Any-Dimension Algorithms and Real-Time Al

David J. Musliner Edmund H. Durfee Kang G. Shin

Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122

{djm,durfee kgshin }@eecs.umich.edu
(313) 936-2495

ABSTRACT

In this paper, we extend the concepts underlying the any-time computation paradigm
to other measures of resource usage or output quality. . The resulting notion of any-
dimension algorithms forms a generally useful approach to bounded-resource computa-
tions. We discuss features and extensions of any-dimension algorithms that allow them
to provide guarantees on more than one performance dimension. We then show how
the any-dimension paradigm provides a concise expression of the difficulties inherent
in real-time Al systems. This viewpoint clarifies the tradeoffs that must be made to
achieve the conflicting goals of real-time and AI methods, and we briefly describe the
architectural approach we are developing to make these tradeoffs.

The work reported in this paper was supported in part by the National Science Foundation under
Grants IRI-9209031 and IRI-9158473, and by a NSF Graduate Fellowship. The opinions, findings,
and recommendations expressed in this publication are those of the authors, and do not necessarily
reflect the views of the NSF.

1 Introduction

As we rely more heavily on computing systems, the inherent limitations of these
systems become extremely significant. For example, all computing systems operate
with bounded resources, including limited memory, communication bandwidth, and
computation speed. A bounded computing system that must perform a significant
task where failure to act in time can lead to costly damage or loss of life is called
a hard real-time system. Typically, a hard real-time system is employed to control
some activity or process, such as monitoring a nuclear power plant or controlling the
actuators on an advanced aircraft.

When applying a computer control system to a hard real-time domain, the sys-
tem designer must ensure that the resource-bounded system will meet the demands
of its environment [14]. Researchers have developed two classes of methods for ob-
taining performance guarantees given a limited set of system resources. In the most
common “strategic” approach, a scheduling mechanism is given information about re-
source availability and future computational tasks, and determines how to execute
those tasks in order to avoid resource conflicts and optimize some measure of perform-
ance. This approach is well-suited to simple control algorithms and static domains,
where resource needs and availability are predictable, so that the resulting schedule
of tasks can be followed precisely. However, as more complex Al methods are applied
to control problems in dynamic, unpredictable domains, strategic methods fall short
because their scheduling algorithms cannot keep up with changing resource needs and
availability. In addition, the high-variance, search-based Al methods used in complex
control systems are problematic for strategic schedulers because scheduling of these Al
methods based on worst-case performance predictions can lead to severe underutiliza-
tion of system resources [12].

To achieve intelligent real-time control in dynamic domains, “tactical” resource
management approaches have been developed that avoid a priori scheduling, relying
instead on the computational tasks themselves to manage their resource usage. These
tactical methods are exemplified by any-time algorithms [2, 6, 13], which can be in-
terrupted at any time to yield a result, possibly with reduced precision, confidence, or
completeness. Any-time algorithms provide an on-line, dynamic method for guaran-
teeing the timeliness of a result, but the quality of the result may not be acceptable.

In this paper, we show that any-time algorithms are just one particular approach
in a larger class of tactical algorithms that can provide performance guarantees along
dimensions describing both resource usage and solution quality. We characterize these
any-dimension algorithms in the next two sections, and we show in Section 4 that guar-
anteeing combinations of dimensions is desirable, but can be problematic. From this
discussion we identify the fundamental problem underlying real-time Al research: while
real-time guarantees involve resource bounds, Al methods emphasize solution quality.

In Section 5 we show how this problem makes simple tactical methods incapable of
meeting the demands of real-time Al systems. We then discuss ways of combining
strategic and tactical methods to provide the type of flexible performance guarantees
required by real-time AI. We consider the existing methods of deliberation scheduling
[2] and imprecise computation [7], and use their features to motivate our more general
approach to real-time Al, embodied in the Cooperative Intelligent Real-Time Control
Architecture (CIRCA) [11].

Throughout this paper we will provide examples drawn from a domain in which a
Hero 2000 robot undertakes delivery tasks, trying to carry objects between rooms in
an office building. The robot navigates through hallways using an aimed sonar sensor,
trying to avoid collisions with obstacles and walls. A prototype implementation of the
architecture described in Section 6 has controlled both a simulated and a real Hero
robot performing these navigation tasks.

