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Abstract. We consider the following geometric question: suppose we are given a simplicial cone K in R". Can we find a
point P in the interior of K satisfying the property that the orthogonal projection of p onto the linear hull of every face
of K is in the relative interior of that face? This question plays an important role in determining whether a certain class
of linear complementarity problems (LCP’s) can be solved efficiently by a pivotal algorithm. The answer to this question
is always in the affirmative if n<2, but not so for n>3. We establish some conditions for the answer to this question to
be yes, and relate them to other well known properties of square matrices.
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1. The geometric question

Let D be any real nonsingular square matrix of order n. The cone Pos(D) = {y:y= Dr,z €
R® z 2 0} is a simplicial cone in R". We study the following geometric question: is there a point
b in the interior of Pos(D) satisfying the property that for every face F of Pos(D), the orthogonal
projection of b onto the linear hull of F is in the relative interior of F?

-1 1

1 0
dimensional Cartesian plane, in this case an obtuse angle. See Figure 1. The point (1,1/2)"is in
the interior of Pos(D), but it does not satisfy the properties required of b given above, since the
orthogonal projection of (1,1/2) onto the linear hull of (—1,1) is the point d, a negative multiple
of (~1,1)%. In the same way, it can be verified that the point (0,1)" in the interior of Pos(D) also
does not satisfy the properties required of b given above. However, the point b= (—1-++/2,1) on
the bisector line of the angle Pos(D) does satisfy all the properties mentioned above.

As an example, let n = 2 and consider D = < ) Pos(D) is an angle in the two-

Our geometric question is very simple when n = 2. If Pos(D) is an acute or right angle, every
point in the interior of Pos(D) satisfies the properties required of b given above. If Pos(D) is an
obtuse angle, any point b such that D'b > 0 (which includes any nonzero point on the bisector ray
of the angle Pos(D)) satisfies the properties of b required above.

When n > 3, the concept of a bisector line does not generalize to the cone Pos(D). However,
when n = 2, the important property of a nonzero point on the bisector line of Pos(D) is that it

1 Supported in part by NSF Grant ECS-8521183.
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Figure 1. D = < ) Pos(D) is the cone marked by the angle sign. The point b is on the



is equidistant from each facet of Pos(D), and this property can be generalized for n > 3. Let
D' =(B;) and & = l|(Ba, ..., Bm)||. Then the point which is at a distance of 1 from each facet
of Pos(D) is a = D(éy,...,6,)". The point a is in the interior of Pos(D), and one is tempted to
conjecture that a satisfies all the properties required of b given above, but this conjecture is false

for
-1 1 20
D= 0 3 1
0 0 1

/

In fact for this matrix D, surprisingly, there exists no point in the interior of Pos(D) satisfying the
properties required of b given above.

Again, when
1
D=10 1 1
0 0 1
the point b = (2,8,1)" is in the interior of Pos(D) and satisfies all the required properties of b. In
this case, the point which is at a distance of 1 from each facet of Pos(D) is a = (—1,1+ v/2,1)},
and even though a is in the interior of Pos(D), it does not satisfy all the properties required of 6.

Hence, for n > 3, if a point equidistant from the facets of Pos(D) does not satisfy the properties
required of b given above, we cannot conclude that there is no such point &.

Thus our geometric question is trivial when n = 2, but non-trivial for n > 3. This geometric
question came up in the study of constructing efficient pivotal algorithms for solving certain classes
of linear complementarity problems (LCP’s). The LCP is a fundamental problem in mathematical
programming; it has been the focus of extensive research over the last 20 years.

2. Application to LCP

Let M = (m;;) be a given real square matrix of order n, and ¢ = (¢;) a given column vector in
R". The linear complementarity problem (LCP) with data g, M, denoted by (g, M), is the problem
of finding vectors w = (w;), 2 = (2;) € R” satisfying

w—Mz=¢g
w,220 (1)
w'z = 0.

We will use the following notation. If D = (dj;) is any matrix, D; denotes its jth column
vector. For any subset of row indices L and subset of column indices J, Dyj is the submatrix
(d; : 1€ L,j €J) of D determined by these subsets, and D; denotes the matrix with column
vectors D; for j € J. For any matrix D, Pos(D) = C(D) = {z: z = Dy for some y 2 0}, and
§(D) = {z: = Dy for some real y} is the linear hull of the columns of D. If z= (z;) € R" , and
J ¢ {1,...,n}, z; denotes the vector (z; : j € J), |J| denotes the cardinality of J, and Mj; is the
principal submatrix of M corresponding to J. I denotes the unit matrix of order n. If K and A are
any two sets, K\A denotes the set of all elements of K which are not in A. T = {1,...,n}. R™"
is the class of real m x n matrices.



