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ABSTRACT
We discuss some generalizations of the strict separation property in the
iinear compleméntarity-problem associated with a P-matrix, Using them,
we develob a principal pivoting descent method for this problem, in which

a distance measure decreases striclty in each step.
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1. INTRODUCTION

We consider the LCP (q,M) of order n, which is to find w = (Wl,...,w ),

T .
z = (zl,...,zn) satisfying

w-Mz=gq
w, z 20 (1)
wT z =0

> ;
where M is a given P-matrix of order n. If q = 0, (w=q,z=0) is a solution of
(1), so we assume q ; 0. A square matrix is said to be a P-matrix if all
its principal subdeterminants are strictly positive. In this case it is well

known that (1) has a unique solution for each qERn [8,11].

When M is Positive definite (PD) or Positive semi-definite (PSD), Polynom~
ially bounded ellipsoid algorithms have been developed for solving the LCP
(q,M) [2,6]. These algorithms use the convexity of the set E={z:zT (Mz+q)

= 0} and the fact that any point in the intersection of E with thé polyhedron

v

{z: z =0, Mz+q;p}is on the boundary of E and leads to the solution of the LCP
(q,M), When M is a P-matrix but not even PSD, the set {z: zT Mz+q) < 0} is
not in general convex, and because of this, the ellipoid algorithm cannot be
used to solve these problems. Eventhough when M is a ?—matfix, the LCP (q,M)
is known to have a unique solution, no polynomially bounded algorithm for
finding it is known (except when M is also PSD). The general LCP is known to
be strong]y'NP—complete [l], but the complexity of the épecial case when M is
a P-matrix is not known. Developing a polynomially bounded algorifhm for the

LCP (q,M) when M is a general P-matrix is one of the important unresolved theo-

retical problems in lenear complementarity. Such an algorithm would seem to



require some type of comvexification. Here we discuss an algorithm for

the LCP (q,M) when M is a P-matrix, that requires the solution of a finite
sequence of LCPs each associated with a positive definite matrix., So each
problem in the sequence can be solved in polyﬁomial time using the ellip-
soid algorithms of [2,6]. As wevmove from one problem in the sequence to

the next, a distance measure decreases strictly and the method terminates
with the solﬁtion of the LCP (q,M) when this distance measure is zero.

Viewed in terms of this distance measure, this algorithm is therefore a
descent algorithm. Its computational complexity is not known. It is being
studied, and it is hoped that a polynomially bounded variant of this approach

will be found.

2. HIGHER ORDER SEPERATION THEOREMS,

For any matrix D, we denote its jth column by D i Let I denote the unit matrix
of order n. For j=1 to n, {I‘j,—M j} is the jth complementary pair of column
vectors in (1) and each vector in this pair is the complement of the other.

A complementary set of vectors is an ordered set {A A n} where A jG{I 32

l,oo',

oI

-M j} for j=1 to n, and the matrix A wifh column vectors A.l""’ A is

called a complementary\matrix for (1). Since M is a f—matrix, ail the comple-
mentary sets of vectors are linearly indepepdent, and every complementary

matrix is a complementary basis for (1) [8,9]. Associated with a complementary
matrix A is the complementary cone Pos (A) = {Ay: y 2 0}. Since M is a P-matrix,
the class of complemenfary cones partitions RY [8,11]. The complementary basié
corresponding to a complementary cone containing q is a complementary fEaéible

basis for (1), and the basic solution of (1) corresponding to that basis is.



the solution of the LCP (q,M) [8,9].

A subcomplementary set associated with a nonempty proper subset J={ji,...,

i }CA{l,...,n} is a set {A , ,..., A . }with A , €{I ,,-M .} for each
g -3 3L % 373

jEJ. Given any two sets E,F, let E\F denote the set of all elements in
E not in F. If {A j: j€J} is a subcomplementarity set associated with J,

let B 3 be the complement of A i’ then the subcomplementary set {B 1.: jeJ}

is known as the complement of the subcomplementary set {A j:jeJ}.

The well known strict separation property associated with a P-matrix M

states that if {A.i: ie{l,...,j—l,j+l,.‘.,n}} is a subcomplementary set,

then tﬁe unique hyperplane in R® containing the points 0, and all the vectors
in this subcomplementary set, strictly separates the left out complementary
pair of vectors {I.j’—M.j} [8]. Here we will present a generalization of
;his result for a subcomplementary set associated with any nonempty proper

subset of {1,...,n}.

