A TOROIDAL SAMPLE HOLDER FOR MEASURING VHF PERMEABILITY AND LOSSES

Technical Report No. 35
Electronic Defense Group
Department of Electrical Engineering

By: Paul E. Nace

Approved by: H. W. Welch, Jr.

D. M. Grimes

Project 2262

TASK ORDER NO. EDG-6
CONTRACT NO. DA-36-039 sc-63203
SIGNAL CORPS, DEPARTMENT OF THE ARMY
DEPARTMENT OF ARMY PROJECT NO. 3-99-04-042
SIGNAL CORPS PROJECT NO. 194B

July, 1954
# TABLE OF CONTENTS

**LIST OF ILLUSTRATIONS**

Page

**ABSTRACT**

iv

1. **INTRODUCTION**

1

2. **MATHEMATICAL ANALYSIS**

2.1 Section One

1

2.2 Section Two

5

2.3 Section Three

7

2.4 Wall Losses and Internal Inductance

7

2.5 Accuracy

8

3. **DESIGN**

9

4. **MEASUREMENTS**

4.1 Impedance Measuring Apparatus

10

4.2 Measurements with the Three Coaxial Inductors

11

4.3 Calibration

11

4.4 The Value of Characteristic Impedance, $Z_0$

18

4.5 Procedure

18

4.6 Z-$\phi$ Chart

21

4.7 P-Contours

21

5. **CONCLUSION**

24

**ACKNOWLEDGEMENTS**

24
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Coaxial Inductor No. 1</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Coaxial Inductor No. 2</td>
<td>3</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Assembly, Coaxial Inductor No. 3</td>
<td>12</td>
</tr>
<tr>
<td>Figure 4</td>
<td>$\mu_1$ and $\mu_2$ Measured by Different Inductors</td>
<td>13</td>
</tr>
<tr>
<td>Figure 5</td>
<td>$\mu_1$ and $\mu_2$ Measured by Different Inductors</td>
<td>14</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Calibration Curves: $l_2 + l_3$ vs $\frac{\omega}{2\pi}$</td>
<td>15</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Calibration Curves: $\frac{Z}{\omega/\omega_0}$ vs $\frac{\omega}{2\pi}$</td>
<td>17</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Sections II and III of Coaxial Inductor No. 2: The Transmission Line</td>
<td>19</td>
</tr>
<tr>
<td>Figure 9</td>
<td>$\mu$-Curves Using Two Different Values of $Z_0$</td>
<td>20</td>
</tr>
<tr>
<td>Figure 10</td>
<td>P-Contours</td>
<td>23</td>
</tr>
</tbody>
</table>
ABSTRACT

A toroidal sample holder suitable for measuring the permeability and magnetic losses of ferrite toroids is described. Equations describing its operation are derived and design problems are discussed. The approximations used and the sources of error are evaluated. Calibration curves are presented. A graphical means of determining the permeability and losses of the ferrite from the measured value of impedance is described. The sample holder has been used over a frequency range of 30 Mc/s to 500 Mc/s.
A TOROIDAL SAMPLE HOLDER FOR MEASURING VHF PERMEABILITY AND LOSSES

1. INTRODUCTION

The coaxial inductor is a toroidal sample holder suitable for use at "very high frequencies" for the measurement of the permeability and the magnetic losses of a ferrite ring independent of associated circuit parameters. Used with suitable impedance measuring apparatus it allows rapid measurements on large numbers of cores.

The coaxial inductor is composed of three sections: 1. A one-turn toroidal inductance which takes the form of a short length of coaxial line terminated in a short circuit; 2. A taper section which transforms the inner and outer radii of section 1 to the radii of a standard coaxial transmission line; 3. A coaxial transmission line joining section 2 to the point at which an impedance measurement can be made. Figure 1 shows a coaxial inductor which was used at the University of Michigan. Figure 2 shows an improved design which is currently in use. The three sections of the inductor are considered separately in the mathematical analysis which follows.

