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ABSTRACT: This is a preliminary paper describing a new interior point
variant of the gradient projection method for linear programming. The
method is initiated with an interior point of the set of feasible
solutions, K, and always moves along points in the interior of K.
Appropriate starting procedures to apply when an initial interior
point of the set of feasible solutions is not known at the beginning,
are discussed. The method terminates after at most a finite number of
cycles. Each cycle consists of at most n steps (n is the number of
variables in the problem). In each cycle the method makes a single
move from an interior point of K, in the steepest descent direction

at that point allowing a move of sufficient length (this direction is
computed during the cycle) within K, to the interior point of K just
short of the boundary of K in this direction. In a cycle, each step
computes a tentative steepest descent direction and tests it, if a move
of sufficient length cannot be made in that direction within K, it
moves to the next step, and so on. If a direction for the move is not
selected in a cycle after n steps, it is an indication that the
current interior point of K is close to an extreme point optimum
solutions of the problem, then a well-known subroutine can be used to
move to an optimum extreme point. The method can also detect unbound=
edness of the objective function on K, or with suitable starting
schemes it can also detect infeasibility of the system of constraints.
Preliminary computational testing with the method has given very
encouraging results. The method has a nice gravitational interpre-
tation and is expected to perform very well.

KEY WORDS: Linear programming, gradient projection, steepest descent
direction, interior point, moves of sufficient length.



1 INTRODUCTION

We consider the linear program (LP) in the following form
minimize z(x)= cx
subject to Ax 2 D
where A is of order mxn. Sign restrictions on the variables and any
other lower or upper bound conditions on the variables are all
included in the system of constraints in (1). Clearly, every LP can
be put in this form by very well known transformations discussed in
most linear programming textbooks. We assume that all the data in the
problem is integer. We let K denote the set of feasible solutions of

(1). We further assume that K has a nonempty interior, and that a

o] 0

point x° in the interior of K is available (that is, x" satisfies
Ax°>b), and that K has at least one extreme point.

In the next section, we discuss how any LP with integer data can
be transformed into another in which all these assumptions are

satisfied.

th th

If D is any matrix we denote its i row by Di , and its j

column by D If F is a set, |F] denotes its cardinality.

i

2. TRANSFORMATION OF AN LP TO THE CANONICAL FORM

These transformations are similar to the ones used by N.
Karmarkar for his algorithm ([4]; see also [7]). An arbitrary LP in
minimization form may have three possible outcomes - infeasibility
(the constraints have no feasible solution), feasible and objective
function unbounded below on the set of feasible solutions, feasible
and has an optimum solution. The methods discussed below are

mathematical procedures which transform an arbitrary LP into an



equivalent one for which the set of feasible solutions is nonempty
with a nonempty interior and a known interior feasible solution, and
in which the optimum objective value is known to be zero. Consider
the LP in the symmetric form
minimize hX
subject to EX > p (2)

X
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Let T denote the row vector of dual variables associated with (2).
Solving (2) is equivalent to solving the following system of linear
inequalities in (X, m).

hX-mp ;__
EX 2P (3)
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If (X, 7) is feasible to (3), X is optimal to (2) and ™ is optimal to
its dual; and vice versa. Conversely, if (3) is infeasible, (2) is
either infeasible, or it is feasible and hx is unbounded below on it.
To solve (3), convert the top three constraints in it into
systems of equality constraints by introducing appropriate slack
variables. Then introduce the necessary non-negative artificial
variables and construct the corresponding Phase I problem (see [2,

6]). Let this Phase I problem be

minimize gu

(4)

n
(o}

subject to Fu

u

v
o



where the vector u includes all the variables X, m, and the artificial
variables for the Phase I problem. Since (4) is a Phase I problem, it
is definitely feasible and has an optimum objective value ;:0. Let v
denote the row vector of dual variables associated with (4). Now
consider the LP

minimize gu-vd

subject to Fu = d (5)
VF < g
u 2 0.

This LP (5) has an optimum solution with an optimum objective value of

zero. If (u, v) is optimal to (5), u is optimal to the Phase I

v

problem (4). If gu (the optimum Phase I objective value in (4)) is
0, the original LP (2) has no optimum solution (it is either
infeasible, or the objective value hX is unbounded below on its set of
feasible solutions). 1If QE = 0, the X~-portion of u is an optimum
solution of the original problem (2).

