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The Gravitational Method for Linear Programming

Katta G. Murty

ABSTRACT: We discuss a new interior point algorithm for solving linear
programs. Geometrically, the method tracks the locus of the center of a drop in
the interior of the set of feasible solutions, as it falls under the influence
of a powerful gravitational force pulling everything down in the direction of

the negative gradient of the objective function.
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orthogonal projection.



INTRODUCTION
This is a revised version of the algorithm that appeared in the working

paper [1]. We consider the linear program (LP) in the form

minimize z(x)

cX

(1)

w
o

subject to Ax

where A is a matrix of order m x n. Sign restrictions on the variables and any
other lower or upper bound conditions on the variables, if any, are all included
in the above system of constraints. Clearly every LP can be put in this form by
well known simple transformations discussed in most LP textbooks (for example,
see [2]). |
If D is any matrix, we denote its ith row by Di.' and its jth column by
D j. If Fis any set, |F| denotes its cardinality. For a real number a, |af
denotes its absolute value. For any vector y, ||y|| denotes its Euclidean norm.

NOTE: 1In practical applications, it usually turns out that the LP model

for a practical problem is in standard form

min py
subject to By = d (2)
X 20

The .dual of this model is directly in form (1) and the gravitational method can
be applied to solve the dual of (2) directly. As it will be shown later on,
when the gravitational method is applied on the dual of (2), at termination, it
will produce an optimum solution for (2), if one exists.

ASSUMPTIONS

Let K denote the set of feasible solutions of (1). We assume that K # @,
and that K has a nonempty interior in Rn, and that an initial interior feasiblie

solution x° (this is a point x0 satisfying ax0 > b) of (1) is available.



If these assumptions are not satisfied, introduce an artificial variable

Xn+1 and modify the problem as follows

inimize +
minimize cx VXn+1

(3)
subject to Ax + ex ., 2 b
where e = (1, ..., 1)T é R™ and v is a large positive number. For any XE- R",
let &, > max{|min{0, A % - bi}|: i =1 tom}, then (%, %,,1) satisfies the

constraints in (3) as strict inequalities. Thus the modified problem (3)

satisfies all the assumptions made in the above paragraph.

0 is optimal to (1), and we can

We also assume that c # 0, as otherwise x
terminate.
THE GRAVITATIONAL METHOD

0

The Euclidean distance of x~ from the hyperplane {x: A, X = bi} is

i
(a; x% = v)/] |8y ]|
The gravitational approach for solving (1) is the following. Assume that
the boundary of K is an impermeable layer separating the inside of K from the
outside. Introduce a powerful gravitational force inside K pulling everything

down in the direction -cT

. Choose € < min{(Ai.xo - o)/ |Ay |2 1 =1 tom},
Release a small spherical n-dimensional drop of mercury of diameter 2e with its
center at the initial interior feasible solution xoéEl(. The drop will fall
under the influence of gravity. During its fall, the drop may touch the
boundary, but the center of the drop will always be in the interior of K at a
distance 2 € from the nearest point to it on the boundary. Whenever the drop
touches a face of K, it will change direction and will continue to move, if
possible, in the gravitational direction that keeps it within K. If the
objective function is unbounded below in (1), after changing direction a finite

number of times, the drop will continue to fall forever along a half-line in K

along which the objective function diverges to -», If z(x) is bounded below on



K, after changing direction a finite number of times, the drop will come to a
halt. The algorithm tracks the path of the center of the drop as it falls in
free fall under the influence of gravity. Let fﬁj denote this path of the
center of this drop in its fall.

THE GRAVITATIONAL DIRECTION AT AN INTERIOR POINT ;45 K

Suppose a drop of radius e, with its center at x is inside K. So
(A x =b)/||A; || 2€,1=1tom. ()

At every point X on the locusfj’of the center of the drop in the gravitational

method, (4) will always be satisfied. Given a point x on f]’, define
J(x) = {1z (Ay x = b;)/||A; || = €} (5)

The hyperplane {x: Ay x = bi} is touching the drop of radius € when its

center is at the interior point X€ K only if iéE J(x). Now, define
yO = =cT/||c|| (6)

If J(x) =8 (i.e., if (A; X = b;)/||A; || > € for all i = 1 to m), when the

drop is in a position with its center at X, it will move in the gravitational

direction yo. The distance that it will move in this direction is

0 = minimum %; e T EE T P :15$1i$mand i such

that A, v0 <o :}

where we adopt the convention that the minimum in the empty set is + », If 0 =

(7)

+ » in (7), then the drop continues to move indefinitely along the half-line {x
+ XyO: A 2 0}, and z(x) is unbounded below on this feasible half-line,

terminate. If 0 is finite in (7), at the end of this'move, the drop will be in

0

a position with its center at X + Qy"~, touching the boundary of K, and it will



either halt (see the conditions for this, discussed later on) or change
direction into the gravitational direction at x + Oyo and move in that
direction.

