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ABSTRACT

Let K be a convex polyhedron specified by a system of linear constraints.
Let KA be the convex hull of its extreme points. We derive a formula for

A .
the dimension of K, but show that computing it may be a hard problem.
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INTRODUCTION

Let K denote a convex polyhedron specified by a system of linear
constraints, and let KA denote the set of its extreme points. Here we study
the problem of determining the dimension of KA, using the data specifying
K. If the constraint system specifying K consists of equality constraints
only, K is an affine space and has no extreme points, in this case KA = f,
and the problem is trivial. So we assume that the constraint system
specifying K consists of at least one inequality constraint. If there are
any equality constraints in the: system, using them some variables can be
eliminated, thus redﬁcing the system. So, for the sake of this study, we
can, without any loss of generality, assume that the system specifying K
. consists of inequality constraints only. Suppose that K is the set of
feasible solutions of
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where D, d are given integer matrices of orders mxn and mxl respectively.
We assume that K % §.
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We use the symbols Di y D to denote the ith row vector, the j

g2
column vector of the matrix D respectively.

It is well known that the dimension of K is < n iff there exists at
least one constraint in (1) which holds as a strict equality constraint at
all points in K, that is, there exists an i such that Di.x = di for all
x € K. In that case, that constraint can be treated as an equality con-
straint, and a variable eliminated using it, and the process can be

repeated. We assume that such reduction steps have been carried out as

far as possible.



So, we assume that for each i = 1 to m, there exists an xi e K
satisfying Di.x > di’ Hence, the dimension of K is n.

It is well known (see, for example, [3]) that K has an extreme point
iff the set of column vectors of D is linearly independent. If K has no
extreme points, KA = @, and our problem becomes trivial. So, we assume that
this condition holds, that is that K has at least one extreme point.

Also, it is well known that K is bounded iff the system

DE 2 0 (2)

has £ = 0 as its unique solution. See [3]. If K is bounded, KA = K, in
this case the dimension of KA = dimension of K. Our problem becomes inter-
esting if K is unbounded, that is, when (2) has at least one nonzero solution.
In this case KA is a proper subset of K, it is the set of feasible solutions
.of a sySteﬁ of constraints consisting of (1) and some additional constraints.
The number of these additional constraints needed to represent KA could be
very large, but so far there is no systematic metho& known for generating them
in a reasonable manner. We derive a formula for the dimension of KA, which
only needs the data in (1), and the solution to some problems on the convex

polyhedron K, however, these problems are NP-complete.
THE RESULTS

LEMMA 1: Let K, the set of feasible solutions of (1), be unbounded, and
suppose i is such that D, x is unbounded above over K. The problem of

checking whether there exists of extreme point of K satisfying Di X > di’

is NP-complete.

~ PROOF: Clearly, this problem is in NP. Let F be the set of feasible

solutions of
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Then by hypothesis, F is an unbounded convex polyhedron and Di.x is
unbounded above on it. Since the problem of finding the extreme point of
F that maximizes Di.x is NP-hard, see [l], the problem of checking whether
there exists an extreme point of F satisfying Di.x > di is NP-complete. By
the results of [2, 3], each extreme point of K has to belong to one of the
following types.

a) extreme points of F satisyfing Di.x > di

b)  extreme points of F satisyfing Di.x = di

c) points of intersection of edges of F (bounded or unbounded)

which do not totally lie in the hyperplane {x: D; x = di}’
with that hyperplane.

So the only extreme points of K which satisfy Di.x > di’ are those of
type (a) above, that is, those extreme points of F satisfying Di.x > di'
But from the argument made above, the problem of checking whether there
exists an extreme point of F satisfying Di'x > di is NP-complete. So the
problem of checking whether there exists an extreme point of K satisfying
Di.x > di’ is NP-complete. .

Since we assumed that the dimension of K, defined by (1), is n, there
exists an X € K satisfying Dx > d, or equivalently, for each i = 1 to m
there exists an xi € K satisfying Di.x > di' We have the following result.
THEOREM 1: Let K, the set of feasible solutions of (1), be of dimension n.
The dimension of KA is also n iff for each i = 1 to m, there exists an
extreme point & of K satisfying D, x> di.
PROOF: Since KA<: K, every point in KA satisfies (1), this implies that if

— A , —
the dimension of KA is'n, there must exist a point x € K satisfying Dx > d.



