0 for each jE2Z\S, on

J

each edge of K containing X, this proves (i). After setting all such X5 =

11



0,(1) reduces to
LA xt jERUS) =b
(3)

x; 20, jERUS

For each variable in (3), there are feasible solutions of (3) in which that
variable is > 0. Sinceé (3) is feasible, the number of nonredundant
equality constraints in (3) is rank [A.j: j € P US }. Since the
smallest dimension affine space containing K is characterized by the system
of equality constraints in (3) together with x; = 0 for each j € Z\ S, we

i
jEPUS ). W

conclude that the dimension of K is l PUS [- rank ‘ A.j:
6. FACES OF DIMENSION = 2 CONTAINING X

Let X be a degenerate extreme point of K. In the notation of

Section 5, for u = 1 to L, each nonbasic variable x. for j € 8, enters

J

the basic vector xBu with a positive value. For J C 5,» define

F(x,J) = { X: X = (xj) € K, x.

;=0 for all j ¢ N, \J |.

The set F(x, J) is a face of K containing X, of dimension I_J l; we
can think of this face as the one obtained when the nonbasic variables
xj for j € J are allowed to assume positive values in (1) besides
those in the basic vector wa. Repeating this process with each of
the basic vectors de u=1¢tol corresponding to X, other faces of

K containing X can be obtained. However, this tableau oriented
enumeration involving basic vectors for (1) corresponding to X one at
a time, may not produce all the faces of K of dimension d containing
X, for d =2. The difficulty arises because for d =2, there can be

faces of K of dimension d incident at X, but there need not be d

12



nonbasic variables that can be increased from their current level of

zero in X, no matter what canonical form representation of X is used.

Example 3: Consider the three dimensional pyramid and its extreme
point x discussed in Example 1. In each of the four possible canon-
ical form representagions of X, at most two nonbasic variables can be
increased from zero, and yet the pyramid itself is a 3 dimensional
face incident at x.

Thus in order to enumerate all faces of K containing the
degenerate extreme point X, focusing on the basic, nonbasic partitions
corresponding to x would not help. Instead, we should use the index
set Z(x) directly. Find 8§ = U(8,: u=1to L) defined in Theorem 1.
This is the set of all j € Z(x), for which a feasible point x exists
in K with x. > 0. Call a subset J © S a type 1 subset if for each t ¢

J

J, the optimum objective value in the following LP (5) is =0.

maximize X,
subject to Z(A.jxj: j EP UV J)=b» (5)

xjé‘Ofor each j € PUJ
By the results in Section 5, S itself is a type 1 subset. We have the

following results:

1. There is a unique face of K incident at X corresponding to each

type 1 subset J CS. It is

13



F(x,J) = {x: x = (xj) € K, x; =0

for each j € 2\J }
and the dimension of this face F(x, J) is 'I’('i) U Jl - rank { A5
. - 1 -
j ER(X) UJ jo Conversely, every face of K incident at x is uniquely

identified with a maximal type 1 subset.

(The type 1 subset identified with a face of K containing x in this

correspondence is the set of all j ¢ Z(x) such that X, assumes a

positive value in the face.)

2. If X is a nondegenerate extreme point of K (i.e., [ P(;)‘ m), S
= Z(x), and every subset J € Z(xX) is a type 1 subset and the dimension

of the face F(x, J) defined as in 1 above is always lJ l .

3. If J is a type 1 subset and j € § \J is such that J U { j} is
also a type 1 subset, then dimension of F(x, J(J {j }) = 1 + dimension

of F(x, J).

4, Each set A € S has a unique maximal type 1 subset. That type 1
subset of A is the set of all r € A for which the maximum value of X_

over the set of feasible solutions of
LA sx5: jERU A ) =b

xj ; 0, Jé | 4 U A
is > 0. All type 1 subsets can be obtained by repeating this

procedure with different subsets of S.

5. A proper subset of a type 1 subset may not be type 1. If JCAC
S, and J is a type 1 subset, then the maximal type 1l subset of A

determined as in 4 above is D J.

N



6. The union of amy two type 1 subsets is also a type 1 subset, that
is, the class of type 1 subsets associated with the extreme point X is
closed under the set union operation.

Example 4: Consider the degenerate extreme point X for the pyramid
discussed in Examples 1, 2. The edges e;, ey, e3, e, incident at x in

Figure 1l correspond to the type 1 subsets <{4,7} s {6, 7}, {6, 5} R

{4, 5} respectively. The four 2-dimensional faces incident at x, e

ejey, egejeg, eje eg, e,ejec correspond to the type 1 subsets {4,6,7}
, {5, 6, 7}, {4, 5, 6}, {4, 5, 7} respectively. The only other
type 1 subset if {;4, 5, 6, 7} which corresponds to the whole

pyramid.