2. MATHEMATICAL ANALYSIS

2.1 Section One

A length of transmission line which is much shorter than a radian in electrical length may be treated as a lumped impedance. A longer length must be treated as a distributed impedance. The impedance \( Z_A \) of a shorted section of line of length \( l_1 \) and inner and outer radii of \( r_i \) and \( r_o \) is:\(^1\)

FIG. 1
COAXIAL INDUCTOR NO 1
DIMENSION IN INCHES    SCALE 2X
FIG 2
COAXIAL INDUCTOR NO 2
DIMENSIONS IN INCHES  SCALE 4x
\[ Z_A = Z_0 \tanh \gamma l_1 \approx Z_0 \gamma l_1 \text{ for } l_1 < \frac{\lambda}{4}, \text{ i.e., for } |\gamma l_1| < 0.1. \] (1)

Where \( \gamma = \alpha + j \beta = j \omega \sqrt{\mu/\epsilon} \) is the propagation constant and \( Z_0 = \frac{1}{2\pi} \sqrt{\mu/\epsilon} \log_e \frac{r_0}{r_1} \) is the characteristic impedance.

\( \mu \) and \( \epsilon \) are the permeability and dielectric constant of the dielectric medium.

\[ Z_A = j \frac{\omega \mu l_1}{2\pi} \log_e \frac{r_0}{r_1} = j \omega L_A \] (2)

Here \( L_A \) is the inductance of section one. Since \( \mu = \mu_0 = \frac{4\pi}{10^7} \) H/m for the air dielectric, there are no dielectric losses. That wall losses and internal inductance are negligible will be established later.

This short length of shorted line is equivalent to a one-turn toroid and we shall show this latter approach leads to the same equation. But first consider a one-turn toroid with a two-media core, a ferromagnetic ring that partly fills the region plus air that fills the remainder of the region within the single turn. We require the ferromagnetic ring to be positioned concentrically and to have the dimensions \( r_1 \) and \( r_2 \) for inner and outer radii and \( l_F \) for axial length. It has a permeability of \( \mu = (\mu_1 - j \mu_2) \mu_0 \)

\[ H = \frac{i}{2\pi r} \text{ (amps/m)} \]

The flux through the area \( A \), the cross-section of the toroid, is:

\[ \phi = \int_A \vec{B} \cdot d\vec{A} \text{ webers} \] (3)
Taking the integral in two parts — over the entire region with the air permeability \( \mu_0 \) and over the ferromagnetic region with the contribution to \( \Phi \) over and above what an air medium would contribute — gives:

\[
\Phi = \int_{r_1}^{r_2} \mu_0 H_l L_1 \, dr + \int_{r_1}^{r_2} (\mu - \mu_0) H_f L_f \, dr \\
= \frac{i\mu_0}{2\pi} \left[ L_1 \log_e \frac{r_0}{r_1} + \frac{\mu - \mu_0}{\mu_0} L_f \log_e \frac{r_2}{r_1} \right] \\
\]

(4)

\[
Z_1 = j\omega L_1 = j\omega \frac{d\Phi}{di} = j\omega \mu_0 \left\{ L_1 \log_e \frac{r_0}{r_1} + L_f \left[ \frac{\mu - \mu_0}{\mu_0} - 1 \right] \log_e \frac{r_2}{r_1} \right\} \\
\]

(5)

If the ferromagnetic ring is removed, i.e., \( L_f = 0 \), Eq 5 becomes identical with Eq 2 as predicted above.

2.2 Section Two

If the taper section is short enough or if the change in \( \frac{r_0}{r_1} \) is small from the input to the output of the section, we can treat it as a transmission line section with a constant characteristic impedance. Otherwise one must calculate the impedance transfer function of this taper section.