When x is such that J(x) $ @, that is,
min{(A; x = by)/||A; [|: i=1¢tom} =c¢ (8)

the direction that the drop will move next, called the gravitational direction
at E, can be defined using many different principles. One principle to define
the gravitational direction at x, where x is an interior point of K satisfying

(8) is by the following procedure, which may take several steps.

0

STEP 1: If the drop moves in the direction y“ from x, the position of its

O for some A > 0. Since (4) holds, the 1™ constraint will

center will be x + Ay
block the movement of the drop in the direction yo, only if iGE J(X) and Ai yO <
0. Define

Jy = {i: 1€ J(x), and a; yO < 0}

CASE 1: J1 =0: If J1 =0, yO is the gravitational direction at x, and
the distance it can move in this direction is determined as in (7).

CASE 2: J, $ @: If J, 8, each of the constraints A; x 2 b; for i € J,,

is currently blocking the movement of the drop in the direction yo.

Define T1 = J1, and let D1 be the matrix of order |T1| x n whose rows are

Ai for iE T1. Let E1 be the submatrix of D1 of order (rank of D1) x n, whose

set'of rows is a maximal linearly independent subset of row vectors of D1. Let
Py = {i: A; is arow vector of E;}. So P,€T,. Let F, be the subspace {x:

Dyx = 0} = {x: Eyx = 0}, F, is the subspace corresponding to the set of all

constraints which are blocking the movement of the drop in the direction yO.

0

Let 51 be the orthogonal projection of y* in the subspace F1, that is

gl = (1 - TgeD) 1, )0, (9



SUBCASE 2.1: &' $0: If €' $0, let y' =€'/]|€"|], go to Step 2.
SUBCASE 2.2: £' =0: Ifg' =0, let the row vector u=(y;: 1EPy)

= -|le||((E,E")"E,y°)T. Then uE
1B9) Ey
1

C.

SUBCASE 2.2.1: § 0Oand py 2 0: If uz20, define the row

vector T = (m;) by

A |
(]

i =0, if i€P,

u, if i€ Py

Then 7 is a basic feasible solution to the dual of (1). In this case, as will
be shown later on, the drop halts in the current position, it cannot roll any
further, under the gravitational force.

SUBCASE 2.2.2: E' =0, u40: If g =0andy# 0, delete the i
corresponding to the most negative 4 from the set P1 (any other commonly used
rule for deleting one or more of the i associated with negative Hy from Py can
be applied in this case). Redefine the matrix E:1 to be the one whose rows are
Ai. for i in the new set Pl’ compute the new orthogonal projection 51 as in (9)
using the new E, and repeat Subcase 2.1 or 2.2 as appropriate with the new 51.
GENERAL STEP r:b Let yr"'1 be the direction determined in the previous step.
Define

J, = i: 1€ J(x) and A, y*1 < o0},

‘CASE 1: J, =0: If J. =0, y'~1 is the gravitational direction at x, and

the distance the drop can move in this direction is determined as in (3) with

y*~! replacing y°.

r
CASE 2: J" ¢ @: Define T, = \{Js and let D, be the matrix of order |T.|
S=
x n whose rows are A; for i(E Tp. Let E, be the submatrix of D, of order (rank

of Dr) x n, whose set of rows is a maximal linearly independent subset of row



vectors of D,. Let P, = {i: Ai is a row vector of Er}' Let Fp be the

supspace {x: Dpx = 0} = (x: E.x = 0}. Let £’ be the orthogonal projection of
y0 in the subspcae Fr' that is

P o(1 - g% g1y Tg )0
" = (1 - E(E.ED)T'EL)y

SUBCASE 2.1: &' 4 0: Let y" = €7/||€"||, to go Step r+1.
SUBCASE 2.2: €7 = 0: Let u = (n;: 1€ P.) = -||e|]((E.ED) "E,yO)T.

