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ABSTRACT: Damage behavior of a symmetric composite laminate without an initial im-
perfection or macro-crack is analyzed based on a three-dimensional lamination theory
under multi-axial loading. The global response of the laminate during the damaging pro-
cess is determined from the individual response of its constituent plies and their mutual
relations. Some specific results are presented to illustrate the damage characteristics of
several typical composite laminates when they are subjected to proportional loading. The
application of the method to characterize damage initiation and growth in more complex
structures is also discussed.

1. INTRODUCTION

T IS WELL recognized that in realistic engineering situations, the observable

macroscopic failure behavior of composite materials is generally attributed to
the result of the initiation and growth of material imperfections or micro-defects.
These defects often induce degradation in several global material properties of
composite laminate. As the micro-failure events which reduce the strength and
stiffness and determine the life of composite laminates, commonly referred to as
damage, are complex and intricately related to a variety of fracture modes under
different circumstances, any attempt to model exactly the fine details of them is
often impractical, if not impossible to achieve [1]. However, as internal damage
in laminates is noncatastrophic, it is reasonable to consider the locally averaged
effect of the damage on the response of the material, which can be accomplished
by an equivalent continuous and homogeneous material element described by a
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group of internal state variables to replace the damage element that is noncon-
tinuous and nonhomogeneous—so long as the two have the same macroscopic
mechanical behaviors. This approach is usually referred to as damage mechanics,
in which the effects of micro-cracks are reflected in constitutive relations of the
material rather than treated as boundary conditions based on the concept of frac-
ture mechanics. For example, under certain operating conditions, a composite
material may exhibit nonlinear properties before its final failure. Instead of
assuming linear elastic behavior, this nonlinearity is considered by the theory of
damage mechanics to be primarily caused by the influence of micro-structure
changes of the material [2-13].

Experience from previous studies suggests that it is difficult to predict quantita-
tively the mechanical behaviors of a composite laminate in terms of the proper-
ties of its individual constituent elements, that is, the fiber and matrix elements.
However, it is of value to draw some conclusions that are helpful in formulating
the macroscopic theory based on the analysis of constituent layers of the lami-
nate. To this end, it is expedient to utilize a macro-mechanics approach in which
the development of a sufficiently simple but accurate mathematical model — tak-
ing specific deformation features of composite laminate into account and using
the results of a limited number of tests as initial data—comes into focus. With this
approach, considerable knowledge and insight into the damage description of
composite material has been achieved [4-20].

Schapery proposed an energy approach to model deformation and fracture of
elastic, nonlinear composite materials [2,3] based on the experimental observa-
tions that the stresses and mechanical work are practically independent of defor-
mation history for certain loading paths. The method was based on thermo-
dynamic principles and an internal state variable description of the micro-
structural changes responsible for the inelasticity. Consequences of this limited
path-independence were investigated and various relationships for stable
mechanical responses derived.

Under the assumption that the strain component and the damage magnitudes
were insignificant—i.e., small strain and low concentration of damage en-
tities—Talreja proposed a method of analysis in predicting stiffness variations in
composite laminates for a given damage state [4-7]. While the method was able
to predict satisfactory stiffness degradation, it is limited to thin laminate, in-plane
loading, and transverse cracking in the ply.

An internal state variable approach was introduced by Allen et al. to describe
the energy dissipation due to the growth of microcracks [8-10]. The approach has
been employed to characterize the effects of crack surface displacements on the
total strain and to provide analytical solutions to the upper bounds of degraded in-
plane stiffness of angle-ply laminates with matrix cracks. It is restricted to the
angle-ply laminates under general in-plane loading when the crack density in
each layer is known a priori.

Allix et al. [11-13] proposed a model based on the concept of effective stress
which was incorporated in the formulation of the damaged constitutive equations
for composite lamina. The damage evolution equation was derived using the ther-
modynamic conjugate force to the chosen damage variable and the failure of a
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material element was postulated to have occurred when the damage variable D
reaches its critical value D..

The studies described above offer various ways of incorporating the
micromechanical failure mechanisms into macromechanical damage models.
Other existing laminate-based theoretical studies such as shear-lag model [14],
self-consistent scheme [15,16], strain energy approach [I7] and complimentary
strain energy method [18-20] mainly investigated the effect of matrix cracks on
the stiffness variation of composites for a given damage state, while more practi-
cal problems of mechanical responses of composite laminates with damage for
engineering design have not been addressed.