In (1), the pair of variables {wj,z} is known as the jth complementary pair of variables, for
j=1,...,n In (1), the column vector associated with w; is I;, and the column vector associated
with 2 is —M;. The pair {I;,—M;} is the jth complementary pair of column vectors in (1). A
complementary vector of variables in (1) is a vector y = (y1,...,yn)" where y; € {wj, 2} for each
J=1,...,n If A;is the column in (1) associated with ¥;, the matrix 4 = (4,... A,) is known
as the complementary matrix associated with y. The complementary vector y is said to be a
complementary basic vector in (1) if the corresponding complementary matrix is nonsingular. If y
is a complementary basic vector associated with the complementary matrix A, the complementary
basic solution of (1) corresponding to y is given by

all variables in (1) not in y are =0

y=4"¢ )

Clearly, the solution in (2) satisfies the complementarity condition w'z = 0, because y is a
complementary vector. If A71¢2 0, the solution in (2) is a solution of the LCP (g, M) (it satisfies
all the conditions in (1)). It is then said to be a complementary basic feasible solution, and y is
said to be a complementary feasible basic vector for (1). The complementary basic feasible solution
in (2) and complementary basic feasible vector y are nondegenerate if A~1¢q > 0.

For any J C T, the LCP of order |J],

wy— My =g

(3)

wy, 23 20, U)EZJ =0

which is the LCP (g5, Mj;), is known as the principle subproblem of (1) corresponding to the subset
J.

DEFINITIONS: A real square matrix of order n is said to be a P-matrix if all its principal
subdeterminants are positive. It is said to be a Z-matrix if all its off-diagonal elements are non-
positive. It is said to be an M-matrix if it is both a P-matrix and a Z-matrix. The classes of all
n X n P-matrices, Z-matrices, M-matrices are denoted by P,, Z,, M,, respectively.

One method for solving the LCP (¢, M) when M is a P-matrix is the following. Select a column
vector p > 0 in R". Consider the following parametric LCP, where « is a nonnegative parameter

w z
I -M g+ ap
w,z 2 0,wz =0 (4)

When o > 0 is sufficiently large, w is a complementary feasible basic vector for (4), and the method
is Initiated with this. The method moves through complementary basic vectors for (4), exchanging
one basic variable by its complement in each pivot step, in an effort to find a complementary feasible
basic vector for (4) for smaller and smaller values of a until it reaches the value 0. In some general
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stage, let (w5, 23) be the complementary basic vector for (4) at this stage, for some J C T, J = T\J.
The corresponding basic solution for (4) is

(w3, 25) =0
(2)=(27e2) ;

(@5,75) = = (M33) g, p3),

(ﬁjz .ﬁj) = (Qj'f pj) T AIEJ (6.] ; ﬁ.] )

where

The smallest value of o for which (5) remains 2 0 is § given by

o — Maxir_nu_m {~;/p; : 7 such that p; > 0} (6)
-00,ifps0

If 6 £ 0, (wy, 23) is a complementary feasible basic vector for (4) when o = 0, that is, a complemen-
tary feasible basic vector for (1), terminate. Otherwise, let r be the maximizing index in (6)(or the
maximum among these indices, if there is a tie). Perform a pivot step replacing the basic variable
from the pair {w, z,} in the current complementary basic vector by its complement, and continue
the method with the new complementary basic vector.

This method is known to solve the LCP (¢, M), when M is a P-matrix, in a finite number of
pivot steps. Even though this method is finite, in the worst case, it may take up to 2" pivot steps
before termination [8]. However, in [11] J. S. Pang and R. Chandrasekaran observed that if the
vector p is selected so that the pair (M, p) satisfy property 1 given below, then the method will
terminate after at most n pivot steps, for any ¢ € R".

PROPERTY 1: Let M € P,, p€ R” p > 0. Then the pair (M, p) is said to satisfy property 1
if (M33)~'py > 0 for all nonempty J C {1,...,n}.