Consider a linear taper of length \( L_2 \) and with radii:

\[
r_o = k_0 (x + x_o) \quad \text{and} \quad r_1 = k_1 (x + x_1) \\
\]

\[
\frac{r_0}{r_1} = k \frac{x + x_o}{x + x_1} \quad \text{where} \quad k = \frac{k_0}{k_1}
\]

Let us require \( L_1 + L_2 \ll \lambda \). Then lumped-circuit techniques can be used.

We treat the section as a single-turn toroid.
\[
L_T = \frac{d\phi}{di} = \frac{1}{i} \int_{A} \mathbf{B} \cdot d\mathbf{A} = \frac{1}{i} \int_0^L \int_{r_i} r_0 \mu_0 H \ dr \ dx
= \frac{\mu_0}{2\pi} \int_0^L \log_e \left( k \frac{x + x_0}{x + x_i} \right) \ dx
\]

\[
= \frac{\mu_0 k (x_i - x_0)}{2\pi} \left[ \int \frac{\log_e y \ dy}{(y - k)^2} \right] \frac{\frac{l_2 + x_0}{\frac{l_2}{l_2 + x_i}}}{k \frac{x_0}{x_i}}
\]

where \( y = k \frac{x + x_0}{x + x_i} \) and \( H = \frac{i}{2\pi} \).

Integrating by parts:

\[
L_T = \frac{\mu_0 k}{2\pi} (x_i - x_0) \left[ -\log_e y - \frac{\log_e (y-k)}{y-k} \right] \frac{\frac{l_2 + x_0}{\frac{l_2}{l_2 + x_i}}}{k \frac{x_0}{x_i}}
\]

\[
= \frac{\mu_0 k}{2\pi} (x_i - x_0) \left[ -\log_e y \frac{y-k}{y-k} + \log_e (y-k) \frac{1}{y-k} - \log_e y \right] \frac{\frac{l_2 + x_0}{\frac{l_2}{l_2 + x_i}}}{k \frac{x_0}{x_i}}
\]

\[
= \frac{\mu_0}{2\pi} \left\{ l_2 \log_e k \frac{x_0}{x_i} + l_2 \log_e \left[ \frac{x_i}{x_0} \cdot \frac{l_2 + x_0}{l_2 + x_i} \right] + \right. \]

\[
\left. + x_i \log_e \frac{x_i}{l_2 + x_i} - x_0 \log_e \frac{x_0}{l_2 + x_0} \right\}
\]  

If \( x_o = x_i \) in Eq 7 it becomes Eq 2. The error introduced by treating the taper as a constant impedance transmission line is given by the last three terms in Eq 7. If this error is small enough the taper section can be treated as a constant impedance transmission line. If we do this we introduce an error by neglecting the taper, but counteract the error introduced in calculating Eq 7, namely, using lumped circuit methods. This will become apparent in the next section.
2.3 Section Three

The impedance $Z_3$ at the input of a transmission line of length $l_3$ terminated in an impedance $Z_2$ is:\(^3\)

$$Z_3 = Z_0 \frac{Z_2 \cosh \gamma l_3 + Z_0 \sinh \gamma l_3}{Z_0 \cosh \gamma l_3 + Z_2 \sinh \gamma l_3}$$

$$
\approx Z_0 \frac{Z_2 + jZ_0 \tan \beta l_3}{Z_0 + jZ_2 \tan \beta l_3}
$$

for a low loss line \(^9\)

This equation treats the transmission line as a distributed impedance. If it is sufficiently accurate to treat the taper as a constant impedance transmission line, $Z_1$ can be substituted for $Z_2$ and $l_2 + l_3$ for $l_3$ in Eq 9. In this way the error introduced by the lumped circuit approximation is avoided.

2.4 Wall Losses and Internal Inductance

These are negligible since the wall impedance is negligibly small compared to the impedances calculated above. The depth of penetration is:\(^4\)

$$\delta = \left[ \frac{2}{\omega \mu_0 \sigma_w} \right]^{1/2} \text{ meters}$$

where $\sigma_w = \text{wall conductivity}$.