SUBCASE 2.2.1: ¢£F

0, and u 2 0: Define 7 = (m;) by

2|
(]

0 for i€ P,

ui, for i€ P,

T is a basic feasible solution to the dual of (1). In this case the drop halts,
it cannot roll any further under the gravitational force.
SUBCASE 2.2.2: g =0andu$ 0: If £ =0andu 0, proceed

exactly as under Subcase 2.2.2 described under Step 1, with Pr replacing Pqe

It can be shown that this procedure does produce the gravitational
direction at i, finitely, if the drop can move at all. We are currently working
on developing efficient methods for choosing the index set Pr of maximal
linearly independent subset of row vectors of Dr' in Case 2, and on the best
strategies for deleting a subset of constraints associated with negative My in
Subcase 2.2.2. We are also looking at other principles for defining the
gravitational direction at the interior point X of K.
CONDITIONS FOR THE HALTING OF THE DROP

Let € be the radius of the drop and iff K satisfy (4). We have the
following theorem.
THEOREM 1: When the center of the drop is at I, it halts iff J(x) defined in
(5) is # @, and there exists a dual feasible solution 7 = (?i) for the dual of

(1) satisfying



T =0, for all i ¢ J(X) (10)

PROOF: The drop will halt when its center is at i, iff there exists no
direction at x along which the drop could move within the interior of X, that
will slide its center on a line of decreasing objective value for some positive

length, That is, iff there exists no y satisfying

cy <0

(A X+ ap) = 0)/[|A; || 2, i=1¢tom

for 0 S A < a, for some a > 0. Since x satisfies (4), and from the definition
of J(x) in (5), this implies that the drop will halt when its center is at x iff
the system

Ajy 20, for all i€ J(x)

cy <0

has no solution y. By the well known Farkas' lemma (see, for example [2]) this
holds iff there exists aw = (w;: 1i=1tom) feasible to the dual of (1)
satisfying (10). _ _ |
WHAT TO DO WHEN THE DROP HALTS?

THEOREM 2: Suppose the drop of radius € halts with its center at x€& K. Then
the LP (1) has a finite optimum solution. Let z* be the optimum objective value
in (1). Let 7 = (v;) be the dual feasible solution satisfying (10) guaranteed

to exist by Theorem 1. Then

-— * —
ex Sz +¢ I -7 12)
i€J(x) 1 (



PROOF: If the drop halts, by Theorem 1, the dual of (1) is feasible. So, the
LP (1) has a finite optimum solution by the duality theory of LP. Consider the
perturbed LP

minimize z(x) = cx

subject to
b; , for i¢—J(§)

(13)

b, + ¢, for 1€ J(x)

The hypothesis in the theorem implies that x, m, together satisfy the primal,
dual feasibility and the complementary slackness optimality conditions for (13)
and its dual. Hence, by the duality theorem of LP, (11) holds. Also, by the
weak duality theorem of LP, (12) holds. [ |
Hence, if the drop halts with its center at position X, and a 7 satisfying
(10) is found, and ei%J(ffH
solution to (1) and the algorithm terminated. Also, in this case 7 is an

is small, then x can be taken as a near optimum

optimum solution for the dual of (1), and the true optimum solution of (1) can
be obtained by well known pivotal methods that move from X to an extreme point
without increasing the objective value (see [2]).

THEOREM 3: Suppose the drop of radius € halts with its center at fés K. If the
system of equations

Ay x =Dy, i€ J(X) (14)

has a solution X which is feasible to (1), then % is an optimum feasible
solution of (1).

PROOF: Let 7 be the dual feasible solution satisfying (10) guaranteed by
Theorem 1. It can be verified that ¥, T together satisfy the complementary
slackness optimality conditions for (1) and its dual, so % is an optimum

solution for (1). In this case 7 is optimum to the dual of (1). n



If the drop of radius € halts with its center at x€ K, and there exists no
solution to the system of equations (14) which is feasible to (1), then this
drop is unable to move any further down in K under the gravitational force,

eventhough it is not close to an optimum solution for (1). See Figure 1.



Figure 1:

The set K is on the side of the arrow marked
on each constraint. The gravitational force
is pulling the drop straight down, but it
cannot move any further, because it is
squeezed between hyperplanes 1 and 2.
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Suppose the drop of radius e halts with its center at x. If the system

has no feasible solution, the gravitational method reduces the radius of the
drop, see below, keeping the center at f, and continues.

On the other hand, suppose the drop of radius € halts with its center at X,
and the system (15) is feasible. Let E be the matrix whose rows form a maximal
linearly independent subset of rows of {Ai.’ i € J(x)}. Then the nearest point
to X in the flat {x: A; X =1b;, 1 € J(0} isx = x + EN(EET)™! (d-EX) where d
is the column vector of b; for i such that Ai. is a row of E, If ; is feasible
to (1), then by Theorem 3, ; is an optimum feasible solution for (1) and the
method terminates. Otherwise, at this stage the gravitational method reduces
the radius of the drop (for example, replace € by €/2), keeping the center at %,
and traces the locus of the center of the new drop as it now begins to fall

under the influence of gravity again. The same process is repeated when the new

drop halts.
See Figure 2 for an illustration of the path of the drop in a convex

polyhedron in R3.

1"
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Figure 11.9 Path of the drop in the gravitational

method in a convex polyhedron in R3
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