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ABSTRACT

The purpose of this work was to develop and extend quanti-
tative relationships connecting the shape, size, and number of dispersed
phase particles which may be observed on a plane section of a multi-
phase system with the three-dimensional values of these parameters for
the particles or phases present in the solid.

By the solution of trigonometric integral equations, relations
have been derived which connect the number of particles observed in a
plane section with the number and size of particles actually present
in the solid for uniformly sized but randomly dispersed and oriented
particles of nine different polyhedral shapes.

Relations have also been derived which determine the relative
frequencies of the possible section shapes obtained on random plane
sections cutting through a dispersion of randomly oriented particles
having the shapes of cylinders, cubes, octahedrons, tetrahedrons, rhombic
dodecahedrons, and tetrakeidecahedrons,

The relations have been derived by double integration and

summation of equations of the form

b (e)
P = A /w [(B sine + C cose) sin2¢ + D cosf sing] dgde
S $1(0)

For some of the integral equations developed, exact analytical solutions

by the methods of integral calculus were found. Many of the equations,

xii



however, were of sufficient complexity that solutions were obtained
with an IBM 7090 digital computer.

Experimental verification of the theoretical relations
developed for cubes and cylinders was obtained by preparing syn-
thetic samples containing randomly dispersed cubes and cylinders.
Measurements made by sectioning and microscopic examination of
synthetic samples of cubes and four different cylindrical shapes
support the theoretical predictions.

The relations derived which connect the number of particles
observed per unit section, N, with the number of particles present

per unit volume, N, are given in the following table,

8V

TABLE T
Shape Relation

Cubes N, =N, 1 = a

8 v 2
Rectangular Parallelepipeds Ny = N, % (a+b+c)
Thin Rectangular Plates N, =N, ° % (a+Db)
Long Square Rods Ng =N ° % c
Octahedrons Ng = Ny ° 5'£é arccot V2
Tetrahedrons Ng =Ny ° a - §$£2 arctan~fé
Rhombic Dodecahedrons Ny =N, ° —% a
Tetrakaidecahedrons Ng =N ° ET%E a
Hexagonal Prisms Ng =Ny ° (% a + % c)

In the above table, for octahedrons, tetrahedrons, rhombic dodecahedrons,
and tetrakaidecahedrons, "a" is the edge length of the circumscribed
cube, For the hexagonal prism, "a" is the length of the base diagonal

and "c¢" 1s the altitude of the prism.
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The relative frequencies of various shaped sections of
cylinders depend upon the length to diameter ratio of the cylinders

and are proportional to the terms given in the following table,

TABLE IT
Cylinder Section .Frequency Relation
Ellipses % (4-d arctan £/4)
Singly Truncated Ellipses d arctan £/d
Doubly Truncated Ellipses : (%9 - 4 arctan £/d)

The relative frequencies with which sections of polyhedrons
heving varlous numbers of sides on a section are observed arec presented

in the following table,

TABLE IIT

RELATIVE FREQUENCIES OF SECTIONS (%)

Sides on Polyhedron
Section Cube Octahed. Tetrahed. Rh. Dod. Tetrakai,
3 28.0 -- 71,2 4.0 7.3
L L8, 7 Lk, 8 28.8 13. 4 13. 4
5 18.7 - -- 16.2 11.8
6 L 6 55.2 - 29.9 31,2
7 - - == 19.1 18.3
8 -- - - 16,3 13.1
9 -- -- -- 1.1 3.8
10 -- -- .- - 1.1

The above results are exact for dispersed particles having

uniform size and shape and random orientations. If particle shape 1is

xiv



known, the relations permit analysis of degree of non-randomness of
orientation. The relations also permit analysis of non-uniformly

sized particles in a more accurate manner than previously possible.



I, INTRODUCTION

While metallography has long been the metallurgist's most
important tool, it is now obvious that quantitative metallographic
methods are essential in order to change this art into the science
needed for the design of alloys meeting the ever-increasing demands
of modern technology. The principal difficulty arises from the
fact that metals are opaque and that observations made on a plane
of polish are not readily converted into the three-dimensional para-
meters which determine the properties of the solid, This fact has
been recognized by man&, and, although much work has been performed
to put metallography on a gquantitative basis, it can be fairly
stated that the subject is still in its infancy.

Since virtually all metals used for their structural
strength and integrity are polyphase alloys, guantitative methods
of determining and describing the state of dispersion of the phases
present are necessary for adequately studying the effects of these
variables on alloy properties,

This dissertation describes the results of a study of the
guantitative correlation between the numbers and sizes of various
shaped particles in a three-dimensional solid, corresponding to
phases in an alloy, and the numbers and shapes of the two-dimensional
sections of these particles observed on a plane of polish,

A Dbrief literature survey is included to describe other work
in the field of quantitative metallography and to list previously de-
veloped quantitative relations connecting particle shape, size, and

number in opaque bodies with their plane sections,

-1-



The following portions are arranged in a more or less
chronological order, proceeding from the simpler developments to
the more complicated, Section ITI, Analysis of Problem, presents
the basic trigonometric integral calculus approach used in this
dissertation and uses the method to re-solve earlier known relations,
Section IV develops the relative frequencies of various section shapes
of cylinders as a function of cylinder shape, Section V extends fhe
technique to cubes, developing the probability of sectioning a cube
or rectangular parallelepiped and the relative frequencies of cube
sections of various numbers of sides,

Section VI, General Approach to Polyhedron Problem, dis-
cusses and summarizes the analytical methods used for solving the
cube problem and prepares the groundwork for the developments to
follow, Sections VII to X present quantitative relations for numbers
of particles and shapes of sections for other polyhedrons of cubic
symmetry, Section XI presents the probability of sectioning a
hexagonal prism, the only non-cubic polyhedron considered,

The final sections describe the preparation of synthetic
samples of dispersed cylinders of four different shapes and dispersed
cubes, Experimental measurements made upon these dispersed particles
are compared with theoretical results, using statistical techniques
wherever possible,

Appendix A contains detailed evaluations of several definite
integrals that occur many times during the solutions of the various
polyhedrons, Appendix B describes the digital computer solution of
the trigonometric integral equations arising from this work, Appendix

C lists the symbols used in the text,



II. REVIEW OF LITERATURE

The field of quantitative metallography is a large one
and can be considered a branch of the mathematical discipline,
topology. The questions of surfaces, volumes, shapes, sizes,
numbers, and orientations of poly-phasic, poly-crystalline, or
poly-cellular bodies are of importance to physicists, chemists,
biologists, botanists, mineralogists, geologists, and ceramists,
as well as to civil engineers, crystallographers, and metallographers,
Countless numbers of papers, several excellent reviews, and
even a few complete books have covered this area, so no attempt at
completeness will be made in this literature survey., It will suffice
to mention briefly the most important applications of quantitative
methods to metallography and to describe in somewhat more detail
previous studies concerned with measurements of dispersed particles,
It seems appropriate at this point to mention the two
most complete and most recent treatments of this topic: "Stereometric
Metallography" (in Russian), by S. A, Saltykov(l), and the Symposium
on Quantitative Metallography at the University of Floridaa(g) Also

(17)

a current review article has been presented by Underwood,

Application of Topology

Many early studies of shapes of cells, invoking topological
principles, have been made by botanists and mathematicians, The most
notable application of topology to metallography was by Smith,(Bh)

He points out that the atomic and macroscopic structure of matter

-3-
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depends upon physical forces and the mathematical requirement of
space filling,

The classification of shapes is nearly always an essential
prerequisite to an understanding of the physical forces involved., The
nature of these requirements leads to be remarkably close analogy be-
tween biological cells, soap froths, and metal grains, For irregular
polygons on a plane surface, the following form of Euler's Law is

alweys applicable:

P-E+C=1 (1)

where P, E, and C are the number of polygons, edges, and corners,
respectively, For the faces, edges, and corners of polyhedrons,

Euler's Law is

F-E+C=2 (2)

For a three-dimensional network of cells we have

C-E+P-B=1 (3)

where B stands for cells (bodies) and the other letters are as sbove.

Surface Aresa

Extending the work to measurement of surface or grain
boundary area in a polycrystalline metal, Smith and Guttman(5’5) showed
in 1952 that the specific grain boundary area in a solid, Sy, could be
determined by the number of intersections of the boundaries by a random

line across a plane section of the microstructure, NL, where

8y = 20N (W)



1)

Saltykov( reports that this equation is identical to one developed
and published by him in 1945,(6) This relation is of such fundamental
importence that it was developed agein independently, by Duffin,
Meussner, and Rhines(7) in 1953 and by Horikawa in 1954,(16)

The measurement of surface or intergranular area, along
with measurement of volume fraction of phases, the determination of
grain size, and the determination of numbers, sizes, and shapes of
dispersed microparticles, constitute the four most important metallo-
graphic properties to be measured quantitatively in order to correlate

the spetial microstructure of an alloy with its physicel and mechanical

properties,

Volume Fraction

The measurement of volume fraction of phases may be accomplished
by the classical methods of areal, lineal, or point analyses, This is

based upon the fact that for random sempling

£, =T, = £ = fp (5)

The volume fraction of a phase is equal to its areal fraction on a random
cross section, which is equal to the fractional length of random linear
intercepts which cross that phase on a random section, which is equal to
the fraction of randomly distributed pcints which lie on a section of the
phase, It may be seen that each term in Equation (5) represents a reli-
able, random statistical sample of the term preceding it, even if the
phase distribution is not random. If the phase distribution is random,

which is often a reasonable approximation, a systematic, rather than



random, sampling of a specimen by cuts, lines, or points is a more
convenient way to perform the areal, lineal, or point analyses, and
Equation (5) is still applicable,

The first measurement of volume fraction was apparently

(8)

by Delesse in 1848 , who showed mathematically the equality of
areal fraction and volume fraction, The areas of grains of phases
may be measured by planimeter, visual estimation, or by photographing
or sketching the plane section and cutting out and weighing the por-
tions corresponding to each phase, It can readily be seen that, if
the microstructure is at all finely dispersed, any of these methods
will be very tedious and subject to considerable error, Nevertheless,
the methed of areal analysis may occasionally be convenient, particu-
larly for phases preéent in very small amounts, as with non-metallic

(1)

inclusions in steel,

(9)

In 1898 Rosiwal presented his mathematical derivation

for volume fraction by lineal analysis, a much more convenient technique
and one which is widely used today. As previously indicated, one mea-
sures the fraction of length of a randomly or systematically applied
line that crosses the phase of interest, Mechanical and automated
techniques using this method, the Hurlbut counter described by Howard
and Cohen(lo), the Wentworth integrating stage<ll), and the "flying-
spot" photoelectric cell(lg), have greatly simplified its application,
Glagolev also developed a number of designs of devices for lineal
analysisa(l) Discussions concerning the accuracy and convenilence

of lineal analysis have been presented by several people: notably,

Howard and Cohen(10), Saltykov(1), and Hilliard and Cann(13),



In 19350, the method of point counting for determining
volume fraction was introduced by Thompson(15> and, shortly there-
(1,1%4)

after, independently, by Glagolev In the American literature,

the first application of point counting to quantitative metallography
was by Howard and Cohen(lo)° Point counting directly at the micro-
scope is easy and rapid with the simplest of devices, grids or
points., Devices for further speeding up the analysis have been
developed by Glagolev(l). Point counting is considered by many

investigators, Hilliard and Cahn(l5>, Chayes(l8>, and Saltykov(l),

to be the most generally useful method for determining volume fraction,

Grain Size

The grain size of a single phase metal is, of course, a
fundamental factor strongly influencing nearly all physical and
mechanical properties, More particularly, the term, "grain size,"
means average grain size, because in any real system there would
always be a range of grain sizes, and more commonly it refers to
average cross sectional areas of grains revealed in the plane of
polish, Some of the more common ways of reporting grain size are<l9>:
a) Grains per sq. mm,
b) Average area of grain (sq, mm, )

c) Mean diameter of grain (mm, )

d) Arbitrary numbers (the Timken, ASTM, exponential
scale based on number of grains in a given area, )

In addition to the above, grain size may be reported as the average

)<20)

linear intercept on a random plane section (Heyn's Intercept Method



-8~

It will be noted that all the above are expressed directly
in terms of dimensions observed from a cross section of the grains,
This may be more or less descriptive of the true spatial grain size,
depending primarily upon grain shape, SaltyKOV(l) particularly
criticizes the use of a single parameter to describe grain size and
suggests the inclusion of other measurements showing grain boundary
area, departures from the equiaxed condition, and others. He says
that to completely describe geometric grains we need their size,
their surface area, their number per unit volume, and their shape,
However, as a minimum, the total volume of particles and their
total surface per unit volume should be evaluated,

Johnson<22) described a technique for obtaining spatial
grain sizes, which was based, in part, on earlier work by Scheil£25’24’25x
Others have attempted to compute grain éize of a metal from grain areas

(26,27)

on a plane section by assuming certain fixed grain shapes.

Grain Shape, Single Phase

The actual shepes of metal grains as revealed by fracture
surfaces or grains isolated from & solid have intrigued investigators
for & long time, Tn 1775 Grignon'21) descrived greins revealed in an
aggregate of iron, Since then, numerous others have separated out
individual grains by fracture in the hot-short range or by inter-
granular chemical attack, An ingenious stereoscopic micro-radiographic
technique by Williams and Smith(29) revaled grain shapes and boundaries

in an aluminum-tin alloy.



Considering the requirements for space filling as well as
minimizing surface tension forces, Lord Kelvin(28) in 1894 showed
that an assemblage of uniformly sized tetrakaidecahedrons (cuboctahe-
drons or truncated octahedrons) (Figure 1) would fill space with a
miﬁimum of surface area, This fourteen faced polyhedron meets the
surface tension requirements of no more than three grains at an edge
and no more than four edges at a corner, but it does not completely
satisfy the requirement for 120° dihedral angles between grain
boundaries where three adjacent grains meet at an edge, as discussed
by Smithg(B’u) However, with the introduction of a slight double
curvature of the faces, changing the surface area very slightly, the
120° dihedral angles can be obtained, This very behavior has been
demonstrated iq experiments using soap froths (Figure 2)0(5>

The rhombic dodecahedron (Figure %) and its hexagonal
variant (Figure 4) are space filling bodies and were considered
by Harker and Parker(Bl) to be 1deal grain shapes because the surface
tension requirement of 120° dihedral angles where three érains meet
at an edge is satisfied, The rhombic dodecahedron fills space on a face
centered cubic lattice, in contrast to the tetrakaidecahedron, which
stacks on a body centered cubic lattice., Per unit volume, the rhombic
dodecahédron has a slightly greater surface té volume ratio than the

tetrakaidecahedron (5,34%539 to 5051474)9(52)

but a greater difficulty
is that a rhombic dodecahedron array has eight edges meeting at some

corners (as does its hexagonal variant), and this is an unstable con-

dition with regard to surface tension,



-10-

Figure 1, Tetrakaidecahedron,
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Figure 2, Soap Film in Wire Frame Showing Faces of Tetra-
kaidecahedron Modified by Surface Tension,
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Figure 3.

Rhombic Dodecahedron,
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Figure L, Hexagonal Equivalent of Rhombic Dodecahedron,
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The result of such an unstable situstion would be the
immediate formation of a new, small square face at each such corner,
or two new faces per polyhedron, forming a fourteen-faced modification
of the rhombic dodecshedron, which still fills space on a face centered
cubic lattice and better satisfies surface tension requirements (Figure
5). This has also been shown on experiments with soap froths (Figure 6)553
This modified, fourteen faced, nearly rhombic polyhedron has a slightly
smaller surface to unit volume ratio (5,34525) and is the minimum sur-
face figure filling space on a face centered cubic lattice,

However, it can be shown<52) that, by compressing this modified
polyhedron perpendicularly to the newly created faces, a continuous
series of uniform, space filling bodies are obtained, As their faces
maintain minimum total area, the two new faces will gradually expand
and the surface to unit volume ratio will decrease still further, This
proceeds in a monotonic manner until the dimension in the compression
direction is l/~fé times the original dimensions, A minimum is
reached at this point in surface to unit volume ratio, and the shape
of this body is the tetrakaidecahedron with body centered cubic
symmetry, This may be seen if one imegines the wire frame and soap
froth of Figure 6 gradually shortened in the direction perpendicular
to the central face until the frame and froth of Figure 2 are achieved,
at the thickness to edge length ratio of 1/42,

It might be added that other distortions of these figures,
maintaining fourteen faces, would still fill space and closely approach

minimum surface energy., It may thus be seen why the calculation of
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Figure 5. Modified Rhombic Dodecahedron of Minimum Surface.
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total surface area of polycrystalline metals, assuming the shapes

of grains to be tetrakaidecshedrons, often gives good checks with
: | N : (17,26)
independent measures of surface area using Equation (5),

Kaiser(27) proposed an empirical formula for surface area which assumes

average grain specific surface somewhere between that of rhombic

dodecahedrons and tetraskaidecahedrons,

Grain Shape, Dispersed Phases

The grain shapes of polyphase alloys present a variety
an order of magnitude greater than for single phase alloys, Dispersed
second phase grains may range from intergranular films, platelets,
needles, regular or irregular polyhedrons, and volumes of revolution
to nearly spherical particles, The parameters needed to describe
the state of dispersion usually include particle numbers, shapes,
sizes, size distributions, surface, and spacing, The difficulties
involved in deriving exact relationships connecting particle size
and number for any but the simplest of shapes have discouraged much
effort in this direction, As a result, analyses of most particle
distributions still reqguire approximate methods, Only in the case
of spheres and lamellae can anything like a thorough treatment be
-claimed,

Investigations on the interlamellar spacing of pearlite
in steel have been reported many times, Some of the contributors
in this area have been Belyayev(Bu), Pelissier, Hawks, Johnson,
and Mehl<55f37), Gensamer, Pearsall, and Smith(36’58), Saltykov(l),

and Gregory, Hall, and Bullock(39),
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Probably the most completely studied case of dispersed
particles regarding total number per unit volume and their size
distributions is that of spheres, The relation connecting the
number of spheres of uniform size per unit volume with the number

of their sections observed per unit cross-sectional area is

Ng = Ny ° 2r (6)
This relation has been derived by Fullman(uo), Scheil(QB), Schwartz(ul),
Mirkin<h2>j and gppears to have been recognized earlier by Scheil(AB).
and Hagerman(uh)° Saltykov<l), apparently mistakenly, credits Mirkin
with priority for this equatiocn,

The validity of Equation (6) is almost intuitivelyiobvious,
as, if in a unit cube a sphere of radius r 1s placed, then a cross-
sectional plane of unit area will intersect the Sphere if it passes
anyﬁhere within a range of 2r, Therefore, 2r 1s the probability
of intersecting one sphere (r << 1), If there are N, spheres of
redius r in the unit cube, N, will be the expected nﬁmber observed
on a unit cross-section as in Equation (6), The sections of the
spheres observed will all be circles, of course, varying in radius
from r to O,

If the spheres present are not of a single size, their
sections observed will still be circles, but the determination of
number present per unit volume becomes more difficult. Scheil<43)

did this first by a method requiring measurements of section diameters,

grouping into size intervals, and then successive subtraction, going
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from larger size to smaller, of the smaller sections which are
due to previously computed larger spheres, A table was presented

41) described

by Scheil for this successive subtraction, Schwartz(
the same method in a more convenient form, and Saltykov(l) and
Underwood(17> have presented additional tables for use of the
Scheil Method,

A more straightforward method for determination of sphere
size distribution from random secant measurements was presented by
Lord and Willis(45)° The length of intersections of circles
(secants) in a random linear traverse (Rosiwal traverse) may
readily be converted into sphere size distribution., Lord and
Willis used this method for air bubbles in concrete, and Brophy

)

and Sinnottkh6‘ have used it for nodular graphite in cast iron,

(47)

Cahn and Fullman have presented an alternate mathematical

approach based upon random secants, similar in principle to that
of Lord and Willis,

The relations for numbers of clrcular plates and circular
rods per unit volume were derived by Fullman(uo> and later extended

by him to cylindrical particles(hB)g The relations reported by

Fullman are:

Circular Platelet Ny = N, ° %E (r > t) (7)
Round Needle Ng = N, ° é (£ > r) (8)
Cylinder N, =N, ° % (nr + £) (9)

Relations for size and number of ellipsolds of revolution have been

developed by DeHoff and Rhinesn(h9)
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For polyhedral particles, exact relations connecting
size and number hsave been more difficult to derive than for

(1)

bodies of revolution. Saltykov reports approximate formulas
for determining numbers of uniformly sized particles shaped as

cubes and tetrakaldecahedrons, For cubes, Saltykov gives
N, = —= (10)

where S 1s total intergranular area, and for tetrakaidecahedrons

he reports

L Be2) - s,
VT (18)° &g
2
N, = 2.98 (SSS) (11)

The shapes of plane sections of polyhedrons were con-

26)

sidered briefly by Rutherford, Aborn, and Bain( , who showed
that plane sections of a cube may have 3, 4, 5, or 6 sides (Figure
7). Hull and Houk<50) further investigated the shapes and areas
of sections of several polyhedrons. This was done by making a
wire model of the polyhedron, mounting it on a tilting bench vise
on an elevating teble, and measuring the sections obtained at
various elevations. To represent all possible orientations of

the polyhedrons, they selected from 26 to 35 orientations, by
means of a polar stereographic plot, which they felt to be as

complete and representative sampling as possibie with the given

number of positions, For the cube, their selected orientations,
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Figure 7. 3, 4, 5 and 6 Sided Plane Sections of a Cube.
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shown as 5° solid angles, are given in Figure 8., The
relative frequencies of the various shaped intersections
of cubes and tetrakaidecahedrons obtained by Hull and Houk(50)

are given in Table I,

TABIE I

FREQUENCY OF SECTIONS OF POLYHEDRONS
(DERIVED FROM DATA BY HULL AND rouk(50)

Number of Sides Relative Frequency (%)

Cube Tetrakaidecahedron

3 28,9 7.9
L 42,0 14,5
5 18,1 12,9
6 10,0 29.5
7 - 17,9
8 -- 12,8
9 -- k.0
10 -- 0.5



*soTBuy PITOS oG 948 SOTIITD

.AOvaDOm pue TTH £q 20Td UOTHBIUSTIQ OTydesdosisqg JBTOd °*Q 2Jndtd
?& «— g "NOILVNITONI
0SS 00G oSt oOP 00¢ 002 o0l o0

o 30i520°
@ D



ITI. ANALYSTS OF PROBLEM

All conventional metallographic observations, whether by
means of the optical microscope or by electron microscope, are ob-
servations made upon a plane section of a specimen, usually polished
and etched. Since metals are opaque to electromagnetic\radiation,
except in the very thinnest of films, the spatial microstructure
cannot be observed directly and inferences about its form must be
made from what we see on the sectioning plane, If a structure exists
within the solid that is not revealed by a sectioning plane, then we
either remain ignorant of that structure or we discover it at a later
time, possibly by means of subsequent sectioning planes or, less
fortunately, by unanticipated behavior of the material., Hence,
representative sampling by careful consideration of choice of section-

ing plane or planes is essential,

Probability of Sectioning a Particle in a Solid

Along these same lines, the likelihood that a given feature
of the spatial structure will be revealed by a sectioning plane depends
upon the size or extent of the feature; if it is very small or occurs
in very small amounts, we are less likely to see it, A small particle
imbedded within a given volume is less likely to be revealed by a
sectioning plane than a larger particle would. For particles of equal
volume but having different shapes, the probabilities of their being
intersected by a given plane will also depend upon their shapes, Thus

the probébility of observing a dispersed particle in a solid on a

VN
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random sectioning plane through the solid depends upon the size of
the particle and its shape.