The top set of equality constraints in (5) can be transformed
into an equivalent system of linear inequalities, by replacing each
equation by a pair of opposing inequalities (a better method is to use
each equality constraint to eliminate one variable from u from the
problem, one after the other, which at the end, leaves an equivalent
system of linear inequalities in the remaining variables). Also,

—

+ - + . R
express v as v -v where v , Vv 0. This transforms (5) into a

2

problem of the following form

minimize Yy

subject to Hy > q (6)



where y is the vector consisting of all the remaining variables (v*,
v, and remaining variables from u, if any of them are eliminated).
The system (6) includes the non-negativity constraints on the variables
(y>0). So the optimum objective value in (6) is zero, and since all
the variables in it are restricted to be > 0, its set of feasible
solutions has at least one extreme point. Let y° > 0 be an arbitrary
positive vector in the y-space. If Hy®° > q, then (6) is in canonical
form (1), satisfying all the assumptions made in Section 1 (the set of
feasible solutions has at least one extreme point, and a nonempty
interior, and an interior feasible solution y°® is available).

Ir Hy°j} q, introduce an artificial variable yy,; and transform (6)

into the following problenm

+
minimize ¥y Yl Ynel -

‘subject to Hy+eyy, ;2 q (7)

where e denotes the column vector of all 1s of appropriate dimension.

Making y§+1 sufficiently large and positive guarantees that

(¢}

(y~, y§+1) is an interior feasible solution to (7). So, (7) is in

canonical form (1) satisfying all the assumptions made in Section 1.

In addition, we also know that (7) has an optimum solution with an

optimum objective value of zero if YN is sufficiently large (assuming that all

+1

the data in (6) is integer, mathematically it is sufficient if Y > 2% where s

. H e
is the size of <Y 0> ).

Eventhough the transformations discussed above are mathematically

N+1

nice and leave the data in the finally transformed problem (with the
exception of the penalty parameter YN+1) of the same order of magnitude
as that of the original problem, they may not be practically viable

since they increase the order of the problem. If E in the original



problem (2) is of order rxs, the final transformed problem (6) or (7),
may turn out to be of order (9r+9s+8)x (4r+4s+3) or larger, which is
computationally undesirable. So, these transformations are basically
useful only for a mathematical analysis of our algorithm.

In practice one can use simpler transformations. Suppose one is
trying to solve an LP

minimize of

DE> a (8)

If there are no signrestrictions on variables in &, express g=g+-g'

where &%, & > 0, and transform (8) into the following form

minimize a (E¥=£7) +Mn
subject to D(EY-£ " )+en2 a (9)

+ -

g)&:ﬂ.zo

where nis an artificial variable, and M is a positive penalty
parameter. Let 5+°, g“o be strictly positive vectors, and choose n°

> 0 such that (&9, £°, n°) satisfies all the constraints in (9) as
strict inequalities. Then (£°, £©°, ) is an interior point
feasible solution for (9), and since all the variables are constrained
to be > 0 and (9) is feasible, the set of feasible solutions of (9)
has at least one extreme point. When M is sufficiently large, (9) is
the big-M formulation of (8). And (9) is in canonical form (1)

satisfying all the assumptions made in Section 1.

3. TO GET AN OPTIMUM SOLUTION FROM A NEAR OPTIMUM SOLUTION
Consider the LP (1) satisfying all the assumptions made in

Section (1). Introducing the slack vector s, the constraints in (1)



are of the form

Ax-Is

]
o

S

\Iv

where I is the unit matrix of order n.

.Since K has at least one extreme point, the set of column vectors
of A must be linearly independent. Let X be any feasible solution
with objective value cx=z. Let s=Ax-b. Let P={i: s;>0}.

If T={A j=1 to n} U {1 it i € P} is linearly independent, x is an

J' H

n
extreme point of K. Otherwise let ¢ B.A .+ I :
J7.J = .

=1 i€ P

be a linear dependence relation for I'. Define Yi=0 for iéé P. Let
(x(0), s(0))=(x+08, s+oy). Let @1é@é@2 be the range of values for 0
which satisfies §+OY;Q. Then 04<0, 0,>0 and at least one of 04 or @,
is finite. If cB>0 and 61=—w, or if c¢B<0 and 6)2=+°° then clearly z(x)
is unbounded below on K.‘ Otherwise choose 5=02 if c¢B<0, or §=O1 if cB
>0, or © = a finite quantity among @1, Oé if ¢B=0. Then ;=§+@B is a
feasible solution for (1) with c;;cf, and ;=§?OY=A;—b, has at least
one less positive component than s. The above procedure can bé
repeated with the feasible solution ;. After at most m repetitions we
either conclude that z(x) is unbounded below on K, or obtain an
extreme point x of K which satisfies z(x);?.

Assume that all the data in (1) is integer. Let L denote the
size of (1), that is, the total number of digits in all the data in
(1). If X is a feasible solution for (1) whose objective value is
sufficiently close to z*, the optimum objective value in (1); that is
cX is within 2-L of z*; then the extreme point of K obtained by

applying the above procedure beginning with ;; will be an optimum



solution for the LP by the results proved in the ellipsoid algorithm
(see [1, 3, 5, 6]). This follows because since L is the size of (1),
any extreme point x of K satisfying z(x)=<=z*+2'L has to be an optimum

solution of (1) by the results proved under the ellipsoid algorithm.