The wall impedance $Z_w$ is:\(^5\)

$$Z_w = \frac{1 + j}{2\pi \delta \sigma_w} \left( \frac{1}{\frac{1}{r_0} + \frac{1}{r_1}} \right) = R + j\omega L_w \ \text{ohms/meter}$$

\(^4\) Page 204 of Ramo and Whinnerny, op.cit.
\(^5\) Pages 332-333 of Ramo and Whinnerny, op.cit.
Using Eqs 2, 10 and 11 and letting $\mu = \mu_0$ gives:

$$\frac{L_w}{L_A} = \frac{R_w}{|Z_A|} = \frac{\frac{1}{r_0} + \frac{1}{r_i}}{\sqrt{2} \omega \mu_0} \log_e \left( \frac{r_0}{r_i} \right)$$

Using the dimensions of Fig. 1, a frequency of 50 Mc/s, and the conductivity of silver, $6.2 \times 10^7$ mhos/meter.

$$\frac{R_w}{|Z_A|} \approx 0.07\%$$

Clearly, wall resistance and internal inductance are negligible.

2.5 Accuracy

The greatest error is in treating the taper section as a constant impedance transmission line. We use the dimensions of Fig. 1 which is admittedly a poor design for this approximation. This will give an extremum in error.

$$k = 2.04 \quad x_0 = 0.2 \text{ inches} \quad x_1 = 0.17 \text{ inches}$$

Using Eq 7, $\omega L_T = 6.32$ ohms at 500 Mc/s and the error is 0.66 ohms, a 9.5% error. This is a serious error, but it is negligible if one makes difference impedance measurements as will be demonstrated later. It is interesting to compute the resulting error in $Z_3$. For this calculation the maximum percentage error will occur at the lowest value of $Z_1$, namely $Z_1 = Z_A$ (Eq 2). At 500 Mc/s, $Z_A \approx j 4.5$ ohms. $Z_2 = j \omega L_T + Z_A = j 10.32$ ohms if we use Eq 7 and $Z_2 = j 11.48$ ohms if we use only the first term in Eq. 7. Using Eq 9 the two values of $Z_3$ obtained are $j 65.0$ and $j 66.7$ respectively, a 2.6% difference.
This is roughly the per cent error one expects in the impedance measuring apparatus. Therefore, our approximation roughly doubles the possible error.

An additional, but small error is introduced by treating section one as a lumped impedance. The percentage error in $Z_A$ is:

$$\frac{\beta l_1 - \tan \beta l_1}{\tan \beta l_1} \approx 0.2\% \quad \text{at} \ 500 \text{Mc/s and } \mu = \mu_0.$$ 

### 3. DESIGN

One can alter the length $l_1$, $l_2$, and $l_3$ in Fig. 1 to obtain a better design. The dimensions of section one should be adjusted such that the ferrite ring will occupy a large portion of volume and still accommodate the range of ring sizes desired. In order to maintain negligible shunting capacitance between the faces of the toroid, $l_3$ must not be decreased too much. This requirement is met if the capacitive reactance $\frac{1}{\omega C} = \frac{l_1}{\omega \varepsilon' \pi \varepsilon_0}^2$ is very much less than $\omega l_1$. Here

$$\frac{1}{\varepsilon'} = \frac{1}{\varepsilon_0} + \frac{d}{l_1} \left[ \frac{1}{\text{Re}(\varepsilon)} - \frac{1}{\varepsilon_0} \right]$$

where $\varepsilon$ is the dielectric constant of the ferrite ring.