For a given shape we may be able to express the effect of
shape upon this probability by a suitable coefficient or term, known
as the shape factor, and then for particles having this shape the
probability of intersection will be the shape factor times the size,

Thus we can say, in general, for a given shape

P, = (shape constant)(size variable) (12)

where Pi is the probability of intersection. Only a few of these
expressions, for simple shapes, are known exactly and reported in the

literature, These are listed in Table IT,

TABLE IT

PROBABILITY OF SECTIONING A PARTICLE IN A SOLID

Shape Probability
Sphere Pi = 2r
Circular Platelet Pi = % r

| £
Rod Pi =2
Cylinder P; = %; + é

In Table II, r and £ are radius and length, the size factors,
and the other portions of each expression are the various shape con-
stants, The techniques for performing the computations to arrive at
the relations of Table II have varied slightly among investigators,

(ho,48) .

but the derivations presented by Fullman rovide a good description

of the usual approach.,
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The importance of these expressions stems from their
necessity in determining the numbers of particles in an opague
body since the number of particles observed on a plane section is
proportional to the total number of particles in the solid and the
probability of intersecting such a particle,

Ng = Ny o Py (13)

If we know P;, we can measure Ng and compute Ny. Thus, the more P;'s
we know for various shaped particles, the more quantitative and power-
ful will be our investigative tools, For irregular shapes or for
shapes not exactly solved, 1t is necessary to use approximation methods,

generally based upon some assumption as to shape,

Probability Not Dependent Upon Orientation

To consider the general approach required for all problems
of this type, consider the probability of an event as the proportion
of successful events out of the total number of possible events,
Congider first a sphere of radius r in a larger solld which we shall
teke as a cube of unit volume, If we pass a serles of cross-sectioning
planes through the cube parallel to one of its faces, then, of all
sectioning plenes, those that pass within a distance r of the center
of the sphere will cut the sphere, This means that 1f we uniforml&
pass parallel planes from top to bottom of the unit cube (a distance,
one), then the proportion of planes cutting the cube will be Er/l or
2r, Thus, 2r/l will be =qual to the proportion of successful events
out of total events, and 2r will be the probability of intersection

of the sphere, 2r is, of course, the dlameter of the sphere and is
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the distance between top and bottom tangent planes that will cut
the sphere,

This can be said for any particle: for parallel section-
ing planes, the planes that cut the particle will be those between
the top and bottom parallel tangent plenes to the particle, Thus,
the distance between top and bottom tangent planes, which can be
considered as the maximum projected height of the particle in a
direction normal to the sectibning planes, will be proportional
to the probability of intersecting the particle, For a sphere,
this distance is always the same, its diameter, but for particles
having any other shape the distance between top and bottom tangent
planes will vary, depending upon the orientation of the particle
with respect to the sectioning plane,

If the orientation of a:non—spherical particle is fixed
with respect to the sectioning plane, its projected height or
probability of intersection is usually easily calculated., However,:
for a dispersed particle in an opaque solid, such orientation is
rarely known in advence and the initial choice of sectioning plane
is usuvally e random one with respect to the particle,

If all possible orientations of particles are considered
equally likely, it mekes no difference whether we consider the
sectioning planes to be oriented at random also or whether we
consider the sectioning planes to be fixed, usually parallel cuts,
and the particles oriented at random. For calculations as well as

for experimental convenience, the latter procedure is much preferred,
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However, such calculations will not be valid for dispersed

particles having preferred orientations unless the sectioning

planes are randomized., Since the mere collection of statistical
data is rarely the purpose of our investigations, the experimentally
difficult process of randomizing section planes is rarely necessary,

In spherical coordinates, all possible directions originat-
ing from a point can be expressed by two angles: ¢, the angle between
any given direction and the normal to the reference plane, and ©, the
angle between the perpendicular projection of the given direction
into the reference plane and a given reference direction, also lyiﬁg
in the reference plane., This may be seen in Figure OQa, ¢ mey be
called the angle of tilt and © the angle of rotation,

Since any given orientation can be expressed by these two
angles, and the distance, D, between top and bottom parallel tangent
planes of a particle is a function of ¢ and ©, then for a fixed
¢ and ©

P (¢,0) = D(¢,0) (1%)
Since what we usually want is P; (all ¢, ©), this is D (all ¢,9),
or the average distance between top and bottom tangent planes for
all orientations, Then the average distance between tangent planes
for a large number of random orientations, or the experimentally
observed P;, should very nearly equal the average for all orientations,
or the theoretical value,

In order to determine D (all ¢, ©) it is necessary to con-
sider the effect of ¢ and © on D and then integrate over all orienta-

tions., The total of all possible orientations can be expressed by a
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Figure 9. ©Spherical Coordinates,
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vector, p, which over all ¢ end © would form a sphere, the surface

of which would represent all orientations, The probability of a
single, fixed orientation would be infinitesimally small, but the
probability of an incremental range of orientations would be the
incremental area of the sphere surface expressing that range, divided

by the total surface area of the sphere, as shown in Figure 9,
2
dA = pdg ° p sin @de = p sin Pagde (15)

But the total surface of the sphere is hﬁpe. Therefore, the probability

of a given incremental orientation range is

_ p°sin gagde  sin gagde

Pp(dgzﬁ,d@) = T2 T (16)

Summing over all ¢ and ©, the probability that the vector p is included

in all possible orientations is given by

21 3dao
San gS
Pp(all g,0) = f f =
(¢] (0]
21 1 en
= L[ cosf| ae =i f 240
(0] (0]
2
1 ut (17)
= E— e = 1
T o

Probability Dependent Upon Orientation

Now consider D(¢;G), the distance between tangent planes of
a particle which, in general, depends on ¢ and ©, The probability of
ihtersecting e given particle in a given position is eqpal to the dis-

tance between tangent planes in that position times the probability of
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obtaining that position,

P, dgae = D(g,e) ° Pp(d¢,d@)
sin (l8>
= D(g,e) ° ——qﬂ@'@
Integrating,
21 1« '
p,(all ¢,68) =D (a1l ¢,0) =f f D(g,0) S—l%?-@ (19)
o O

(51)

This expression has been presented by Deloff, D depends upon
shape, size, and orientation, and must be expressed in general terms
in these parameters., Then, by integrating Equation (19) over all
possible orientations, D, or P;, can be determined, which will be

in terms of shape and size,

For example, take & sphere of radius.r, the case previously

considered, D will equal 2r for all ¢ and O,

2 1t
P, (sphere) = Jf JF 2r §12Egéﬁég = 2r, (20)
o ©

as previously obtained,
For a circular platelet of radius r and negligible thickness,
it is shown in Figure 10 that D = 2r sin (., @ is the angle that the

platelet normal makes with the vertical, It therefore follows that

(circular platelet)

ffEr sing - Si0 dd@ (21)

P, (circular platelet)
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Figure 10, Circular Platelet,
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2n xt 2n .
r .2 r 1 .
= - sin QPd@de = — = (@-sin@cos de
2n Jf u/\ pag 2n J[‘ 2 (9 feosf) 0
O © _ o]
on
_r nde _ nr
== - = 5 (22)
o}
L
Thus result agrees with that previously given by Fullman( O), which

was obtained by a slightly different sapproach,
For a long needle of length 4 and negligible radius, it is

shown in Figure 11 that D = £ cos . Therefore, it follows that

Py (needle)

]

2n 1
i; u[‘Jf £ cosf - singagae (23)

e (2k)

However, since sin ¢ equals zero at both limits, it is necessary to

change the limits of integration, as follows:

2n n/2 2t
£ . 2 £
_ _ L =2 [ a
P; (needle) I \/p sin ¢]O ae o \jp ]
o o
£
=2 ¢ (25)

N :
This result also was obtained by Fullman( 0) by a different method.
For a cylinder of radius r and length £, we see from

Figure 12 that D = 2r sin § + £ cos @. Therefore,
21 1t
P, (cylinder) = %; b/\b/\(2r sing + £cos@) ° sin gagae  (26)
o o

Equation (26) is simply an addition of Equations (21) and (23), for

platelets and needles, and results in

(nr + £) (27)

-

Pi(cylinder) =



3l

ARcos ¢ 1

I

Figure 11, DNeedle or Rod.,
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Again, this agrees with a result previously obtained by Fulhnan<48).

It may be noted that in none of these cases, Sphere,
circular platelet, round needle, or cylinder,‘is © involved in
expressing D, thevdistance between tangent planes. In fact, all
cases could have been solved without considering 6, Take the

cylinder, for example,
/2

J/‘ (2r sing + £ cos@)sin gag

O

il

P, (cylinder)

(27)

1
1 + 8
2(311“ )

This is still the same result as before, and was obtained by consider-
ing only angles of tilt, ¢, from 0° to 90°, The probability function
for ¢ is the term, sin @. © is not considered because the cylinder is
a solid of revolution and rotating it has no effect on D, Therefore,
D is the same as before and so is the final result, In the simplest
case, the sphere, D does not even involve'¢, and integration is not
even necessary,

As was shown for a needle, it is not always neceésary, or,
in some cases, even desiréable, to integrate over the whole sphere
of orientations, One may integrate over any convenient fraction of
the sphere and multiply by the reciprocal of theat fraction, Computing

Py (platelet) by integrating over one octant end multiplying by eight,

we get
1/2 7/2
P, (platelet) = 8 Jf 2r sing ° EEEEQQQQQ
g S T
7T
= 5 (22)

This result is the same as before,
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In general terms, for one octant,

/2 n/2
f fD(Qf,Q) °* sin ¢dgde (28)
(o) O

If the object is a volume of revolution,
/2

D = fD(¢> * sin gag (29)

o)

D =

A

The most convenient choice of integration limits will, in general, be
dictated by the symmetry of the solid object or particle that we are
considering,
This general method will now be extended to obtain various
new results that can be used to describe:
a) relative frequencies of various section shapes df cylinders
b) the probability of intersection by cross-sectioning plane
for several polyhedrons
c) relative frequencies.of various section shapes for these
polyhedrons,
The general method is as described; the main problem will be in determin-

ing the D (@,0) and the ¢ and 6 values over which to integrate,



IV, SECTIONS OF CYLINDERS

Types of Sections

If a cylinder is cﬁt by a random sectioning plane, then
there are three general possibilities for classifying the shapes of
sections obtained: +the plane may cut neither end of the cylindef,
it may cut one end, or it may cut both ends., Similarly, for cylindri-
cal particles randomly distributed and oriented in a solid, if a
sectioning plane is passed through the solid, then the shapes of
sections which are cut from the cylindrical particles may be ellipt-
ical, may show one straight edge, or may show two straight edges.

These section shapes may be referred to as ellipses, singly-truncated
ellipses or cups, and doubly-truncated ellipses or barrels, Typical
cuts of cylinders and their section shapes are shown in Figures 13,
14, and 15,

The variables affecting the types of sections obtained will
be the shape of the cylinder or its z/d ratio, the orientation of
the cylinder or its ¢, tilt engle, and the relative position of the
sectioning plane., A wide variety of different appearing section shapes
mey be obtained, depending upon these variables just mentioned, but all
can be classed into one of three groups: barrel, B, ellipse, E, or cup, C.

From the dimensions of the sections obtained from uniform
size cylinders, one can deduce quite a bit about the dimensions of
the cylinder. Since all sections are basically elliptical, even

though truncated; let us refer to section width in the direction

-38-
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Figure 13, Elliptical Sections of Cylinders.
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of the minor axis of the ellipse or parallel to a straight side as
"d," and to the section length in the direction of the major axis
of the ellipse perpendicular to a straight edge as "q.". Then,
for elliptical sections dy always equals 4, the true diameter of the
cylinder, For barrel and cup sections, d, will equal d in & certain
fraction of cases and will vary between zero and d in the rest of the
cases, Thus, for uniform cylinders the diameter should be deduced
quite readily by inspection,

To obtain £, the cylinder'length, consider Qge For ellipses,

gy will vary from d, or d to ~J£§ + doz, If we take gy, as an

estimate of V% + A2, then for ellipses

¢ = NE, -2 (30)

As a check sgainst barrels -and cups, in both of these cases dmax equals

d and g, will vary from £ in the case of barrels and zero in the case of
ye 2 : - N 2

cups to *fk + dmax,“ Again, saying Ynax, = £5 + dmax. , then for

barrels and cups

£ = Nfémax,“ dmax. (51>

It may be noted that in the case of barrels an easier way to get £ may
be using £ = Upine Reference to Figures 13, 14, and 15 will clarify
this discussion,

.Fullman(AS) gives equations for calculating d and £ directly
from sections of cylinders, but these are fairly complicated and require

determination of average particle section area and average particle
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traverse length, both of which may require a considerable smount of
effort to obtain, Thus, the above indirect method for estimating 4
and d may often prove useful.

Consider the possibility of directly measuring It

Ungxe
may be seen from Figure 16 that dnax. s although it is the maximum
limiting length measured in all three cases, ellipses, barrels, and

cups, is still only a limiting, singular case, is actually

Unax.,
only obtained when ¢, the tilt angle, equals arctan ﬂ/d and. when
the sectioning plane cuts exactly through the center of the cylinder.
Thus, for orientation ¢ = arctan ﬂ/d,‘qmax° is the transition section
between upper cups and lower cups., In this orientation, it may be
observed, no barrels or ellipses are obtained as sections, and Unax.
is the maximum length of cups. However, Qpgy, 1S approached closely
as the maximum length of barrels and of ellipses for values of ¢ very
close to arctan ﬂ/d, again, for central cuts.

Tt is obvious that the ratio, £/d, expresses the shape of

the cylinder, The angle that expresses the limiting orientations

for certain shaped sections or cuts of the cylinder is
¢, = arcten 4/d (32)

For ¢§ < arcten £4/d, it is impossible to get barrel sections, and only
ellipses ‘and cups are obtained. For 90° > ¢ > arctan ﬁ/d, it is
impossible to get elliptical sections, and only barrels and cups are
obtained. We shall use ¢l’ as expressed by Equation (32), in deter-
mining the relative frequencies of the various shaped sections of

randomly oriented cylinders,
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Figure 16, Major Parameters of a Cylinder,
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Relative Frequencies of Sections

Heretofore we have considered gualitatively the possible
shapes of sections obtained from cylinders., Now we shall consider
this matter quantitatively, As before, ¢ will be the angle between
axis of cylinder and the normal to the sectioning plane, and £ and
d will be the length and diasmeter, respectively, of the cylinder.

A cup will be a singly-truncated elliptical section, symbol C; a
barrel will be a doubly-truncated elliptical section, symbol B; and
an untruncated or plain elliptical section will‘have the symbol E.

First we shall obtain the D functions for these three
type sections, or the distance normal to the sectioning planes over
which each of these sections may be obtained. This will be related
to the probability of obtainihg the particular sections in an
exactly analogous manner to that previously described for certain
whole particles.

For the cylinder, to obtain the D functions of séctions,
it will.be necessary to consider two cases:

Case I 0 < ¢ < arctan 2/4

Case II arctan £/d < ¢ < 90°
Then we can collect the different D's for the various cases, ellipse,
barrel, or cup, and integrate over the profer range to obtain 5, the
average height over which each section is obtained, or its probability.
Comparing the D's for the sections with the D's for the whole cylinder,
we obtaln the relative frequencies of the section shapes for any given

cylinder shape,
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Consider Case I, O < ¢ < arctan £/d, as shown in Figure 17a.

For plane sections passing through elevation ranges hy and h5,
we observe cups as the sections of the cylinder, For cuts over the
range h, we observe ellipses. But hy = hz =d sin ¢ and
hy, = £ cos g - hy = £ cos ¢ - d sin @, Therefore, for cup shaped

sections we find that
Dg = by + hy =2 d sin ¢ (0< ¢ < arctan £/d) (34)
We also see that, for Case I, elliptical sections are given by
Dp = hp = £ cos § - d sin @ (0 < @ < arctan £/d) (35)

Next, for Case II, we have arctan ﬂ/d < ¢ < 90°, as shown in

Figure 17b, and
D = hy) + hg + hy (36)

For cuts through h) and h6 we get cups., For h5 cuts we get barrels,

But hy = hg = £ cos @ and hg = 4 sin ¢ - & cos @. Therefore, for
cups we have, in Case II
Dp = by + hg =2 4 cos ¢ (arctan £/d < ¢ < 90°) (37)

For barrels in Case II; we have

Dg = hg = d sin @ - bcos @ (arctan £/ < ¢ < 90°) (38)
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b. casem, arctan 7 < $< 90°

Figure 17. Two Orientations of Cylinders.
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Since ellipses are observed only for O < ¢ < arctan ﬂ/d,
5ﬁ is obtained by integrating over these limits in one octant of

the orientation sphere, using the Dy from Equation (35).
n/2 arctan ﬂ/d

= 2 . .
Dp = = (£ cos ¢ - d sin @) sin gagae
o O (39)
29
o ﬂ/2 p d arctan £/d
= = \/ﬂ [g sin°g - 5 (¢ - sin @ cos ¢)J de
Tt S 0
But sin(arctan £/d) = z/~J12 v &8
end cos(arctan £/d) = d/J 1% + a°
Therefore, for ellipses
| w2 3
— 1 4 Y £d
D, = ~— L ¢ ——— - d(arctan = - de
E g i 12+ g< ( a 22+~d2)]
S .
/2
_ 1 .2 a2 2
= X £ m'fﬁ m-darctand ae
o
/2
= = (£ -4 arctané) de
7t 5 (Lo)
= 1 4
Dp = > (£ - 4 arctan a)

The a@bove result from integration of Equation (%9) may also be obtained

by integration of
arctan 4/d

By = f (4 cos g-a sin @) sin gag (51)

0]

For barrels, we use the Dy from Equation (38) and integrate

over limits arctan £/d < ¢ < 90° to obtain Dg.
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/2
Dp = (d sin ¢ - £ cos @) sin ¢ag
arctan ﬁ/d '
1 2. 1/2
= L [a(g - si o - 4 si
51 (¢ - sin ¢ cos @) sin ¢]arctan 0/
2
1l nd . £a .4
_E[é———dal"Ctana+d mz_,@+,@ m]
2 2
- Lod Ly L
= 3 [2 d arctan 3 P a2 ﬁl
= %9 - % arctan é (42)

To obtain 5@ for cups we have two Dn's over two angular

intervals, Equations (34) and (37), which must be integrated and

added,
arctan £/d
Dy = f 2d sin @ * sin @ag
o
/2
+ 20 cos ¢ ° sin @gag
arctan ﬂ/d
arctan £/d . n/2
= &(¢ - sin @ cos @) + £(sin"¢)
0 g arctan £/d
L4 42
= d.(arctan “d— - m) + ,Z(l - m
Dy = d arctan 4/d (43)

Now, as a check, 5TOTAL for cylinders should equal the sum

of the D's for their sectionms,
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Drorar, = P¢ + Pg * P
3 2y, (L _d £y , (nd _ 4 )
= (darctan a_) + (z 5 arctan a) + (H_ 5+arctan E)
. _md 4
Pi(cyllnder) =5 *3 (27)

This agrees with the result obtained in Section III,
We now obtain the relative frequencies, f, for each shape

of gection of a cylinder, as a function of the length and diameter

D (section)
D (total)

of the cylinder, From f{section) = , we list these

relations in Table III,
TABLE IIT

FREQUENCY OF SECTIONS OF CYLINDERS

Shape of Section Frequency Relations
d arctan é 2 arctan é
C =
P nd 2 ¥/ Tt
— - = 4 =
n 2 a 2
% (£-d arctan é) é - arctan g
Ellipse =
nd 4 L,z
I 72 a 2
ﬂ% - %»arctan= - 5 - arctan é
Barrel =
md §/ y/ Tt
—_—t = —_ 4t =
L 2 a 2

The relations of Table III will be used to check the experimental data
obtained for cylinders, A graph of these functions versus £/d ratio

is presented in Figure 18,
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Shapes of Cylinders

Shapes of Cylinder Sections 100
< &of‘/- l O 80
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o.1 0.2

0.4 0.6 1.0 2 4 6 10

AL/d Ratio of Cylinder

Figure 18, Relative Frequency of Cylinder Sections as

Function of £/d Ratio,

Relative Frequency,%



V. CUBES

Probability of Sectioning a Cube

Up until this point we have discussed and developed relations
connecting particle shape, size, and number for solids of revolution,
The methods of solution involved integrating over all orientations,
expressed in terms of both ¢ and ©, tilt and rotation, although as a
practical matter it was observed that only ¢ was needed as 9, fotation,
had no effect on such bodies, A cube is not a solid of revolution, so
it will be seen that © must be included, as well as ¢, in computing the
probability of sectioning a cube,

Remembering that it is distance between parallel tangent
planes, or projected height, that determines probability of inter-
section by a plane, reference to Figure 19a will show the limiting
height values for the cube, If the cube has edge length "a", then
with one face parallel to sectioning plane thé projected height is
"a", With the cube oriented as in Figure 19b, the projected height
is "a" when ¢ = 0, for any ©, as well as when © = 0 and ¢ = /2 and
when © = n/E and ¢ = 31/2o

We have projected height =v2 a when @ = 0, ¢ = n/4, when
e

?

This blankets the range of possibilities as~f5 a 1ls the maximum D and

il

/2, ¢ = n/%, and when © = n/4, ¢ = /2, When © = n/4 and

arctan V2 (approximately 54° 44') we have projected height =3 a.

