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SUMMARY

This paper is concerned with transverse vibrations of shallow viscoelastic
spherical shells subjected to axisymmetric loads which are harmonic in time. In
particular, the steady state solution is obtained for an unlimited viscoelastic
shallow shell subjected to an oscillating load uniformly distributed over a small
circular region about the apex. Numerical results for axial displacement and
stresses are obtained for two special viscoelastic media (Maxwell and Kelvin) as
well as for the elastic shell, and comparison is made with known results.
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INTRODUCTION

The method of solution employed in the quasi-static treatment of problems
of viscoelasticity rests on the use of Laplace transform (to eliminate the de-
pendence on time), and the correspondence principle—between the field equations
and boundary conditions in the linear theories of homogeneous and isotropic elas-
ticity and viscoelasticity-~which, in the absence of thermal effect, has been es-
tablished for incompressible media by Alfrey [1]} and in general form by Lee [2].
The extension of Lee's analogy to problems involving time-dependent temperature
fields has been given by Sternberg [3], where an exposition of the subject may
be found. While the quasi-static viscoelastic solutions are useful and have met
with increasing success in recent years, nevertheless, in situations where the
duration of application of loads is very short, it is necessary to include the
inertia effects. Furthermore, in contrast to steady state solutions, only a few
transient viscoelastic sclutions are available, and in addition to the one-dimen-
sional wave propagation in rods, such as those discussed in [4,5,6,7], we mention
the transient solutions for the axisymmetric transverse motion of shallow spher-
ical shells contained in [8]° to which further reference will be made presently.

Closely related to the scope of the present investigation is the recent work
on vibrations of thin shallow elastic shells by E. Reissner [9], who, by utiliz-
ing the linear differential equations due to Marguerre [10], has shown that for
transverse vibrations of shallow shells the longitudinal inertia terms (with neg-
ligible error) may be omitted; and hence the formulation of the elastokinetic
problems of shallow elastic shells, as in the case of elastostatics, may be re-
duced to the determination of axial displacement and an Airy stress function.
Subsequently, E. Reissner [11] dealt with transverse vibrations of axisymmetric
shallow elastic spherical shells, and in particular obtained the solution for an
unlimited shell due to a point load (varying harmonically in time) at the apex.

The response of shallow viscoelastic spherical shells to arbitrary time-
dependent axisymmetric load has been studied in [8] by the present authors; the
solutions in integral form, utilizing the differential equations of transverse
motion of shallow elastic shells, were deduced with the Joint use of the Laplace
and Hankel transforms. While the solutions for shallow viscoelastic spherical
shells subjected to harmonically oscillating loads may in integral form be ob-
tained as a special case of the general results in [8], for such solutions (which
include steady state solutions), it is desirable from a practical point of view
to obtain an alternative closed representation. Thus, the present paper deals

1. Numbers in brackets designate References at end of paper.

2. The analysis in [8] also includes the vibrations of axisymmetric viscoelastic
plates.



with the response of shallow viscoelastic spherical shells to harmonically os-
cillating axisymmetric loads, where the medium is assumed homogeneous and iso-
tropic. The solution, employing the differential equations for the transverse
motion of thin shallow elastic shells, is obtained with the use of Laplace trans-
form in & manner similar to that employed by Lee [2,6] and is expressed in terms
of Kelvin functions. Explicit results are deduced for an unlimited shallow visco-
elastic shell subjected to a uniformly distributed oscillating load, and are par-
ticularized to the cases of elastic, Maxwell, and Kelvin solids. The stresses

and displacements are plotted for all three cases and comparison is made with
known results [11].

GENERAL BACKGROUND

For future reference, we recall that the Laplace transform with respect to
time t of a (suitably restricted) function U(x,t) is given by”

A oo
U(x)S) = OC {U(x)f)ss}zgéd(_j(x)t)d‘t (1)
0

and that with reference to rectangular Cartesian coordinates x;, the stress-

strain law for an isotropic and homogeneous viscoelastic medium in the Laplace
transform-plane, as shown in [8], may be written as

A -\ A \ = -\ A
063' =P®F © E’W -4 [E(S)P' ) -BEe (5)] akkS% .
R ST

G =ReP o &

44

where 01 j and € are the components of the stress and strain tensor respec-
tively, Sij is the Kronecker delta, s is the Laplace transform parameter, and

the operators Py(s), (m = 1,2,3,4), are the images of Pp(6) in the physical
plane defined as”

N (Ny)
(n) n m
’Pm(@) = Z c 6 3 (Cm, .f_ol
n“—:o (5)
.9
y, o

3, See, for example, Churchill [12]; the argument x in U refers to the space variable.