2 Any-Resource Algorithms

On-line performance guarantees are often defined by the conditions that determine
when a system’s control algorithm returns a result. We have noted, for example, that
an any-time algorithm guarantees that it will use only a bounded amount of time by
performing iterative computations that can return a result whenever an external mech-
anism interrupts the algorithm. For example, in the hall-following domain, an any-time
algorithm might be used to check arriving sonar data for obstacles and incrementally
update a measure of confidence in the safety of the robot’s path. An asynchronous
speed-control process would periodically interrupt the any-time algorithm to request
the current confidence measure and decide whether the robot should halt.

Of course, time is not the only resource that may be limited for a system: other
bounded resources might include memory and non-computational physical features
like sensors and actuators. We can generalize the any-time concept to provide guar-
antees on other resource usage dimensions by noting that any-time algorithms have
two crucial elements: an iterative computation producing intermediate results, and an
asynchronous mechanism monitoring the time and interrupting the iteration when the
deadline is reached. So an any-resource algorithm is composed similarly of an iterat-
ive computation and an asynchronous monitor that may keep track of any resource
measure, and will interrupt the iterative computation when some resource threshold is
reached. Any-resource algorithms can thus guarantee that they will not exceed some
maximum level of resource usage. Figure 1 illustrates a generic any-resource algorithm
in pseudo-code.

As another example of an any-resource method, consider a scenario in the hall-
following domain where the robot’s delivery tasks have no pressing deadline, but the
control system has a limited memory. An any-memory algorithm would be useful

on interrupt return(best-partial-result);
while (T)
{

new-partial-result = compute-next-result-from(best-partial-result);
best-partial-result = best-of (best-partial-result, new-partial-result,

}

In parallel with:
if (resources-used >= max-resource-threshold) then interrupt;

Figure 1: Pseudo-code for the parallel elements of a generic any-resource algorithm.

for planning paths in this situation, because the planning algorithm could require
exponential amounts of memory as it constructs and stores alternative partial paths.
If the path planner writes beyond the free memory, it might corrupt critical control
data and cause a catastrophic failure. The any-memory planning algorithm would use
an external (operating system) monitor to keep track of the available memory and,
when it ran low, the monitor would interrupt the iterative path planner and use the
most recent partial plan. Thus the any-memory algorithm guarantees that the system
will not exceed the available memory capacity.

Because the resource monitoring for any-resource algorithms is generally done by
an asynchronous process outside of the iterative loop, these methods have the ad-
vantage that they do not depend on a priori knowledge of the resources available.
Unlike strategic scheduling methods, which must be given information about the total
available resources and resource requirements, any-resource algorithms can make per-
formance guarantees even when resource limits are dynamic or are unknown when the
algorithm starts. Any-resource algorithms dynamically adjust their resource usage to
avoid exceeding some maximum level determined outside of the algorithm. Thus any-
resource algorithms are particularly appropriate for tasks where multiple computations
may be competing for resources; the any-resource algorithms will automatically avoid
over-taxing resources.

3 Any-Quality Algorithms

Unfortunately, any-resource algorithms do not provide any control over their output
quality; whenever an any-resource algorithm’s resource threshold is reached, it returns
the current result, which may have less-than-optimal precision, confidence, complete-
ness, or other quality measures. If result quality is critical, any-resource algorithms are
inappropriate.

while (quality(best-partial-result) < min-quality-threshold)

{
new-partial-result = compute-next-result-from(best-partial-result);
best-partial-result = best-of (best-partial-result, new-partial-result)

¥

return(best-partial-result);

Figure 2: Pseudo-code for a generic any-quality algorithm.

Any-quality algorithms can make output quality guarantees. While similar to any-
resource algorithms in that they iteratively compute intermediate results, any-quality
algorithms differ in that their termination decisions are made internally, within the
iterative loop, rather than externally as in an any-resource algorithm. For any-quality
algorithms, the termination condition is specified as a desired minimum level of res-
ult quality, rather than a maximum level of resource availability. The iterative loop
produces partial results and tests those results against the quality threshold, returning
the first partial result that exceeds the specified quality. Figure 2 illustrates a generic
any-quality algorithm in pseudo-code.