"a" is the minimum, We shall need D(@,0), in terms of both ¢ and o,

to integrate over a suitable range of ¢ and © for D,

-52-
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Major Parameters of a Cube,

Figure 19,
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Filrst we shall number the corners of the cube, one through
eight, as shown in Figure 20a, Now it will be seen that the distance
between top and bottom parallel tangent planes, which will be the
probability of intersection by a sectioning plane, will be represented
by the vertical distance between top and bottom corners for a given
orientation, So if the orientations of the cube are varied in the
first octant, in the manner indicated by Figure 19b, then corner 1
will always be the top corner and corner 8 will always be the bottom
corner, and we will want the projected height from corner 1 to corner
8. The easiest way to obtain this is to take‘another corner as
reference corner, using corner 4 as indicated in Figure 20b, and
consider this as a fixed point about which orientation changes are
made, Then the resulting changes in elevations between corners 1
and 4 and corners 4 and 8 are computed separately; the total projected
height 1s easily obtained from the sum of these two sub-heights.

Consider that we revolve or tilt the cube gbout corner 4
in a direction ©, as shown in Figure 20b, The amount that the cube
1s tilted will be the angle ¢, shown in Figure 20c., This is analogous
to corner 1 following a circular path about the axis u-v which passes
through corner 4, The radius of the circular path followed by corner 1
is the length m., These are shown in Figure 20b., As © is allowed to

vary between 0° and 90°, the length of m may readily-be seen to be

m = J2 a sin (6 + 45) (44)

From Figure 20c, it may be seen that

It

m sin ¢

J2 a sin (6 + 45) « sin ¢ (45)

hy )

il

by )
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Figure 20, Cube Corners and Radius of Revolution,
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This is the projected height from corners 1 to L4,
From Figure 20c, the projected height from corners 4 to 8
will be

h), g = a cos ¢ (46)
Therefore, the total projected height of the cube, D (cube), will be

D (cube) hy_) + hy g (%7)

il

J2 a sin (6 + 45) « sin § + a cos ¢

But, from trigonometry
1
sin(0 + 45) =75 (sin 6 + cos ©) (48)

Therefore, the function giving projected height of a cube is
D (cube) = a (sin © + cos ©) sin @ + a cos ¢ (49)

It can be summarized that, for given ©, corner 1 rises above
corner 4 with change in ¢ and this height 1s expressed as hy_), and
corner 8 rises toﬁard corner 4, the difference in elevation being h)_ge
The total elevation distance from corners 1 to 8, the difference be-
tween top and bottom tangent planes of the cube, is the sum expressed
by Equation (49),

Now if we take Equation (49) for D (cube) and substitute it
in Equation (28) and integrate over the first octant (permissible

because of the cubic symmetry),.we have

/2 n/2 :
D (cube) = % a[(sine + cos6) sin@ + cos@] sin @gdgde (50)
s o
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n/2 /2
D (cube) — b/\ (sin@ + cose) sin ¢d¢d@

/2 /2
+ %i cosf sin gagde

- ca \/ﬁ (sin® + cose)

O

/2
+ 22 L sin2¢
1t 2

o}

/2 ﬁ/E
(siné + cose) g ae + d/ﬁd@

o]

/2
= 2 (sin® + cose) do +

o}

/2

(¢ - sing cos@)

de

N -

n/2

0

1
A
Al

Nl
noj e

D (cube) (L+1)+=-= 2q (51)

1]

d a
2 2

V)

Therefore, the probability of sectioning a cube ‘is

P, (cube) = (51)

R

This result leads directly to the relastion for uniformily sized cubes

(cwbe) Wy =N, * 2@ (52)

Rectangular Parallelepipeds

The result just obtained for a cube can easily be extended
to & rectangular parallelepiped of side lengths a, b, and c, Figure 21,
For a given direction, ©, we again revolve the figure about e line, uv,

which passes through corner 4 perpendicularly to direction €. We can



o
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Figure 21.

Rectangular Parallelpiped.
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see that the angle y is given by

y = arcsinir7§L=7?? (53)
ac +

Therefore, m is equal to

m = V&% + b2 sin (0 + 7)
m = Ja® + b2 sin (6 + arcsin -——;E———-) (54)

a® + b
The top tangent plane passing through corner 1 rises above corner 4 by

hy_y =m sin @ = J&2 + b2 sin (6 + arcsin TT_?ng?)' sin §  (55)
a

Again, from trigonometry

it

S S (a sin © + b cos ©)

Ja© + b2
(56)

Therefore, corner 1 rises above corner 4 by the amount
hy ) = (asin @+ Db cos @) sin ¢ (57)

The lower tangent plane through corner 8 is distant from corner 4 by the

amount
h, g = c cos ¢ (58)
Therefore, the projected height of the rectangular paralelepiped is

D=hy ) +h g= (a sin @ + b cos ) sin @ + c cos ¢ (59)
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This expression is used to findlﬁ.

2 n/2
D = % /[ (a sine + b cose) sin2¢ + ¢ cos@ sing] dgde
/2
= % L/Z (a sin® + b cos@) = (¢ -~ sin@ cos@) + % sin2¢]o/ ae
7t 2
- 2 (a sind + b cos®) + =] d6
| 2
/2
1l c
= = (a sin® + b cose) d6 + — ae
o Tt
o
— 1 c 1
D = 3 (a +b) + 5 =3 (a+ b+ c) (60)

Therefore, the probability of sectioning a rectangular parallelepiped is

P; (rectangular parallelepiped) = = (a + b + c) (60)

N

From the above Equation (60), it may be seen that if the

rectangular parallelepiped is cubic, we get

P, (cuve) = ']é: (a+a+a) = (51)

N AN
Y

This is as before,

From Equation (60) it is also obvious that for a thin plate
of width a, length b, and negligible thickness ¢, as in Figure 22a, we
get

P, (thin plate) = % (a +b) (61)
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a

a-Plate

Figure 22,

b-Rod

Thin Plate and Long Rod.
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For a long rod of length ¢ and negligible cross-section, as

in Figure 22b, we get
P, (long rod) = % c (62)

The latter relation for a long rod of negligible cross-section can be
seen to be identical to the previous expression, Equation (25), for a
long round needle of negligible diameter, as may be expected, since
in both cases the cross-section is considered negligible,

Before proceeding té develop similar relations for the
probability of intersection of other polyhedrons, it will be more
convenient to proceed to the consideration of the relative frequencies

with which the various shaped sections cut from cubes are observed,

Shapes of Sections of a Cube

(26)

It has previously been shown by Rutherford, et al.
that sections from a cube may have three, four, five, or six edges,
as in Figure 7. The various types of sections cut from a cube will
depend upon 6, the rotation or direction of tilt, ¢, the amount of
tilt, and the elevation of the cut, .If a cube is tilted directly
over on one edge, for € = 0 in Figure 23%a, then for any ¢ and any
elevation of cut only four sided sections would be obtained, For
en orientation involving a general © and ¢ other types of sections
would result, For instance, in Figures 23b and 23c we have a typical
6 and two typical values of @, It will be noted that for the orienta-
tion of Figure 23b we can obtain 3, 4, or 5 sided sections only, while

for the orientation of Figure 23c we obtain these and 6 sided sections
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Figure 23, Cube, Number of Sides per Section,
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as well, Thus, a careful consideration of the relationship
between orientations and the types of sections obtained is
necessary,

Since we have previously integrated the cube over one
octant of orientations, let us examine the number of possible
types of sections for all orientations in the octant., If a
detailed analysis similar to that indicated by Figure 25 is
carried out and the results tabulated on the map of an octant,
the possible section shapes will be as shown in Figure 24k, The
various crystallographic poles are indicated on the octant for
convenience, It will be noted that the octant is divided into
12 smaller spherical triangles, and that for the orientations
represented by 6 of these triangles only 3, 4, or 5 sided sections
of a cube are obtained, while in the other 6 triangles 3, 4, 5 and
6 sided  sections are obtained,

The problem may be greatly simplified when it is realized
that, because of the symmetry of the cube, only & portion of this
octant need be considered in detail, The portion selected will be
thet spherical triangle with corners at the 001, 101, and 111 poles,
This is exactly one sixth of the octent shown, one forty-eighth of
the whole sphere, and represents a true sample of all orientations
of a cube, Therefore, all further work on the cube and other shapes
of cubic symmetry will be done considering only orientetions in this
1/48th sphere bounded by 001, 101, eand 111l poles. It may be noted,
as discussed earlier, that in orientation OOl we have the minimum

projected height of the cube, i.e.,, "a", while in orientation 101
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Figure 2k, Spherical Octant. Sides on Cube Sections,
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the projected height is ~fé a and in orientation 111 the projected
height is a maximum, ~f5 2,

Let us consider what the parameters of this triangle are
in terms of ¢ and ©, as shown in Figure 25, The edges of the
spherical triangle are @ = 0, © = 45°, and an arc we shall call
¢2(@)° There is also an inner arc that we shall need and will
call ¢l(9>° The corners of the triangle are ¢ =0; 0 =0 ¢ = l5°;
and O = 45°, ¢ = arctanv2, Now we shall solve for #-(0) and @;(e).,

Referring to Figures 25 and 26 and to a 001 standard
stereographic projection by Barrett(55)9 we see that the direction
of angle ¢2 is a series of poles from 101 to 111 or passing through
line 3-4, Figure 26, In fact, as @ varies from O to 45° the line
determining the value of ¢2 moves with © in a manner to always
pass through the edge 3-4%, We call the length of this line g,

If the cube is considered to have a side length of unity, then

&2 = 1%+ tan0 + 1° = 2 + tan’e
g = ~fé + tanzg
1
But cos = =
Po = 2
Therefore,
¢2 = BrCCOS o (63)

N2 o+ tanz@
However, this relation can be given in other forms.

arccos 1 arctanﬁdtang@ + 1
J2 + tanﬁg

P2
tan ¢2

cot ¢2

Il

arctan \ sec?0 = arctan (sec @)

il

1

sec @

cos ©

1]
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Figure 25, Spherical Triangle, Sides on Cube Sections.
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Figure 26, Cube, Solving for ¢2(G).
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Finally,

¢2 = arccot (cos ©) (64)

Although ¢2 can be expressed in many alternate forms, that given
above in Equation (64) is one of the simplest and shall be used in
all further computations,

As a check on the validity of this result, let us see if

the area defined by this triangle is actually l/hBth of a sphere.
n/% arccot(cose)
A = p2 sin gagae
o O

/4

0° L/ - cos ¢
(0]

/4
2
0 (1 -S9808 _ )ae
J1 + coszg

@)

arccot(coso)
de

0

In Appendix A it is shown that

/4
cos ©de .
J1 + coszg 6
o)
Thus we get
2 2
A = T-%) =10 65
S 8) 12 (65)

This is exactly 1/W8th of the surface of a sphere.
As additional verification of ¢2, we should be able to

check our result for P; (cube), by modifying Equation (50).
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n/% arccot(cose)

P, (cube) = df JF (sin@ + cose) sing + cos@lsin Pdagde
/4
12a ( 1 1 arccot@osc
= = b/ [(sine + cose) 5 (¢ - sing cosf)+ 75 sin ¢
6a, cose 1
- e 3 - 7 7 d.@
- \/[ {(sine + cog@)[arccot(cos@) l%—cosdg] + l+cos£®}
o
/b
- b Jf [sin® - arccot(cose) + cos@ « arccot(coso)
n o
. 2
_ 5in@ cos® _ cos © + 1l ] de

1 + cos26 1 + cosc@ 1 + cos<®

The solutions of these integrals are shown in Appendix A,

P, (cube)

ba . x
— [

- L arctanVo + =]

J2 o2

a (51)

Thus @, = arccot (cos ©) is confirmed.

Since we shall need $1(0), we shall compute it at this time,
Referring to Figures 25 and 27 we see that ¢l is the angle at which,
for any ©, corners 4 and 5 are at the same elevation, This will mean
that the direction ¢l will pass through corner 5 and the horizontal
line wv which is perpendicular to 6 and passes through corner L,

Reference to Figures 20b and 27 will help show this, If the length
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Figure 27, Cube, Solving for ¢l(@).
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from corner 5 to line wuv is called w, we find that cos ¢l = m/w,

The w we shall not use, The m has been found before,

J2 sin (o + b5) (k)

i

m

(sin 6 + cos ©) (48)

m

If the cube edge is taken as unity, then we also see that

tan §; = 1/m
cot §; = m
¢l = arccot (sin © + cos ©) (66)

This is the form in which @, will be used.

Having solved for ¢l(9) and ¢2(@), our presently required
information about the orientation triangle is adequate, and we shall
proceed to solve for the frequencies of the various shaped sections

of cubes,

Probabilities of Sections of s Cube

Considering that we can get three, four, five, or six
sided sections of a cube, we can refer to the probebilities of

getting each of these sections as‘PB, Py, P5, and Pg. From this,
P5 + PL" + PS + P6 = Pi (C'U..be) = lesa (67)

We see from Flgure 25 that for the spherlcal triengle, @ = 0, © = 45,
¢2 = arccot (cos ©), we get 3, 4, and 5 sided sections over the whole
triengle and 6 sided sections only over the smeller triangle between

¢l = arccot (sin © + cos ©) and ¢2. We need to find the appropriate

expressions for distance between tangent planes for each type of

section and then integrate over the corresponding ¢ and © range,
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The simplest procedure for doing this will be by number-
ing the corners of the cube and analyzing systematically for the
various possible angular ranges to see which are the conditions for
obtaining each of the types of sections, It must be remembered, of
course, that our integration will be only over 1/48th of the total
sphere of orientations so we multiply our integral by l2/ﬂ to get

total probability, Thus the integral to be used will be

. n/% g.(e)
Pogppr = — DSHAPE(¢’@) sin gagae (68).

TS gate)

@, and ¢b are the appropriate angular limits,

Consider first P5° By reference to Figure 25 we see that
parallel plane sections between corners 1 and 2 and also corners 7
and 8 give use three sided sections., Thus the vertical distance or
projected height between corners 1 and 2 and between corners 7 and 8
will give us the probability of 3 sided sections. For the 1/48th
spherical triangle we are working in, no other sets of corners give
us 3 sided sections. Also, the vertical distance between corners 7
and 8 will always be the same as the vertical distance between corners
1l and 2, so we merely compute the latter and double it,

Referring to Figure 28, to find how high corner 1 rises
above corner 2, consider that we rotate corner 1 in the direction
© about a horizontal line passing through corner 2, The effective
radius of this rotation is m, where m = a sin 6, The vertical dis-
tance, then, from corner 1 to 2 will be

m sin ¢

i

h o
h

1.0 a sin © sin ¢ (69)
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Figure 28, Cube, Computing P,
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The total D for 3 sided sections then is D5 = 2hy _o.
Dy = 2a sin @ sin o} | (70)

This applies over the whole angular range, © from O to 45° and ¢ from
0 to ¢2 = grccot (cos ©).

We then integrate using the same basic Equation (68),

n/% arccot(cose)

Py = 12 f f 2 & sind sin@ ° sin @Pdgde
7
o ©
1o /b L arccot(cose)
= = =+ 2a sin6 « = (¢ - sing cosy) ae
T 2 0
o
/b
12a . cos ©
= — [sin® ° arccot(cose) - sino - ——————-2—] ae
n ( ) 1 + cos“e

Using integrals from Appendix A gives the desired result,

p, = e [x - 1 arctan V2 + 4n 2 - fn 2

e 2]
5 TN~ J3 J3

= [£ - - arctan ~fé]

n ko e
62

Pz arctan V2) (71)
7t

i
)
P
W
]

Before proceeding at once to the balence of the calculations
for sections of a cube, it will be well to pause and make a careful
snalysis of the types of sectlons expected on the basis of sectioning
planes between various corners of the cube, as we did for three sided
sections., We shall consider the two cases, for the angular regions

shown in Figure 25:
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Case T - 3, 4, and 5 sided sections: @ = 0 to ¢l

Case II - 3, 4, 5, and 6 sided sections: ¢ = ¢, to ¢,
The angle, ¢l = arccot (sin © + cos @), is the angle at which corners
L and 5 are at the same elevation. The angle, ¢, = arccot (cos @),
is the angle at which corners 3 and 5 are at the same elevation and
L and 6 are at the same elevation, Reference to Figure 23%b shows
that this position of the cube 1s representative of Case I, ¢(O to ¢l),
while Figure 23c shows Case II, §(@1 to @), Now if we tabulate the
types of sections obtained for parallel cuts between consecutive

corners, as in Figure 23, we obtain the data of Table IV,

TABLE IV

TYPES OF CUBE SECTIONS DEPENDING UPON ADJACENT CORNERS

Case I, 0 < ¢ < ¢y Case II, @ < @ < ¢o
Corners Sides on Section Corners Sides on Section
1-2 3 1-2 3
2-3 b 2-3 b
3-b 5 3-5 5
L5 L 5-4 6
5-6 5 k-6 5
6-7 4 6-7 L
7-8 3 7-8 3

For 3 sided sections, we need hy_o plus h-_g for the entire
range, $(0 to @), end, since hy o = hy g, Dy = 2h) 5, as we had, For

L sided sections, we need hy_5 plus hg_ - for the entire range, #(0 to @),
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and hy, o for the range, g(0 to ¢l)° But hp_3 = hg_7, SO
Dy = 2hy s, PO to dp) + by 5, PO to gy) (72)

For 5 sided sections we need h3_4 plus h5—6 for the range, ¢(O to ¢l),
and h5_5 plus hy _g for the range ¢(¢l to ¢2), But h5_4 = h5-6’ and

h5_5 = h)_g, and furthermore h3_4 = hy_p. So for 5 sided sections,
D5 = 2hy o, (0 to ¢l) + 2h5_5: ¢<¢l to ¢2) (73)
For 6 sided sections we shall need
Dg = hs_y, #(8y to @) (74)

Thus, while we have hy _,, we still need h2_5, hh-S’ h5_5, and h5-4“
Referring to Figure 29a, we write down the following m's,

effective radii of revolution:

m_, = &asing
m5-4 = g sin ©
mj_z = & Cos e
my_z = 8 (cos © - sin @)
mi_) = & (sin @ + cos )

From Figure 29b, we then list the projected helghts:
hi o = m_p sin ¢ = g sin © sin ¢

ho 3 = Mp.z sin ¢ =a (cos © - sin ©) sin ¢

hys = bhyg- B8
But hs g = By
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Figure 29, Cube, Computing D (shape).



=79~

Therefore, we have the following additional relations:

h4_5 = gcos ¢ - my_) sin ¢

= acos @ -a(sin @ + cos @) sin ¢
h5-l+ = —hh_S.
h

3.5 = Pkt s

8 sin © sin ¢ + a cos @ - a (sin © + cos ©) sin ¢

hz 5 = 8 cos - acos @ sin
Summarizing, we now list relations to be used in sclving for

probabilities of obtaining various sided cube sections:

hy , = & sin 6 sin ¢ (75)
hp_s = a (cos @ - sin @) sin o} (76)
hys = a [cos f-(sin © + cos @) sin @] (77)
hg_), = a [(sin @ + cos ©) sin ¢ - cos @] (78)
hs s = a (cos ¢ - cos © sin @) (79)
We shell now solve directly for P), using Equations (68) and (72):

2
P, %g k/[ 2n, 5 * sin fagae + 22 k// L/? - sin gagde
(0] (0]

n/% arccot(cose)
12 , 2
= — 2 a (cose® - sind) sin"@gdgde

o]

7 /4 arccot sino+ coso)

+ %@ a [cosf - (sine + cose) sing] sin gagae
" 7 /b 6(c0s0)
o \ 1 arccot(cos
= —;E (cose - sing)e 5 (¢ - sing cosf) . de
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/4
12 , arccot(sino+ cose)
F =2 Li sin®g - (sine + cose) s L (@ - sing cos@)] de
s 2 2 0
o
/b
12
Py = —;E k/j [cos@ ° arccot(cose) - sine - arccot(cose) - cose - ijfgggza
o
+sing . —2959 ] g0
1+ cos<o
/%
6a 1 . . ¢
+ = [(sin@ T T I sin® « arccot(sin® + coso)
o

(sind + cos0)
(sin® + cose)= + 1

- cos@ « arccot(sin® + cose) + sine °

(sin® + cos®)
(sin® + cos0)c + 1

+ cosO - ] ae

For the first integral we use solutions from Appendix A, and the second

integral we simplify further,

Py, = %E? arctan 2 + (l-l%\/——g) - ﬁ.-x-jz arctany2 - l&n%

- L arctanve - (l_\fé)ﬁ + o 2 ]
2 4 V3

+ 22 ko _ 5ino . arccot (sing + cose)
2 + sin 20

sin2@

- ° ; i b cmeareme———————
cos® ¢ arccot(sin® + cose) = oln 50

. 2
+ 2sin® cos® + cos<e a0
2 + sin 20 2 + sin 20

It

e [—2— arctan~fé - Jéﬂ}
Je I

/b
+ G& L// L____.g____ - 5in6  arccot(sin® + cose)
2 + sin 20

- cos@ » arccot(sin® + cose) + EEEEE_EQEEJ de.