. = AL . . .
Since x € K, it is a convex combination of extreme points of K, so
Dx > d holds iff for each i = 1 to m, there exists an extreme point gt
of K satisfying Di X > di'

Conversely, suppose for each i = 1 to m there exists an extreme point

Ai 3 . . .
X~ of K satisfying Di x > di' It is well known that between every pair
of extreme points of K, there exists an edge path of K joining them, consisting
of only bounded edges of K. See [3]. Using this and the hypothesis, we can
prove that the dimension of KA is n,

Introducing the vector of slack variables s = (sl,...,sm)T, the system

(1) can be expressed as
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where Im is the unit matrix of order m. In this, the equality constraints

can be used to eliminate the unrestricted variables x X . Suppose this
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leads to a system
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where E, p are matrices of orders rxm and rxl respectively, where r = m - n,

and E has rank r. Every extreme point of K corresponds to a basic feasible

0

solution (BFS) of (3). Let s = (si,...,s;)T be a BFS of (3) corresponding

to a basic vector (Sl"'°’sr) for (3). Suppose the system (3) is nondegen-

o . . '
erate. In s, the nonbasic variables s FEM are all zero, By the

b o

hypothesis, for each t = r + 1 to m, there exists a BFS of (3) in which

the variable st > 0. And each BFS of (3) is connected to s° by an edge path

as mentioned above. So, among the nonbasic variables s ©s8 s at least

r+1°°°

some of them must enter the basic vector (s;,...,s_) of (3) leading to
1 r
adjacent BFSs of so, and not to unbounded edges. Suppose these are the

nonbasic variables S.yis j =1 toq. Let ¢J = (si,...,s%)T be the BFS

+]



obtained when the nonbasic variable sr+j is entered into the basic vector

(sl,...,sm), for j =1 to q. So

&) = 0, fori=r+1tom, i + r + j

[ N

(4)

>0, for i=1r +j

In each of the BFSs so, sJ, j =1 to q, all the variables s »s are

r+qHl’ """
zero, and by the hypothesis there are BFSs of (3) in which these variables

are > 0. By the edge path connectedness property, there must exist adjacent

extreme points of sJ, j =1.to q, in which exactly one of the variables among

Sr+q+l""’sm is > 0 and the others are zero. Suppose these are BFSs
+t +t +
ER (sg ,...,si t T, t = 1 to u, such that
+
s t. 0 for i = r+q+1 tom, i + r+q+t
i
(5)
> 0 for i = r+q+t

. . . . T
And this process can be repeated. Eventually we get BFSs s = (sJ ...,si)

of (3), j =1tom- r, satisfying the property that

sg =0, for 1 = r+j+l tom '
(6)
>0, for i = r4j

By (6) we conclude that the rank of the set {sj - 8% j=1tom-r} is
m - r which implies that the dimension of the convex hull of BFSs of (3) is
m - r = n, and hence the dimension of the convex hull of extreme points of
K is n.

A similar proof applies even when (3) is degenerate. .
THEOREM 2: Let K be the set of feasible solutions of (1), and assume that K
has at least one extreme point. Let J = {i: fhere exists no extreme point
of K satisfying Di.x > di}. Then the dimension of KA = n - rank of
{Di_: ie Jh

PROOF: By the definition of the set J, all the extreme points of K satisfy



nv

d;, 147

D.x=d,, i€eJ 7
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The result follows by applying Theorem 1 to the reduced system obtained by
eliminating variables using the equality constraints in (7). .
By Theorem 1, to check whether the dimension of KA is n, we must check

whether there exists an extreme point of K satisfying Di X > di’ for each
i =1 to m. However, by Lemma 1, for any i, the problem of checking whether
there exists an extreme point of K satisfying Di X > di’ is NP-complete.
A

This suggests that the problem of checking whether the dimension of K~ is

n, or computing the dimension of KA, may be hard problems.
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