As a specific example, many iterative numerical methods [1] are any-precision al-
gorithms. An iterative numerical method continually refines its estimate for the solu-
tion to a problem until the precision of its estimate is known to be beyond a certain
level. In our hall-following domain, the robot might use such an iterative method
to compare sonar readings against an internal map to compute its absolute position
to within n centimeters. The algorithm would continue running until it achieved that
level of accuracy, as opposed to the any-time methods discussed above, which terminate
when a deadline is reached. If absolute positioning is critical to the robot’s task, then
an any-precision algorithm would be appropriate, while if the task has hard deadlines,
an any-time algorithm might be better.

Internal, synchronous monitoring is most appropriate for any-quality algorithms
because the algorithm only needs to check its threshold condition when a new incre-
mental result has been computed. A continuous asynchronous monitor might check
the condition too frequently, wasting effort by repeatedly examining the quality of a
result that has not changed. Or, an asynchronous monitor might not run frequently
enough, so that some intermediate results would never be checked against the termina-
tion threshold. Furthermore, the most logical place to locate the knowledge of a desired
result attribute is in the program generating the results, as opposed to some external
arbiter.

Just as any-resource algorithms cannot guarantee output quality, a fundamental
weakness of any-quality algorithms is that they cannot guarantee limited resource

usage. By definition, any-quality algorithms must consume resources until they achieve
the desired quality threshold.

4 Any-Dimension Algorithms and Their Combina-
tions

We use the term any-dimension algorithms to refer to the overall class of iterative
algorithms that make guarantees along some dimension of performance, either resource
usage or output quality. We have noted that a simple any-dimension algorithm has
the disadvantage of being unable to control its performance along more than the single
dimension specified in its termination conditions.

One approach to fixing this weakness is to combine multiple termination conditions
using conjunction and disjunction to yield more interesting algorithmic behavior. Dis-
junctive (OR) combinations of any-dimension methods lead to a guarantee that cross-
ing one threshold or the other will yield a result. For example, in the hall-following
domain, combining any-time and any-confidence conditions might be the most appro-
priate method for planning parts of a path under time pressure; the resulting algorithm
would work on each planning subproblem until it either found a result in which it had
sufficient confidence, or until the time allotted to that subproblem expired.

Disjunctive combinations of thresholds are actually quite common. A simple any-
quality algorithm will run until its result reaches the quality threshold; if the threshold
is too high, the any-quality algorithm may never terminate. Thus, most implementa-
tions of any-quality algorithms also include an alternative, resource-based termination
condition, so that they will terminate even if their original quality threshold is never
reached. For example, an any-precision algorithm might also have a condition that will
terminate the algorithm after a certain number of iterations, regardless of the precision
that has been reached at that time.

Similarly, a simple any-resource algorithm will run until it has consumed the alloc-
ated resources, even if the algorithm finds an optimal (highest quality) result before the
resources are exhausted. To avoid this waste of resources, most any-resource algorithms
also include a termination condition specifying an acceptable quality measure. For ex-
ample, an any-time search algorithm might have both a deadline and a termination
condition specifying the goal of the search. If the goal is reached before the deadline,
the algorithm terminates and returns its result even though it could have used more
time.

Conjunctive (AND) combinations of any-dimension methods lead to guarantees over
multiple dimensions. For example, combining any-confidence and any-precision con-
ditions leads to results with guaranteed precision and confidence: the algorithm will
continue until both thresholds are reached. However, if we try to conjoin any-time

and any-precision algorithms, we will not necessarily obtain both guaranteed precision
and guaranteed timeliness. What happens if the time threshold (deadline) is reached
before the precision threshold? The deadline indicates that all the allocated resource
(time) has been consumed. If the algorithm terminates it fails to achieve the desired
precision, but if it continues it will violate the resource threshold. This example iltus-
trates a fundamental restriction on conjunctive combinations: they cannot be applied
to any-resource algorithms, because resource thresholds represent maxima. However,
as described above, conjunctions can be applied to any-quality methods because the
thresholds on those dimensions are minima, and exceeding minimal quality is generally
desirable.