2 + sin 20
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The integrals listed above are solved in Appendix A,

P, = a(lS:r[‘/‘2 arctany2 - 3 - 342)
6ol _ 2. L___1y_1 Loy
+ » LB\/_B fﬂf(8 NE 4\/3) J—E—arcta,n\/—2+h£n2
i N 1 L2
J‘C(8+2\/—2 4\/”5)+\/‘2arCtan\/_2 ul&ne
1 1
ﬂ(“—--——)J
b33
= a (lB%Ié arctanN2 - % - 5~fé)
P — 3, . i 1 L L1,
545 8 242 k43 8 2de kI3 k343
= a (l8£fé arctanJ2 - 3 - B-Jé)
+ a (-2 + V3
P, = a (18%fé grctan V2 - k % + J3 - 342) (80)
This is the desired result,
Next we solve for Ps by using Equations ( (73) :

n
jf f /gjehl2 * sin gdagde + —;- / ﬁ 2hs_g * sin gagae

n/4% arccot(sine+ cose)

- & f f 2a sind sin®gagae
(@]

O

\n"d
il
I

n/% arccot(cose)
+ = 2a (cosf - cose sing) sin @dgas

G  arccot(sin®+ cose)
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) ﬂ\u 1 arccot(sin® + coso)
= 2ta sin@ * 2 (¢ - sing cos@) de
o5
X a/% arccot(cose)
+ 24a % sin?@ - COSO o L (¢ - sin¢ COS¢)} dae
T S L 2 arccot(sine+ cos®)
n/h
= 128 sin® ° arccot(sin® + cos@) - sind (51n9 +_cos6 )| gg
n L 2 + 5in<o
o
/b
L les \jﬁ = - 1 - cose - arccot(cose)
n 1 + cos<0 2 + sin206
o

©
+ cos@ ° arccot(sin® + cos@) + cos® <l ioioszg)

- cose (81n@'+acos®> a0
"2 4+ gin 20

above integrals are solved in Appendix A,
- 128 [t (2 - —2 - 1 )+ X arctany2 - 1 m 2
& 8 2d2 uds  Je T,

. —2 arctany2 - ”l - 2\fé

1

s 70 T 1 J”
o+ — o —— . - 1, 2 ¥/
5 T_g _TL{_ 5 T-‘z arctran + )+ n

N\

- VNS R S S g]
+ TTZ arctan V2 + (~_—E—— s (§ - 6~f3) 275 % n >
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_ 1za | Jo)l oL -3 -1l.1 3v. o 1,1.,1_ 1
P = === t 2 - - + + (n2)(~ =+ =2+ = - =
5 - [(arc an \T-E- RNERNE \7-2-) (1’12)( LY T T 4)
3.1 _ 1.1, 1 _ 1 I 1 1 1__ 1
o (8 SRR S 8) + 24z a4z Iz 24z E'Jé)

P S S S S AR S

1
w3 1243 643 643 udz 643 12~J5)}

_lea| 3 Jo+ B, 0 T J
= = . = t 2 - -1 2 -2 - 2 -1
- [\/_2arce.n +l(_ \T2-+-£57g( 3 + 3 + )

= 128 _ 3 arctan~fé + L4 X }

5 [ J2 LJo 23

P = a[- 18 /2 arctan\/_2+5+6\/_2-2\/_5} (81)
7t

This is the desired result, Finally we solve for Py, using Equations (68)

f f ° sin ¢d¢d@

/% arccot(cose)
= = f a[(sin® + cose) sing - cos@] sin @gdgae
arccot(sing + cose)

and (74):

:ill—'
N

i

Pg

arccot(cose)

o/
= 2‘% f [(sin@ + cos@)%w - sing cosf)- ']é"' Sin2¢] ae
o

arccot(sine+ cose)

- Sa / {(sine + cose) [arccot(cos@) - __09_?_92_ - arccot(sine+ cose)
- 1+ cos“o

+ sin@+cosOJ _ 1 . + 1 }d@
2 + sin 26 1l + cos<e 2 + sin 20
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il

Pg

-8h.

a/b

6a k/n { . ‘ sin® cos®
== sine ¢ arccot(cose) + cos@ ° arccot{cose)-

(cos0) (e0s0)- T ooes

00529 1
5 - ——y— = S1Nne - arccot(sin® + cos@)
1 + cos<@ 1 + cos™@
cos® o arccot(sin® + cose) + 25ino coso | 2 ae
2 + sin 20 2 + sin 26

integrals are solved in Appendix A,

éé [ﬂ.~ 1 arctanN2 + fn 2 + S arctany2 + ﬂ(i_:H§;£é>
N Js e

2 1 ‘ 1-J2,  w 1
fn 2 - 1 arctany2 - 7 ) - + 1 arctany2
3 J2 b CNERENE-
31 1 1 _ 5o 1 b
(£ - - tanJ2 + = fn 2
RTINS KTB_) Jp BreramNE L Mg
1 1 1 1 1 b
n (5 S - T+ g et J2 - & n 2
(8 + 505 5) + s arctan n n 2

1 1 T
"y '5\/5) i 5J5J

6a[«_,\[» 1 .3 1.1 1 .1
=2 | (arctanN2)(- 2w T b S w Ze )
T J2 J2 J2 J2 V2 2
R e R

Gty i s e

c(-l e 11 .11
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- G rctan -
P6—ﬂ[\/_2at J2 -Uﬂ_2-+i-§]
= a(6\£2 arctan V2 - 342 +43 ) .(82)

This is the desired result,

As a check, let us see if

Pz + P) + Pg + Pg = Py (cube) (67)
We add up the following equations:
P, = = [5 Rk arcta.nxj_2:, (71)
P, = a[-h.]:+18\/‘2 arctan 2 +\/_5-5\/_2J (80)
2 .
Py = a[5-l8‘[2 arctanf2-2\f3+6\f2] (81)
T
P, = a[6‘f2 arctanN2 + 3 ~‘5\/"2J (82)
J‘r N
Their sum is
- 3y =
Prorar = @ (£) = Py(cuve) (51)

This result 1s exactly as expected,

Relative Frequencies of Sections of a Cube

From the probaebilities of intersection of each type of section
of & cube, Equations (71), (80), (81), and (82), we can compute the rela-

tive frequency of each type section for randomly oriented cubes, We
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P
. . _ _SHAPE
determine relative frequency from fshape = PEBEAL° The results are

given in Table V,

TABLE V

RELATIVE FREQUENCY OF SECTIONS OF CUBE

Number of Sides Frequency
3 27,984
L 48, 677%
5 18, 695%
6 4, Gl

A direct comparison between the distribution computed theoreti-
cally by the foregoing analysis may now be made with the frequency dis-
tribution obtained by Hull and Houk(5o) on their measurements of wire
models, It should be noted that Hull and Houk presented their data in
graphical form, and, with the uncertainties in reading of the graph plus
the necessary conversion into percentages, the results attributed to them

have been computed as closely as possible, The comparison is shown in

Table VI,
TABLE VI
COMPARISON OF CUBE SECTION FREQUENCIES
Number of Sides Full and Houk(50) This Work
on Cube Section (statistical model) (mathematical)
3 29, 0% 28.0%
L ko, o% 48, 7%
5 18.2% 18. %
6 10, 0% _heg

100, 1% 100, 0%
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The above comparison shows, at first glance, a fair degree
of correlation, Yet, when consideration is made of the care with which
Hull and Houk made a suitable model, selected a representative sample
of all possible orientations (over the same 1/48th spherical triangle
used in the present mathematical analysis), and then took measurements
at closely spaced elevations, the extent of the discrepancy bet#een the
results is noteworthy, For the 4 and 6 sided frequencies the agreement
is particularly poor, differing by almost 6% in both cases. The agree-
ment for 3 and 5 sided frequencies is much better, being within 1% or
less, It is perhaps remarkable that Hull and Houk predict more than
twice the frequency of 6 sided sectioﬁs than is computed by the presént
work, To seek an explanation for these discrepancies, we shall look
in more detail.at the expected frequencies of the various sided sections
gs a function of cube orientation.

The -computation of the probability of obtaining a given type
of section of a cube at a fixed orientation involves using thé basic
D(shape) relation, the projected height which gives that given section,
in general terms of ¢ and 6, and then computing the value of that D
for the particular values of ¢ and © desired. The D(shape) relations
for the cube are derived from Equations (75), (76), (77), (78) and
(79) and are listed in Table VII, These are the functions we integrated
to get P(shape)°

The general trend of the results, when mapped on the spherical

triangle, may be somewhat anticipated as shown by Figure 30. There it

is shown that 100% of the sections will be 4 sided when ¢ = O for any ©
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3-4-5
6 sides - 0%

8=45"

Figure 30, Spherical Triangle, Relative Frequencies of
Cube Sections.

~~—— 4 sides—0% ——a ‘
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and also when © = O for any ¢, This, of course, includes one entire
side of our spherical triangle, When 0 = 45° and ¢ = ¢l = arccot~fé,
50% of the sections will be 3 sided and the other 50% 5 sided, When
6 = 45° and ¢ = ¢, = arccot 1/N2, 66 2/3% of the sections will be 3

sided and the other 33 1/3% 6 sided,

TABLE VIT

D (SHAPE) RELATIONS FOR CUBE

Sides on
Section D (shape) Relation Range
3 2 a sine sing 0 to ¢2
L 2 a (cose - sine) sing 0 to g,
a [cos@ - (sine + cos@) sing] 0 to ¢,
5 2 a sine sing 0 to ¢
2 a (cosy - coso sing) ¢, to %2
6 a [(sine + cose)sing - cosf] ¢l to @5

The relative probabilities of the sections will be somewhat
different than the mere percentage frequencies indicate because at ¢ =0
the D(cube), projected height, is "a" while at 6 = 45°, ¢ = ¢2 = arccot
1/N2 the D(cube) is%a, These relative probabilities, the projected
heights over which a certain type of section is observed as a function
of orientation, are obtained by calculating D(shape) values from Table
VII for (@,0). These are tabulated for each of the types of sections,
3, 4, 5, and 6 sided, in Tables VIII, IX, X, and XI., The tabular values
are also graphed in Figures 31, 32, 33, 54, which show contours of
relative probability density on the spherical triangle for each of

the types of sections,



Figure 31,
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Spherical Triangle,
Sections.,

D5 for 3 Sided Cube
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Figure 32. Spherical Triangle., D) for 4 Sided Cube
Sections,

0.l
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Figure 33. Spherical Triangle,
Sections.

(/)

D5 for 5 Sided Cube
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0.50

Figure 34, Spherical Triangle. Dg for 6 Sided Cube
Sections,

8=45
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TABLE VIIT

D3 - PROJECTED HEIGHT FOR 3 SIDED CUBE SECTIONS
(UNITS OF CUBE EDGE LENGTH)

ge/e° 0 5 10 15 20 o5 30 35 40 45
0 0 0 0 0 0 0 0 0 0 0
5 o .02 .03 .05 .06 .07 .09 .10 .11 .12

10 0 .03 .06 .09 .12 .15 .17 .20 .22 .25

15 0 .05 .09 .13 .18 .22 .26 . 30 .53 -7

20 0 06 .12 .18 .23 .29 Bl .39 oL 48

25 0 .07 .15 .22 .29 .36 Jho 18 5k .60

30 0 .09 17 .26 .3k e .50 57 .6k .71

35 0 .10 .20 .30 .39 .48 .57 .66 . Th .81

Lo~ o 11 .22 .33 A2 51 .59 .67 JTh .82

g * 0 .12 025j:uj155 ol .54 an L TH .83 . .91

s o .12 .25 37 o 48 .60 .71 .81 .91 1,00

50 - - - - - - - .88 .98 1,08

@ 0 .12 .25 .37 .50 63 .76 .89 1,02 1,16

* The arrows indicate a change in the relstive values of ¢l and. 40°,
Beyond arrows ¢ is less than 40°,
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TABLE IX
D), - PROJECTED HEIGHT FOR 4 SIDED CUBE SECTIONS
(UNITS OF CUBE EDGE LENGTH)

ge /e° 0 5 10 15 20 25 30 35 Lo ks

0 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00

5 i.o8 1,06 1,04 1,01 .99 .96 . Ok .92 .89 .87
10 1,16 1,11 1,07 1,02 .97 .92 .87 .83 .78 T
15 1,22 1,16 1,09 1,02 .9k .87 .80 ) .67 .60
20 1.28 1,19 1,10 1,00 .91 .82 .72 .63 5k 146
25 1.33  1.22 1,10 .99 .87 .75 W6k 530 k2 31
30 1.57 1,23 1,10 .96 82 .69 .55 L2 .28 .16
35 1.39 1.2k 1,09 .93 ST 61 k6 230 .15 .01
Lo 1.4 1.2k 1,06~ 7 .89 Th .58 Lk 29 L1k 0
N 141 1,23 1,06:K: oL 77 .62 .u7 .32 .16 0
45 1A 1.20 1,15 1,00 85 .68 .52 .35 17 0
50 - - - - - - - .38 .19 0

8 .41 1.29 1,16 1,02 .87 .72 .55 .38 .20 0

¥ The arrows indicate a change in the relative values of ¢l and L40°,
Beyond arrows @; is less then 40°,
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TABLE X

Dg - PROJECTED HEIGHT FOR 5 SIDED CUBE SECTIONS
(UNITS OF CUBE EDGE LENGTH)

ge /e° 0 5 10 15 20 25 30 35 Lo
0 0 0 0 0 0 0 0 0 0

5 0 02 03 .05 .06 .07 .09 .10 .11
10 o .03 .06 .09 .12 .15 .17 .20 .22
15 0 .05 09 .13 .18 .22 .26 - 30 33
20 o .06 .12 18 .23 .29 .3k .39 Uk
25 0 .07 .15 .22 .29 .36 L2 .48 o5k
30 0 .09 .17 .26 .3l o 42 .50 57 L6l
35 0 .10 .20 .30 239 .48 .57 .66 T
Lo o .11 .22~ .33 A2 .51 259 .67 o Th
3, 0 .12 oeal 29 W32 .37 W2 8 .55
Ls 0 .01 .02 .05 .09 .13 .19 .26 .33
50 - - - - - - - 05 .11
B 0 0 0 0 0 0 0 0 0

* The arrows indicate a change in the relative values of ¢l and 40°,
Beyond arrows (J; is less than L40°,
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TABLE XI

Dg - PROJECTED HEIGHT FOR 6 SIDED CUBE SECTIONS

(UNITS OF CUBE LENGTH)

g° /e° 0 5 10 15 20 25 30
0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0

20 0 0 o 0 0 0 0

25 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0

Lo 0 0 0 0 0 0 0

9, 0 0 otlziféz 06,09 .11

L5 0 .06 .11 .16 .20 .23 .26

50 - - - - - - -

¢2 0 .06 .13 .19 .25 .31 .38

* The arrows indicate a change in the relative values of ¢l and Lo0°,

Beyond arrows (J; is less than 40°,

55
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From the tabulated and graphed results certain observations
may be made, Orientations in the lower portion of the spherical triangl
between @1 and @, particularly toward the 111 pole, will be weighted
more heavily toward 3 sided sections and especially so toward 6 sided
sections and will be weighted less than average for 4 sided sectionms,
For 5 sided sections, the weighting is about equal above and below ¢l;
these are weighted most heavily around 6 = 45° and ¢ = ;. Thus the
observed deviation’between Hull and Houk's data and the present
theoretical results, i.e., very high on frequency of 6 sides, a
little high for 3 sides, and quite low on frequency for b sides,
could readily be accounted for by a bias in their orientations
tending to favor the lower triangle, especially toward the 111 pole,
The factor of orientation is very sensitive regarding section distri-
bution frequencies, so a small bias could affect results appreciably.

From a careful inspection of the orientations selected
for testing by Hull and Houk, Figure 8, it is possible to imagine
just such a bilas as suggested above, The circles on their orienta-
tion plot indicate 5° solid angles, so equal coverage of the triangle
by the circles would represent equal sampling, However, close
scrutiny sppears to strongly indicate a relatively greater coverage
and overlap by the circles in the region favoring high 6 and low 4
sided frequencies, that is, in the direction of the 11l pole. Due
to the previously mentioned sensitivity of this factor, it seems
highly probeble, in spite of the care and diligence exercised by

Hull and Houk to select representative orientations, that a bias
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of exactly the nature described was introduced, which accounts fdr
the discrepancy in results, A further comparison of the results of
this study with those of Hull and Houk will be made from the experi-

mental data obtained from synthetic samples containing dispersed

cubes, prepared as a part of this study.



VI. GENERAL APPROACH TO POLYHEDRON PROBLEM

As we have worked out the details for determining probability
of intersection of a randomly orientation cube by a plane section as
well as probabilities of obtaining different shaped sections of a cube,
certain generalities about the methods required may have become apparent,
First, it is essential to determine the upper and lower corners of the
polyhedron which define the property to measure (such as 5 sided sections).
Second, we must set up the expression which gives the vertical distance
between these corners as a function of orientation, Third, we must find
out what the angular limits are over which these same two corners define
our desired property, Fourth, we must set up and integrate the required
double integral that gives us the probability, Fifth, it will often be
necessary to add up several such calculations to determine the desired
result,

The first step, to determine the corners of interest which
define the property to be measured, taekes a little practice and usually
some sketches will be necessary. In fact, unless the polyhedron is
exceedingly simple, a few sketches will be essential, A step-by-step,
graphical, descriptive geometry visualization is required and must be
done carefully and with patience . Short cuts come with difficulty and
depend upon the skill acquired in developing a three-dimensional visual-
ization,

The second step, to set up the expression for the vertical
distance between corners, has been derived rather laboriously for cubes

on the basis of finding a horizontal effective radius, which we called m

-100~
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and was in terms of ©, and then expressing the change in height in terms

of ¢; the angle by which the polyhedron was tilted in the direction e,

Actually, this process is exceedingly simple, so simple that it is merely
necessary, in most cases, just to write down the expression., If we look

at any cube for which we have numbered the corners, for example, Figures

20 and 29, for side length "a", we may see that the vertical distance

from corner 1 to 2 will be asin@sin@, The vertical distance from corner

1 to 3% (or 2 to &) will be acos@sin¢, From 1 to 4 it will be a(sine+cose)sing.
From 2 to % it will be a(cos6-sing)sing. From 3 to 2 would be a(siné-cose)sing.
A negative result means that the corner stated last is actually highest, From

corner 4 to 8 the vertical distance is acos@, From corner 1 to 8 we have
D(cube) = a [(sino+cose)sing+cospP] (%9)

By now it should be apparent that we can consider the corners as
located on a 3 dimensional rectangular coordinate system, travel from the
upper corner (when tilted) to the lower corner along the coordinate axes,
and write down the expression for their difference in height. For a cube,
if we travel from left to right, as from 1 to 2, this gives us an asine,
which we also need to multiply by sin¢. Travelling from right to left would
meke it -asin®, Going from back to front, as from 1 to 3, would give
acos@sin¢, and it would be negative for going backwards, From top to
bottom, as from L to 8, would give acos¢. Going fractional parts of the
side length would merely require multiplying the expression by that fraction,
Figure 35 illustrates the coordihate system described, showing the axes names
and the directions teken as positive, Travelling in all 3 coordinate direc-

tions merely means adding up the 3 individual components along the coordinate
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origin

g —»— +sinGsin¢

+cos ¢

Figure 35, Coordinate Direction System.
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axes, This procedure makes such analysis very simple, and is followed
from here on,

The third step is to find out what the angular limits are over
which the two corners in question are to be considered. This is reiatively
simple and is done in conjunction with the first step, determining the
spplicable corners, and using the information of the second step, finding
the expression which specifies their height difference. It may be realized
that a condition defined between two corners terminates when those corners
become the same height. For instance, on the cube of Figure 23 we have 4
sided sections between corners 4 and 5 when 4 is on tbp and 6 sided sections
between corners 5 and 4 with 5 on top. Thus the angle which gives h4_5 = 0
is a limiting angle for both cases, This is readily solved for in terms of

¢, as will be shown:

h4-5 = a(-sine-cose)sing + acos@ = O

cos®

sing
g

(sin® + cose)

¢l = arccot (sine+ cose) (66)

This is identical to the previously determined result. It may be noted,
however, that this method of solving for ¢l wes much easler and more
straightforward than the method described earlier,

Sometimes a 6 other than 0° or 45° will be necessary as an
integration limit, This occurs when two angles, ¢(@)‘s,cross, and the
e of the intersection is obtained by setting the two ¢(9)'s equal to
each other, For example, for the intersection of @; = arccot(sine +cose)

and @ = arccot(cose) we have



=10k~

arccot (siné + cos®) = arccot (cose)

sin® + cose cos®

Il

o;

sin®

Therefore, © = 0° when ¢l = ¢2 in our spherical triangle, which we also
knew before., By this method we solve for the integration limits, $(e),

upper and lower, and ©, upper and lower, over any necessary orientation

range.,

The fourth step, integration, now follows, Setting up the
integral is simple and straightforward, with all the previously determined
information, Solving the integral in some cases may be easy, but in the
general cases it is the most difficult step of all. The trouble arises
from the inverse trigonometric functions needed to express the first
integration limits, $(©)'s. Where our @¢(6)'s are no more complex than
arccot(sin@+cose), we are able to solve the integrals exactly, as shown
in Appendix A, As we proceed shortly to analyze more complicated poly-
hedrons, the rhombic dodecahedron and the tetrakaidecahedron, the ¢(@)'s
do get more complex and exact integration is exceedingly difficult, if
not impossible, As will be seen later, for this work such integrals were
solved on a digital computer.

The computer solution, as will be seen, is simple, general, rapid,
and accurate, so it makes integration no longer the operation of limiting
difficulty in the solution of problems involving polyhedrons, When a
computer is availsble for solving the integral equations, Step 1, deter-
mining the corners which give the desired property, usually is the most

difficult and tedious operation., Step 5, adding appropriation portions
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of previous calculations, of course, presents no difficulty,

In summary, then, we can say that all solutions for probability
of sectioning polyhedral shaped particles dispersed in opaque bodies
require one or more trigonometric expressions giving the distance between
top and bottom corners or top and bottom tangent planes as a function of
orientation, given by ¢ and 6, These are the D (¢,0) expressions which
must be used in the integration over the appropriate ¢ and © ranges, The
total probability of sectioning is found by summing up or integrating over
all orientations, usually by adding up several separate integration

results, A general way of stating this is

all ¢,6 o, ¢b(@)
P, = 3;1 é; k/ﬁ ¢/1 D (¢,0) sin gagde (8%)
- AC

D (@,0) always has the form
D (g,8) = (D sine + E cos6) sing + H cos@ (84)

In Equation (84) D, E, and H are constants on a rectangular coordinate
system, being the x, y, and z components of the disfances between top
and bottom corners, as shown in Figure 35.

For bodies having cubic symmetry we need only consider orient-

ations within the 001, 101, and 111 spherical triangle, and we have

all 9,0 L (9)
P; = 12 .4 kjb ¢/? D (¢,0) sin gagds (85)
- i % a(g)

An alternate form of this equation is
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all §,8 o Pp(e)
. < A \/b g/ [(D sine+ E cos@)singﬁ
a(9)

e

+ H cos§ sing] agae
For probabilities of obtaining certain type sections of poly-
hedrons, the procedure is identical as above except that we need D(g,e)
for the corners of the polyhedron between which sectioning planes give
us the section shape desired. The same general equetions listed above
are used to compute probabilities of certain sections.
We now proceed to the analysis of polyhedrons more complicated

than the cube,



VII. OCTAHEDRON

Probability of Sectioning

The probability of intersecting an octahedron randomly
oriented in space by a sectioning plane may readily be determined.,
Let us consider an octahedron inscribed in a cube of edge length
"a", as shown in Figure 36, Since an octahedron has cubic symmetry,
we will integrate over the same spherical traingle, l/h8th of a sphere,
as we did for a cube., It may be seen that, over this range, distance
between top and bottom tangent planes will always be that from the

corner labelled 1 to corner 6 of Figure 36, This distance, in terms

of the edge length of the circumscribed cube, will be
D = hy_¢ = a cosf (87)

The probability of intersecting the octahedron will then be

n/4 arccot(coso)

P, (octahedron) = E%E Jf cos¢ sin @dgde
"o
108 /4 1 arccot(cose)
= - sin2¢ ‘ de
it o 0
0
/4
6 s
7 1 + cos“
o

From Appendix A, this gives

-107-
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Figure 36, Octahedron,
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ba .