Let Jy, . Jy be all the type 1 subsets corresponding to edges

of K incident at Xx. Then for any Q& {1, .esy M|, the set U Ji is a

1€Q

type 1 subset, and conversely every type 1 subset associated with x is

7.

of this form. The type 1 subset associated with any face of K containing
X 1is the union of the type 1 subsets associated with edges of K incident at

x contained in this face.

APPLICATION TO MULTIOBJECTIVE LINEAR PROGRAMMING

Consider the problem of finding the set of all vector minima for

the multiobjective LP with t objective functions C; x, ..., C, X over

\S



x € K. Let C be the t x n matrix with rows C;»i=1¢tot. Inthis
problem a point x9€ K is a vector minimum (or an efficient point,

or a pareto-optimal point or a nondominated feasible solution) if
there exists no x € K satisfying Cx = cx’ (given vectors ¢ = (fj), n=
(le) of/\same dimension, ¢ =< 0N  iff Ej = N; for all j and &5 < 7
for at least one j). The set of all vector minima, known as the
efficient frontier, i;Ma union of some faces of K, which is a simply
connected set [4, 11, 12, 10, 8, 7, 9]. A face of K is said to be an
efficient face if every point in it is an efficient point. It is well
known that a face of K is efficient iff a relative interior point in
it is efficient [12]. Algorithms for computing all the efficient
extreme points and edges using a tableau oriented approach are
discussed in [3, 4, 5, 7, 8, 10, 11, 12]. These algorithms also
obtain all the efficient faces of K if (1) is nondegenerate. However,
when (1) is degenerate, these tableau oriented approaches may not

obtain all the efficient faces.

Let x be an efficient extreme point of K (degenerate or nondegenerate).
Let P = P(X), Z = Z(X) as in Section 5, with | P | = p. Performing pivots on
columns of X35 j € P, transform (1) as in Section 5, and
price out these columns in each of the objective rows, leading to the

following tableau.

Xp Xz
by
I .
P ¢ B
P
0 D 0
*
0 Cq.
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*
THEOREM 2: Let J be a type 1 subset of Z. Let Cjy, Dj be

. . . *
respectively the submatrices consisting of columns of Cy, D

J

=0 for j€ Z\J ) is efficient iff the system (6) iny € R®™P, ;=

corresponding to j € J. The face F(x, J) = { X: x==(xj) € K, and x

( Ej: j € J) has no feasible solution

* * .

Dy = 0
y Z0
EJ > (

1]



17-1

PROOF: The proof is similar to the proofs of results discussed in [12, 4].
Since J is a type 1 subset of Z, a point x = (xj) in the relative interior
of F (x, J) satisfies Xj >0 for jEJ UP and Xj = o for jEZ\J. 1f
(—};, -E-J ) is a feasible solution of (6), we use this solution to construct a
point x° in the relative interior of the face F(X, J), and another feasible
solution xlEK, satisfying CxlS Cx°, which proves that x° is not an
efficient point and that F (;, J) is not an efficient face. Conversely, if
F (;:- , J) is not an efficient face, for every?{ in its relative interior,

A A ~n .~ A
there exists another point XEK such that Cx € C x, and using X, X
we construct a feasible solution to (6).

Suppose (y, EJ ) is a feasible solution of (6). Define y° =

(y%) € RU7P py y% = §j for j€ J, 0 otherwise. Let Cp be the
submatrix consisting of columns of C corresponding to j € P.
Similarly, given any vector x = (xj) € R" denote x = (xp, xz) where xp
= (xj= i €EP), x5 = (xj: j € Z). It can be verified that for all x =
(xp, xg) € K, Cx = CpXp + C;xz. x0 = (x%, xoz) = (xp - eGyo, eyo)
is a relative interior point of the face F(x, J) for ¢ positive but
sufficiently small. Define xl = (x%,, xlz) = (Xp - €Gy, ey). Fore
positive but sufficiently small, verify that xlé K and that Cx! <
Cxo, 80 xo is not a vector minimum, and hence the face F(X, J) is not
efficient. To prove the converse, suppose F(x, J) is not efficient.