A taper much shorter than a quarter wavelength in length is equivalent to an abrupt or discontinuous change in the inner and outer radii. Since the greatest error is introduced in the taper section, one should hold the length of this section to a minimum. However, one must be careful that at no point along the taper section does the ratio $\frac{r_2}{r_1}$ decrease enough to produce an appreciable shunting capacitance. $C = \frac{2\pi \varepsilon_0}{\log_e(r_0/r_1)}$ farads/meter for a constant impedance line. This capacitive reactance must be less by orders of magnitude than the series inductive reactance of
\[ \frac{\omega \mu_0}{2 \pi} \log_e \frac{r_0}{r_1} \text{ henrys/m} \]

Finally, it is desirable to maintain \( l_3 \) as small as possible as this simplifies Eq 9. Also, the smaller \( l_3 \), the less the impedance \( Z_1 \) is isolated from the point of impedance measurement. This means that the error in \( Z_1 \) due to an error in measuring \( Z_3 \) is decreased as \( l_3 \) is decreased. This is important because as computed earlier a 2.6% error in \( Z_3 \) corresponded to a 9.5% error in \( Z_2 \) for a large \( l_3 \).

Figure 2 shows a better design. The major fault with this design is the small \( r_1 \) in Section One. However, a steeper taper in the inner conductor might have introduced appreciable capacitive shunting.

4. MEASUREMENTS

4.1 Impedance Measuring Apparatus

The impedance measurements may be accomplished by any of several methods: 6

1. Standing-wave ratio measurements with a slotted line
2. Byrne Bridge method
3. Admittance Comparator method
4. Directional-coupler methods
5. Probe methods
6. Hybrid Junction methods

Methods 1, 2, and 3 are available commercially. We chose the Byrne Bridge method and purchased the Hewlett-Packard VHF Bridge which allows a

---

6 These methods are discussed in Section 4-10 of Electronic Measurements, Terman, F.E. and Pettit, J.M., McGraw-Hill Book Co., 1952, pp 157-165
coverage from 50 Mc/s to 500 Mc/s. A H. P. signal generator and a H. P. detector were used in conjunction with the bridge.

4.2 Measurements with the Three Coaxial Inductors

Figure 3 shows a third coaxial inductor. Each of the three inductors have different dimensions. Measurements were made on two ferrite rings with each of the inductors. Figures 4 and 5 show the resulting curves of $\mu_1$ and $\mu_2$. Inductors No. 2 and No. 3 give identical readings. Inductor No. 1 in Fig. 1, being of the poorest design, gives values a little different from those obtained with the other inductors. However, as noted earlier for inductor No. 1, a small error in the $Z_1$ measurement corresponds to a higher error in $Z_2$ and, therefore, a high error in $\mu_1$ and $\mu_2$. Obtaining essentially the same values of $\mu_1$ and $\mu_2$ with the three different geometries serves as a partial verification of the foregoing analysis.

4.3 Calibration

One must determine $l_2 + l_3$ for use in the modified form of Eq 9. To do this, one inserts in section one a brass toroid of dimensions $r_0$, $r_1$ and $l_1$. The measurements made are $Z_{B} = jZ_{o} \tan \beta(l_2 + l_3)$. The lowest curve in Fig. 6 shows the value of $l_2 + l_3$ versus frequency for inductor No. 2. The curve shows roughly a 1% increase over the frequency range which seems to be typical of measurements with our bridge. All of the points deviate within experimental error from a straight line.

Rather than compute by Eq 2 the value of $Z_A$, it is measured by removing the brass shorting ring and making impedance measurements. Solving the modified form of Eq 9 for $Z_A$ gives:
FIG 3

ASSEMBLY, CO AXIAL INDUCTOR NO 3
DIMENSIONS IN INCHES
FIG 4

$\mu_1$ & $\mu_2$ MEASURED BY DIFFERENT INDUCTORS

COAX IND #1
COAX IND #2
COAX IND #3

CORE A-61-1
FIG 5

$\mu_1$ & $\mu_2$ MEASURED BY DIFFERENT INDUCTORS

$\Delta$ COAX IND #2
$\triangledown$ COAX IND #3
--- $\mu_1$
--- $\mu_2$

CORE A-127-1
FIG 6
CALIBRATION CURVES: \( l_2 + l_3 \) VS \( \frac{\omega}{2\pi} \)
\[ Z_A = Z_0 \frac{Z_3 - jZ_0 \tan \beta (l_2 + l_3)}{Z_0 - jZ_3 \tan \beta (l_2 + l_3)} = \frac{Z_3 - Z_B}{\frac{1}{Z_0^2} (Z_0^2 - Z_3 Z_B)} \]  \hspace{1cm} (12)