If the pair (M, p) satisfies property 1, then in the above method, when (wy, z;) is the comple-
mentary basic vector in the basic solution (5), p; < 0 for all j € J, and the maximizing index r
giving the value of § in (6) will not be in J. That is, once a z-variable becomes basic in the above
method, it will stay basic until termination. This guarantees that the method terminates after at
most n pivot steps.

PROPERTY 2: Let M € P, p € R", p > 0. Then the pair (M, p) is said to satisfy property
2 if the vector composed of the z-variables only is a nondegenerate complementary feasible basic
vector in every principal subproblem of the LCP:

w 2
I -M -p
w,z 2 0wz =0 (7)

Clearly (M, p) satisfies property 1 iff it satisfies property 2. So, properties 1 and 2 are equivalent.
The important question now is to identify the class of P-matrices M for which there exists a
vector p such that (M, p) satisfies property 1 or 2. For the special case when M is positive definite
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symmetric, we will provide a geometric characterization for this question, using the results from 19,
10].

If M is a real positive definite and symmetric matrix of order n, there exists a real nonsingular
square matrix D of order n such that M = D'D. One choice for D is the Cholesky factor of M.
In this section D denotes a real nonsingular square matrix of order n. M = D'D. Pos(D) is the
simplicial cone ((D) = {y : y = Dz for some z 2 0}. For each 0 # J C T, Pos(Dr;) is the face of
Pos(D) determined by J. Let p € R™, p > 0, and let b= (D)™ 1p.

LEMMA 1: For J C T, the orthogonal projection of b in the linear hull of Pos(Dr;) lies in
the relative interior of Pos(Dry) iff (Mj;)~1p; > 0, or equivalently, iff z; is the nondegenerate
complementary feasible basic vector for the principal subproblem of (7) corresponding to J.

PROOF: If J = 0, the result holds by convention. So, assume that J # 0, and let [J| = s. The
linear hull of Pos(Drj) is Ly = {DrjA; : A; € R*}. So, to find the orthogonal projection of 4 in
L;, we have to solve the problem: minimize (b~ DryA;)Y(b — DrjA;) over A; € R, The optimum
solution of this problem is

A3 = (M)~} (Dra)'o, (8)

and the orthogonal projection of bin Ly is DryAy. This point is in the relative interior of Pos(Drj)
iff Aj > 0, that is, iff (My;)™1(DY)srb = (My3)~'py > 0, or equivalently, iff z is the nondegenerate
complementary feasible basic vector for the principal subproblem of (7) corresponding to J. ]

We now define a geometric property.

PROPERTY 3: Let D be a real nonsingular square matrix of order n and b € R®. The pair
(D, b) is said to satisfy property 3 iff b is in the interior of Pos(D), and for every face of Pos(D),
the orthogonal projection of b on the linear hull of that face is in the relative interior of that face.

THEOREM 1: Let D be a real nonsingular square matrix of order n and p € R", p > 0. Let
M = D'D, b= (D")"!p. The pair (M, p) satisfies property 1 or 2 iff the pair (D, b) satisfies property
3.

PROOF: This result follows directly from Lemma 1. ]

THEOREM 2: Let M be a real positive definite symmetric matrix of order n and let D € R™"
be such that M = D'D. There exists a p such that the pair (M, p) satisfies property 1 or 2 iff there
exists a b such that the pair (D, b) satisfies property 3.

PROOF: This result follows from Theorem 1 directly. [ ]

3. The special case n = 2

Let n =2, and D be any real nonsingular square matrix of order 2. As discussed in Section 1,
Pos(D) is an angle, acute or obtuse, in the two dimensional Cartesian plane. Let b be any nonzero
point on the bisector ray of the angle Pos(D). Then it is well known that the pair (D, ) satisfies
property 3. Thus when n = 2, for every nonsingular square matrix D there exists a b such that the
pair (D, b) satisfies property 3, and the b can be found easily. In fact

- 1 < Dy D, >
== 4=
2\|D4f ||Da]l
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will do, and this vector is on the bisector ray of the angle Pos(D). Consequently, when M is a real
symmetric posive definite matrix of order 2, there always exists a point p such that the pair (M, p)
satisfies property 1 or 2, for example p = D'b, where D is such that M = D'D and b is given above,
will do.