L. The Latin indices have, unless otherwise stated, the range of i,j = 1,2,3,
and the repeated indices imply the summation convention.

5. It should be noted that unlike P&l(s) the operators Pﬁl(g) are in general
noncommutative [13].



where Cé?) are constants.

According to the correspondence principle mentioned earlier, the field
equations and the boundary conditions governing the original viscoelastic prob-
lem are reducible to the field equations and boundary conditions of an associ-
ated problem in the linear theory of elasticity, with Young's modulus E and
Poisson's ratio v of the elastic solid replaced by

£(s) -l CIACHAS
- [E(s)’@ (s) +2'E<5)/B (5)]
IHSASEHSIAS)

Y (3)

In (4), the elastic medium may be identified by allowing E(s) + E and v(s) » v
(corresponding to Pi(s) = Pa(s) =1, Pa(s) = 2u, Py(s) = 3K, 4 and K being the
shear and the bulk moduli of the elastic solid respectively), while for special
viscoelastic media such as Maxwell and Kelvin (or Voigt), the expressions (k)
become respectively7

O) s 19l sk
= {s+—g</+)’)z ] vy | (52)
(s+57)”

y(s)
and
E(s) -l (/+zs) E
= [/ 3 = zs]
’ [-2Y (5v)
(s) (/- 52 cs)y

vhere 7 (defined as T = 1/k, 1 being the viscosity) denotes the relaxation time
in (5a), and the retardation time in (5b).

We also recall that with reference to cylindrical polar coordinates (r being
the polar radius), and with the neglect of the effect of longitudinal inertia,
the differential equations for transverse axisymmetric vibrations of thin shallow
elastic spherical shells are characterized by [11]

6. The correspondence principle as stated by Sternberg [3] holds also in the
presence of inertia forces.

7. A more detailed account of the stress-strain law of the linear theory of vis-
coelasticity and its specialization to the case of Maxwell and Kelvin solids
may be found in [2,3,8].
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2_2 £
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and the various stress resultants and stress couples are given by
L g/ = F”
N, =+ F" , Ng=F /
"Xy =-Dl4 ! (7)
MA,=“D[M + /?',w], MB' D[zw—ww]

2 /
Q =-D(Vw)
where w is the axial displacement, F is the Airy stress function, R is the radius
of curvature, p is the mass density, p(r,t) is the axial component of the surface
load, D = (Eh3)/[12(1-v2)], h is the shell thickness, v2( ) = ( )" + 1/x(
and prime denotes differentiation with respect to r.

Let H, L, and I', respectively, denote the rise of thé shell segment, the
characteristic length (which for spherical shells may be taken as the radius of
curvature R), and the representative wave length; then, as has been shown by
E. Reissner [9], the omission of the effect of longitudinal inertia leading to
(6) is justified as long as (/L) is of the order of unity and as long as I is
characterized by the following classification:

(a) 1If (_2T7 = C)(U or smaller, then
4_ / 2 (8a)
I = /2(4-v3) ()
() £ A1, then
>> 1 -
I = /- yz ( [‘ ( L

where
2

_(Z-/;') (8c)

-2

® being the circular frequency.

8. Actually Reissner in [9] has further pointed out that the neglect of longi-

tudinal inertia terms is justified when T'/L. = O0(1) or smaller, but not when
r/L > 1.