5 Any-Dimension Algorithms and Real-Time Al

The inability to build conjunctions of any-resource and any-quality algorithms is
at the heart of why real-time Al is so elusive. Real-time systems require resource-
usage guarantees; they must produce a result “by the right time.” Al on the other
hand, is concerned with solution quality: a chess program should make good moves,
an autonomous vehicle should turn in the correct direction to avoid a collision, etc. So
Al systems are designed to “do the right thing!.” Together, real-time Al systems must
“do the right thing, by the right time.”

But we have shown that, with tactical any-dimension algorithms, guarantees on re-
source usage and output quality cannot simply be conjoined. The only way around this
problem is to remove one of the dimension termination conditions. One approach to do-
ing this is to map one dimension onto another to reduce the conjunctive any-dimension
algorithm to testing a single dimension. That is, if we can convert a termination con-
dition expressed in a quality dimension into an equivalent minimum level of resource
usage, then we know that reaching the minimum resource threshold will ensure also
passing the minimum quality threshold. Figure 3 illustrates this mapping operation.
Note, however, that now we not only have our usual maximum resource threshold for
the any-resource algorithm, but we also have a minimum resource threshold to capture
the any-quality dimension. In Figure 3, the algorithm must be restricted to the shaded
area. To meet the quality requirement, we have to guarantee that the algorithm will
not be interrupted before it reaches the minimum resource threshold. But, since the
resource monitor that interrupts the computation is acting asynchronously, how can
we make such a guarantee?

To answer this question, recall that in Section 1 we distinguished between strategic
and tactical methods for resource-bounded computation. We focused on tactical (any-
dimension) approaches because strategic approaches make inflexible assumptions ill-
suited to complex, unpredictable control tasks, and because they can lead to severe un-

1By “the right thing,” we mean the best choice given the system’s limited knowledge and resources.

KEY:

/_/ Iterative algorithm’s performance
profile.

y Quality threshold mapped
t to resource dimension

quality threshold

Acceptable region

Minimum Result Quality

! resource threshold

Resources Used

Figure 3: An example performance profile, showing how a quality threshold can
be mapped to a minimum resource threshold.

derutilization of resources when high-variance Al methods are employed [12]. However,
strategic approaches can simultaneously guarantee result quality and resource usage.
The next logical step, then, is to try to combine the advantageous features of both
strategic and tactical methods to yield a new, combined approach that successfully
addresses the requirements of real-time intelligent control in dynamic domains.

Given an any-resource algorithm with both minimum and maximum resource re-
quirements, one approach is to use a strategic method to schedule enough of the re-
source to assure the minimum threshold, and then to employ a tactical method beyond
that to dynamically take advantage of additional resources at runtime. This is essen-
tially the approach taken by Liu et al. [7] in the “imprecise computation” method. In
this paradigm, an algorithm is divided into mandatory computations that are required
to reach a minimal quality threshold, and optional computations that incrementally
improve the result and can be interrupted at any time. The imprecise computation
scheduler builds schedules that allocate at least enough time for all the mandatory
computations. Excess time is scheduled for optional computations.

While the imprecise computation approach has the advantage of balancing strategic
and tactical considerations to assure minimum quality within resource bounds, it does
not provide any method for dealing with the problems that arise when resources are so
scarce that all mandatory computations cannot be scheduled. In this over-constrained
situation, an intelligent system must make tradeoffs between the level of output quality
it will guarantee and the resource usage it schedules. For example, the system might
use load-shedding methods [3, 5, 8] to drop or postpone some mandatory task, leaving
resources available for the rest. Or, if alternative methods are available for accomplish-

ing a particular task, the system might attempt to schedule lower-cost methods that
will produce a lower-quality solution [3, 9]. When making these tradeoffs between solu-
tion quality and resource usage, an intelligent system should use principled methods
to decide what it will accomplish.