P (octahedron) - [575 - 12 arctan V2]

(88)

P, (octahedron)

It

5 340
a QFE - = arctan vV 2)

This 1s the desired result. An alternate form of this expression is

P. (octehedron) = a . 532 recot V2 (89)
T
This numerically is
P, (octahedron) = 0,8312 a (90)

Frequency of Section Shapes

The frequencies with which various sections of randomly
oriented octahedrons may be observed can also be readily calculated,
From Figure 36b we see that we can only get 4 or 6 sided plame sections
of octahedrons, The distances required for each of these cases will be
D)y = 2hy_p and Dg = h2_5, Setting up the necessary expressions to

integrate, we have

/% arccot(cose)
2+ 2 (-cos6 sing + cos@) sin @gagae

12
Py = 7 5
o o
/b
t(cose)
108 1 . W, 2. 8reeo
= = [-cose -« 3 (f-sing cos@) 5 sin ¢]O de
o
6o | ) 2 1
a ‘ cos
= — - ° + -
- (-cos® * arccot(cose) T o026 l-kCOS29) ae

@)



-110-

We use the results in Appendix A,

) w

_6ar_3 2y2-1 1 1-Je
P ?E._[ Tz—arctan\/—2+(_T_)n+\7—2-arctan\/—2+( T

+ % - L arctanve]

o2 2

ba 3 7
Pll- 'E"' (" -7r2- arctan \/_2 +T2—)

a (342 —%t\—/_-e-arctanxf‘2> (91)

Py
This is the desired result for 4 sided sections.

For 6 sided sections, we have

/% arccot(cose)
2 f a cose sin“gagde

P6 = ;t—-
o
6 /b arccot(cose)
= 28 cose(@-sing cosf@) ae
n 0
o
6 j/“ 20
- o2 086 - t(cos0) - —22=— ] a6
. [cos arccot(cose) 7
From Appendix A, we have
ba 3 T 1 J 7 7
P =—[——arctan\/—2+———-—arctan 2 - =+ ]
6 PEES NN o242
ba 7
= ;— [\/_2 arctan J2 - m]
P, = & (61;[-2 arctanyJ2 - —j-_—g) (92)

This is the other desired result,
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From Equations (91) and (92), the relative frequencies of
section shapes from randomly oriented octahedrons are given in Table

XTI,

TABLE XII

- RELATIVE FREQUENCY OF SECTIONS OF OCTAHEDRON

Number of Sides Frequency
I _ Lk, 8%
6 55. 2%

100, 0%



VIII, TETRAHEDRON

Probability of Sectioning

For a tetrahedron, the development of the relationships for
probability of intersecting the particle by a random plane and the
expected fregquencies of various plane sections proceeds as readily
as for the octghedron., In Figure 37 we see a tetrahedron inscribed
in a cube of edge length "a". Since a tetrahedron also has cubic
symmetry, we find that our same spherical triangle between 001, 101,
and 111 poles gives us a representative sample of all possible orient-
ations.,

Since corners 1 and 4, in Figure 37, will always be the top

and bottom corners within our orientation range, we have
D(tetrahedron) = hy ) = a(cose sing + cos@) (93)

Therefore, our average distance between top and bottom tangent planes

will be
n/b  arccot(cose)
D = iéi u[ JF (cose sin2¢ + cos@ sing) agae
s O
/4
‘ arccot(cose)

= SE J[ [cose(@-sing cos@) + sin2¢]o de
5 ‘
/4

2
. ba [cose « arccot(cose) - cos 92 + = 5 ] a0
g 1+ cos@ 1 + cos<e

o

-112-
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sides

Figure 37, Tetrahedron,
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Again, taking the solutions to these integrals from Appendix A, we have

_ ba 3 x_x L T, X
Pi = = [Earctan\/—2+u~\/_2-\/_2 arcta.n\/—2-=4+2\/_2
P S arctan~Jé]
ZINERENE:
= Sﬁ ET% arctan V2 ]
P, = a (éi[é arctan v 2) (94)

T

This 1s the desired result., This may be given numerically as
P, (tetrahedron) = 1,2901 a (95)
"a" is the edge length of the circumscribed cube,

Frequency of Section Shapes

To solve for the expected relative frequencies of sections
having the various possible numbers of sides, we refer to Figure 37.
There it i1s seen that only 3 and 4 sided sections are obtained from a

tetrahedron,

For 3 gsided sections we have

D5 = hl_2 + h5_h_
= a(sine + cose) sind + a(cos® - sind) sind
Dy = 2a cosé sing (96)

Setting up the necessary integral, we have
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n/4% arccot(cose)

P5 = ;%i v/\ w/ 2 cose sin ¢d¢d@

iR _
128, "/ arccot(cose)
= == \/ﬂ [coso (@-sing cos¢]o ae
o
/b 5
= lfé [cos6 ¢ arccot(cose) - E—Egggggg ] de
Using results from Appendix A, we have
12a (3 L L Tt
P, = =] arctan o+ X - X - = arctany2 - T+ ]
5 n J62_ NN L oo
= lea [~fb arctan V2 -
n 2~fé
P, = a (12~Jé arctany2 - 34J2) (97)

3 T

This is the desired result.

For 4 sided sections of a tetrahedron we have (referring to

Figure 57)
DLI- = h2....5
_ (98)
D) = a(-cos® sing + cos@)

Again, the integral we need is

ﬂ/h arccot(cos@)

Py = 12a U/ L/‘ (-cose sin2¢ + cos@ sin@) agae
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/k ‘
P, = —gﬂ f [-cose(@-sing cos@) + Singmgrccot(cos@)dg
o
_ ba e [ o - t(cos0 cos-6 1
= J -cos arccot(cose) + T cos?o + . C082@] ae

Using results from Appendix A,

p. = 8 (.3 grctanV2 - L+ %+ Larctenvo + T o T _
4 PN N TN
+ = -l—arctan\/_2]
od2 2

= §9—[=—-_5_arctan\/_2+“]

T J2 J2
Pl& = a(—9\/—2 arctan\/—2+5\/—2) (99)

7

This is the desired result,

As a check, the sum of the probabilities of 5 and 4 sided sec-

tions should equal the total probability for a tetrahedron,

1242

P5 = a ( - arctan V2 - 5\/_2) (97)
Pll- = a (- 97;[-2 arctany2 + 342) (99)
P5+ P, = a (331\/—2 arctan \/‘2) (ok)

This is identical to the previous result,
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We mgy now compute the relative frequencies of random plane

sections of a tetrahedron, and list these in Table XIII,

TABLE XITT
RELATIVE FREQUENCY COF SECTIONS OF TETRAHEDRON

Number of Sides Relative Frequency

3 71,15%
L 28,85%



IX, RHOMBIC DODECAHEDRON

Probability of Sectioning

We now consider the probability of intersecting a rhombic
dodecahedron by a random sectioning plane, and then the relative
frequencies with which the various sided sections may be expected.,
A rhombic dodecahedron was shown in Figure 3, and we redraw it in
Figure 38 in order to number the corners, as required for our sub-
sequent analysis, Again, we shall use the edge length "a" of the
circumscribed cube in our calculations. A rhombic dodecahedron
also has cubic symmetry, and our same spherical triangle between
001, 101, and 111 poles gives us all possible orientations to a
representative degree.

To obtain the probability of intersecting a rhombic
dodecahedron we consider again the corners through which top and
bottom tangent planes pass, We find that corners 1 and 1k of
Figure 38 are the top and bottom corners from g =0° until ¢ = §; =
arccot (sine + cos@), at which angle corner 2 is as high as corner 1
end corner 12 is as low as corner 1k, From § = §; to § = @, =
arccot (cos@), corners 2 and 12 are the top and bottom corners.

To solve for D (rhombic dodecshedron) we then need hy_q) from

0< @ <@y and hy 1o from @y < ¢ < Po.

hy_q) =& cosf (100)

(sin6 + cose) sing + 5 cosf (101)

i

ho_1o

-118-
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Figure 38, Rhombic Dodecghedron,




We then write

o

R.D,
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down

n/b  arccot(sine+cose)

12s f f cosf sing dgde

o 0
n/% arccot(cose)
12 .
=== [% (sin@4—cos@)sin2¢ + % cosf sing] dgae
7
o arccot(sin6+cose)
6s. w4 5 arccot(sine+cose)
— [sin ¢]O ae
o
/4

arccot(cos6)

28 b/\ [ (sine+cose ) (@-sing cos¢)+sin2¢] ae

arccot(sine+cose)

O

=

n/

ng de
s 2 + sin 26

O
/4 .
28 \/ﬂ [sin® ° arccot(cos®) + cos@ ° arccot(coso)
7
o
. 2
sine cose _  cos"O 1

+
1+ 0052@ 1+ 0052@ 1+ 0052@

sin® ° arccot(sin® + cos®) - cos@ ° arccot(sine+ cose)

singe + 28ine cose + C082@ - 1 ] o
2 + gsin 20 2 + sin 20

These integrals are solved in Appendix A,
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This is the desired result,

P,
i

- ba [
R.D, Tt 6\/—5
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x Lh J2

> 7 2 1
+ = arctanv2 + & - Lo . 1n S - —

J2 TN P NEERE
- T4 %+ T -1l arctanVo - 3% 4+

hooda 2d2 2 8

1 1 3 Tt T
-——arctan\/‘2+.-]_:—___ +

J2 "2T8 oz
+ i—arcta,lrl\/—2+'-I£--: T ]

J2 i 5\/_5
=g_+5_a_[g__£+ ctn\/_E - L

Jz = L2 2 (aretan2) 2"
+£_.<_l+.]_‘+£+_l__£ Li

J2 > 2 2 2 qr (u
22—-2[————31 :l—-——i— a

J3 o Ledzl ¥z 243

= D = a, \/3/2

= 0,8660a

(rhombic dodecahedron)

"a" is the edge of the circumscribed cube,

J ;22 {1 L orctano + lnk§r

Stated numerically this is

arctan \/_2

n W

(102)

(103)
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Frequency of Section Shapes

A detailed investigation of the shapes of sectilions possible
from a rhombic dodecahedron reveals that we may obtain sections having
3, 4, 5, 6, 7, 8, and 9 sides. In any one given orientation not all
of these type sections will be possible, The types of sections which
are possible as a function of our spherical triangle are shown in
Figure 39, It will be noted that we now have three distinct angular
regions to consider, and in addition to the angles, ¢l = arccot(sin6+cose)
and ¢2 = arccot(cos@), which are the same as for the cube, we now need to
know a ¢5(9), This ¢3 is the angle at which corners 3 and 9 have the
same elevation, and is shown, by the previously described method of

analysis, to be:
¢5 = arccot (3sine - cos®) (10k)

We shall now identify the corners to be considered that
determine the shapes of sections we obtain., To do this, we consider
one at a time each of the three sub-triangles, labelled I, II, and IIT
on Figure 39. Since the rhombic dodecahedron is symmetrical above
and below its mid-point, we need only consider the corners which are
above the mid-point for any given orientation, For triangles I, II,
and III we obtain the data of Table XIV,

To detemine the total possibilities for each type of section,
we collect and group those listed in Teble XIV by each triangle. Each
group is multiplied by two, to account for sections above and below

the mid-point, except when we count a range over which the mid-point
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¢, =arccot (sin 8 +cos8)

¢, =arccot (cos 8)

¢4 =arccot (3sinf—cosb)

N O p

(0*00)010]

@
b'\
o 4,5,6,7,8
T :
] ]
4 D
S
S5,6,7
3,5,6,7,8
3
> Q
68‘> I q;}"
& o
A)-\
4, OI
0=arctan—§— R Gt
e
aqs

Figure 39, ©Spherical Triangle, Sides on Rhombic
Dodecahedron Sections,
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is included. We get then the data of Table XV,
TABLE XIV
SIDES ON RHOMBIC DODECAHEDRON SECTIONS

DEPENDING UPON ADJACENT CORNERS

(Sub-trisngles I, II, III, - see Fig. 39)

I II IIT

Corners Sides Corners Sides Corners Sides
1-2 L 2-1 3 2-1 3
2-3 5 1-6 5 1-6 5
3-5 6 - 6-3 I 6-9 7
5-h 7 3-9 6 9-3 9
homid 8 9-5 8 3-5 8
5~10 I 5-10 K
10-mid 6 10-mid 6

We can readily compute the D's for the various distances between
corners by the previously described technique., We also need the angle at
which ¢5 = @, or arccot(3sing - cos@) = arccot(cos@), and we find this
to be @ = arctan 2 or arccot %, The corners for obtaining various sided
sections and the integration ranges listed in Table XV are shown graphi-
cally in Figure 40,

We are now in a position to set up and solve the various needed

integral equations, It may be noted that for every angular range involv-

ing @ and @, we already have solved in Appendix A sll the integral
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Figure L0, Spherical Triangles, Corners for Obtaining
Sections of Rhombic Dodecahedron,
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TABLE XV

RHOMBIC DODECAHEDRON, FUNCTIONS NEEDED
TO DETERMINE FREQUENCIES OF SECTIONS

Sides Projected Helight Q Range © Range
Dy 2 hy ¢, to @ 0 to ﬁ
Dy, 2h 4 0 to §; 0 to E
Dg 2 hp_» 0 to §y 0 to %
2 h1-6 g1 to go 0tof
D¢ 2 by _g 0 to ¢y 0 to %
2 bz g ¢, to @ 0 to arccot
2 hy_g ¢l to ¢5 arccot % to
hyo) ¢, to ¢, 0 to %
D, 2 hs_), 0 to ¢, 0 to %
2 h6~5 ¢l to ¢2 0 to arccot
2 g _» ¢, to @ arccot % to
2 h6m9 ¢5 to ¢2 arccot % to
2 hg_q, ¢, to g, 0 to %
Dg .10 0 to §; 0 to E
2 h9w5 ¢l to ¢2 O to arccot
2 h9m5 ¢l to ¢5 arccot g to
2 h5m5 ¢5 to ¢2 arccot % to
Dy 2 hg_3 ¢5 to @, arccot % to

1R ol

FROER ol

s = ER= ERR NI IO
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equations which are necessary for an exact solution, However, when
we integrate with one limit being ¢5 = grccot (3 sin6®-cos®) we gen-
erate new functions, for which we have not as yet determined the
solutions to the integral equations, In the initial solution of
these equations a method of approximate integration using the trape-
zoidal formula, described in any calculus text, was utilized, However,
subsequently an IBM 7090 digital computer was utilized to solve the
integral equations, aﬁd the results obtained were of much better
accuracy than the initial results. The description of the digital
computer technique is contained in Appendix B. The equations for
the rhombic dodecahedron are represented by Equations (16) through
(35) on the digital computer print-out sheet in Appendix B,

The probabilities of each of the types of sections of a
rhombic dodecahedron, as calculated by the computer, are given in
Table XVI., This table also lists the relative frequencies with which
the various types of sections are obtained, as calculated directly
from the probabilities. It may be noted that the sum of the probabilities
of the types of sections, which represents an addition of 18 separately
computedqintegrals, agrees to the fourth decimal place with the previously
computed probability of intersection of the rhombic dodecahedron as a

whole,
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TABLE XVI

RHOMBIC DODECAHEDRON, PROBABILITIES AND
REIATIVE FREQUENCIES OF SECTIONS

Sides on Section Probability Relative Frequency
3 0.0348 a 4,09
L 0.1160 a 13,4 9
5 0,1402 a 16.2 %
6 0.2587 & 29.9 %
7 0,1654 a 19.1 %
8 0,1413 a 16.3 %
9 | 0,0096 a 1.1 %

0.8660 a 100.0 %



X. TETRAKATDECAHEDRON

Probability of Sectioning

The tetrakaidecahedron was sketched in Figure 1 and is shown
again in Figure 41, with its corners numbered. The analysis of the
probability of intersecting a tetrakaidecahedron by a random sectioning
plane is simple and straightforward. Again, only the spherical triangle
between 001, 101, and 111 poles is needed. For all orientations repre-
sented by this triangle, corners 1 and 24 are always the top and bottom
corners. Therefore, we need hj.py from O< Q5§ ¢2; We find, in terms

of "a'", the edge of the circumscribed cube:

hy oy = % cos6 sin@ + a cosf (105)

Therefore, the integral which gives probability of sectioning is

n/% arccot(cose)

D === 12a /ﬁ Jf [ cose 31n2¢ + cosf sing] ] agae
o
/4 1 - arccot(cose)
_ e = cos6 - sing cos@) + sin°@l.  ae
1t 2 .. O
o
/b
6a 1 1 cos®® 1
= — -_— ° t @ - - d@
1t [2 cosé - arccot(cosd) 5> T+cos?e | l+cosee

Using the integral solutions from Appendix A,

‘Pi = — [575 arctan~fé‘+ g - gjé - 5%; arctan V2 - g
LT o L oarctan V2]
Wz a2 V2
_ ba. [T ]

© W2

-129-
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Figure 41, Tetrakaidecahedron



-131-

P, (tetrakaidecahedron) = a ° 2 (106)
a2
This is the desired result., Numerically, this is
P, (tetrakaidecahedron) = 1.0607a (107)

"a'" 1s the edge of the circumscribed cube.

Frequency of Section Shapes

It would be nice if the computation for fregquencies of sections
of the tetrakaidecahedron were as simple as the above, but this turned
out torbe an exceedingly complex problem., The tetrakaidecahedron has 2L
corners, and each time any two corners change their relative positions
in elevation as the orientation varies, a new set of possible sections
is obtained. It turns out that, over our familiar spherical triangle,

77 separate sub-triangles must be considered and analyzed. The result

of this analysis leads to 204 integral equations to be solved, each equa-
tion generally requiring an approximate integration technique. Thus, the
desire to obtain the frequencies of sections of the tetrakaidecahedron
led to the development of the IBM 7090 digital computer solution for our
integral equations. This digital computer technique is described in
Appendix B.

The method of attack to determine sections of the tetrakailde-
cahedron is roughly outlined in Section VI of this dissertation entitled,
"General Approach to Polyhedron Problem." For the tetrakaidecahedron,
this will be described in somewhat more detail now,

As mentioned earlier, some systematic method of preparing
sketches representative of different orientations of the polyhedron is

essential, The best procedure is to prepare a series of transverse
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sketches of the tetrakaidecahedron, showing a vertical proJjection of the
object viewed from the side in a direction normal to the © direction.
Several of these will usually be required for various values of 6, de-
pepding upon the complexity of the polyhedron and the spatial visual
acuity of the investigator.

A typical example of such a sketch is shown in Figure 42 for
© = 28°, For this choice of 6, all ¢'s of interest may be investi-
gated by merely placing a transparent protractor at the proper ¢ angle
over Figure 42b and then moving a transparent drawing triangle along the
protractor to determine elevations. Figure L42a is merely a guide to help
draw 42b. It may be seen then that for © = 28°, with this figure we can
determine for any ¢ the consecutive corners of the tetrakaildecahedron
that are passed by parallel sectioning planes from the top to the bottom
of the figure. We also can determine the number of sides on the plane
section that results between any two consecutive corners. As for example
on Figure 42b, for 6 = 28° and @ = 30° it may be seen that a 7 sided sec-
tion is obtained between corners 9 and 11 and a 6 sided section from cor-
ner 11 to corner 10. This detalled information is essential, as we need
to sum up all 6 sided sections, 7 sided sections, eté., to determine their
frequencies. In this instance, a component of the total probability of
7 sided sections would be that contributed by the vertical distance be-
tween corners 9 and 11 over the appropriate angular range.

This procedure of finding the corners between which certain
types of sections are observed is followed until all orientations within
the spherical triangle have been investligated. The result will then be

a map of the orientation triangle, which is divided into sub-reglons of
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Figure 42, Tetrakaidecahedron at 6 = 28°
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orientations. For tﬁe tetrakaidecahedron there are 77 orientation sub-
regions, as shown in Figure 43.

The angles subdividing the sub-regions are expressed as ¢(@)'s,

and are the orientations at which two or more corners have the same ele-
‘vation. As you cross one of theée angles, the types of sections and

the corners between which they are observed will usually change discon-~
tinuously in the immediate vicinity of these crossing corners. Thus the
¢(@) angles represent integration limits for the required equations. By
a consideration of the corners that are crossing we may readily compute
each ¢(®) and we list these in Table XVII, together with two 6 angles
and all the crossing corners represented. These angles, then, completely
subdivide our orientation triangle into the required sub-regions.

We now can map out on an orientatilon triangle all corner numbers
that result in a particular type section by placing these numbers within
the applicable orientation range. From the corner numbers we compute
the D(@,8) for these corners, and from the orientation triangle we have
the integretlon limits. We Ilntegrate each case, add up all such cases
for a particular type of section, and we have the probabllity of that sec-
tion,

For instance, for 5 sided sections of a tetrakaidecahedron the
orientation plot is shown in Figure 45. It will be noted that, for the
top half of the body, 3 sided sections are found between corners 1 and 2
for 0< Qﬁf ¢6 = arccot (2cos@-sin®) and between corners 1 and 5 for
b6 < ¢_§ ﬁg = arccot (cos®). We need hy_p and hi.-5; to facilitate

finding these and other h's which comprise the D's, we refer to a top
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Figure 44, Tetrakaidecahedron. Finding Corner Distances.
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¢, =arccot (2cos 8-sin8)

¢, = arccot (cos8)

~J

U -

Figure 45. Spherical Triangle. Corners for 3
Sided Sections of Tetrakaidecahedron.




TETRAKATDECAHEDRON.
Angles

arccot (sin® + cos®)

arccot (cos®)

arccot (4cos® + sin®)

arccot (3cose)

arccot (2cos® - sin®)

arccot (2cos6 + Lsing)

2 2

arccot (4cos® - sin®)

arccot (3cos® + 2sine)

arccot (3cose - 2s5in®)
= arccot (2cos@ + 3sine)
= arccot (2cos® + sin®)
= arccot (2cose)
= arccot (2cos6 - 3sing)
= arccot (gcosg - %sin@)
= arccot (cos® + 4sine)
= arccot (cos® + 2sind)
= arccot (3sinG)
= arccot (4sine - cos®)
= arccot (%cos@ + gsing)
= arccot (2sinG)

arccot 3

arccot 2
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TABLE XVII

ANGLES DETERMINED BY CORNER
ELEVATIONS WHICH SUBDIVIDE THE SPHERICAL TRIANGLE

5=9)

l=5;,

8=0
4=5

2=9,

Corners

4=11, 8=18, 7=17

2=5} 6=9

h=9

8=10
8=11
8=13

7=

3=5, 7=10

8=l7
6=10
L=10

7=11

h=6, 13=17, 8=12

3=6

7=12, 13=18

5=11
7=18
10=11

12=13

3=10, 6=11, k=17, 7=13
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and front view of the tetrakaidecahedron, as in Figure 44, and read off
the difference in coordinates of these points in units of cube edge length,

using the convention illustrated by Figure 35. We thus write down

hy o = % [ (cos6-sinG) sing] (108)

[-cos6 sing + cos@] | (109)

™

hl-5 =

Now we integrate, using the basic Equation (85) over the appropriate
limits, and we have the total probability of 3 sided sections, remember-
ing to consider those sections on the lower half of the body as well,

The integral for P5 is

P, = 1o . EJF Jf % (cos6-sing)sin® gagde

T
o o
n/% 85
+ i%i o2 % (-cos6sinf+cos@)sin Pagae (110)
o )
The angles ¢2 and ¢5 are
@, = arccot (cose) (111)
Ps = arccot (2cos6-sing) (112)

Due to the presence of the function ¢6 in the above integrals, they
have not been solved by exact integration but were calculated with the
digital -computer. The above integrals are Equations (38) and (39) on
the computer print-out in Appendix B.