Suppose M = (m;;) is a P-matrix of order 2. Then from the definitions, the set of all p = (py, pa)!
such that (M, p) satisfies property 1 or 2 is the set of feasible solutions of

maop1r — myp2 > 0

-mg1p1 + mppr > 0
i > 0 (9)

p2 > 0

and it can be verified using Gordan’s theorem of the alternative [6] that this system always has a

solution (p1,pz). Thus when M is a P-matrix of order 2, there always exists a vector p such that
the pair (M, p) satisfies property 1 or 2, and a point p like that can be found easily by solving (9)
given M.

4. Results for n > 2

THEOREM 3: Given a P-matrix M of order n, the set of all p such that the pair (M, p) satisfies
property 1 or 2 is either empty or an open polyhedral cone. Given a real nonsingular square matrix
D of order n, the set of all b such that the pair (D, b) satisfles property 3 is either empty or an
open polyhedral cone.

PROOF: Given M, the set of all p such that (M, p) satisfies property 1 or 2 is the set of all
feasible solutions of the system

(AIJJ)_IpJ > 0 forall@;é.]c{l,...,n}
4 > 0

Since these are all strict linear inequality constraints, if the set of feasible solutions of this system
1s nonempty, it is an open polyhedral cone.

Given D, let M = D'D, which is a P-matrix. Let K = {p: (M, p) satisfies property 1 or 2 }.
Then by Theorem 1, the set of all b such that (D, b) satisfies property 3 is {(D!)~!p: p € K}, and
this is an open polyhedral cone when it is nonempty, since the same property holds for K. |

THEOREM 4: Let D be a real square nonsingular matrix of order n. If the rays of D; and D;
make an obtuse angle for all 7+# j, then there exists a b such that (D, b) satisfies property 3.

PROOF: So, for every 1 # j, (D;)!D; < 0. Thus M = D'D is a P-matrix which has nonpositive
off-diagonal elements (i.e., M is an M- matrix) and hence M~! > 0 (see [1]), and by the same
argument (Mj3)™! > 0 for all  # J C T. So, for every p € R®, p > 0, we have (Mj;)~'p; > 0
in this case. Thus (M, p) satisfies property 1 in this case for every p > 0, p € R". Consequently,
by Theorem 1, (D, b) satisfies property 3 for all b in the interior of Pos((D?)™!), which proves this
theorem. ]

As mentioned In Section 1, if D is a real nonsingular square matrix of order 2 and Pos(D) is
an acute angle (i.e., (D;)'Dy > 0), (D, b) satisfies property 3 for all b in the interior of Pos(D).
The intuitive generalization of this result to higher dimensions is that if D is a real nonsingular
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square matrix of order n such that the rays of D; and D; make an acute angle for all ¢ # j (ie.,
(D;)'D; > 0 for all i # j), then there exists a b such that (D, b) has property 3. This conjecture
is certainly true for n = 2 and n = 3, and seems intuitive for higher dimensions also. However,
by an approach similar to that in [2, 4, 5] (reducing R* to S® to R3), it can be verified that a
counterexample to this conjecture for n = 4 is

1 20

D=

U O o =
OO O O

0 1
0 1
5 5

The following conjecture has been made by Soo Chang:

CONJECTURE (Soo Chang): Let D € R™" be invertible and T; = T\{¢} for i1=1,... ,n. If
the orthogonal projection of D; onto S(DA[‘z.) lies in the relative interior of C(D.ri) for all 1 €T,
then there exists a b € R" such that (D, b) has property 3.

If a counterexample to this conjecture exists, it seems that it must exist in dimension 5 or

higher.

5. A slight generalization

We will now generalize these properties a little bit. Here D € R™" may or may not be
nonsingular.

PROPERTY 4: The pair (D, g), where D € R™" and ¢ € R", is said to have property 4 if for
each nonempty S C {1,...,n} the orthogonal projection of ¢ onto the subspace S(Ds) lies in the
relative interior of the cone C(D.g).

PROPERTY 5: The pair (M, g), where M € R™" and ¢ € R", is said to have property 5 if
for each nonempty 8 C {1,...,n}, the linear complementarity problem (gs, Mss) has a solution
(ﬁ’s,%s) with Zg > 0.