One approach to dealing with over-constrained systems is to make no guarantees
of minimum quality, but instead strive to perform “as well as possible™ with the given
resources. Dean and Boddy’s work on “deliberation scheduling” [2] uses decision-
theoretic methods to build task schedules that optimize a measure of overall system
utility (output quality). The various problem-solving methods that a system might
need to run in some situation are cast as any-time algorithms. The deliberation schedul-
ing problem is then to decide how long each competing any-time algorithm should be
run. Dean and Boddy assume that a performance profile, like the one in Figure 3,
is available for each system task, and that these tasks are interruptible, restartable,
and completely independent, so that the total system utility is simply the sum of the
utility levels achieved by individual tasks. Given these assumptions, a scheduling al-
gorithm can maximize system utility by running, at each moment, the task with the
largest expected gain in utility. In over-constrained systems, the any-time algorithms
will continue to guarantee output timeliness, but output quality will be sacrificed as
much as necessary to meet the deadline.

Thus, while imprecise computation assures minimum solution quality given min-
imal resources, deliberation scheduling commits to doing as well as it can given no
assumptions on resources. Both approaches assume that the system is given a fixed
mapping between the output quality (utility) dimension and the resource usage (time)
dimension. There are two fundamental problems with this assumption. First, such
mappings may be difficult or impossible to derive, because the performance of most
algorithms is highly dependent on the particular problem to which the algorithm is
being applied. For example, Liu et al. [7] describe an any-time implementation of
Newton’s method for finding the roots of a function F. Unfortunately, as illustrated
in Figure 4, the number of iterations this method requires to achieve a result with
specified precision is highly dependent on both the domain (the function F') and the
internal state of the system (the initial guess for the root value). Because the precision
threshold cannot be mapped onto the time dimension, the root-finding computation
cannot be cleanly separated into mandatory and optional parts based on time alone.

The second major difficulty is that, even if an individual algorithm’s output quality
can be accurately characterized by a fixed performance profile, tasks are not independ-
ent in realistic domains; the utility of a particular computation depends on other task
computations. In our robot domain, the utility of running a computation to decide
whether to halt the robot is dependent on whether the routine that locates obstacles
has been run. Furthermore, the utility of the obstacle-locating routine is affected by the

xguess = initial_xguess; nitialxeuess
while (abs(xnew — xguess) > .01) F 1 10— & 96
{ < — ynew: x? T 10 11
Ynew _ . . - F(xguess) / Fprime(xguess); O A

} XxXnew = XgueSS gu S Pr Xg 3 6251- -1 27 252 502

(a) Newton’s method. (b) Tterations to achieve .01 prec

Figure 4: Showing the difficulty of mapping precision to time for Newton’s root-
finding method.

fact that its results will be used to decide about halting the robot. These routines have
high utility when used in conjunction, in a particular order, but low utility otherwise.

Our approach to real-time Al, embodied in CIRCA, combines features of delibera-
tion scheduling and imprecise computation, but avoids assumptions about task inde-
pendence and performance profiles. CIRCA allows arbitrarily complex decision-making
about tradeoffs between possible solutions given particular resource bounds.

6 CIRCA

In this section, we provide a high-level description of CIRCA and show how the
architecture combines both strategic and tactical resource-management methods to
implement real-time control using complex Al methods. To clarify this discussion,
we include details from our prototype implementation of CIRCA that controls a Hero
robot performing the hall-following task. In this domain, the system must actively
acquire data from its sensors, process that input data, and produce responses to drive
its actuators and affect the external world. These control behaviors are divided into
a set of “reactive behaviors,” or reactions, that look for certain inputs and produce
appropriate responses. Some of these reactions will produce outputs that must meet
domain-defined hard deadlines; for example, the reactions that recognize obstacles and
halt the robot must execute frequently enough to avoid collisions.

More details on CIRCA are available in [11)?, and [10] presents a complete descrip-
tion of the flexible world modeling methods the system uses to make heuristic decisions
about trading off resource usage and output quality.

Figure 5 illustrates the architecture, in which an Al subsystem (AIS) and Scheduler

2This journal article is still in press. A compressed, postscript version of the manuscript is available
via anonymous ftp to ftp.eecs.umich.edu in the file outgoing/djm/circa.ps.Z .

Al Subsystem
{ Real-Time Subsystem Jé——)(Scheduler y
(World Model)

(imprecise computation) (any-quality, deliberation scheduling)
Figure 5: Overview of CIRCA.

cooperate to strategically select and schedule a set of tasks that will cope with a partic-
ular expected domain situation. The parallel real-time subsystem (RTS) is responsible
for precisely executing the task schedules, ensuring that a schedule that theoretically
meets the demands of the domain will operate correctly in the actual domain. In the
following subsections, we show how the AIS and Scheduler incorporate an any-quality
algorithm, and how they operate as a generalized deliberation scheduling system that
permits dynamic dependencies between scheduled tasks. We also show how the RTS
implements tactical methods resembling the imprecise computation technique, to take
advantage of resources that become available during task execution.