Recently, the authors have introduced a damage model characterizing
nonlinearity of fiber-reinforced composite lamina with damage consideration and
associated variation of material properties [21] based on their earlier model for
brittle materials [22]. The present study is intended to develop a full three-
dimensional lamination theory by extending the damage model limited to uni-
directional lamina [21]. It may be expected that after a layer in an nth ply lami-
nate begins to experience a damage process in which the damaged lamina
behaves nonlinearly while the others remain elastic, the stresses in each ply will
redistribute in order to satisfy the equilibrium condition. Henceforth, the overall
laminate will have a new series of stress-strain relations instead of those without
damage, which depend upon the orientations of constituent laminae and their
mutual constraints. Under certain specific loading situations, the response of
damaged composite laminate will be illustrated.

2. FORMULATION

For ease of illustration, the contracted notation 6, = 6,1, 0; = 02, 03 = 033,
Oy = 013, 05 = 013, Og = Op2, € = €1, € = €1, €3 = €33, €4 = 2623,
€s = 2613, €6 = 26, 18 used and summation convention is adopted. Moreover,
from the discussions in Reference [21], it is convenient to express the formulation
in terms of total stress and strain and the concepts of deviator stress and strain are
not introduced since the hydrostatic stress will also contribute to damaging pro-
cess.

A damage surface which also represents initial and subsequent damage sur-
faces, similar to the yield function in plasticity, is successfully defined and has
the following form:

F=Fo,D)=20 1)

where o, (i = 1,2,. . .,6) are stress components. D is a measure of damage ex-
tent, changes only when damage progresses, and thus controls the size of the sub-
sequent damage surfaces. The realization of damage surface is not simply a
mathematical convenience but a phenomenon experimentally recorded by means
of the acoustic technique [23]. The method also identified the effect of loading
and unloading on the damage surface.
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For brittle composite lamina with damage, at a certain damage state, the stress
and strain relation may be expressed as

e = Cyo; (D fixed) 2)
where C; = C;, are the elastic compliance components at current state and will
change during the entire loading process when damage in the lamina progresses,
and € are reversible strain components.

During damage evolution, the total reversible strain increment is
dE; = C,'jd(fj + dC,'jO'j (3)
and can be assumed to consist of two parts:
de; = de! + de? @
where superscripts ¢ and d stand for elastic and damaged components, respec-
tively. The elastic strain increment de; may be related to the stress increment do;
through the generalized Hooke’s law as
df,e' = C,-jdaj (5)
The damaged strain increment is expressed as

df:'i = dC,»jUj (6)

and it can be estimated from the normality rule or flow rule by using the damage
function F,

1 dF OF
d - - —
de? = 4 90, 30, do; @)

where 4 is a function of damage state.
The energy per unit volume dissipated during damaging process is selected
here as damage variable D which is

- 1
D = s ode;, — 2 0 ®

and its increment is expressed as

1

aD 2

odel (9)
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When the damage surface is constructed as

F(e,,D) = (R,0.0)"* — K(D) =0 (10)

where the components in R, (without loss generality, it may be assumed that

R; = R;) may be determined from experiments and K(D) is a state function and

changes when D grows, and if the equivalent stress ¢, and the equivalent
damaged strain increment de? are defined as

Og = R;,-O,-Uj (11)
dD—1 de? =1 de? 12
= 5 odel = 5 0.de (12)

the value of A in Equation (7) can be given by ag,-¢? curve established from ex-
periment as

do,
de?

A= (13)

The comparison between Equation (6) and Equation (7) with Equations (10)
and (13), gives

d
dC,'jUj = %Rijaj (14)

o

If it is further assumed that C,; is just a function of damage state and indepen-
dent of processes [2,4] and o,-¢? relation

d

e = asgt — ao? (15)

in which a and b are material constants, the expression for instantaneous compli-
ance may be obtained as

ab
&b-1

CD) = C0) + (057" — os)R; (16)

C(0) is the compliance component of the lamina without damage and

ab

D=2(b+1)

(a2 — at*) (for do, = 0) a7

Obviously, Equation (17) relates the damage variable to the current stress state
and can be applied to calculate the instantaneous C,(D) in Equation (16) during
a loading process with damage. It can be seen that the coefficients R,; also
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reflect the anisotropic behavior induced by material damage. In a certain
unloading-reloading cycle, C,,(D) are constants as D equals the value determined
from o, at the start of unloading; upon reloading, D develops again in accordance
with Equation (17) and thus the C,(D) change when g, exceeds its proceding
maximum value. From the preceding discussions, it is apparent that the Equa-
tions (2), (4), (16), and (17) are capable of describing the damage behavior of brit-
tle composite ply, provided that the material coefficients in Equations (10) and
(15) are determined from experimental measurements.