AXTSYMMETRIC VIBRATIONS OF SHALLOW VISCOELASTIC SPHERICAL SHELLS
With zero initial conditions, i.e.

w(L)O) = —3—:"_‘)—(4)0) = F(»J,O) =0 (9)

and with an appeal to the correspondence principle, the Laplace transform of
the differential equations (6) yields

Des)y szf} +-71€ sz +/£,s223' =/2(/)/)S)
V V"f - 5(5) VLZ:} =0 (10)
R

Confining attention to a harmonically oscillating load of the type
(.'w‘t
y. =/$ e (11)
(-}

vhere 1 = (-1)1/2 and po is constant,9 the right-hand side of the first of (10)
becomes p,/(s-iw). Imposing the condition of vanishing circumferential displace-
ment (which as in the elastostatic solution of shallow elastic spherical shells
[14] demands the vanishing of the coefficients of log rAin W and r?log r in ﬁ)
and excluding, without loss of generality, the term in F which involves a func-
tion of s alone, the solution of (lO) may be written as

W (4,9) = C & T[Ae4] + C& Y o]

(12a)
+ C3($) Io D\CS) 4,] + C4 () KO[MSM]
(s)
A + Cgsgi ) C' (s) ,]'o [)\(5)4,] + C;CS)Y, [)‘(s)/z]
F(&)S) == 25
RX®1_Co I Doa]-CoRK Do)

+C @ 'ém-;- s Be 4

where

Bey= B[Lo - phs o) (1eo)

4. BN )

9. The restriction that p be independent of position is not essential to the
analysis presented here.




Jos Y55 Lo, Ky are Bessel functions of order zero and A and £ are given by

N < - £ [E(S) iadl (130)

1)(5)

/ ¢s) = [/2 (/-y’(s))]l/4 13

It should be noted that the terms involving p. in (12) represent the exact par-

ticular solution of (10) with p specified by ?ll), as may be verified by substi-
tution.

Defining A (s) through

Xs) = e‘%[ >\°(5) (1%)

then the Bessel functions may be expressed in terms of Kelvin functions [15] b

J(eTA4) = bu(ha)-<be(Nn) (152)
Io (@"% A1) = b (N 2) + < bec (X, 2) (15b)

Ko(e‘%)\ A) = ker (A 2) +< ket (M 2) (15¢)

In addition, it will prove convenient to introduce the functlon'yg (related to
the negative conjugate of K,), i.e.

CZ/(} (€)= 2 [ (\2) + o (0] (150)

whose properties may be deduced from those of the constituent Kelvin functions.
Here, also we note that

ket (A,2) GO
7 ke O b= Xk O0)

% (M%) _ Qéo (2A)

While the solution (12) is appropriate to the loaded region of the shell,
the solution for the unloaded region [i.e. the homogeneous solutions of the

(16)

—




differential equations (10)] may be obtained by merely setting p, = O in (12);
and it will be of the same form as that for free vibrations of shallow elastic
shells given by Reissner [11].

In the following, the loaded (O £ r = a) and the unloaded (r > a) regions
of the shell will be distinguished by subscripts 1 and 2, respectively. The reg-
ularity requirements at r = O demand that

>

A

é} / | / "
2=0; 2% o o (7
remain finite and the continuity conditions at r = a are given by
A A o ZS'/ 2 A 2 A
W=, &{ =72, V W= Vuw,
e 2 Ay a2 A/ ", A, 2N VZF’_‘ (18)
Waw)=(w) F=F vi=VH

The coefficients C's in (12) are determined from (17), (18), and the boundary
conditions at the edge r = r, for shallow shell segments, or from those for un-
limited shells, as r + .

It should be clear that so far the solution (12) is transient in character,
and in order to obtain the steady state solution, following Lee [6], we let
Ms) » AMiw) and replace py/(s-iw) by merely p, which, here, is equivalent to
taking the inverse Laplace transform.

UNLIMITED SHALLOW VISCOELASTIC SHELLS

In the remainder of this paper, we will confine attention to unlimited shal-
low viscoelastic shells (0 £ r £ w) subjected to a harmonically oscillating load
of the type (11) applied over the region O = r £ a (a/R << 1). In this case the
coefficients C's are determined from (17), (18), and as r + « from

A

A A7 ~ 2 A
s (0,00 (v F VR o (29)

o 2

Thus
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Ce) = Qe @‘ S CZ(S)=-Q@>@1(S>
| -1
Cow=Q0 e [ Co=-Qude
C, = 2R0) , Co =_6§%i<i) Q)

where

|
Qe - A {2<s k5 £a ]
@(s) [)\()a.] 3‘ )\(sa - 30[)\(5)&]
| y )\(s)a. o[ )
@ ) = J, [Ms)a.L /[A(s)a] ) o[)(s)a] (20b)
: 3, Dwal 4, ¢
D ¢ - K D@al 17y @a] - 1LDws]
7" Tk Pl
@ (s) = I. [ ®a] K:D\(s)a] _ Ko D\(s)a]