DEFINITION: A matrix D € R™" is said to have property 4 (property 5) if there exists ¢ € R®
such that the pair (D, ¢) has property 4 (property 5, respectively). Let

P4, = {D €Rv" 1 D has property 4}, P5,={DecR™" l D has property 5}.
Note that the definition of property 4 is minimal in the sense that every subset J must be

checked, as the following examples show. The listed D and ¢ have the projection property for every
subset of {1,2,3} except the ones listed:

3 2 4
=2 3 4 10 , I={1,2,3},
00 1
01 4 13
D=1 5 4|, ¢g=[18], I={1,2},
00 1 3
1 -1 -10 -1
pD=|0 1 10|, g=[(100], I={1}.
0 0 1 1



By our earlier results, if D € R™" is nonsingular, (D, q) has property 4 iff (D'D, - Dq) has
property 5.

6. Convexity results

THEOREM 5: For D € R™" the set of ¢ € R" such that (D, q) has property 4 is convex and
open.

PROOF: Let (D, q) have property 4 and § # T C {1,...,n}. Let S C T be a maximal
subset such that D. has independent columns. Then $(D.r) = §(D.5) and the coordinates of the
projection of ¢ onto §(D.r) with respect to the columns of D.g are given by

o = DTS q,

where D,TS = ((D.g)tD.S)—l (D.s)! is the pseudo-inverse of D.s. The projection D.ga® is in the
relative interior of (D.s) if and only if &% > 0. For i€ T\S, there exist constants 8 such that

Di+ ) B3D;=0,
jes
from the definition of S. Choose ¢; > 0, i€ T\ S, such that
Oz]‘«c + Z €85 >0
i€T\S
for all j € S. Let a” be a vector with components ¢; for 1€ T\S and a'js + Zie T\§ ;B for j € 8.
Then aT > 0 and
Dga® = D.TaT.
Therefore the projection of g onto S(D.7) is given by D.ra”, aT > 0.
By continuity, there is a neighborhood BT(q) of g such that &° = D_Tsﬁ > 0and &7 constructed
as above satisfies D.g&° = D.7a” and &7 > 0 for all § € BT(g). Then for any p € Ny BT(g),

the projection of p onto S(D.7) is given by D.raT for aT > 0, for each nonempty T C {1,...,n}.
Therefore the set of ¢ such that (D, g) has property 1 is open.

If (D, ¢') and (D, ¢*) have property 4, then for fixed T C {1,...,n}, T # 0, the projections of
¢' onto $(D.r) and ¢* onto S(D.7) are given by D.ral, o' > 0 and D.ra?, o > 0 respectively.
Since projection is a linear operation, the projection of (1-X)¢'+Xg* onto §(D 1) is (1—A)D.ral +
AD.ra* = Dr((1 = A)a! + Aa?), where (1 - M)a!+Aa? > 0for 0 < A < 1. Since T was arbitrary,
(D, (1 = A\)g' + Ag?) has property 4 for 0 < A < 1, which proves the convexity. |

An example of a matrix which does not have property 4 is
-1
0
0

20

1
D= 3 1
0 1

Note that

-3 1 59
I -1
0 3

CO| =t



also does not have property 4. By Theorem 2,

1 -1 -2
M=DD=| -1 10 23
-20 23 402

does not have property 5.

PROPOSITION 1: For fixed ¢ € R", n > 2, the set of matrices M € P, P5, such that (M, q)
has property 5 is not convex.

PROOF: Take
-2
1 -15 0 1 0 -3
M=11 2 N=|-15 2 |, ¢g=]"1
I I :
-1

M and N are P-matrices, (M, q) and (N, g) have property 5, but (1/2M +1/2 N, ¢) does not have
property 5. u

CONJECTURE: For fixed ¢ € R", the set of symmetric positive definite M € R™" such that
(M, q) has property 5 is convex.

DEFINITION: A set § C R" is starlike if there exists a point ¢ € S such that for any point
p € S the line segment ¢p also lies in S. The set of points ¢ € S with this property is called the
kernel of S.

THEOREM 6: The set P, is starlike with the identity matrix I in its kernel.

PROOF: Let M € 5, and 0 < a < 1. A characterization of 7, is that M € P, if and only if the
real eigenvalues of every principal submatrix of M are positive [1, 13]. If Ag > 0 is an eigenvalue of
a principal submatrix Mgs, then (1-a)+aAs > 0is an eigenvalue of [(1 - a)l+aM]ss. Therefore
the real eigenvalues of every principal submatrix of (1 —a)I+aM, for 0 < o < 1, are positive, and

(1-a)l+aMe P for0<a<l. ]

Observe that the set 7, is not convex for n > 2: <} _.21 5> and <_115 })> are P-matrices

but%(i —210>+%<_115 ;)2(_17 _27>isnot.