An identical procedure is followed for 4 sided sections. The
orientation map showing corners resulting in 4 sided sections is given
in Figure L6. We find hp_3, hy.5, hp_5, and h5.p 1in an identical man-

ner to that previously described and integrate over the angular regions
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4:5 =arccot (3 cosf)

4’:2 zarccot (2 cos 8 +sin8)

O W

¢, =arccot (2 cos 6-sinf)

L\

4>2 =arccot (cos8)

Figure 46. Spherical Triangle. Corners for 4
Sided Sections of Tetrakaidecahedron.
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shown in Figure L6, These equations, which when summed give P, are
those listed on the computer print-out, Appendix B, as Equations (L40)
through (43).

The orientation map for 5 sided sections is shown in Figure A47.
On this map two new factors are apparent for the first time. One is that
the second integration over © 1s not always done over the whole range,
0 to 45°, but is limited at times to © = arccot 3 or © = arccot 2,
The second factor is that some of the regions indicated in Figure L7
must be further sub-divided for integration where two different upper
or. lower limits of ¢ are called for. Four such cases appear here. The
general procedure is still the same, however, and the equations which
give P5 are listed in the computer print-out, Appendix B, as Equations
(44) through (55).

We next show the map for 10 sided sections, Figure 48, which
is the maximum number of sides to a plane section of the tetrakaidecahedron.
Here it is apparent that 10 sided sections are possible for only a limited
portion of the total orientation region. The egquations which give Py,
are Equations (56) through (59) on the computer printout, Appendix B.

For 9 sided sections we show the map, Figure 49. The equations
which give Pg are Equations (60) through (85) on the computer printout.

For 6, 7 and 8 sided sections of the tetrakaldecahedron we do
not show corresponding mapé of the orlentation triangle. Such maps were
prepared and are in fact essential to the setting up of the integral
equations. However, for pictorilal purposes they represent little more

than rather impressive worksheets. The 6, 7 and 8 sided sections occur
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NOTE:

- @, Py, P, Pe, Pr, Pro, Prr, andPpgare
functions of 8 (see text)
2- 3 =08-=arccot 3
@ =6-=arccot 2

Figure 47. Spherical Triangle. Corners for 5
Sided Sections of Tetrakaidecahedron.




Figure 48,
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Spherical Triangle. Corners for 10
Sided Sections of Tetrakaidecahedron.
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in every one of the 77 sub-triangles of the orientation triangle shown
in Figure 43, with multiple frequencies in most such sub-triangles,
often for as many as four pairs of points in a given sub-triangle. The
equations which give these probabilities may merely be written down, one
at a time, by consulting the orientation map. They are listed in the
computer printout as follows:

Pg Equations (138) through (171)

Py Equations (172) through (241)

Pg Equations (86) through (137), plus (2L2)

The probabllities of each of the types of sections of a
tetrakaidecahedron, as calculated by the computer, are listed in Table
XVIIT. The close agreement between the sum of these separate probabili-
ties, which represents the sum of 204 separate integrations, and the total
intersection probability of the tetrakaidecahedron is to be noted. The
accuracy to the fourth decimal place gives confidence in the results of
the analysis.

The relative frequencies of the various sections of a tetrakaide-
cahedron are readily computed from the probgbilities and are also listed
in Teble XVIII. Since Hull and Houk<50) also obtained such data for a
wire model tetrakaidecahedron, we list thelr results for comparison. The
most obvious comment that can be made relative to the comparison between
our result and the previous one by Hull and Houk is the extremely remarks-

ble closeness of the agreement.
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TABLE XVIIT

TETRAKATDECAHEDRON. . PROBABILITIES AND
REIATIVE FREQUENCIES OF SECTIONS

Sides Probability Frequency Hull & Howk(90)
5 0.0770 & 7.5% 7.9%
L 0.1k422 & 13 . 4% 1h.5%
5 0.1252 a 11.8% 12.9%
6 0.3313 a 31.2% 29.5%
7 0.1938 a 18.3% 17.9%
8 0.1393 a 13.1% 12,8%
9 0.0403 & 3.8% 4.0%
10 0.0116 a 1.1% 0.5%

1.0607 a 100,0% 100.0%



XI., HEXAGONAL PRISM

Although a hexagonal prism does not possess cubic symmetry, as
have the other polyhedrons considered, the derivation of the probability
of its intersection by a randomly oriented plane presents no new diffi-
culties. Computation of relative frequencies of the various possible
sections may also be done, but in the present case we restrict ourselves
to the body as a whole.

Let us consider such a hexagonal prism, as.shown in Pigure 50,
with corners numbered. Let the diagonal of the base be "a'" and the alti-
tude be "e¢". Due to its symmetry we will be able to represent all possi-
ble orientations of the prism by a fange of 20° rotation around the verti-
cal axis and a tilt of 90° from the vertical. We therefore consider ¢
from O to 90° and @ from O to 30°. This 1s a spherical triangle, l/24th
of a whole sphere. Over this range of orientations our top and bottom
cérners will always be corners 1 and 10. We then want h;_j5. Using the
same convention as described previously and illustrated by Figure 35, we
write

hy_1g = = sind sin@ + ggz-cos@ sing + c cos@ (113)

2

o

Therefore, using Equation (83), we integrate
/6 wf2

D=2 - ﬁ; \/p JF [g-sin@ sing + ?%2 cos® sin@ - c¢ cosflsin Pagae
o) o

il

/6
=6. % L/[ [& sine(@-sinfcosP) + éli cos6(@P-sin@cosd)
7

2 2
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/6
=2 Jf (& sine - L + éii cos® - L + c)ae
s 2 2 2 2
o
=2 [8T (-cos®) + a3 (sine) + c@]ﬂ/6
i L o
_3qan (3 an/3 (1) , cx
== [M- ( = 1) + n (2 t 2z ]
=2 [a( YEZE + X +'J5“) + I c)
Tt 8 L 8 6
P; (hexagonal prism) = %.a + % c (114)

With this result we conclude the theoretical derivations for probabilities

of intersection of randomly oriented polyhedrons by sectioning planes.



XITI. EXPERIMENTAL PROCEDURE

One of the original obJjectives of this research was to be an
attempt to verify experimentally some of the theoretical relations de-
rived connecting particle shape, size, and number in three dimensional
opaque bodies with number observed in plane sections and with relative
frequencies of the possible plane sections observed. In order to do
this it was planned to prepare synthetic samples containing known numbers
of particles having known shape and size, to distribute these particles
within the body in such a way that their orientations may be considered
to vary at random, and then to section the bodies and record the numbers
and section shapes observed. The experimental results were then to be
compared with the theoretically predicted quantities, and, where possible,
a statistical comparison would be made.

The synthetic particles that were prepared consisted of cubes
and cylinderé having four different z/d ratios. These two general
shapes, cubes and cylinders, proved fairly easy to prepare in small parti-
cles, ©Some other shapes, such as rectangular parallelepipeds, would
have been equally easy to prepare, but it was felt that little additional
information of interest would be gained. More complicated polyhedrons,
such as tetrahedrons, octahedrons, rhombic dodecahedrons, and tetrakaide-
cahedrons, appeared to present greater problems for their preparation
in large numbers of small particles, so these were not attempted.

The preparation of the particles, their dispersion in solids,
the measurement and results, and the statlstical analysis will now be de-

scribed,

-150-
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Particle Preparation

Cylinders. Four shapes of cylinders were prepared, varying
from flat cylinders, approximating platelets, to long needles. Their

dimensions, in inches, are listed in Table XIX.

TABLE XIX

CYLINDRICAL PARTICLES

Shape Diameter (in.) ILength (in.) 4/a
1. flat cylinder 0.104 0,051 0.49
2. equiaxed cylinder 0.051 0.051 1.0
3. long cylinder 0.060 0.120 2,0
4, round needle 0,020 0, 400 20

The flat cylinders and the equiaxed cylinders were prepared
by punching them from sheet material. The sheet consisted of aluminum,
0.051 inches thick, which was actually a laminated 1100-H-18 sheet con-
sisting of 13 separate plies glued together. The laminated sheet was
available from previous research, and it was felt that cylinders from
this material might be analyzed and interpreted in such a way as to ob-
tain information on very thin platelets (one ply) or lamella. While such
exhaustive analysis was not conducted, the plies did prove very helpful
in interpreting the cylinder section shapes obtained. This was because
‘it proved nearly impossible to obtain punchings without any distortion
along the sides and ends, which would have proved confusing in interpret-

ing the observed section shapes without the laminates as a guide. Thus,
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if in counting the piles under the microscope you see 135 plies, you may
be confident that both ends of the cylinder have been intersected.

The procedure for prepariné these punchings consisted of
drilling a small hole in a thin steel sheet to use as a die, and then
with minimum clearance to use a small steel drill mounted in a drill
press, upside down, with flat end as a punch. The aluminum sheet to be
punched was Inserted between drill and die and then punched out by crank-
ing down on the arm of the drill press. In this way as many punchings
could be made as desired. Some of these punched cylinders are shown in

Figures 51 and 52,

The long cylinders and the round needles were prepared from
wire. The long cylinders were made from 0,060 inch 1100-SO aluminum
wire, and the round needles were made from 0,020 inch copper wire. In
both cases, many pieces of wire about one half inch or more in length
were cut by hand with diagonal wire cutters. The length was a convenlent
integral multiple of the desired size, allowing for cutting and polishing.
‘These pieces of wire were stacked parallel to each other inside a brass
ring one inch in diameter and cut the same length as the wires. When the
wires were packed tightly by hand, the space between the wires was filled
by a cold-setting liquid plastic and allowed to harden. Two types of cold
setting plastic were used, with about equivalent results. One was a liquid
epoxy, Shell Epon 828, plus diethylenetriamine hardener, and the other was
a dry, powdered self-curing resin known as Koldmount, made by the Vernon-
Benshoff Co., to which i1s also added a liquid hardener. After the plastic

had hardened, the wires and brass rings,which were over-length, were cut



Figure 91, Bouiaxed Cylinders, Laminated Aluwninunm,

(mag, approx, Mx)

igure 52, ¥lat Cylinders, (mag. approx, Mx)

e

Taminated Aluminum,



Pigure Y%, Preparation of [long Aluminum Cylinders,
(mag. approx. 5%)

Figure fj?%. Long Cylinders Aluminum Wire,

*
(mag, approx, lix)
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to approximate size. In the case of the 0.120 inch long aluminum cylin-
ders, this resulted in four separate sections,

These sections were then ground and polished flat with parallel
ends until measurement by micrometer was that desired for cylinder length.
Then the wires or cylinders were removed from the brass rings by dis-
solving the plastic in suitable solvent and separating out the cylinders.
As solvent, either butyl cellusolve or ethylene dichloride proved effec-
tive, especially if heated slightly.

A photograph of the aluminum cylinders in the brass ring is
shown in Figure 53, and some of the aluminum and copper cylinders are

shown in Figures 54 and 55.

Cubes. For the production of cubes, one eighth inch square
rods of brass and cold-rolled steel were obtained. It was considered
that having sharp edges or corners on the rods would be quite important,
and the brass was much better as received from this standpoint. The brass
rod was sawed into about half inch pileces, mounted parallel lengthwise
inside a brass ring, plasticized, cut, ground, polished, and deplasti-
cized in exactly the same fashion as Just described for long cylinders.
In this way 0,125 inch brass cubes of very good quality were prepared,
upon which nearly all the data for cubes were obtained.

The steel rod was converted to cubes by the Air Force Institute
of Technology shop, by cutting off the approximate lengths and polishing
two opposite faces at a time between magnetic chucks. Many steel cubes
were made in this way; however, these were not utilized to as full an
extent as the brass cubes for thé following reasons, Due to heavy work-

load in the shops, the hand made brass cubes were ready first. The brass
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Pigure 99, Heedles, Copper Wire,
(mag, approx, Hx)

56. Preparation of Brass Cubes,
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cubes when mounted proved easler to section and polish because of less
hardness difference between cubes and the rest of the mount. The brass
cubes still had sharper edges and corners. This could have been readily
corrected for the steel cubes, however, by simply grinding more material
from all sides in the magnetic chucks.

A photograph of the brass cubes in the mounting ring is shown
in Figure 56, and photos of the brass cubes and steel cubes are in Figures

57 and 58.

Particle Dispersion in Solids

The equiaxed aluﬁinum cylinders were the first ones to be dis=-
persed in a solid. Initial experiments indicated that a metallurgical
mounting press would not be suitable for preparing mounts of randomly
oriented dispersed particles. Lucite mounts prepared in a press always
showed that any particles having a definite shape would tend to line up
along the constant pressure surfaces in the mount. Therefore, a cold-
setting plastic requiring no pressure was selected. For the initial
mounts Shell Epon 828, previously mentioned, was used. This material
was most conveniently mixed and allowed to harden in a polyethylene mold,
to which it did not adhere, thus allowing easy removal of mount from mold.

" About 8% by weight liquid catalyst was used, and hardening time was about
two hours. The aluminum particles were counted and stirred into the liquid
plastic,

Due to density differences, the aluminum particles tended to
settle out before the plastic hardened, so a high density powder, lead

chloride, Pb Clp, was added to thicken and densify the pasty mass. It



57, Brass Cubes,
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Pigure 98, Steel Cubes,
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proved satisfactory for this purpose, and several specimens of equiaxed
aluminum cylinders were made this way. A photo of such a mount is shown
in Figure 59.

The stirring which was necessary apparently did not introduce
a detectable degree of preferred orientations or non-randomness. How-
ever, for longer or flatter particles, this stirring did tend to destroy
randomness of orientation. Furthermore, particles of materials heavier
than aluminum, such as brass, copper, or steel, tended to settle out even
with the lead chloride densifier. For these reasons, all particles other
than the equiaxed cylinders were mounted by a technique developed for
cubes, which will now be described.

Since cubes have flat faces, cubes touching each other will tend
to align each other and will also tend to align themselves parallel to the
walls or bottom of a container. It was thought that if the cubes could
be separated by other particles they would not align themselves and if
these other particles were spheres they should show no tendency to align
the cubes. Lead shot about the same size range as the cubes was tried
and proved highly successful.

The cubes were counted out and about four times as many, or more,
lead balls were added and mixed with the cubes. This could be dumped into
a container and filled with plastic or it could be pre-mixed with plastic
and poured into a container. The Vernon-Benshoff Koldmount previcusly
mentioned was used most often, although Shell Epon 828 was equally satis~
factory. The Koldmount tended to solidify so rapidly that it proved help~
ful to cool the ingredients in a refrigerator before mixing to slow down

the subsequent hardening process.
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No preferred orientations of the cubes separated by lead balls
occurred, and data taken agreed well with predictions based upon random
orientations., Only cubes in contact with the sides or bottom of the con-
tainer lined up to conform with the container, and these cubes were not
included in the data. As indicated, cylinder shapes other than equiaxed
were also mounted using the lead balls as space fillers. Photos of cubes
and cylinders mounted in this way are shown in Figures 59 to 63.

In the special case of the long copper needles of 2/d ratio
equal to twenty, it was felt that preferred orientations would be almost
impossible to avoid due to their great length and that contact between
neighbors anywhere along the length would tend to line them up. It may
be noted, however, that for randomly oriented cylinders having z/d = 20,
the relative frequency for obtaining sections cutting both ends (barrels)
is almost zero (actually 0.02%). Therefore, it was felt that only rea-
sonable data for relative frequency of cups versus ellipses would be ob-
tained, and since these did not depend on the needle being straight, that
we could bend or t#ist the needles to reduce their tendency to orient each
other. According to Smith and Guttman(5) the average number of intersec-
tions of a line by parallel sectioning planes, as in the Buffon needle
problem, depends only on the length of the line, not whether it is straight
or curved., In spite of going to these extra pains to improve randomness,
the twisted needles still proved more difficult than any of the other
shapes to obtain reasonably random data. A mount of twisted copper needles

is shown in Figure 6k.
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Wigure 61, Dispersion of Steel Cubes and lLead
Balls, (mag, opprox. 2, (x)

Pigure 62, Dispersion of Flat Cylinders and
Tead Balls, (mag, approx. 2,1x)
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Sectioning and Counting

Initially, sections on mounts of equiaxed cylinders were taken
at 0.050 inch intervals by successively grinding and polishing away the
mount. This procedure was changed, however, to merely cutting sections
at about one quarter inch intervals on a band saw and polishing and ex~
amining the faces. The latter procedure had two advantages: one being
that it was much less laborious, the other being that it was more suita-
ble for statistical treatment. By sectioning at wider intervals so that
a single particle is observed in only one section, randomness of sampling
is more closely approximated. Where sections are taken closer together,
the same particle is sampled more systematically (and laboriously) and
less randomly. This tends usually to give data which are "too good" and
not really amenable to statistical analysis. This condition was actually
observed in same of the initial cube data.

Polishing was usually carried through by hand polishing to about
a 400 grit silicon carbide paper using kerosene as a lubricant. Counting
was done under a low power stereoptical microscope, usually at 10 diame-
ter magnification and sometimes up to 45 diameters. Many times during
polishing it was unavoidable that smell corners of cubes or tiny edges of
cylinders would '"pull-out", leaving the remainder of their impressions
visible under the microscope. It 1ls essentlal to count these, however,
as though they were actually present, and this usually presented no diffi-
culty. As mentioned, cubes or particles in contact with the container
wall showed a high degree of preferred orientation and were not counted.

Some observations on the sectioning, counting, and shapes ob-

served are appropriate at this time.
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Figure 65 shows sections of the equiaxed cylinders. The three
types of cylinder sections, barrels, cups, and ellipses, are readily
apparent. The laminations of the material from which the particles were
punched are easily seen. The curves in the layers are due to the dis-
tortion in punching. These features may also be noted in Figures 59
and 62,

Figure 66 shows sections of brass cubes of all possible types,
3, 4, 5 and 6 sided. In Figure 66f, a 3 sided hole is observed, result-.
ing from a cube corner being'dislodged during the cutting or polishing,
bThis,‘of course, is counted, just as though it were there. Figure 61 of
steel cubes shows several such holes due to dislodged particles. Figure
66h shows two cubes on the edge of the mount. Such cubes on the edge
showed a strong preference for 4 sided sections, so were elimiﬁated from

the statistical analysis.
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XIII. EXPERIMENTAL DATA AND STATISTICAL ANALYSIS

As just described, the synthetic samples prepared to test some of
the theoretical relations derived in this work consisted of dispersions of
uniformly sized particles having the shape of cubes and four cylindrical
shapes. Known numbers of particles were dispersed in as near a random manner
as possible in solids of readily determined volume so that number of particles
per ‘unit volume is known. From the relations developed connecting size, shape,
and probability of intersection by a random plane, the theoretically expected
number per unit area of plane section may be calculated. This is done and
compared with the average number actually observed on plane sections. The
relations to be checked in this case are:

for cylinders

N, = N, -(E% + é) (9)
for cubes
Ng = Ny* 2 & (52)

For convenience, the actual and expected numbers observed per
section were compared instead of number per unit area. This made calcula-

tion of the area unnecessary and was Jjustified by the following analysis.

N, =N, - P, (13)

number per unit area = number per unit volume ° Pj

number in section . number in volume . Py
area of section height x area of section
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Therefore, we have

number in section = Humber in volume Py (115)
height
The height, of course, must be in the same units as P;, which in this case
was in inches.

The experimental results for all four cylindrical shapes agree
closely with those predicted by Equation (9),which was first reported by
Fullman(48l and the results for the cubes agree well with Equation (52),
first derived in this work. The comparisons for numbers experimentally ob-
served per section versus numbers expected from theory will be shown in the
following discussion, without an attempt at rigorous statistical analysis.

The major effort in the experimental investigation was that of
comparing the observed relative frequencies of section shapes with the ex-
pected frequencies developed in this work. For cylinders the expected fre-
quencies of sections having the shapes of ellipses, cups, and barrels.were
given in Table III. For cubes the expected frequencies of 3, 4, 5 and 6
sided sections were given in Tables V and VI.

The experimentally determined frequencies of the sections of
cylinders and cubes are compared with these theoretical predictions, and
the frequency distributions are tested for goodness of fit by the widely
used Chi-square (x?) test, for judging whether or not fit is satisfactory.
The Chi-square test is described in most standard texts on statistics, and
for this work the épplication of the test corresponds to that described

by Kenney and Keeping(55>. The experimental results will now be presented.
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Flat Cylinders

The basic parameters of the flat cylinders prepared are

£ _ 0.051" 4 g

a  0.10k"

P, (cylinder) = (nd + £) = (0.104x + 0.051) = 0.1071
+ T2 I 2

Number per Section. 295 of these cylinders were dispersed in a cylin-

drical volume having a height of two inches and an approximate diameter of

1 5/8 inches. Their expected number per section were

number per volume  p,

expected number per section = 1
height

295 (0.1071) = 15.8
2.

O

Experimentally, 16 plane sections were taken, in which a total of 255 parti-

cles were observed.
average number observed per section 2‘2%% = 15.9

The close agreement between expected and observed results 1s apparent. How-
ever, it is felt that statistical treatment is not warranted as there is an
element of possible Judgment of bias on the part of the investigator in mea-
suring the height of the sample in which the particles are dispersed. Since
the particles were not uniformly distributed near the top of the sample,

an "effective height" had to be estimated. An error as much as 1/8th inch
in such estimate is quite possible and would significantly affect the re-

sults.
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Relative Frequency of Shapes. The shape probabilities for the flat

cylinders are

P.(cup) = d arctan 4 = 0,104 arctan (0.49) = 0.048k

Pi(ellipse) -4 _4d gretan £ = 0.001 _ 0.0u8k _ 0.0013
2 2 2 2
P, (varrel) = E% - % arctan £ = 0-10%1 _ o ool2 = 0.0574

The expected relative frequencies of these shapes are

f (cup) :.9_“.9@

( x 100 = 45.1%
€ 0.1071

£ (ellipse) = 20010 x 100 = 1.2%
0.1071

fo(barrel) = 2:09T% x 100 = 53.6%
0.1071

After deleting data for cylinders in contact with walls of con-

tainer, observed types of ssctions were:

Number observed frequency
cups 96 41.2%
ellipses 5 2.1%
barrels 132 57.6%
total 253

Number expected
cups 233 x 451 = 105
ellipses 233 x .012 = 2.8

barrels 23% x .536 = 125
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Using the Chi-square test for goodness-of-fit, we obtain

Chi~square Test

2

obs . exp. |o-e] (o-e)®
e

c 96 105 9 1T

E 5 2.8 2.2 1.73

B 132 125 7 .37
233 2.87

x° = 2.87

For two degrees of freedom, the probability of a deviation greater
than X2 = 2.87 due to random errors is 0.24. Therefore, 24% of the time
the expected deviation would be greater than observed. Since the critical
value for significance is usually taken at the 5% level, the hypothesis that
the data fit the theory cannot be rejected. This will then be taken as an
indication that the data probably do fit the theory. More data would be
required to confirm this more positively.