6.1 The AIS/Scheduler and Deliberation Scheduling

Unlike deliberation scheduling, CIRCA does not require task performance profiles,
and is capable of building useful guaranteed task schedules even when tasks have very
complex interactions and dependencies. Deliberation scheduling is able to analytically
derive an optimal schedule given performance profiles; CIRCA requires less precise
information and performs a search for a desirable task schedule that yields acceptable
output quality within given resource bounds.

CIRCA implements this search by iterating over a loop that first has the AIS plan
a set of tasks to meet a given output quality threshold, and then runs the Scheduler on
those tasks to see if they can all be successfully run given the system’s limited resources.
In essence, this process corresponds to choosing a point along the performance profile
(for the overall system, not a single task) that is above the quality threshold, and then
using the Scheduler to check if that point is also below the maximum resource usage
threshold (e.g., point A in Figure 3). Failure to produce a schedule is an indication
that the chosen set of tasks, while providing sufficient output quality, requires too many
resources (e.g., point B in Figure 3). This iterative process of choosing a set of tasks
to achieve a given level of output quality and then checking their resource usage with
the Scheduler can be viewed as an any-quality algorithm: the iteration will continue
until a schedule of tasks is found that exceeds the desired quality threshold. Because

10

wait wail C
/\ f\ FALURE
. B .
- Moving - Moving
- Oriented - Oriented
event:
- Path clear obstacle appears - Path not clear

- Not moving

sense state, .
& halt - Oriented wait

- Path not clear

Figure 6: An abstracted portion of the AIS’ world model for the example do-
main. For clarity, many states, state features, and transitions have
been omitted.

this generate-and-test technique does not rely on explicit knowledge of the form of the
performance profiles for each task, it is more widely applicable than the deliberation
scheduling technique.

Rather than performance profiles, the AIS uses a general world model to decide
what tasks should be active at any time. This causal model represents both the effects
of the system’s possible computations and the events that may occur in the world.
In the prototype implementation, the world model takes the form of a directed graph
in which nodes represent possible states of the world and arcs represent transitions
between those states. The model distinguishes three distinct types of state changes:
action transitions, performed deliberately by system reactions; event transitions, due
to external world occurrences; and temporal transitions, due to the passage of time.
Figure 6 represents a small portion of the graph model for the hall-following domain,
showing the motivation for the system’s obstacle detection routines. In the figure,
an event transition (solid arrow) from state A to state B indicates the state change
caused when an obstacle appears in the path; if the system waits too long to recognize
the situation and take action, it will follow the temporal transition (double-arrow) to
failure by colliding with the obstacle. When building this world model to choose which
reactions should be active, the AIS recognizes the possibility of failure, and plans a task
that will quickly detect the obstacle and perform the HALT action transition (dashed
arrow) to avoid a collision, moving to state D instead.

The world model thus represents the motivations for tasks by their complex causal
interactions with the system’s internal state, other tasks, and the domain. In addition
to avoiding reliance on independence assumptions and simple performance profiles to
motivate task choices, the world model and AIS planning mechanism provide a basis
for informed, intelligent decisions about the tradeoffs necessary in over-constrained
domains where the available resources are not sufficient to guarantee optimal output

11

quality. CIRCA generalizes the “best effort” approach of deliberation scheduling. al-
lowing arbitrarily complex reasoning about what levels of output quality are acceptable,
and how output quality and resource usage should be traded off in an over-constrained
system.