The lowest curve in Fig. 7 shows \( \frac{Z_A}{\omega/\omega_0} \) versus frequency where \( \omega_0 = \frac{2\pi}{100 \text{ Mc/s}} \). This curve shows a 10% increase over the frequency range. Deviations from a straight line are again within experimental error. The average value of \( \frac{Z_A}{\omega/\omega_0} \) gives an inductance \( L_A \) that is about 10% below the theoretical value. The value of \( L_A \) was 9% below the theoretical value for both of the other inductors.

The errors indicated by these calibration curves are not serious because we use the values actually measured for computing \( \mu_1 \) and \( \mu_2 \). We believe that they are inherent in the bridge. Since repeated measurements give the same curves it is reasonable to use the values actually measured. Then only the change in impedance is used in calculating \( \mu_1 \) and \( \mu_2 \).

On inductor No. 2 the calibration measurements were made twice; once with the shorting ring as described above and once with the short in effect placed closer to the point of impedance measurement. The latter method resulted in an average value of \( l_2 + l_3 \) of 3.50 cm instead of 4.03 cm and an average value of \( \frac{Z_A}{\omega/\omega_0} \) of 1.39 instead of 0.833 ohms. Ferrite rings gave identical \( \mu_1 \) and \( \mu_2 \) curves versus frequency regardless of which calibration was used. This indicates that the values of calibration data themselves are not important so long as difference measurements are used in calculating \( \mu_1 \) and \( \mu_2 \).
FIG 7

CALIBRATION CURVES: \[ \frac{Z_0}{\omega/\omega_0} \] VS \[ \frac{\omega}{2\pi} \]

FOR DIFFERENT VALUES OF \( Z_0 \)
4.4 The Value of Characteristic Impedance, $Z_0$

Figure 8 shows a cross-section of the transmission line of length $l_3$. It is not a simple straight pipe. The ratio $\frac{Z_0}{\omega/\omega_0}$ varies along the length of the line, all of which is not visible. Values of characteristic impedance for that part of the line, which is visible have been calculated and an average value of 46 ohms has been obtained. The manufacturer quotes a value of 50 ohms for his bridge and the latter value has been used. However, if one uses slightly lower values the curves of $l_2 + l_3$ and $\frac{Z_4}{\omega/\omega_0}$ are affected in a favorable manner. Figures 6 and 7 show curves for which the values of characteristic impedance used were 45 and 47 ohms. The result is to decrease the positive slope of these curves. In Fig. 6 the slope is zero. In Fig. 7 the increase over the frequency range is 7.5% for $Z_0 = 47$ ohms and 5% for $Z_0 = 45$ ohms. The effect of using $Z_0 = 46$ ohms on the $\mu$-curves is negligible as Fig. 9 shows.

4.5 Procedure

Once the calibration is made, a ferrite ring is placed in the inductor and $Z_2$ is measured. $Z_1$ is then calculated using Eq 12. Then $\mu_1$ and $\mu_2$ are calculated using the following equations which are derived from Eq 5:

$$\mu_1 - 1 = \frac{k \left[ \text{Im}(Z_1) - |Z_2| \right]}{l_f \omega/\omega_0}$$  \hspace{1cm} (13)

$$\mu_2 = \frac{k \text{Re}(Z_1)}{l_f \omega/\omega_0}$$  \hspace{1cm} (14)

where $k = \frac{2 \pi}{\omega_0 \mu_0 \log_2 \frac{r_2}{r_1}}$ is a constant since for our cores $\frac{r_2}{r_1}$ is a constant.
FIG 8
SECTIONS II & III OF COAXIAL INDUCTOR #2: THE TRANSMISSION LINE
(DIMENSIONS IN CENTIMETERS)
FIG 9

