On the Complexity of a
Special Basis Problem in LP

Katta G. Murty

Department of Industrial and Operations Engineering
University of Michigan
Ann Arbor, MI 48109-2117

Technical Report 90-19



On the Complexity of a,
Special Basis Problem in LP

Katta G. Murty
Industrial and Operations Engineering
University of Michigan
Ann Arbor, MI 48109-2117, USA

August 9, 1990

Abstract

In a linear program (LP) in standard form, we show that the problem of finding
a cheapest feasible basic vector among those containing a specified variable as a basic
variable, is an NP-hard problem.
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1 Introduction:
We consider the linear program (LP)

minimize z(z) = ¢z
subject to Az =1b (1)
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where all the data is integer and A is an m X n matrix of rank m. A feasible basic vector
for (1) is a vector of m variables called basic variables among z,,...,z, associated with a
linearly independent set of columns in (1), the basic solution corresponding to which is feasi-
ble. See [3] for definitions of LP terminology. Define the cost of a basic vector to be the cost
of the associated basic feasible solution. The problem of finding the cheapest feasible basic
vector for (1) containing a specified subset of variables as basic variables has been studied
in [2] for its relationship with the travelling salesman problem, and there by shown to be
NP-hard. Here we will investigate the following special case of this problem.

Problem 1: Find a cheapest feasible basic vector for (1) among those containing one specified
variable as a basic variable.
In this note we show that Problem 1 is NP-hard.

2 The Equal Sums Partition Problem

The input to this problem is n postivie integers dy,...,d, whose sum is w, even. It is
required to find a subset S; C {l,...,n} such that S; and its complement S, satisfy

Z d; = Z d; = w/2. We will consider the following slightly modified version.
i€S J€Se

Problem 2: Find a subset S; C {1,...,n} satisfying —2 + (w/2) = 3 d; £ 24 (w/2).
J€S
Thus, if S; is a solution to problem 2 and S; its complement, then | Y d; — Y d;] 24
J€S, J€S2
(it is actually 0 or 2, or 4). It is well known that problem 2 is NP-hard [1]. We will now
show that problem 2 can be formulated as a special case of problem 1 through a balanced
transportation model. We will assume that all of dy,...,d, are 29,



3 The Transportation Model

We will construct a 3 X (n + 1) balanced transportation model corresponding to problem 2,
with the following data

Column | 1|2 (... n |{n+1|Supply
Rowl e 241
2 241 (2)
3 1
Demand |d; |dy|...|dy| 3

A similar model has been used in [4] by Partovi to show the NP-hardness of another trans-
portation related problem. Here we also have an objective function which is required to be
minimized. The cost coefficient is zero in all the cells except cell (1,n + 1) where it is —a, a
being a positive integer. Clearly this is a special case of (1). The variable z;; in this model
is associated with cell (i,7), ¢ = 1 to 3, j = 1 to n + 1, so here, instead of basic vectors
of variables, we will talk about the corresponding basic sets of cells. We have the following
facts on (2) from well known results on the transportation problem [3].

i) Every basic set for (2) consists of (n + 3) basic cells.

ii) If B is a feasible basic set for (2) in which all the cells in column (n + 1) are basic cells,
then B contains exactly one cell among (1,5),(2,7) as a basic cell for each j =1 to n
[4]. In this case let S,(8) = {j : 1< j £ n, and (r,7) is a basic cell in B},r = 1,2.
Then (S1(8),S2(B)) is a partition of {1,...,n}, and Y d; = % for r = 1,2, and

J€S¢(B)
hence S;(B) is a solution for problem 2. In the basic feasible solution (BFS) of (2)

associated with B, all the variables z,,4; are equal to 1 for r = 1,2,3, and hence the
cost of B i1s —a < 0.

Conversely if (Si,S2) is a partition of {1,...,n} satisfying Y _ d; = %,r = 1,2, define
J€Sy

B={(1,7) : 1€S$1}U{(2,5) : €S }U{(l,n+1),(2,n+1),(3,n+1)}. Then 3

is a feasible basic set for (2) with its cost equal to —a < 0.

Now we define the special case of Problem 1 corresponding to (2).

Problem 3: Find the cheapest feasible basic set of cells for (2) among those containing
(2,n + 1) as a basic cell.