Initially, the AIS will plan a set of tasks that meets a high level of desired quality. If
the Scheduler indicates that those tasks require too many resources, the AIS then has
several options. If alternative computational tasks are available to address the original
goal, the AIS might continue the any-quality iterations described above, generating and
testing new sets of tasks that meet the quality threshold. In the hall-following example,
this might correspond to planning alternative computational tasks to implement the
same world model transitions. If the any-completeness algorithm has not found such a
schedule after some time, the AIS also has the option of altering the quality threshold
it 1s seeking to guarantee. For example, the hall-following robot might initially plan
to traverse a hallway while watching for obstacles and counting doorways along the
way. If the AIS/Scheduler any-completeness iteration process searches for, but cannot
find, a schedule of tasks to accomplish these goals, the system may decide that the
doorway-counting task is less important than obstacle detection, and choose to ignore
the doorway task. In essence, the system makes a dynamic decision to lower the
threshold of acceptable output quality. By making this adjustment, the system can
build a schedule of tasks that is still guaranteed to achieve the reduced quality goal,
and thus at least some of the guaranteed nature of the system is preserved.

Alternatively, the AIS might decide that counting doorways and avoiding obstacles
are both crucial to its goals (perhaps because it must turn at the third doorway), so it
might slow the robot down to give it more time for those tasks. In this case, the quality
of the solution has been lowered because the robot will arrive at its destination later, but
it will have the required knowledge about doorways. This example shows how CIRCA
deals with complex interactions among tasks: the utilities of the individual tasks that
count doorways and watch for obstacles are highly dependent on each other and on
the larger goal-directed context in which they are used. By representing the causal
interactions of the system’s tasks and the domain, CIRCA’s world model provides a
principled basis for making quality/resource tradeofs.

6.2 The RTS and Imprecise Computations

Once an acceptable task schedule has been produced by the AIS and the Scheduler,
the RTS is responsible for executing the schedule. However, we have previously noted
that just using strategic scheduling methods can lead to low resource utilization. For
example, if no obstacles appear in the robot’s path, the collision-avoidance reaction
planned for the example scenario will check for obstacles frequently but its HALT action
will never need to be executed, and the execution time and other resources reserved in

12

the schedule for that action will never be used.

To take advantage of these unused resources, the RTS implements a generalized
imprecise computation technique. In addition to the schedule of tasks that must be
guaranteed to meet their deadlines, the AIS can also send the RTS a list of “if-time”
or “best-effort” tasks, that should be run only if unused resources become available.
When resource limits force the AIS to reduce the expected output quality of the tasks
it has planned, it adds to the if-time list those tasks which could improve the output
quality. When the RTS is executing the schedule of mandatory tasks, it checks after
completing each task to see if the task has used less than its assigned time®. If so, the
RTS will use that time to find and execute if-time tasks that will fit into the remaining,
unused time.

In the hall-following example where the system cannot guarantee to count doorways,
the AIS will add the doorway-counting task to the if-time list. Then, while the schedule
of guaranteed tasks is being executed on the RTS, if a particular execution of the
obstacle detection task does not use all of its scheduled time, the RTS will check to
see if the remaining time (and other resources) are enough for the doorway-counting
task. If so, that if-time task will be executed, and the system will have accomplished,
at run time, a higher level of output quality and resource utilization than could be
guaranteed by the strategic scheduler. Of course, in a demanding domain with many
obstacles, the doorway-counting task might never be executed; as a best-effort task, it
serves only to improve output quality, and it is not guaranteed to run.

Thus the RTS relies on a tactical method to increase the utilization of resources that
become dynamically available at runtime. Viewed from a high level, the RTS functions
as a generalized form of imprecise computation: the guaranteed tasks represent man-
datory computation, and the if-time tasks are optional computations. However, while
the imprecise computation method specifies that optional computations are any-time
algorithms that will improve the quality of the mandatory computations they follow,
CIRCA'’s if-time tasks need not be incremental, and they may have little or no relation
to the tasks they follow. If-time tasks are simply those tasks which the AIS/Scheduler
decided were desirable, but which could not be fit into the schedule of guaranteed tasks.

7 Conclusion

By describing the class of any-dimension algorithms, we have focused attention on
the performance guarantees made by these tactical resource management methods. In
examining the weaknesses of any-dimension algorithms, we have found that conjunctive
combinations of resource guarantees are not possible with tactical methods. Thus we
recognize that the fundamental problem underlying attempts to develop real-time Al

3This will often be the case, because mandatory tasks are scheduled based on their worst-case
execution time, which may be much larger than the average execution time [4].

13

systems is the need for both guaranteed maximum resource usage and guaranteed
minimum output quality.