A shortcoming in this application of the Chi-square test may be
ﬁointed out. It is usually advisable that no expected frequency be under 5
(in this case, one is 2.8). Any groups expected to be less than 5 are usually
combined into larger groups, decreasing the number of groups compared. In
this case, since it would have reduced the number to two groups, the calcu-

lation was not performed.
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Equiaxed Cylinders

The basic parameters of the equiaxed cylinders prepared are

£ _0.051" _ 1 g

d 0.051"
P; (cylinder) = (0.051 x %(+ 0.051) = 0.0655
2

Number per Section. 1600 of these cylinders were dispersed into two

cubical volumes, each approximately 1.06 inches high and one inch square.

Their expected number per section were

expected number per section = %é%% x 0.0655 = 49.5
In 9 sections, a total of 456 particles were observed.
average number per section = &éé = 50,7
9

The very reasonable agreement between theory and experiment is indicated.

Relative Frequencies of Shapes. The shape probabilitvies for the equi-

axed cylinders are

P; (cup) = 0.051 arctan 1 = 0.040
P;(ellipse) = 200 _ .00l arctan 1 = .0055
2 2

P, (barrel) = 0,051 x X - 29L arctan 1 = 0.020
L 2
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The expected frequencies of sections are

£ (cup) = 0% x 100 = 61.1%
0.0655

£ (ellipse) = 220922 x 100 = 8.4%
0.0655

fo(barrel) = %;%2%5 x 100 = 30.5%

The observed frequencies of these shapes follow. In this case
there was a relatively large number of cylinders in each mount and very few

were in actual contact with the sides of the container, so no data are omitted.

Number observed frequency
C 271 58.1%
E 36 7-1%
B 159 34.1%
Total L66

Number expected

C 466 x 611 = 284
E 466 x 084 = 39
B 466 x .305 = 139

Using the Chi-quare test, we obtain

Chi-square Test

obs. exp. |o-e | (0-¢)®
e
271 284 13 29
36 39 3 .23
159 143 16 1.79
L66 2.61
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For two degrees of freedom, the probability of a deviation greater than
X2 = 2.61 due to random errors is 0.28, Therefore, 28% of the time the
expected deviation would be greater than observed. Thus the hypothesis
that these data fit the theory may be accepted.

Long Cylinders

The basic parameters of the long cylinders are

£ -0.120" _ 50
d  0.060"

0.120) = 0.1071

P, (cylinder) = (0.060 x % e

Number per Section. 300 of these cylinders were dispersed in a cylindri-

cal body having a height of two inches and an approximate diameter of 1 5/8
inches. Their expected number per section were
expected number per section = 200 (0.1071) = 16.1
2.0
Experimentally, 16 plane sections were taken, in which 274 particles were
observed.

average number per section = EZE = 17.1

16

This result agrees reasonably well with the expected value.

Relative Frequencies of Shapes. The shape probabilities for long cylin-

ders are

P, (cup) = 0.060 arctan 2 = 0.0664

P (ellipse) = 2:120 _ 0.060 grctan 2 = 0,0268
2 2
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P, (barrel) = 0.060 x % _ 0.060 grctan 2 = 0.0139
>

The expected relative frequencies are
fo(cup)= 0.0664 - 61.9%
0.1071

= 0.0268 = 25.0%
0.1071

fo(ellipse)

fo(barrel) = 0.0139 = 13.0%
0.1071

The observed frequencles were

Number observed frequency

C 171 62.4%

E 63 23.0%

B Lo 14.6%
27k

Number expected

c 274 x 619 = 169
E 274 x .250 = 68.5
B 274 x .1%0 = 35.6

The statlsticel analysis follows:

Chi-square Test

obs. exp. |o-e]| o-e)®
e
c 171 169 2 .01
E 63 68.5 5.5 e
B Lo 35.6 L.y 5k
27k 0.99

X~ = 0.99.
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For two degrees of freedom, the probability of a deviation greater than X2 =
0.99 due to random errors is 0.62. Therefore, 62% of the time the expected
deviation would be greater than observed, and the data fit the hypothesis

very well,

Round Needles

The basic parameters of the round needles are

0.h00" _
0,020"

£
d

Py (cylinder) = (0.020 x I + o.goo)': 0.2157

Number per Section. 150 of these needles were dispersed in a cylindri-

cal body having a height of 1 3/4 inches and an approximate diameter of 1 5/8

inches. Their expected number per section were

\N

0 (0.2157) = 18.5

expected number per section = 1

}._l
-

Experimentally, 14 plane sections were taken in which 256 intersections of

needles were observed.

(@)

average number per section = 220 = 18,3
1

n

The agreement between theory and experiment is very close.

Relative Frequencies of Shapes. The shape probabilities of these

needles are

P;(cup) = 0.020 arctan 20 = 0.0304

P, (ellipse) = O.:OO - O°2EO arctan 20 = 0,1848

P, (barrel) = 0.0020 x.i - 0:020  grctan 20 = 0.0005
2
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The expected relative frequencies of these shapes are

fo(cup) = 0.030% 4 100 = 14.1%
0.2157

£_(ellipse)= 22848 x 100 = 85.9%
0.2157

£, (barrel) = 2:9992 x 100 = 0.02%

0.2157

Since the expected number of barrel sections was so small, one in 5000, to
improve randomness of orientations wires were twisted and data for barrel
sections were not attempted.

The observed frequencies of shapes were

Number observed frequency
C 36 14.0%
E ' 220 86.0%

A Chi-square test will not be applied to this. It may be seen
that agreement between theory and experiment is almost perfect. However,
the strong tendency of these long wires to orient themselves was noted,
and data obtained from previous specimens not so extensively twisted had
to be rejected because of strongly biased orientations.

Cubes

The basic parameters of the cubes prepared are
450 brass cubes 0.125" on edge

100 steel cubes 0.120" on edge

P, (brass cube) % (0.125) = 0.1875
(

P, (steel cube) 0.120) = 0.1800

1]
PN

Number per Section. U450 brass cubes were dispersed in five cylindrical

bodies approximately 1 1/2 inches in diameter and totalling 8.27 inches in
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height. Their expected number per sectlon were

expected number per section = 450 0.1875 = 10.2
8.27

In 56 plane sectiong, 553 observations of brass cubes were made.

average number per sechbion = 220 = 9.9

5

[O)N

100 steel cubes were dispersed in two cylindrical bodies about 1 1/2 inches
in diameter and totalling 1.73 inches in height. Their expected number per

section were

expected number per section = 100 x 0.18 = 10.4
1.73

In 10 plane sections 96 observations of steel cubes were made.

average number per sechion = Qé = 9.6
: 10

The expected and observed results for numbers of cubes per section can be
seen to agree quite well for both brass and steel cubes.
To see how this would work in predicting number per unit volume,

we shall use the brass cubes as an example.

number per volume
x P
height

number per section = i

number per sectlon x helght

Py

number per volume =

Using our observed number per section, 9.9, we get

number per volume = 9.9 x 8.27 = Lz7
0.1875 o,
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Therefore, we estimate that there are 437 cubes present in the given volume,
compared to a known value of 450. The percentage error is 2.9%, which appears

to be a reasonable value. For number per unit volume, we would estimate

N = 457 = 29.9 cubes/in.’

T 3.2

The actual value is about 30.7 cubes/in.5

Relative Frequencies of Shapes. The data for the two kinds of cubes are

combined. Data for cubes biased by contact with container walls are excluded.

The types of sections observed from cubes were

Sides on Sectlon Number observed Frequency
3 185 28.5%
4 321 49.5%
5 | 112 17.3%
6 31 L.8%
649

Comparison with Earlier Data. We compare experimental distribution with

theoretical distribution and that of Hull and Houk(so).

Sides Frequency (%)
theoretical experimental Hull and Houk(50)
3 28.0 28.5 29.0
b 48.7 k9.5 42,9
p) 18.7 17.3 18.2

6 4.6 4.8 10.0
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The close agreement between our experimental results and our theoretically
derived results in contrast to those reported by Hull and Houk is to be noted.
We shall test these experimental results statistically for goodness-of-Tit
against both our theoretical distribution and that of Hull and Houk.

Comparing our experimental data with our theoretical results we

obtain
Chi-square Test (Present theory)
sides obs. exp. (theory) |o-e| (0-e)®
e
3 185 181.9 3.1 .07
4 321 316 5 .08
5 112 121.4 9.4 T3
6 _ 31 | 30.2 0.8 02
649 | 0.90
X° = 0.90

For three degrees of freedom, the probability of a deviation greater than

XE

= 0.90 due to random errors is 0.82. Therefore, 82% of the time the ex-
pected deviation would be greater than observed. The fit is considered ex-
cellent, and the hypothesis of agreement between experiment and theory is
strongly supported.

Comparing our experimental data with results predicted by Hull and

l;
Houk(’o> we oObtain
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Chi~square Test

(our experimental results checked against Hull and Houk's distribution

frequency)
Sides obs . exp. (H and H) lo-¢| (0-e)®
e
3 185 188 3 .05
4 321 - 278 43 6.62
5 112 118 6 .30
6 51 64.9 55.9 1765
649 2L.62

X2 = 24 .62

For three degrees of freedom, the probability of a deviation greater than

X2

= 24.62 due to random errors is very much less than 0.0l. This result
may be considered as highly significant, warranting the rejection of the

hypothesis that our experimental frequency distribution may be considered

to agree with the distribution by Hull and Houk.
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XIV. CONCLUSIONS

1. Relations have been derived which connect the number of particles ob-
served in a plane section with the number and size of particles actually
present in the solid for uniformly sized but randomly dispersed and oriented
particles of nine different polyhedral shapes. The relations derived are

listed as follows:

Shape Relation
Cubes N, =N,'1 l/2a
Rectangular Parallelepipeds N, =N, - 1/2(a+b+c)
Thin Rectangular Plates N, =N_- 1/2(a+b)
Long Square Rods N, =DN_° 1/2¢c
Octahedrons Ny = NV.-a-5'Jé arccotfjé
Tetrahedrons Ng = Ny - aj'\rf2 arctan 2
7
Rhombic Dodecahedrons Ng = Nv'hié— a
2
Tetrakaidecahedrons N =N - b a
s v o2
Hexagonal Prisms N, =DN_- (2 a + = c)
s vt 2

In the above table, for octahedrons, tetrahedrons, rhombic dodecahedrons,
and tetrakaidecahedrons, "a" is the edge length of the circumscribed cube.
For the hexagonal prism, "a" is the length of the base diagonal and "c"

is the altitude of the prism.
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2. Relations have been derived which determine the relative frequencies of
the possible section shapes obtained on random plane seétions cutting through
a dispersion of randomly oriented particles having the shapes of cylinders,
cubes, octahedrons, tetrahedrons, rhombic dodecahedrons, and tetrakaidecahe-
drons.

5. The relative frequencies of various shaped sections of cylinders depend
upon the length to diameter ratio of the cylinders and are proportional to

the terms given in the following table.

Cylinder Section Frequency Relation
Ellipses % (4-a arctan £/d)
Singly Truncated Ellipses d arctan £/d
Doubly Truncated Ellipses % (%9 - d arctan £/d)

k. The relative frequencies with which sections of polyhedrons having var-

ious numbers of sides on a section are observed are presented in the follow-

ing table.
Relative Frequencies of Sections (%)
Sides on Polyhedron

Section Cube Octahed. Tetrahed. Rh. Dod. Tetrakai.
3 28.0 - 71.2 4.0 7.3
L 48.7 44.8 28.8 13.4 13.4
5 18.7 - -- 16.2 11.8
6 4.6 55.2 - 29.9 31.2
7 - - - 19.1 18.3
8 -- -- -~ 16.5% 13.1
9 -- -- -- 1.1 3.8

10 -- -- -- -- 1.1



-189-

5. To obtain the above relations for polyhedrons, an integration technique
has been developed which involves double integration and summation of equa-
tions of the form
Oy N EY)
P = A\/r /f [(B sin © + C cos®) sin® @ + D cos ¢ sin @] dgde
% @a (o)
The integration technique can be extended to the determination of sectioning
probabilities for other polyhedral shapes.
6. A digital computer technique has been developed for the solution of some
of the integral equations arising from the basic integral equation just listed.
The computer program described herein has been used to obtain some of the re-
sults reported. It may also prove useful for further development of quanti-
tative metallographic relations for other polyhedral shapes.
7. The above results are exact for dispersed particles having uniform size
and shape and random orientations. If particle shape is known, the relations
permit analysis of degree of non-randomness of orientation. The relations
also permit anélysis of non-uniformly sized particles in a more accurate
manner than previously possible.
8. Experimental verification of the theoretical relations developed‘for
cubes and cylinders was obtained by preparing synthetic samples containing
randomly dispersed cubes and cylinders. Méasurements made by sectioning and
microscopic examination of synthetic samples of cubes and four different
cylindrical shapes support the theoretical predictions. In the case of rela-
tive frequency of cube sections, a statistical analysis of the experimental
results indicates that previously reported results(so) were in error to a

certain extent.
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G. The relative frequencies of the various possible section shapes for
cylindrical particles and polyhedrons will prove useful in helping to deter-
mine shapes of actual dispersed phases or particles observed in a microstruc-
ture. For cylindrical particles the frequencies of sections indicate the

E/d ratio. For simplé polyhedral shapes the observed frequencies of various
sided sections will help in indicating whether the phase particles have the
shapes of cubes, octahedrons, tetrahedrons, tetrakaidecahedrons, etc. Where
the particle shape is known, deviations frbm the expected frequencies of the
various sections will tend to indicate degree of preferred orientation pre-
sent .

10. Certain measurements made on plane sectidns cut from polyhedral particles
can be expected to be reliable indicators of particle size. For instance, 4
sided sections of cubes can be interpreted to give quite closely the edge
length of the cube. Thus a random dispersion of non-uniformly sized cubes
could be classed into size groups according to the 4 sided sections observed.
Since randomly oriented cubes givev48.7% of 4 sided sections, the total size

distribution of cubes in the volume could be estimated from

_ Ns(i) of 4 sided sections

N1 (0.487) a(1) (1.5) (116)
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APPENDIX A

Evaluation of Definite Integrals

This appendix contains the detailed steps in the evaluation of
12 definite integrals which occur several times within the text. When an
integral is changed into a form which is found in published tables of inte-
grals, such reference is made and used without additional detail. The follow-
ing integrals are solved, and they are found in this appendix in the order

now listed. For convenience, we also list the answers below.

T

1. /t cos ©d8 _n

© J 1+cos®e 6

- _l—- arctan«/E + /n 2

n
N \7—5

sin © « arccot(cos 0)de =

v
o \
=la

Ha

sin @ cos 6 do _ 2

3. [ D = 4n —
. 1l + cos<e
o V3

Tt
T cos® ods 1
L, / = X . T 4 arctan\/—Z
. 1 + cos2o L o2 J2
o)
de 1!
arctan\/_Q

1+ cos? o 22 A2

V!
o\
==

ey

7T

-\7_5 +%2_ arctanx/_Q

=1a

6. f cos 6« arccot(cos ©)de =
o

=12

7 f ae _ 1t
J 2 +sin? e 643
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10.

11.

12.

o Q\\j
1A

gsin 6 cos ©d6

cosged@

2 + sin 20

T

oﬁ\\j
=a

2+ sin 28 1243

sin® @ A6

7

0 0
+=1a =2

b8

2+ sin 28 1243

-19%-

—i,el’l

L

N o

sin @ * arccot(sin © + cos §) A6 = -

NERND)

T o4+ 1

T
\/P cos O -arccot(sin © + cos ©) Ao =

e}

oola

-+

7T

N

J2

arctannJé + % n

arctannJé - % in

b

\SRIY



I

Let

-19k4-

cos 0 4o ae

V1 + coso

cos © :Nlag -1

0052@ =82 -1 =1 - sin2 @

1 + cos2 @ = a2

Vi + cos2 6 ==
d(cos ©) =4a @[;E_fi)

Csin o do =i 22 g5 = 2d8
2 Vg2 1 Va2 1

SinE | = 2—&2
sin © ZVQEZZS

do = —= ade _ _ _1 ada

_Sin@ N 32-]_ \/-2-842 \[32_1
when © ::O’ cose 21’ 8 :\/_2
=N3/2

when 6 = %, cos © ;—4%., a

z V2l ;z‘ T3/
 COs 649 _ 1 \a@a
I fg = T fg
J2
- da
J/\ VC2 al
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Set a =2 sin t

da =2 cos t dt

o
n
i

= 2 sin2 t

0-82 = 2-2 sin2 t = 2 cos? t

i

\/2—a2 ;__\/_2 cos t

when a =~fé, t =

oA

when a =~N3/2

arcsin 3 60° =

s
]
W |a

o
A

Jf da _ u/‘ cos tdt  n_n _x
= — = =
N o.g2 dr\ cos t 2 5 6
N3/2 3 \
5
x :
2. L/hu sin © + arccot (cos ©) a8
o
This is of the form, -/Farccot u du,
where
u = cos @
du = - sin © d®
Therefore,
X
/p4 sin @ *arccot (cos ©)d® = - [u arccot u + % zn(l+u2)J
° /b

= [- cos © arccot (cos @) - L g0 (1 + cos® 9)]
2 -0



- -l arctanV2+EZ-Lm 3 +ime
J2 2 2 2
1! 2
N arctan»fé + /n
TRNE J3
7
3 L sin © cose de
o) 1+ cos2 ]
Let u = 0082 e +1
du = -2 sin 6 cos 9 d®©
Therefore,
T ' p
fu sinecosede:_;fggz_; o (1+ cosPe) | ¥
1+ cosg@ 2 u 2

;
X fﬂ cos2 9 d6 1 /‘E 1/2(1 + cos 28)d(29)

1 + cos®e 1+ 1/2 (1 + cos 20)
o}

7
__;fu 1+cos 2 4pg)
2 3 + CcOs 3 + cos 26
o}

From Peirce(52>, Equations (304) and (300),

T b1
T o, i3 fﬂ d(29) J

1 % + cos 26

1 [ +1-20
2 1

0
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T
=% _k/pE a(2e) =1 .- 2 arctaﬁ£§
4 5 3 4+ cos 20 TN 4
T 1 1
= — - — arctan —
NP J2
= % -~%5 (% - arctan N 2)
b8 7 1
= - + = arcta ~fé
v ade N2 o

= i— arctan«fé + (l'ﬂjé> 1t

NE I
X T T
5 [4 de 1 fﬂ d(29) zfx a(29)
J 1+ cosfe 2 1+ 1/2(1 + cos 26) |3+ cos 20
From Peirce(52), Equation (300),
T
- 2 arctan C£§ tan ©) %
V8 4
o
1 1 1 x
= 7 arctan — = — (= - arctanAfé
J2 T 2(2 )
= X - L arctan~fé
22 J2

7

I
6. cos © * arccot (cos ©) 48

o
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Let u = arccot (cose)
du = cose de
v = s1ine

sin® de

duy = =22
1+ cos? o

=12

th, sin® 9 d@
1+ cos ©

Q\‘w
=1a

" cos6 . arccot(cos8)de = sine - arccot(cose)

7
== i.._ arctan \/’2 - /E
J K

T
\/r” 0s2 040
2 5 1 + 0082@

1+ cos

From above,

NfEn

= arctan\fé - — + L arctan»Jé + = arctanAfé + (1'"Jé)

NJF L NE Jé L

b8

- 2 arctanv2 + (£:§:£g_)ﬂ
NE 4

J‘t .
- /FE ds 1 \/r% a(29)

2 + sin 26 2 2 + sin 26

From Peirce(52), Equation (298)

+1A

= . — arctan {

12 (2tene + 1,
2 3 NE l

-J;_ arctan - arctan 1_-' = -]—-—-
= 75 (eret J3 t \fi) e (

.z
> 6)

_ =
63
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7t n
/FE sind cose do _ 1 L/r L sin 20 4(20)
2 + sin 20 4 2 + sin 28
o

From Dwight(5%), Equations (436.01) and (436.00)

_ ) ;
L1l |3 -2 fx |
AL 1 2+31n2®J
(@]
I G Y
8 2 343 8 643

b 5 T

j[ﬂicos 040 21 \/PE (1+c0s20)d(29)
. 2 + sin 20

o

; f‘}l _a(20) 1 /”%f; cos 20 4(28)

2 + sin 26 4 2 + sin 20
0

From Dwight<54), Equation (436.00)

=2 oL (2 + sin 20) %
1243 & ' '
o
1 1
Z’Iij“——g+1‘ [ 4n3 -4n2] “'1—235\7':%'*'11 zn‘—g
T T 7t
/Z sin® @de /"LT de - /ﬂ —--———————--CO82 9de
2 + gin 2@ 2 + sin 20 ‘ 2 + sin 20
0 o o
— s - n - =]—— ﬂné = e - i ﬂl’lé
643 1243 L 2 1243 4 2
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b
11. \jpﬂ sine - arccot (sin® + co0s0)do

+=1a

(e}

Let u = arccot(sin® + cose)
dv = sine de
qu =-{cose - sing)de _ (sing - cos8)de
1+142sin8 cose 2 + sin 20
v = =-C0s6
T
\/Pu sing + arccot(sind + cos@)de = -cose - arccot(sing + cose)
o
X _
J[ﬂ cos8{sin® - cos6)de
+
2 + sin 20
o
X
= - L arccotNFQ + arccot 1 + \/P” sin® cos6 do
J2 2 + sin 20
o
n
_fl;cosgede
2 + sin 20
0
1
== ( L. arctanrjé) + n( L.+ ) - T_ .
vy J2 o2 8 643 1243
=X . X + L arctan\fé+-£ - LU I - x in b
y 242 Jo 8 643 12J3 &
5 1 1 1 1, 3
= (= - - + arctan»fé - = in =
RPN WU L2

= |+
oo



-201-

B
12. \/\LL cos® + arccot (sing + cos©)de

o)

Let u = arccot (sin® + cose)
dv = cos6 4o
v = 8ind

qu = (sing - cos0)ds

2 + sin 20

T
k‘/ﬂ” cos@ « arccot (sin® + cos6)de = sine -
o

T
T sing (sine - cose)de

2 4+ sin 26
o)
= i— arccot~fé - L + ; in é
J2 1243 L 2
L ( X _ arctany2) - L+ 1
NER- NET:
=T 4 _T - n - _1 arctan~fé

s 242 INERENE-

arccot(sine + cos@)

mla

=+

in

1 in

=

o o

NI \Y
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APPENDIX B

Digital Computer Solution of Trigonometric
Integral Equations

The basic integral equation of the general form used to solve all

the probability problems for polyhedrons of cubic symmetry is

o ,Pb(e)
A [(D sing + E cos®) sin2f + H cos@ sing] dgae

Ba ¢a(@) (86)

12
T

D =

This equation gives average distance between top and bottom parallel tangent
planes passing through any two points or corners of the polyhedron for all
orientations over the spherical triangle represented by the 001, 101, and
111 poles.