X objective
N decreasing —
direction f

Fig. 1: If X is near optimal, any extreme point
x of K satisfying z(x)é@(?) will be optimal,
whether problem has a unique optimum solution
or not.

Just like in other interior point algorithms [4], when a near
optimal feasible solution is reached, we use the procedure described
above tomove to an extreme point of K with the same or better

objective value, and this is guaranteed to give an optimum solution of

the problem.

b, THE ALGORITHM

Consider the LP (1) again. As before, let K denote the set of
feasible solutions and assuming that all the data is integer, let L
denote the size of (1). Let x° be an initial interior point of K.

The algorithm goes through several cycles. Each cycle consists
of at most n steps. The first cycle begins with the initial interior

feasible solution x©. Later cycles begin with the terminal point of

the previous cycle. In each cycle the algorithm makes a single move,



along the steepest descent feasible direction allowing within K a move of sufficient
length from the initial point, in the cycle. The algorithm remains in the interior
of K throughout, and at termination it either determines that z(x) is unbounded

below on K, or determines the set of active constraints in (1) at an optimum solution.

Let € be a positive number sufficiently small. Mathematically,
taking € to satisfy O<s<2'L will suffice. A good practical value fore
is to be determined from numerical experimentation. If c¢=0, x° is an
optimum solution of (1), terminate. So, we assume that c#0.

Given a half-line starting at an interior point x" of K, in the

direction y, the constraints fall into three classes. They are

J1(xr, y) = {1th constraint: i such that Ai.yép}.

Jo(xFy y) = constraint: 1 such that A; y<0, and

Ap=(Ay xT=b;)/ (=R, y)>e},

J3(xr, y) = {(1*" constraint: 1 such that A; y<0, and

r
)\is(Ai.x -bi)/("'Ai. Y)ée}o

J1(xr, y) is the set of all constraints in (1), that remain feasible
as you move along this half-line indefinitely. The set of all
constraints in (1) which are violated after you move a finite distance
along this half-line is partitioned into two classes, J2(xr, y) is the
class of all these constraints for which this distance is > €, and
J3(xr, y) is the class of all these constraints for which this

distance is ¢ €. See Figure 2.



Fig. 2: K is the set of feasible solutions, defined
by constraints 1 to 8, you should be on the
side of the arrow marked on each constraint.
Initial point is x  and you are moving along
the thick half-line. The solid constraints
are those in Jl(xr, y) = {1, 2, 3}. The

dashed constraints are those in Jz(xr, y) =

{4, 5, 8}. The dotted constraints are those
X r
in J3(x , y) =1{6, 7}.



We will now describe a general cycle.

GENERAL CYCLE k+1

k

Let x" contained in the interior of K be the initial point for

this cycle.

STEP 1: Choose the direction for the move to be y%=-cl/ ||c]

JéaJt(xk, y°) for t=1, 2, 3. We consider several cases separately.

. Let

. 1.gla
CASE 1: J2 J3 ag.
In this case z(x) is unbounded below on K, and the half-line
{xk+ky°: A>0} is a feasible half-line along which z(x)+ = = .

Terminate.

1 1
CASE 2: J3=(5, J2*0.

— . 1 k+l_ k, & o
Define A=Minimum {Ai: Ai=(,Ai xk-bi)/(rAi.yo), i€ JZ}’ x  =x +(A-€)y .

Go to the next cycle.
CASE 3: Ji40.

Let T1=J§. Let Dy denote the matrix of order ]T”x n whose rows
are Ai. for i & T1. Let 51 be the orthogonal projection of ~cT in the
subspace {x: D1x=0}. Assuming that the set of row vectors of Dy 1is
linearly independent (if this property does not hold, eliminate some

row vectors from D1 until it holds) we have
g'=(1-0T (1) o) (-cT).

If £'40, let y'=g'/ ||e'||, go to Step 2.
If £'=0, let the row vector m=(ugs i €£T1)='((D1D$)"1D1(~CT))T-

Then uD1=c. In this case, ifu ZO, define the row vector ;’(;i) by

10



T = 0, if 1 €T,

F"]Ji, if iéT1o

Then 7 is feasible to the dual of (1), and from the definition of
T1-J§ and T it is clear that | cxk-ib!<2'L, which implies that xX is
near optimal to the LP(1). In this case, an optimum solution for (1)
can be obtained from xk using the procedure discussed in Section 3.
(At this stage we have a dual optimum solution and a near optimal
feasible solution to the primal LP(1l). If we had applied the same
algorithm on the dual problem associated with the LP(1l), at a corres-
ponding stage in that algorithm we would have an optimum solution for
the primial LP(l) and a near optimum dual solution directly.)