$\mu$ CURVES USING TWO DIFFERENT VALUES OF $Z_0$

$\Delta$ $Z_0 = 46\,\Omega$
$\n$ $Z_0 = 50\,\Omega$

$\mu_1$
$\mu_2$

COAX. IND. #2, CORE NO A-61-1
4.6 Z-θ Chart

The use of Eq 12 may be avoided by use of the Z-θ chart.\textsuperscript{7} Then the calibration procedure must include the computation of \( \frac{I_2 + I_3}{\lambda} \). We computed and drew up a Z-θ chart of 12" radius. It was found satisfactory at the higher frequencies and over the entire frequency range for cores of high permeability. For the lower frequencies data on low permeability cores could not be used on the chart because of the difficulty in reading the phase angle accurately on the chart for low values of \( Z_1 \).

4.7 P-Contours

Since the calculation of \( \mu_1 \) and \( \mu_2 \) is tedious even using the Z-θ chart, P-contours were compiled which greatly speeded the calculations. Computed, heretofore not mentioned, are corrections of the bridge's readings according to the calibration curves of \( a \) and \( b \) supplied by the manufacturers. These computations are:

\[
Z_3 \text{ corrected} = Z_3 \text{ measured} (1 + a) \quad (15)
\]

\[
θ_3 \text{ corrected} = \frac{ω}{ω_0} θ_3 \text{ measured} + b \quad (16)
\]

These corrections plus Eqs 12, 13 and 14 are all included in calculating the P-contours. Let us define

\[ P_1 = L_f(\mu_1 - 1); \quad P_2 = L_fμ_2 \]

Then from Eqs 12, 13 and 14:

\textsuperscript{7} Pages 152-157 of Ramo and Whinnery, op.cit.
\[ Z_3 \sin \theta_3 = \frac{P_1 \omega/\omega_0 + Z_A + Z_B}{1 - \frac{Z_B}{Z_0^2} \left[ P_1 \omega/\omega_0 + Z_A + P_2 \omega/\omega_0 \cot \theta_3 \right]} \] (17)

and

\[ Z_3 \cos \theta_3 = \frac{P_2 \omega/k}{1 - \frac{Z_B}{Z_0^2} \left[ P_1 \omega/\omega_0 + Z_A + P_2 \omega/\omega_0 \tan \theta_3 \right]} \] (18)

In Eqs 17 and 18 all values of \( Z \) are absolute values. \( \theta_3 \) is the phase angle of \( Z_3 \).

These implicit relations allow the calculation of \( Z_3 \) and \( \theta_3 \) corresponding to a given set of values of \( P_1 \) and \( P_2 \). The procedure is:

1. Choose a value for \( P_1 \) and a value for \( P_2 \)
2. Guess a value for \( \theta_3 \)
3. Calculate the right-hand sides of Eqs 17 and 18
4. Take the ratio of these two computations and equate to \( \tan \theta_3 \).
   Thereby determine \( \theta_3 \).
5. Compare this value of \( \theta_3 \) with the value guessed earlier. If they are not equal, use the computed value as a more intelligent guess and repeat the computation until the computed value of \( \theta_3 \) equals the guessed value.
6. Calculate \( Z_3 \) from left side of either Eq 17 or 18.