3. GOVERNING EQUATIONS

With the formulation of the constitutive relation of composite lamina coupled
with damage, the description for damage response of composite laminate can be
established by a lamination theory.

Consider a symmetrical laminate composed of n unidirectional layers with dif-
ferent fiber orientations. Its representative element is illustrated in Figure 1. All
the plies in the laminate have the same physical properties. In Figure 1, ¢ is the
total thickness of the laminate, ¢,, and 0,, (n = 1,2,. . .,n) are the thickness and

n

o~

m—th layer

e
)
>

X 1

Figure 1. Coordinate systems of laminate.
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fiber orientation angle of mth layer. Two coordinate systems, material principal
axes and laminate axes, are selected and represented as 1-2-3 and X-¥-Z respec-
tively, where 1- and 2-axes are parallel and perpendicular to the fiber directions,
the 3-axis is normal to the ply plane, the X-Y plane is located in the middle plane
of the laminate, and the 3-axis coincides with the Z-axis. All the symbols
throughout the report with top bars are used to denote in the material principal
coordinate system, otherwise, in the laminate coordinate system. In the investiga-
tion, the following hypotheses will be employed:

1. Each layer is modeled as a macroscopically homogeneous orthotropic
material. Individual fibers and matrix are not considered.

2. Time and rate effects are neglected and environmental effects such as tempera-
ture and moisture are excluded.

3. The laminate is in an initially free stress state and body force is ignored.

4. Deformation is small and the material without damage is linearly elastic and
obeys generalized Hooke’s law.

5. Each ply in the laminate is very thin so that the stress and strain components
in each layer are uniform.

The assumptions that the constituent laminae in the laminate are perfectly
bonded together and in equilibrium state under applied loads, lead to the condi-
tion of continuity of stress and strain components at the ply interfaces; i.e.,

e = €™ i=12,6;,m=12,..,n (18)
(= LV.e™  i=345 (19)

m=1
g, = o™ i=345m=12,...n 20)
o= L Vu™  i=126 @n

m=1

where ¢, and ¢, are the macroscopic stress and strain components applied to the
laminate, V,, is the volume fraction of the mth ply, and

Vi = tolt, Yy Vi = 1 22)
m=1

For the mth ply, at any instant, its constitutive relation in material principal
coordinate system, from Equation (2), is

™ = §Mem e = clMem m=12,..n 23)
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where (™ and €™ are stress and strain components of mth layer, §.™ and
C{™ (i,j = 1,2,. . .,6) are the instantaneous stiffness and compliance compo-
nents of mth lamina in material principal coordinate system corresponding to
some certain damage state, respectively. Their values will change during loading
which is accompanied with damage. Moreover,

gi(j'") = gj(i'")’C—ifi’") = C-j(im)
and
[C5M1 = 1S5 (24)

which can be evaluated from Equation (16).
In the laminate coordinate system, Equation (23) becomes

o™ = Si(jM)E}M)’e}M) = Ci(jm)ajm) (m=12,...,n) (25)

where o{™, ™, § and C{™ are the components in the laminate coordinate
system.

From the geometry relation between the material principal system and the lam-
inate coordinate system, as shown in Figure 1, the following transformation for-
mulae can be derived:

" = T{Maf™ ™ = P{e™ (m=12,...n (26)
and

S5 = [PPSR ,CE o= [T C T (27)

where [T5"]7 = [P{™]! and,

F cos? 6, sin8,, O 0 sin 26, 7
sin? 0, cos?f,, O 0 0 — sin 240,,
0 0 1 0 0 0
(m) __
rjw = ) (28)
0 cosf, — siné, 0
0 siné,, cos 0, 0
1 . 1 .
— ~sin20, =sin26, O 0 0 cos 26,,
2 2 |

Finally, for the composite laminate, its stress-strain relation in laminate coor-
dinate system can be written as

ag;, = S,’jfj, € = C,,-a,- (29)



A Three-Dimensional Analysis of Symmetric Composite Laminates with Damage 237

where S;; and C,; are the instantaneous stiffness and compliance components of
the laminate, and C;; = [S;]™'. To determine their expression is the problem of
interest here.