Because simple tactical methods cannot provide this conjunction of guarantees,
and simple strategic methods are too inflexible for dynamic, unpredictable domains,
we propose that the best approach to real-time Al is to combine the features of these
methods. The imprecise computation method provides such a combination, but has
no way to handle over-constrained systems where a given level of quality may not be
possible. The deliberation scheduling method does handle over-constrained systems,
but to do so it requires task independence and static performance profiles for the tasks
it is scheduling. These requirements may not be met by realistic domains.

CIRCA combines strategic and tactical methods, provides principled methods for
handling over-constrained domains, and does not require performance profiles. To
realize these functions, CIRCA relies on a causal world model to represent complex task
dependencies and utilities. Using this world model to drive planning and scheduling,
CIRCA searches for task schedules that maximize guaranteed output quality given
limited resources. While executing those schedules of guaranteed tasks, CIRCA also
provides tactical methods that can take advantage of reserved but unused resources to
further improve output quality.

We have implemented a prototype of CIRCA, and have shown that it successfully
navigates and avoids collisions in the hall-following domain described above. We are
currently improving the task planning and world modeling mechanisms to address
complexity issues. In addition, the RTS is being ported to a VxWorks-based real-time
testbed, which will allow us to verify the system’s timing guarantees.

References

(1] R. L. Burden and J. D. Faires, Numerical Analysis, PWS-KENT Publishing Co.,
1989.

[2] T. Dean and M. Boddy, “An Analysis of Time-Dependent Planning,” in Proc.
National Conf. on Artificial Intelligence, pp. 49-54, 1988.

[3] A. Garvey and V. Lesser, “Design-to-time Real-Time Scheduling,” to appear in
IEEE Trans. Systems, Man, and Cybernetics, 1992.

[4] D. Haban and K. G. Shin, “Application of Real-Time Monitoring to Scheduling
Tasks with Random Execution Times,” IEFE Trans. Software Engineering, vol.
16, no. 12, pp. 1374-1389, December 1990.

[5] T.-W. Kuo and A. K. Mok, “Load Adjustment in Adaptive Real-Time Systems,”
in Proc. Real-Time Systems Symposium, pp. 160-170, December 1991.

14

[6] K.-J. Lin, S. Natarajan, and J. W.-S. Liu, “Imprecise Results: Utilizing Partial
Computations in Real-Time Systems,” in Proc. Real-Time Systems Symposium,

pp. 210-217, December 1987.

[7) J. W.-S. Liu, K.-J. Lin, and S. Natarajan, “Scheduling Real-Time, Periodic Jobs
Using Imprecise Results,” in Proc. Real-Time Systems Symposium, pp. 252-260,
December 1987.

[8] J. W. S. Liu, K.-J. Lin, W.-K. Shih, et al., “Algorithms for Scheduling Imprecise
Computations,” IEEE Computer, vol. 24, no. 5, pp. 58-68, May 1991.

[9] N. Malcolm and W. Zhao, “Version Selection Schemes for Hard Real-Time Com-
munications,” in Proc. Real-Time Systems Symposium, pp. 12-21, December 1991.

[10] D. J. Musliner, E. H. Durfee, and K. G. Shin, “World Modeling for the Dynamic
Construction of Real-Time Control Plans,” submitted to Artificial Intelligence,

1992.

[11] D. J. Musliner, E. H. Durfee, and K. G. Shin, “CIRCA: A Cooperative Intelligent
Real-Time Control Architecture,” IEEE Trans. Systems, Man, and Cybernetics,
1992 (in press).

[12] C.J.Paul, A. Acharya, B. Black, and J. K. Strosnider, “Reducing Problem-Solving
Variance to Improve Predictability,” Communications of the ACM, vol. 34, no. 8,
pp- 81-93, August 1991.

[13] S. J. Russell and S. Zilberstein, “Composing Real-Time Systems,” in Proc. Int’l
Joint Conf. on Artificial Intelligence, pp. 212-217, August 1991.

[14] J. A. Stankovic, “Misconceptions about Real-Time Computing: A Serious Prob-
lem for Next-Generation Systems,” IEEE Computer, vol. 21, no. 10, pp. 10-19,
October 1988.

15