THEOREM 1: Let M be a P-matrix of order n and let J, J be a partition of

{1,...,n} with J, J both being nonempty. Let {A.j:jeJT, {A.j: jeJ} be the

correépondiﬁg partition of a complementary set of vectors. Let {B.izjej} be

~the complement of the subéomplementary set {A.j: jej}. If H is a hyperplane

in Rp satisfying

i) H contains the origin O and all the vectors in the subcomplementary sets
{‘A.j: jeJ}

ii) All the vectors in the subcomplementary set {A j: jeJ} lie in one of the
> .

closed half-spaces, H , defined by H



then at least one of the vectors in {B 1: jej} lies strictly on the other

<
side of H in the other open half-space H defined by H.

PROOF: Consider the system (2)

w-Mz=0 (2)
Perform principal pivot steps in (2) to transform the complementary

set of vectors {A 1,: jeJUj} into the set of unit vectors. This is a non-

singular linear transformation that preserves separation properties. If

u, denotes the variable in (2) associated with A , and Vj denotes its com-

plement, this transforms (2) into
u-Mv=0 (3)
where M is also a P-matrix because it is a principal pivot transform of the

P-matrix M [12]. Let ﬁjj denote the principal submatrix of M corresponding

to the subset J. Let H = {x:jg1 ajxj =0} be the transform of H. Since A ,

is transformed into I e by (i) we have aj = (0 for each jeJ, and by (ii) we

- > -
have aj = (a,: jeJ)= 0. So a = (aj) 2> 0 and since H is a hyperplane. a z 0,

>
that is ag - 0. (A vectory = (yj) 2 0 means that each yj is nonnegative

and at least one yj is strictly positive). For je3, B jvis now transformed

. Mo ' iy . i€T) = -g= Me=. . T i s
into M'. The vector (a( M.j) j€J) as MJJ Since MJJ is itself a

>

3 0, by a theorem of D. Gale and H.Nikaido [4] at least one

P-matrix and a

of the components of a=M== is strictly positive, that is a(-M 1.) < 0 for at

JJJ

~

least one jéj. That is, at least one of the -M 3 for jej lies in the open

m
half-space ﬁ<= {x: 2 ajxj<0} not containing the unit vectors. In terms of
j=1

the original space this implies that at least one of the B i jej is

- < . . ..
contained in the open half-space H defined by H not containing the com-

plementary set of vectors {A j: jedlTy



THEOREM 2: Let M be a P-matrix of order n, J a nonempty proper subset of

{1, ..., n} and let {A 5 jeJ} be a subcomplementary set of vectors. Let H

be a hyperplane in R" that contains the origin O and all the vectors in the

set {A j: jeJ}. Then H strictly separates at least one pair of the left out

complementary pairs of vectors {I IE -M j} for jeJ = {1, ..., n}\ J.

PROOF: Choose the subcomplementary set {A j: jeJ} arbitrarily and transform

the system (2) into (3) as in the proof of Theorem 1. Using the notation in
' . _ n
the proof of Theorem 1, suppose this transforms H into H = {x: 'Zl aj Xj = 0}.
J=

Since A , is transformed into I 3 and H contains A 3 for jeJ, H must contain

I 3 for jeJ, that is aj = 0 for all jeJ. Since H is a hyperplane, we must

have a + 0, that is ag = (aj: jeJ) + 0. Define ﬁjj as in the proof of Theorem

1, it is a P-matrix as noted there. By the sign nonreversal theorem for P-

matrices of D. Gale and H. Nikaido [4] if (yj: jed) = as Mzz, a, v, > 0 for

at least one jeJ.. Since aj = 0 for jeJ, these facts imply that there exists
at least one j&J éatisfying the property that al j and a(-M j) have strictly

opposite signs, that is H separates the complementary pair of vectors {I i -M j}
strictly. In terms of the original space, this implies that H strictly separates

the complementary pair of vectors {I 57 -M j} for that jeJ.

3 THE ALGORITHM:

Consider the LCP (1), where M is a P-matrix. The algorithm obtains a sequence

of complementary bases AO,Al,..., each one differing from the previous in exactly



7
one column vector. Because of this feature, the method belongs to the class
of principal pivoting methods [3,5].

For del = {I T M, ..., M _}let V(d) = O™ if d'q < 0, or =

A2 0t
d(qu)/||d[|2 if qu > 0. V(d) is the nearest point on the ray of d, {ds:

§ > 0}, to q. The nearest point in the complementary cone Pos {A.l’ vees A.n}
to q is 0 iff V(A j) = 0 for each j = 1 to n. Since q is containéd in a
complementary cone, there exists a complementary cone Pos (A) such that V(A j)
$ 0 for at least one j. So there exists a del' for which V(d) % 0. Find th; d
that minimizes ||V(d)—q|| among del'.. Find any complementary basis A° that

contains this d as a column vector. Use A° as the initial complementary basis

in step 1 of the algorithm.