The numbers represented by D, E, and H are the coordinate differences
between the two points or corners in question. D, E, and H represent dis-
tances along the three coordinate axes in units or fractional units of edge
length of the cube in which the polyhedron may be inscribed. These directions
are taken as positive or negative in line with the convention illustrated
by Figure 35.

The number lE/n is to convert the orientations represented by the
spherical triangle between poles 001, 101, and 111 into all possible orien-
tations, represented by the surface of a sphere. The surface area of a
sphere of unit radius is L4x, and the spherical triangle described is exactly
1/L48th of a sphere so it has surface area of n/12. This spherical triangle
is the smallest range of orientations which represents in correct proportion

all possible orientations of a polyhedron of cubic symmetry. While it is

-202-



~-20%~

perfectly possible to represent all possible orientations of such a polyhedron
by a larger spherical triangle, an octant of a sphere, for example, the small-
est such range is usually most convenient. For this reason we integrate only
for orientations within this 1/48th triangle and multiply by lE/n to convert
to all orientations.

The number A may be 1 or 2, to take care of those cases where a
certain pair of corners on the upper half of a polyhedron resulting in a
certain type of section is exactly duplicated by a similar pair of corners
on the lower half of the polyhedron. In this situation A = 2 to account for
both cases. When the range covered between two corners includes the center
of the polyhedron, then A = 1.

The angles ¢a(@), ¢b(@), 6., end 6, of course, represent the
orientation limits for integration. These angles are all within the basic
spherical triangle of the 001, 101, and 111 poles. They are used to sub-
divide the basic triangle into smaller orientation ranges, either spherical
triangles or quadrangles, which give the orientation range over which the
corners being considered define the property being measured. In the case
of the tetrakaidecahedron, it was shown by Figure 43 that 77 such smaller
orientation ranges were necessary to adequately consider the shapes of sec-
tions of this polyhedron.

The ¢’s are the angles of tilt from the vertical, and the ©'s are
angles of horizontal rotation,‘as shown in Figure 9. Since we have chosen
to integrate over ¢ first, and since our orientation limits are in general

functions of both ¢ and ©, it is necessary to express ¢ as a function of ©.
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Then the integration over 6 can be performed between the constant angular
values of the © range extremities.

Now that the basic double integral equation, Equation (86), has
been explained, we shall describe its solution on the digital computer.

For convenience in computer programming, the basic double integral
is integrated once to convert it into a single integral. Setting C = )

B =6, G=¢g/(0), and F = g, (o), we have

B F

D =212 A k/P J[ [(D sin® + E coso6) sin2¢ + H cosy sing] dgae
. .
C G
B F
D =12 A \/F [D sin® + E cose) (P-sing cos@) + H sin2¢] de
b1 2 C G
B
= 12 A . . .
D===.2 [(D sino + E cos®) (F-G-sinF cosF + sin Gcos G)
7

C

(117)
+ H(sin? F-sin® G)] de

This 1s the basic form of the equation used in programming the digital com-
computer.

As previously discussed, several such equations arising from the
solutions for simple shaped polyhedrons had been solved exactly by the methods
of integral calculus. These equations were included in those to be calculated
by the computer as they provided a good check on the work of the computer.
Furthermore, the computer result provided a check against the previously

calculated results. This double check proved valuable on both counts.
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All integral equations, including those already solved and those
not yet solved, for probabilities of intersecting whole polyhedrons and for
probabilities of various section shapes, were prepared in the form of Equa-
tion(117). These were written out as tabular, hand-written data with columns
for Equation Number, A, B, C, D, E, F, G, H, Answer, and Description. Ini-
tially, 237 such equations were listed, of which answers on the first 57‘had
already been obtained, and 200 remained to be solved. In the course of ob-
taining the computer results, errors were found in some of the initial data
and this required changes in a few equations and an addition of 5 new equations,
making the total 242.

The programming of the trigonometric integral equations was done
by the Digital Computation Branch, Aeronautical Systems Division, Wright-
Patterson Air Force Base, Ohio. The solution of the equations was performed
on an IBM 7090 Digital Computer. The problems were programmed in Fortran
language, compiled on an IBM 1401 into binary machine language, written on
magnetic tape, and run on the IBM 7090. The out-put tape was placed on an
off-line printer to print out the results.

The main program for the solution éf these trigonometric integral
equations is given in Table XX. The symbol FNX refers to the basic integral
equation, Equation (117), to be solved. The expression CALL ISIA refers to
an integration sub-routine in the computer's tape library. This integration
sub-routine uses Simpson's rule in which the function is evaluated for
successively smaller and smaller intervals until two consecutive answers

differ by no more than 0.00001. In order to evaluate the function FNX(X)
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TABLE XX

MAIN PROGRAM FCR SOLUTION OF
TRIGONOMETRIC INTEGRAL EQUATIONS

SOLUTICN OF TRIGONOMETRIC INTEGRAL EQUATIONS

600

[TENR- XY

wE

10
75

60

101

300

350
200

250

TUENXT

DIMENSION A(241),B(2u1),C(251),D(251),E(251),F1(241),F2(2u41),
TE30251),610251),62(251) yHI251),ANSWI2U 1}, DES(241),1CI241),
2DESB(241)

COMMON CO,EE,FF1,FF2,FF3,FG1,FG2,HH
J=1
K=236

P1=3.1415926

READ INPUT TAPE 2,100, (A({1),1=J,K),(BUI)s1=d,K),(ELT) 1=dsK)
TADCIY 120, K) g LECT) 9 1=d,K) o (F1C1) 5 I=JsK) 9 (F2L1)91=d1K) s
2(F3(I),I=dsK)p (GTLI)yI=d¢K) o (G201} 4 I=JyK), (H{I)sI=d,K)
FORMAT(6F10.7) . )

0O 10 I=J,K

IF(1-1)7,7,2

IFL1-36)6,746

ACL)=A(1)*12./P1

IF(I-88)3s4s b

1c(1)=1

G0 10 5

IC(IY=1+1

BB=B(1)
cc=Cct1)

BC=0(1)

EE=E(1)

HH=H(I) i
CALLISIA(BByCCy5.E-54T2ANSFNX)

ANSH(T)=ANS*(A(T)/2.)

CONT INUE

IF (K-241) 75,60,60

J=237

K=241

GG TO 600

REACINPUTTAPE2, 101,DES

READINPUTTAPE2,101,0ESB

FORMAT (12A6)

WRITEQUTPUTTAPE3,200

WRITEOUTPUTTAPE3,250, {ICCI)ALTI}4B(I),CUI)DUI)2E(I)FILI),F2(I1),
TF301)9G1{E} 46201 ) oHUT) sANSW(L) 4DES(I),DESBLI),1=1,50)
WRITEOUTPUTTAPE3,200

WRITEOUTPUTTAPE3,250, (IC(I),A(1),B(1),ClI),DII)ECL)FICI)sF2U1),
TF3(1),G1(1),G2(1),H(I)ANSW(I),DES(I),DESBII),1=51,100)
WRITEQUTPUTTAPE 3,200

WRITEOUTPUTTAPE3 4250 (IC(I)yAL1)4B(I)oCUI),DII),ECI),FILI),F2U10,
TF300),G1011,G201 ) ¢H(1),ANSK(I),0ES(I1,DESBII),1=101,150)
WRITEOUTPUTTAPE3,200 .
WRITEQUTPUTTAPE3+250, {TCII)sATI) #B(I)oCUI},CUI},ELT},FILI),F2(I),
1F3(1),G1(1)sG2(1),H{I)sANSK(I},DES(I)4DESB(I),1=151,200)
WRITEOUTPUTTAPE3,200

WRITEQUTPUTTAPE3,250, (IC(I},ACI)4B{I)yCLI)4DII)4ELL) FILE),F201),
TFE301)12G 1) 9G20T) HIT)vANSW(I),DESII),DESBII),1=201,241)
PTROC=ANSW(16)+ANSW(17)

FSPS5=ANSW(20) +ANSW(21)
FSP6=ANSW(22) +ANSW(23) +ANSK{ 2L ) +ANSW(25)
FSPT=ANSW(26)+ANSH{27) +ANSW(28)+ANSH(29)+ANSK (30}
FSP8=ANSW(31)+ANSW(32) +ANSW(33)+ANSH(34)

PTOT=0

£oO 11 1=18,35

PTOT=PTOT+ANSW(I)

P3=ANSW(38) +ANSW(39)
PU=ANSW(LO) +ANSH (4 1) +ANSH{U2) +ANSW{U3)

SCP5=0

00 12 J=44,55

SCP5=SDP5+ANSH(J)

P10=ANSW(56) +ANSH{57) +ANSW(58) +ANSW(59)

P9=0

DO 13 K=60,85

P9=PY+ANSH(K)

SDP8=0

DO 14 L=86,136

SCP8=SDPB+ANSWI(L)

SDP6=ANS®(241)

DC 15 M=137,170

SDP6=SOP&+ANSWIM}

soP7=0

DC 16 N=171,240

SDP7=SDPT+ANSWIN)

P38ON=0

00 17 11=38,241

P38ON=P38ON+ANSW(II)

WRITE OUTPUT TAPE 3,300

WRITE QUTPUT TAPE 3,350,PTRDsFSP5,FSP6,FSPT,
1FSPB,PTOT,P3,PU

WRITE OUTPUT TAPE 3,400

WRITE OUTPUT TAPE 3,350,SDP5,P10:P9,SDP8ySDP6y
1SDP7,P380N,ANSWI3T7)

FORMAT(1H154Xs UHPTRDy 1 IXUHFSPS 4 1 IXUHFSP6, 1 1XHHFSPT, 11XKHFSP8,
111XLHPTOT, 12X2HP 3, 13X2HPU/ / /)

FORMAT (///5X4HSDP5, 12X3HP 104 12X2HP9, 12X4HSDP8 4 1 1XUHSOPS,
111X4HSDP 7, 10X5HP 380N 9XBHANSWI37)///)
FORMATIF10.6+7F15.6)

FORMAT (1H1,//4H EQ.y6Xy 1HA, 10X, THB, 10X, THC 18Xy 1HD s 6Xy THE 16Xy
12HE 145X s 2HF2, 5X s 2HF 3, 5X9 2HG 195X+ 2HG295X 9 THH1 6X 4
220HANSWER  DESCRIPTICN//)
FORMAT(1Xy1393F11.6,8FT421F11.642X4246)

CALL EXIT

END(140,0,0,0,0,1,04040,0+0¢040,0)
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it was necessary to prepare a function sub-routine, which is shown in Table XXT.
A Flow Diagram illustrating the entire program is shown in Figure 67.

Some explanation of the change in symbols will be necessary in order
to compare the basic equation, Equation (117), with the program. AEE refers
to D sin®. BEE refers to E cos®. CEE refers to F. DEE refers to G. EEE
refers to sinF. EFE refers to cosF. F refers to sin G. FE refers to cos G.
HH refers to H, EEE® refers to sin®F. F2 refers to sin®G. Additional com-
applicable to the main program and the function sub-routine will be made in
the following description of the flow chart and the print-out sheet.

A clearer picture of the program may be obtained from the flow
chart, Figure 67. The dimension block is used when the program is compiled
only. It reserves storage cells for the 241 values of A, B, C, D, etc. that
will be read in during this program. The common block is also used only in
compilation. It is a way to communicate between the main program and the sub-
routines using the same variables, since Fortran considers each main program
and/or subroutine as a separate entity in compiling. The variables IC(I)'s
are the equation numbers. The block ISIA is the subroutine that integrates
a function using Simpson's Rule. The block FNX is the function subroutine
used by the subroutine ISIA to evaluate the function at the increments of
integration. Many of the tests indicated are due to "patching-up" the pro-
gram. If the program were to be run many times, it would be rewritten in a
simpler, cleaner fashion. However, since only a single correct solution of
the equations was necessary, adding on was much easier than changing the

whole program.
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TABLE XXT

FUNCTION SUB-ROUTINE FOR EQUATION (116)

FUNCTION FNX(X) o
FUNCTICON FHX(X)
 CUMMON DD, EE,FF1,FF2,FF3,FG1,F32,HH
PL =1.570796%
e AREEDRDRSINEOX)
LEE=EC2COSF (X)
IF(FF14FF2)24:3,2 B ‘ ]
3 CCrE=FF3
CC TO 50 - - -
2 P=FF1#SINF{X)+FF2%COSF(X)
LTEAP)N 5,k e e e e e e e e
5 CLE=PI
GG TO 50 )
y CLE=ATANT(1./P)+FF3
50 _IF(rCI+4rG2)6,7,6 _
7 nEr=g
GG TO &0 o
6 (—Fu1*°1 f(X)+Fb°*LOSF(X)
lf(u>8 . o
9 NiC=pP1
56 TC 60 , i
8 CLO=ATANE “(1./73)
60  EEE=SINFICE F) e

Ei‘“ CSF(CEL)
F=5INF (DL

FE=COSFIDLE)
FNX =(ACE+BEC) *(CEE-DEE—-CEE#ETE+F=FE ) +HH*

T(LEC#a2—Fax2)

RETURN

ENU(];O’,O;G,Q,C’, 1,0,01010101010,0)
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The tests for I = 1 and I = 36 were because all equations except
these two involved integration within the 001, 101, and 111 triangle and
subsequent multiplication by 12/x. Equation (1) was for the cube integrated
over one octant so the multiplier was Z/n. Equation (36) was for the hexa-
gonal prism integrated between @ = 0° to 30° and ¢ = 0° to 90°. This is
l/Eﬁth of a sphere so the multiplier was 6/x. Initially all other integral
equations were read in without the constant factor lE/n When it was decided
to include the factor lE/n, this constituted a change in the program and
also required tests for I = 1 and %6. The result was three additional steps
shown on the flow diagram.

The test for I > 88 is because Equation (88) originally written out
on the tabulation sheet was later cancelled. Since the equations following
(88) were not renumbered, the computer had to be told that, beyond Equation
(88), Equation(r)was really Equation (I+1)

The first box showing K = 23%6 indicates the original number of
equations to be solved. Since a later correction added 5 more equations,
this resulted in the box "IS K <241?" This meant that data for the last 5
equations were read in after solving the first 236 equations. This was easier
than changing the original data input.

The computer print-out data and answer sheet is shown in Table XXIT.
An explanation of the columns and the equations will now be given.

Column A is the(12/x). A sbown in the basic equation, Equation (117),
with only two exceptions, these being Equations (1) and (36), which were Just

discussed. Since A = 1 or 2, also previously discussed, this means that
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column A in general is either 12/x or 2h/x. These are shown in decimal
form as 3.819719 or 7.639437.

Columns B and C are upper and lower limits of ©. The specific
values were tabulated on the data sheet éubmitted in terms of n/2, n/4, /6,
arccot 3/2, arccot 2, arccot 3, arccot 4/3, arccot L, arccot 5, arccot 7,
arccot 5/3, and 0. These have been converted to decimal radian form and
listed in columns B and C.

Columns D, E, and H have values O, + —,+

=1
o
\»

+ %, and + 1, depending
upon the relative coordinate differences of the polyhedron corner points in
question along the coordinate axes chosen. All corners of the cube, tetra-
hedron, octahedron, rhombic dodecahedron, and tetrakaidecahedron can be ex-
pressed in terms of these numbers. Only the hexagonal prism, Equation (56),
is different, and for this E zwa/E, which is abbreviated in the print-out
as 0.87. It may be mentioned that in other cases as well as this, the data
listed on the print-out may be somewhat more abbreviated than the actual
data on which the computations were performed.

column F's represent the upper limits of the ¢(6) integrations.
Since the general form of @#(8) is ¢ = arccot (e sin® + g cos®), column F1
gives the value for "e", and column F2 gives the value for "g". Column
F3 is necessary for the two special cases, Equations(l) and (36), where
F =g/2.

Column G's represent the lower limits of the @(0) integrations.
Since this has the general form ¢ = arccot (e sin® + g cose), column Gl

shows "e" and column G2 shows "g".
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The answer column gives the integrated average value of the pro-
Jected height or the probability of each type of intersection within the
equation limits and in units of edge length of the circumscribed cube, which
we have previously called "a'". In the case of the hexagonal prism, Equation
(36), the answer given is for a base diagonal "a" equal to the prism height

"e". Thus if ¢ = a, then

]

Pi(hex prism) %a + %c (114)

1.25a
It may be noted that the.computer answer is 1.250002, an error in the sixth
decimal place.

The Description column describes the average projected height or
probability sought by each equation. Where a polyhedron is named, it refers
to the polyhedron as a whole, except for the rhombic dodecahedron, where this
had to be done in two increments. Where a P followed by a number is shown,
this indicates a probability computation for a sectional shape having the
number of sides indicated by the number following the P. The section belongs
to the polyhedron which it follows in the table. Where there is more than
one P having the same number after it, these must be added together to get
the total probability of a section of that number of sides.

For the tetrakaidecahedron two additional numbers in parentheses
follow the P's. The numbers in parentheses indicate the corner numbers which
are being integrated between to give that particular shape section. For

simpler polyhedrons such corner numbers are either obvious or have been
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described in the main text of this dissertation., However, for the
tetrakaidecahedron, the print-out sheet is the only place these are
listed, For the tetrakaidecahedron, the probabilities for sections
were made up from many different sub-probabilities or equations, so
a list of the corners for each equation is helpful in any subsequent
detailed checking. The P7, for instance, is composed of TO separate
equations,

A discussion of the results now follows, Compare Equations
(1) eand (2), both for the cube as a whole. Eguation (1) gives Py =
1.500000 by integrating over one octant, and this‘result agrees exactly
with our previous analytical result. Equation (2) integrates over our
1/48th triangle, with result P; = 1.499999, which agrees with Equation
(1) to within 0.000001, The sum of the P3, Pk, P5, and P6 for the cube,
Equations (3) to (8), adds exactly to the value given by Equation (2).

For the octahedron, the sum of the probabilities of its sec-
tions, Equations (10) and (1l), may be seenvto agree with ité total prob-
ability, Equation (9), within 0.000006. For the tetrahedron, the sum of
the probebilities of its sections, Equations (13) to (15), agrees exactly
with its total probability, Equation (12)., TFor the hexagonal prism, Equa-
tion (36), a computer discrepancy of 0,000002 was previously pointed out.

For the rhombic dodecshedron and tetrakaidecahedron the computer
has added the sub-totals for computing the various probebilities of sections,
and these are listed at the bottom of the print-out sheet. PTRD is the total
probability of the rhombic dodecshedron from an addition of Equations (16)
and (17). FSP5, FSP6, FSP7, and FSPS are sub-totals for the sections of

the rhombic dodecahedron having the number of sides indicated., These, of
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course, are derived from particular sums of Equations (20) to (34). PTOT
is the sum of all rhombic dodecahedron sub-probabilities, from Equations
(18) to (35). On comparing this total probability with PTRD, we see there
is a discrepancy of 0.000021, which is considered to be quite acceptable
accuracy.

For the tetrakaidecahedron, sub-totals for probabilities of each
type of section are listed at the end of the print-out sheet as P3, P4, SDP5
P10, P9, SDP8, SDP6, and SDP7. (The SDP8 stands for second P8 to distinguish
it from FSP8, first P8, previously listed.) It may be seen that P5 is the
sum of Equations (38) and (39), P4 sums (40)to (43) SDP5 sums (44) to(55), P10
sums (56) to (59) P9 sums (60)to (85) SDP8 sums B6)to (137), SDP7 sums (172)to (241),
and SDP6 sums (138)to (171) plus (2L2) P380N represents the entire sum from
Equations (38) to (242), the total probability for the tetrakaidecahedron.
ANSW(37) lists the best value for the probability of intersection a tetfa—
kaidecahedron, obtained by Equation (37). Comparison with P380N shows the
discrepancy to be 0.0000MS, which is considered quite acceptable accuraéy.

In conclusion, it may be stated that the basic equation Equa-
tion (117), together with the function subroutine FNX(X), permits easy so-
lution on a digital computer of equations arising from probabilities of
planar intersections of randomly oriented polyhedrons of cublc symmetry.

For simple polyhedrons of non-cubic symmetry, as with the hexagonal prism,
Equation (36), necessary modification of the equation is easily accomplished.
The principle source of difficulty, which depends upén the complexity of

the polyhedron, will be in setting up the integral equations for the computer
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to solve. The difficulty of this operation will depend upon the number of

corners and faces of the polyhedron and its symmetry or lack thereof.



APPENDIX C

List of Symbols

This appendix contains a listing and explanation of the most fre-
quently used symbols in the test. An effort has been made to minimize dupli-
cation of symbol usage, but, as usual, a certain amount of it is difficult
to avoid. This is particularly so when it is desired to let a letter stand
for a number coefficient in an equation - one soon runs out of different
letters, or the deliberate choice of unused letters may itself be awkward.
Since these cases are explained in the test, they are not listed here.
Neither do we list certain symbols that may appear only once or twice in the
text and are adequately explained there.

Thus we list the most frequently used symbols, ones used so often

that they may not be explained with every appearance in the text.
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Symbol Meaning

a length of cube edge, circumscribed cube edge, rectangular
parallelepiped edge, or base diagonal of hexagonal prism

¢ height

d diameter

dg elliptical minor axis (observed)

f fraction or frequency

h projected height, a sub-unit of D

hy-2 projeéted height between corners 1 and 2
£ length

m effective radius of revolution or tilt
4 elliptical major axis (observed)

r radius

s average cross sectional area

t thickness

B barrels, doubly truncated ellipses

o cups, singly truncated ellipses

D - distance between top and bottom tangent planes
D average dilstance between top and bottom tangent planes
D5 distance resulting in 3 sided sections

E ellipses

Ng number per unit area

N, number per unit volume

P probabllity

Py probability of sectioning a particle

Pz probability of a 3 sided section
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angle of horizontal rotation
angle of tilt from the vertical
radius vector of orientation sphere

statistical measure for "goodness of fit" (chi-square)
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