THEOREM 7: For fixed ¢ € R?, ¢ < 0, the set of matrices M € F, such that (M, g) has
property 5 is starlike with [ in its kernel.

PROOF: Let (M, q) have property 5, where M € P,, ¢ € R", ¢ < 0. It suffices to prove
that ((1 — A)M + Al q) also has property 5, for 0 < A < 1. The proof of this is by induction
on n. Since (M, q) and (I,q) have property 5, consider only 0 < A < 1. The result is trivial
for n = 1. Assume it holds for P-matrices of dimension < n. Property 2 for (M, q) means that
—MJ_J1 g7 > 0 for every subset J, 0 # J C {1,...,n}. Since property 2 is hereditary with respect

to principal submatrices, the induction hypothesis yields that —[(1 - My + )\IJ]_qu > 0 for
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every subset J, 0 # J C {1,...,n}, of cardinality |J| < n. Thus all that remains is to prove
~[@=-NM=A] g0

The kth component of 2z = — [(1 - )M+ )\l]_lq is, by Cramer’s rule,

) det([(l SAOMAA Ly g =AM+ ”]{m,...,n})

*= det[(1 = A)M + A]

(10)

Note that the denominator is positive since (1 —A)M + Alis also a P-matrix. The determinant is a
multilinear form, and the numerator expands into a sum of determinants of the form det 4, where
A;i=(1-MNM;or A;=Al;for i# k,and Ay = —¢. Let J = {j1,... k..., J;} be the indices such
that A; = AI; for 1¢ J. Then

det 4= A""VI(1 = N (= M} gy), det Myy > 0

since 0 < XA < 1, (M, q) has property 5, and M is a P-matrix. (The subscript k here refers
to the index set J = {j1,...,k...,J:}.) Therefore the numerator in (10) is positive, and so

- [(1 - MM+ )\I}_lq > 0, which completes the induction step. ]

. . 3 -16 3 -2
\ 2 M : - i
Note that Z, is convex, but M, is not <_2 1 ) and <—16 1 ) are M-matrices but

3 -16 3 -2 3 -9).
1 1 -
2(—2 11)42(46 11> <-9 11)1“‘“'

The following theorem from Fiedler and Ptk [1] will be useful.

THEOREM 8: Let A, B € Z,, all the real eigenvalues of A be positive, and 4 < B. Then
1) A7 > B >0
2) all the real eigenvalues of B are positive;
3) det B> det A > 0.

THEOREM 9: The set M, is starlike with the identity matrix I in its kernel.

PROOF: Let M € M, = Z,() P,. It is straightforward to verify that (1-A)J+AM for 0 < A <1
is in both Z, and 7,. [ ]

THEOREM 10: For any M € M, and ¢ < 0, ¢ € R", the pair (M, ¢) has property 5.

PROOF: Let M € M,, g€ R, g< 0,and 0 # S C {1,...,n}. Then Mgy is also an M-matrix,
hence a Z-matrix with positive real eigenvalues. By Theorem 8 above Ms_sl > (diag(M 55))_1 >0

is nonnegative with positive diagonal elements, and therefore —M s_sl gs > 0. This proves property
5 for the pair (M, g). N

7. Generalization of the class M,

M-1iatrices have many nice properties with respect to the linear complementarity problem.
However, they have more structure than is really needed for linear complementarity proofs. We
argue that P5,() P, is the natural generalization of My, and that P5,() P, contains the essence of
the class M, as far as linear complementarity is concerned. As support for this claim we offer:
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Properties of M, Properties of P,[] 5,
1. M, 1s not convex. P, NP5, 1s not convex.
2. M, is starlike from 1. P. N P5, is starlike from 1.

(4%

. Let M € M. For every ¢ < 0, (M, ¢) has Let M & P,n P5,. For some ¢ < 0, (M, g) has

property 5. property 5.
4. Let M € M,, g€ R". Forevery p > 0, Let M € P, P5,, ¢ € R*. For some p > 0,
the LCP (g, M) can be solved with at most the LCP (g, M) can be solved with at most
n complementary pivots via the parametric n complementary pivots via the parametric
LCP (¢ + ap, M). LCP (g + ap, M).
5. Let Me My VO #J C{l,...,n}and LetMe NP5, VO+JC{l,.. ., n}and

every ¢ <0, —MJ’J1 q7 > 0. some ¢ < 0, —MJ_Jl g7 > 0.
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