4. DAMAGE BEHAVIOR OF SYMMETRIC LAMINATES

When a certain three-dimensional uniform loading state is imposed on the lam-
inate, the present analysis is complicated by the necessity that the full three-
dimension effects such as out-of-plane stress components, which are considered
negligible based on the plane stress assumption in the classical laminated plate
theory (CLPT), must be taken into account in the lamination formulation from
constituent ply properties to that of laminate. Accordingly, S;; of the laminate can
be expressed as:

7-1
E V, Sim Sy E V. [Sim E VIS8
m=1 m=1 m=1

y (m) _ qgtm)pgimiy- (m)‘ ij =126
* ,,,zz:l v [s” S 1S 1S | paru=345
[ n n 1
QM) - - i =1,2,6
Sp= | LSO || LS| o aas GO

m=1 m=1
L

-1

Zz:l Vs | Y vaisersyy j=126

m=1

,
Y v.Isyor ij = 34,5
m=1

and C; can be obtained from the inversion of S,; as indicated in Equation (29).
The relation between the stress components of the mth layer and the overall stress
components of the laminate is

o™ = G{Mo, (31)
where
[Ci 1 Cy Ljp =126
G = [CY TG, — C5 ip=126,j =345 (32)
8 i,j = 3,45

0 others
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and §,; is the Kronecker delta function,

Equations (29)-(32) enable the description of the overall damage response of the
laminate. The representations in Equations (31) and (32) can be reduced to those
without damage consideration, and under the conditions of plane stress and strain
and in-plane loading they can be simplified to the results presented in Reference
[13].

As elucidated earlier, the concept of damage surface which plays the same role
as the yield function in the classical theory of hardening plasticity can be intro-
duced to determine the overall stress that induces the nonlinear response of con-
stituent layer of the laminate. The initial and subsequent damage surfaces for the
mth ply can be interpreted in the laminate coordinate system in terms of overall
stresses

F™(o,,D) = [Ay0:0))"'* — K™(D) =0 (33)
where
A. = G(gv-)T(M)R T(M)G(nf)
¥ wi Lvw Rord ey G
Actually, this equation imposes a restriction on Equation (16). If the laminate is

loaded monotonously to current stress o; and a stress increment do; is applied
such that the conditions

(m)

do;

Ft™ =0 and do; > 0 (34)

are simultaneously satisfied, in some layers, at least in the mth ply, damaging
process will initiate. Otherwise, the constituent laminae, as well as the laminate
itself, remain in elastic range without damage initiation, or, after having ex-
perienced damage, in a certain unloading-reloading cycle without further damage
development, their responses are those whose material coefficients are evaluated
from Equation (16) where the value of D determined from the beginning of
unloading remains constant.

It can be seen that the overall response of a laminate during a damaging process
must be established in conjunction with the solutions based on a series of Equa-
tions (29)-(32) describing the damage behavior of each constituent layer and of
the laminate itself at each loading step. Obviously, to solve these equations ex-
plicitly is difficult and numerical methods may have to be exploited to solve them
because of the nonlinear properties of the evolution law of damage and of the
stress-strain relations.
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5. EXAMPLES

In order to illustrate the application of the proposed method of analysis, the
damage response of laminate composite plates under different loading conditions
will next be discussed.

First, a group of unidirectional laminates of different orientations is tested in
simple tension in order to measure their damage characteristics. The specimens
are manufactured from panels made of T300 graphite fiber in 648 epoxy matrix.
The fiber volume fraction of the lamina is about 65 percent. As the composite
lamina is approximated to be transversely isotropic, the material coeflicients in
Equation (15) are evaluated as [21]

a =0.114 x 10%, b = 1.24, g, = 9 MPa,
and the properties of initial undamaged lamina are
E? = 1.25 x 10° MPa, E}, = E35; = 1.11 x 10* MPa
vir = vs = 0.03, »3; = 0.338, G, = Gi; = G5 = 3.3 x 10° MPa

The non-vanishing R,; values for each lamina that are required for the damage
analysis are Rz, Ras, Ris, Ras, Rss and Res. These values can be experimentally
determined using a similar method described in Reference [22]. Briefly, the con-
dition under which R,, = R;; = 1 is satisfied is to load an unidirectional com-
posite lamina perpendicular to the fiber direction. The other three values of R.q,
Rss and R, are next evaluated by experimentally establishing the relationship be-
tween the R; and 6 angles for which unidirectional composite lamina of three
angles, namely 22.5, 45 and 67.5 degrees are loaded in x-direction (see Figure 1).
As to the remaining coefficient of R,;, the transversely isotropic property com-
monly assumed for composite lamina readily establishes the relationship,

Ciu = 2[C22 - Cza],

which enables the determination of R,; from Equation (16). The R,; values ob-
tained are:

R22 = R33 = 1, R44 = R55 = R56 = 1.9, R23 = 0.05.