Since J is a type 1 subset of Z, there exists a point ¥ = (Xp, Xg) in

the relative interior of the face F(x, J) satisfying ¥: > 0 for j € J

13



and ij =0 for j € Z\J. Since the face F(X, J) is not efficient,
there exists an X = (Xp, Xy) € K satisfying CX < CX. So C;QZ < C;'iz,
that is, (y = %,, £ = ¥j) is feasible to (6). -
Since the feasibility of (6) can be checked through standard
linear programming techniques, Theorem 2 provides a method to check
whether the face F(x, J) containing x is efficient for any type 1
subset J. If F(x, q) is an efficient face, it can be stored by id-
entifying it with the index setP |J J (these are the indices of the
variables which take positive values in the face, all variables with
indices outside this set are zero in this face). In [4] maximal
efficient faces are stored by identifying them with a positive vectorA¢
BRY such that the face is the set of alternate optima to the LP:
minimize AYCx over x € K. Such a A can be obtained by finding a
point in the relative interior of the face (if the face is F(x, J),
this is a point x in the face with x5 =0 for j €EP |JJ, a point like
this is obtained as a byproduct of the work needed to check that the
subset J is a type 1 subset) and then using duality as in [9, Theorem
17.3]. To generate the efficient frontier, start with an efficient
extreme point x obtained by the methods discussed in [3, 4, 5]. Find
maximal type 1 sets J satisfying the conditions in Theorem 2; for each

such J, F(x, J) is an efficient face containing X, put them in a list.

Now the efficient extreme point x is explored. Select an adjacent

o

extreme poinski wvhich is not yet explored, on one of the efficient
faces contagining X, and repeat the process with it. The method term-
inates when every extreme point on each of the efficient faces gen-
erated has been explored. At that stage, the list contains all the
efficient faces of K. If this enumeration encounters a degenerate

extreme point of K, since the type 1 subsets associated with that

4



extreme point have to be examined, the problem of determining all the
efficient faces containing that degenerate extreme point may be a

prohibitive job as pointed out in [1l2].

FACES OF POLYHEDRA DESCRIBED BY GENERAL LINEAR SYSTEMS

Let I be the set of feasible solutions of the general system

>
L]
"
o
[
n

l tom
(7)

m+ 1l tom + v

[ b
"

where the A; are the rows of an (m + v) X n matrix A, and { A s i=

1 to m} is a linearly independent set. For any x€ I' 1let

I(x) = [ i: A; x =05 i=1tom+yv }

The feasible solution X €E " is an extreme point of I' (i.e., a BFS of
(7)) iff rank {Ai.z ie I(i)} = n. It is appropriate to define the

BFS x of (7) to be nondegenerate if [ I(i)[ = rank {Ai_:

i D)
= n, and degenerate if !I(i)l > rank {Ai.:i € I(i)} =n. For

this general system, the following results can be verified.

: . s.f
Suppose X is a degenerate extreme polnt of K. Let E = { i: m+l = 1 =

n+v, and A; x = b, for all x € l‘}. To determine whether a particular
’ i.
i belongs to E, we can solve the LP: max A; x over X ¢ ' . The

dimension of " is n - rank { A i € {1, cees m} U E} [6].

2.0



To determine edges of I incident at the BFS X, identify subsets JC
1(x)N {m#l, ..., m+ v| satisfying: (i) rank {Ai: i€ 1(x)\ J}

=n -1, (ii) the system (8) has a solution y € RE.

Ai.y>0’ leJ

=0, i€1I(x)\J (8)

Because of property (i), it can be verified that if (8) has a solution
y, that solution is unique except for a positive scalar multiplier.
Each such subset J defines a unique edge of I’ incident at X, the edge

being the set of feasible solutions of

A; x =b;, i€I(x)\J

othervise (9)

this edge is also {x: x=x+ Ay, 0=)\E2X } vhere y is a solution

of (8) and A is the maximum value of \ that keeps Ai (x + Ay) - bi Z0

for all iE{m+l, veey, MVIN I(x) (this can be determined by the usual

minimum ratio formula).

If ¥ is a nondegenerate BFS of (7), dimension (") = n - m, and each
subset J of I(x) ] {m+1, vesy M+V } of cardinality 1
satisfies (i), (ii) and thus generates an edge of I' incident at x;

hence X lies on exactly n - m edges of I'.

A



Again let X be an extreme point of I'. Let J € I(x)] {m+1, cees m+v}
satisfying:

(iii) rank { A i€ I(x) \ J} is n -1

1.

(iv) the system (10) has a solution y ¢ R

Aj y =0 for ied

=0 for i € I(x) \J (10)

Then there is an r-dimensional face of I' containing x associated with

J, it is the set of feasible solutions of

g
L]
n

b;, i € I(x) \ J

Z b; otherwise

1

and every r-dimensional face of I containing x is obtained this way.
It can be verified that if X is a nondegenerate extreme point of I',
every subset J & I(x)] {m+l, vees M+V } with l J l = r

satisfies (iii), (iv) and thus generates an r-dimensional face of I',

n-

hence I' has exactly < ) faces of dimension r containing a

r
nondegenerate extreme point.
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