If 51-0 and uio. delete the i corresponding to the most negative
Hy from the set T1 (any of the other commonly used rules for deleting
one or more of the constraints from T1 associated with negative His
can be applied in this case, too) and repeat the projection process
with the new set.

! be the direction determined in the

STEP r IN THE CYCLE: Let yr'
previous step. Define J{-Jt(xk, yr—1), t=1, 2, 3. Cases 1, 2 are

exactly the same as under Step 1 with J%, JS replacing J%. J;

r-1 o
; and y replacing y . You go
to case 3 if Jg+0. In this case define the matrix D, to be the matrix
whose rows are Ay for 1.& T =T,y UJ%. Let ¢ be the orthogonal
projection of --cT in the subspace {x: Drx-O}. If gr-O proceed in a

way similar to that suggested under case 3 of Step 1. 1If 5”*0, let

yT=€/[| €7 ||, go to the next step.

11



DISCUSSION

The constraint set Tr used in defining the projection is building up in each
step. If the cycle continues until Dr becomes square and nonsingular, the projection
in the last step will be zero, and the solution of the system Ai.x = bi’ ie Tr at
that stage is a basic feasible solution of the LP (1). At that stage, if p = (ui:
1451&) = -((Dng)_lDr(-cT))T is 2 0, that basic feasible solution is optimal to the

LP (1). Otherwise, delete the i corresponding to the most negative uy from the set

Tr’ as discussed above, and continue the process.

12



The usual gradient projection method selects the direction y1

to move from xk, moves all the way to the boundary and continues in
this way. Thus, it is clear that the direction of move chosen by our
algorithm is different from that chosen by the usual gradient
projection method. It can be verified that the direction of move

chosen by our algorithm is the steepest descent direction at the

current interior point feasible solution allowing a move of length > €,

5. GRAVITATIONAL INTERPRETATION

Jeff Alden has provided a natural interpretation for the path
followed by this algorithm. Suppose the boundary of K is an
impermeable layer separating the inside of K from outside. Also,
suppose there is a powerful gravitational force inside K, pulling
everything down in the direction of —cT. Suppose a small spherical
drop of liquid mercury (of dimension n) with diameter 2e¢ is released
at the initial point xo, an interior point of K. The path traced by
this algorithm will be the same as the path of the center of this drop
as it falls in free fall under the influence of gravity. Whenever the
drop hits a face of K it continues to slide downwards along the face

T

in the direction which is the orthogonal projection of =-c° on this

face. The drop will come to a sudden halt when it hits the bottom-
most point of K in the direction of -cT, if there is a unique point
like that, or the face of K containing the bottom-most points of K.

If there is no bottom-most point of K, after travelling along the
faces of K for some time, the drop will continue to fall forever along
a half-line in K on which z(x) »- o ,

In the gravitational experiment, after the first move in the

direction chosen in the first cycle, the center of the drop always

13



stays at a distance of exactly € from the boundary. 1In the algorithm,
since we always move to within € of the boundary in the direction of
the move, the actual distance of the current point from the boundary

may vary, it always lies strictly within 0 and e.

6. LIKELY ADVANTAGES OF THIS METHOD OVER THE OTHERS.

Since the algorithm always moves along the interior of the set of
feasible solutions, the problems created by the combinatorial
structure of the boundary are avoided. Being a boundary method, the
simplex method (see [2]) can at best choose the steepest descent edge
direction in each step. But this method always chooses the steepest
descent feasible direction allowing a move of length > € in each step.
Thus a properly implemented package for this method is expected to
give superior performance over packages for the simplex method.

Choosing the value of e < Z-L is necessary for mathematical
proofs of convergence, but it is not possible to operate with such
small numbers on today's digital computers. Practical values for ¢
have to be determined using numerical experiments. E. L. Lawler has
suggested that a sequential strategy for £ may be best. In this, one
starts with a fairly large value for €. At termination, if an optimum
basic feasible solution is not obtained, one continues again from the
terminal interior point with a reduced value of e.

This method also lends itself very well for the development of
heuristic rules which help improve the practical efficiency of
packages for this algorithm. The final set Tr used in a cycle, is the
index set of constraints in (1) which are treated as active
constraints in the orthogonal projection defining the direction for

movement chosen in that cycle. By looking at changes taking place in

14



this set over the various cycles, one can make a guess at the set of
active constraints at an optimum solution for (1), and thereby reduce
the problem into a smaller one.

The theoretical worst case computational complexity of this
algorithm is currently under investigation. 1Initial computational
trials with the method are very encouraging. Our computational
project to assess the practical efficiency of this algorithm is

progressing, and the results will be reported in a later publication.
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