The values of \( Z_3 \) and \( \theta_3 \) just calculated refer to the corrected values. So one must use Eqs 15 and 16 to find the measured values. The P-contours thus calculated are plotted in the \( Z_3 \) measured - \( \theta_3 \) measured - plane. P-contours must be calculated at each frequency of interest. Figure 10 shows P-contours for a frequency of 200 Mc/s. Roughly 60 computations are necessary to establish this chart. But it will be used for hundreds of measurements. In addition,
computational errors are quickly isolated in computing the chart, whereas cor-
responding errors made in evaluating the data for each core according to the
procedure of paragraph 4.5 would be extremely difficult to isolate. We have
calculated P-contours for frequencies of 50, 100, 200 and 500 Mc/s.

One merely takes the measured values of $Z_3$ and $\Theta_2$ to the P-contours
and reads the values of $P_1$ and $P_2$. Dividing by $L_I$ gives $\mu_1 - 1$ and $\mu_2$ re-
spectively. Thus $\mu_1 - 1$ and $\mu_2$ are now easily computed.

5. CONCLUSION

The coaxial inductor permits the rapid measurement of $\mu_1$ and $\mu_2$
of a large number of ferrite toroids over a frequency range of 50 to 500 Mc/s.
A wider range is permitted if one has the necessary impedance measuring appar-
atus. The measurements are accurate to perhaps 5% if the inductor is judi-
ciously designed and the impedance measuring apparatus is sufficiently accurate.
The technique of measurement is rapid because an initial balance is not
necessary and because the ferrite ring does not require a snug fit in the in-
ductor. The only requirement is that it fit concentrically. We accomplish
this by sticking the ring in place with vacuum grease which does not affect
the measurements. The inductor packed with vacuum grease had the same im-
pedance as the air filled inductor. Finally, the use of P-contours makes the
computations very rapid and there is little source of error.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the counsel of members of the De-
partment of Electrical Engineering of the University of Michigan. In particular
the encouragement and counsel of Mr. D. M. Grimes has been most helpful.
<table>
<thead>
<tr>
<th>Copy</th>
<th>Recipient</th>
</tr>
</thead>
</table>
| 1    | Director, Electronic Research Laboratory  
      Stanford University  
      Stanford, California  
      Attn: Dean Fred Terman |
| 1    | Commanding Officer  
      Signal Corps Electronic Warfare Center  
      Fort Monmouth, New Jersey |
| 1    | Chief, Engineering and Technical Division  
      Department of the Army  
      Washington 25, D.C.  
      Attn: SIGJM |
| 1    | Chief, Plans and Operations Division  
      Office of the Chief Signal Officer  
      Washington 25, D.C.  
      Attn: SIGOP-5 |
| 1    | Countermeasures Laboratory  
      Gilfillan Brothers, Inc.  
      1815 Venice Blvd.  
      Los Angeles 6, California |
| 1    | Commanding Officer  
      White Sands Signal Corps Agency  
      White Sands Proving Grounds  
      Las Cruces, New Mexico  
      Attn: SIGNS-CM |
| 1    | Commanding Officer  
      Signal Corps Electronics Research Unit  
      9560th SU  
      Mountain View, California |
| 1    | Mr. Peter Haas  
      High Frequency Standard Section  
      Central Radio Propagation Laboratory  
      National Bureau of Standards  
      Washington 25, D.C. |
Transportation Officer, SCIL
Evans Signal Laboratory
Building No. 42
Belmar, New Jersey

For - Signal Property Officer
Inspect at Destination
File No. 25052-PH-51-91(1443)

H. W. Welch, Jr.
Engineering Research Institute
University of Michigan
Ann Arbor, Michigan

Document Room
Willow Run Research Center
University of Michigan
Willow Run, Michigan

Electronic Defense Group Project File
University of Michigan
Ann Arbor, Michigan

Engineering Research Institute Project File
University of Michigan
Ann Arbor, Michigan

Dr. J. K. Galt
Bell Telephone Laboratories, Inc.
Murray Hill, New Jersey

Dr. G. T. Rado
Naval Research Laboratory
Washington 25, D.C.

Dr. R. M. Bozorth
Bell Telephone Laboratories, Inc.
Murray Hill, New Jersey