Figure 2 shows the relation between the measured damage D and the equivalent
stress g, which may be considered as being equivalent to the evolution law of
damage as described in Equation (17).

In the prediction of the overall stress for the angled composite laminates of
[ £ 15]2, [£30];, and [ £45],, subjected to a uniaxial tensile strain, an iterative
method is adopted. This is because the stress at mth ply is dependent upon the
stiffness S5 shown in Equation (25) which itself requires a priori knowledge of
the unknown applied stress described in Equation (16). No divergence has been
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Figure 2. The evolution law of damage.

experienced for the computed stiffnesses and stresses at each ply. The calculated
stiffness for each ply can then be used to assess the overall stiffness of a
laminate based on the two-dimensional form of Equation (30) which in turn is
used to determine the overall stress at a prescribed strain using Equation (29).

Figures 3, 4 and 5 display the predicted and experimental overall axial stresses
against the overall strains along the loading directions respectively for symmetric
angled-ply laminates of [+ 15],,, [ £30],, and [ £45],,. It can be seen from the
figures that the stress and strain relations are linear before the development of
damage strain e,, after which the responses of the laminates exhibiting nonlinear
damaged properties become pronounced. As in angle-ply laminates, there are
only two ply orientations which have the same magnitudes but opposite signs,
i.e., they are symmetric about the loading direction, these layers will simultane-
ously experience damage processes under uniaxial loading. Close agreement be-
tween the predicted and measured curves can also be observed from these
figures.

The response of cross-ply laminate [0/90°), under uniaxial loads is illustrated
in Figure 6. It can be observed from the figure that during loading, after the 90°
layer degrades, the line initially straight becomes nonlinear, even though the 0°
lamina contains no damage. This may be attributed to stress redistribution be-
tween the layers due to the damage of 90° ply.

In order to illustrate the viability of the three-dimensional formulation
described in the preceding section, a cross-ply laminate [0/90°], was subjected to
the multi-axial loading of e, = ¢, = —2¢, = e. A finite element analysis taking
into account the constitutive equations of damage is used to predict the stresses
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Figure 7. The o-¢ curves for [0/90°], laminate.

and strains in each constituent ply. A 20-node parametric element was adopted to
calculate the initial stresses and strains with the stiffness equations shown in
Equation (30). An iterative scheme is then employed as in the case of the angled-
ply laminate to arrive at satisfactory stress and stiffness which are required to
meet the equivalent condition of each ply shown in Equations (25) and (26). The
overall stress and strain are finally obtained with the aid of Equations (18)-(21)
based on those of the constituent plies and their corresponding stiffnesses.

Figure 7 shows the curve of stress ¢ as function of different strain e for the
[0/90°], laminate. In this case, the overall stress component in X-direction is
equal to that in Y-direction, o, = o, = o0, and the constituent layers also exhibit
simultaneously their nonlinear processes.

Also shown in Figures 3-7 are the predicted results of the overall stress
“without damage consideration.” This stress may also be known as the “pseudo
elastic stress” which is defined as a; = S;(0) - ¢}, while the damage stress, as
a; = S;(D) - ¢;. Hence the sole difference between the two stresses is the dif-
ference in the stiffness employed. It can be observed from Figures 3-7 that the
linear behavior of the “elastic” stiffness does not hold at larger applied strains and
that the stiffness degradation becomes most pronounced in [ +45],, laminate but
less significant for other angled-ply laminates.

6. CONCLUSIONS

The damage responses of symmetric composite laminated plates without initial
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discontinuity such as notches and holes have been estimated based on a full
3-dimensional analysis which takes the out-of-plane stress and strain components
into account and is applicable to thick laminates. The overall constitutive rela-
tions of the laminates at any instant in the course of damaging process can be de-
termined from the damage properties of individual constituent layers de-
scribed by a relatively simple continuum model and mutual constraints of constit-
uent plies. A few examples have been presented to show the damage characteris-
tics of some composite laminates when they are subjected to proportional load-
ing.

The method can be extended to investigate large composite structures when a
finite element program is used. In this case, a typical 3-dimensional element may
be composed of many individual composite laminae and the stiffness problem of
each single element could be solved by the proposed approach since the deter-
mination of the stiffness of the element constitutes the first step in forming the
global stiffness matrix necessary for any structural analysis. The present study
can also be incorporated into the failure analysis of composite laminates, if ap-
propriate failure criterion is used.
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