GENERAL STEP r + 1 FOR r ; 0: This step begins with the complementary basis
At obtained at the end of the previous step (with AO if r = 0). Find the
nearest point (in terms of the usual Euclidean distance) to q in the com-
plementary cone Pos (Ar)‘ As shown in [10] this nearest point problem can
be posed as an LCP associated with a positive definite matrix, and can be
solved in polynomial time by the ellipsoid methods discussed in [2,6]. If

q € Pos (AY), this nearest point is q itself, A" is a complementary feasible
basis for (1), and the method terminates. Othefwise let x° be the nearest
point in Pos (AY) to q. Let x" = A%aF where of = (ai, cees a;) > 0. By the
choice of A°, xr'+ 0 for any r and so ar > 0, that is J. = {j: a? > 0} 0.
By the .results in [7, 10], x* is the orthogonal projection of q in the sub-

space {x: x = I 8.A", 8. real numbers for jeJr}.- Define the distance in

jéJr J .j) ]



this step to be 6' = [ x"=q||. Let E_ be the ball {x: Hx-v[li 5"} and let
Hr be the tangent plane to Er at its boundary point xr, Hr= {x: (x—xr) (xr—q)
= 0}. Clearly Pos {Arj P jed }C:Iﬂf So Hr is a hyperplane containing the

origin, and it separates Pos (Ar) from q. Let Ar = {j: JéJr, A 3 and its com-—

plement are strictly separated by Hr}° By theorems 1 and 2, Af + @#. Select
1

. T T
be the complementary basis whose columns are A l,...,A . s

a jeh and let AT
r o

r Ar

B IE j+1,...,Arn} where B® is the complement of Arj. By the results in [7,10]

o]
. . r+1 . .
the nearest point in the complementary cone Pos (A" 7) to q will be strictly

+
closer to q then xr. With AT l, go to the next step.

. r . . .
The distance measure & decreases strictly in each step and since there are

oﬁly a finite number of complementary bases the algorithm is clearly finite.

One can get different variants of this algorithm by choosing j from Ar
according to different rules. One can consider the least index rule in which
the j chosen from Ar is always the least, or a cyclicél rule like the least
recently considered rule popular in implementations of the simplex algorithm,
or some other rule. We can also consider a block principal pivoting method

, r+l .- . r . r . .
in which A is obtained from A" by replacing each A.j ) JEAr by its com-

R

plement in a block principal pivot step. The computational complexity of

each of these variants is currently under investigation,



10.

11.

12,

S.

S'

References

J. Chung, "A Note on the Complexity of LCP: The LCP is Strongly
NP-complete'", Technical Reprot 79-2, Department of Industrial
and Operations .Engineering, The University of Michigan, Ann
Arbor, Michigan, (1979)

J. Chung and K. G. Murty, "Polynomially Bounded Ellipsoid Algorithms
for Convex Quadratic Programming", pp. 439-485, in Nonlinear Pro-
gramming 4 (Editors) O. L. Mangasariun, R. R. Meyer and S. M.
Robinson, Academic Press,(1981)

B. Dantzig and R. W. Cottle, "Positive (Semi-) Definite Matrices and
Mathematical Programming', ORC 63-18, University of California,
Berkeley, California,(1963)

Gale and H. Nikaido, '"The Jacobian Matrix and the Global Univalence of
Mappings', Mathematische Annalen, 159 (1965) pp. 81-93.

L. Graves, "A Principal Pivoting Simplex Algorithm for Linear and
Quadratic Programming'", Operations Research, 15 (May-June 1967)
No. 3, pp. 482-494.

K. Kozlov, S. P. Taransov and L. G. Hachijan, "Polynomial Solvability
of Convex Quadratic Programming', Soviet Mathematics Doklady, No. 5,
20,(1979)

G. Murty, "On the Linear Complementarity Problem', Operations Research
Verfahren, 31 (1978) pp. 425-439.

G. Murty, "On the Number of Solutions to the Complementarity Problem
and Spanning Properties of Complementary Cones', Linear Algebra
and Its Applications, 5 (1972) pp. 65-108.

G. Murty, Linear Complementarity, manuscript, to appear.

G. Murty and Y. Fathi, "A Critical Index Algorithm for Nearest Point
Problems in Simplicial Cones'", Mathematical Programming, 23 (1982)
206-215.

Samelson, R. M. Thrall and O. Besler, "A Partition Theorem for Euclidean
n-space'", Proceedings of the American Mathematical Society, 9 (1958)
pp. 805-807.

A. W. Ticker, "Principal Pivotal Gransforms of Square Matrices", SIAM

Review, 5.(1963) p. 305,