Theorem 1: There ezists a subset S; C {1,...,n} which is a solution for problem 2, iff the
objective value associated with an optimum feasible basic set for problem 3 is < 0.

Proof: From (ii) above, we already know that there exists and S; C {1,...,n} satisfying
Y d; = w/2 iff there exists a feasible basic set for (2) containing all the cells in column
€S

J(n+1) as basic cells and the cost of such a basic set is —a < 0.

Let f; be a feasible basic set of cells for (2) containing (2,n + 1) as a basic cell, with
negative cost. Since (1,n+1) is the only cell in (2) associated with a nonzero cost coefficient,
this implies that (1,n + 1) must also be a basic cell in ;. There must be at least one basic
cell in row 3. If (3,n + 1) is also a basic cell in 3, this case is covered above, so we assume
that (3,n + 1) is not a basic cell in 5. Let (3, p) be a basic cell in §;, where 1 £p<n. By
assumption, each of d; 2 2 j =1 to n; so for feasibility there must be at least one basic
cell among (1,7) and (2,7) for each j =1 to n. (1,n +1),(2,n+1),(3,p) are already basic
cells in B; and there are a total of only n + 3 basic cells. These facts imply that for each
1= j £ n, exactly one of (1,5) or (2,5) is a basic cell in ;. Define for r = 1,2

S,(1)={j : (r,7) is a basic cell in 4 }.

So S;(6) and S3(B,) forms a partition of {l,...,n}. Let = (Z;;) be the BFS of (2)
associated with f;. Since the cost of f is < 0,Z;n41 > 0, so its value is either 1 or 2 or 3.
So Zgn41 18 either 2 or 1 or 0. Z3, = 1. So, for r = 1,2,5 € S,(A1)\{p}, Zr; = d;. And if
(t,p) is the basic cell in B; among (1,p),(2,p), then Z;, = d, — 1. Therefore for t = 1,2, we

have
Y. d;if p &Sy(B)
n w jESt(ﬁl)
Zi‘tj =3 +1-Znpa =
=1 Z d; — 1, if p € S¢(61)
J€S¢(B1)

All the possibilities in this case are summarized in the following table.



Values of
(Z1,n41, Z2,n41) | Location of p | Summary of Position
(3,0) peSIB) | D di=%2+1, ), dij=2-1
1€S2(51) J€S1(61)
p € Sy(B) D) di=%-2 ) di=%+2
1€81(61) 7€S2(B1)
(2,1) peSIB) | Y di=% Y di=%
7€S2(81) 7€S1(81)
p € Sy(B2) D, di=%-1, ) di=%+1
7€S1(61) 7€S2(81)
(1,2) p € Si(B) Y di=%-1, ) di=%+1
1€S2(61) 71€S1(41)
PES(B) | X di=% ) di=F%
1€S1(81) 7€S2(B1)

Hence | Y dj— Y d;| = 4 always, and therefore S;(f;) is a solution for

7€81(81) 7€82(61)
problem 2.

To prove the converse, let S; C {1,...,n} be a solution for problem 2. If Z d; =%,
this case is covered by (ii) as discussed above. o

If Y d; = 2-1,let B, bethe basicset {(1,5) : j € S1}U{(2,5) : j & S1}U{(2,p),(1,n+
1), (2,J rezs-;- 1)} where p is any element in the complement of S;. If Z dj = % +1, replace S,
by its complement and construct §; exactly in the same way. It CJ:nSIbe verified that (; is a

feasible basic set for (2), and in the BFS & = (&;;) associated with it #; ,41 = 2 and hence
the cost of B3 is —2a < 0.

If Y d; = 2-2,let B3 be the basicset {(1,5) : j € S1}U{(2,5) : j & S1}U{(2,p),(1,n+

i€S1

1),(2,n + 1)} where p is any element in the complement of Sy. If ¥";¢s, d; = § + 2, replace
S: by its complement, and construct B3 exactly the same way. It can be verified that f3 is
feasible to (2) and in the BFS # = (;;) associated with it £, ,41 = 3 and hence the cost of
fz=-3a<0. n

Since problem 2 is NP-hard, by Theorem 1 it follows that problem 3 is NP-hard. Hence
problem 1, of which problem 3 is a special case, is also NP-hard.

Clearly, the decision problem version of problem 1 or 3 is also in NP, and hence it is
NP-complete.
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