4 I; D& al

With the notation
=R ws) , F=R Fs

where "Re" stands for "real part of," and omitting the details, we finally obtain
the following solutions for the two regions of the shell:

5, - e {Q @ [ 3,07 3 @ + 1,00 C.P—‘CSHA}
R!L{ ii(; Q¢ >[ 200 JQWO@ S (210)
+ I (hom) C-_@& (5)} }

T
l
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—

) -\
Fz = /Eg_ ié}s) Q(s) [az N (S)/Zn —2—'— + Q/C\@'L)é G) (21D)
NO) ’

-\
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where ¢, (m = 1,2,3,4), is defined by (20Db).

The choice of functions for the representation of the solution in the form
(21) is motivated by their simpler properties (when subjected to the Laplacian
operator), as seen from (16), as well as by

Yo [)\(s)/z,] = zj; [)\(5)4,] -4 Jo [)QS)A] (22)

The above relation is especially useful in obtaining the real part of (21) in
the case of the elastic medium. In particular, as will be seen presently,

when w2 > (E/p)/R®, then [defined by (13a) with s replaced by iw], is real and
with the aid of (22), the solution (21) may be expressed entirely in terms of
Bessel functions. On the other hand, when w® < (E/p)/RZ®, then [defined by (14)]

is real and with (15d), the solution (21) may be conveniently written in terms
of Kelvin functions.

For the viscoelastic medium, the representation of the solution in terms
of Kelvin functions is more convenient. To this end, utilizing (15), we intro-
duce the quantities

x(s) = ke (Ma) bec'(0,a) + b (0, a) k()
- k%(koa) b,%/(xoa.) - be (\,a) zéu/()\oa)

(23a)

) = ke (0.0) bar'Oa) + ket (), 2) be"Or2)

- bec(A,4) ke’ (N a) - b Q) kei ")



A 9) = bei (),2) kee Oa) - b O 2) ke’ (\2)

. (23b)
B (1) = b (ha) kew’ Q) + b O) k" Q) -
A,s) = ket (3,2) b/ Oa) - ket ) bec Oa)
(23c)
B,(s,5) = ke (\2) ber’(h2) + ke (0 2) bel’ )
with the aid of which, for the steady state solution, (21) becomes
o = ?Q Q((w) , Ala(:'“BL? }
| {z [ " “+/? ] (2ka)
o hhe Q] X | Ap-Ts
F| = RZ{;@)Q(@)Q( )[ 2 o a<‘+/3‘ }}
and
] [ Ax-B/
wl-&{uQ(Lw)[ +4° ]} (2kp)

REDUCTION TO THE ELASTIC SOLUTION

The reduction of the above solution to that for an elastic shell is carried
out by allowing E(s) - E and v(s) + v; the steady state solution, as noted above,
may be obtained by merely replacing A(s) with A(iw) and po/(s—hb) with py in the
entire solution. In the remainder of this section we consider the transition of
the viscoelastic solutions (21) and (24), corresponding respectively to the two
frequency ranges w2 > (E/p)/R® and o® < (E/p)/R®, to the known results for an un-
limited elastic shell due to a point load given in [11].

10



Thus, in the first frequency range, in (21), we replace p, with P/(xa®), use
(22) and the series representation for Bessel functions with small argument (as
indicated in the Appendix) and let a -+ O. Omitting details of the algebra, and
with the notation W and f for the amplitudes of w and F respectively, we obtain

P ™ A od |
\/\/ = E [—2— Yo()w,)i-Ko (M) 5 J;Ow)}

47T DN (252)
P
g’ = @ - 4[ Y()\A) K ()\4,)~,<.7TJ-O\/L)
47 DR (25b)
|
-2 Z
= 4
which are identical with those given by Reissner [11] for w2 >E/(pR®). 1In the

second frequency range, making use of solution (24), we again replace Po by
P/(na2), use the series representation of Kelvin functions with a + 0, and ob-

tain
\/\/ 2#@ X

g— - P Eﬁ [/Q%(XO/L) +Z¢—?—]

27D>C’ R

kec (X,2)

(26)

which are the same as the corresponding results in [ll]lo for w? < E/(pRg)

SOLUTTIONS FOR SPECIAL VISCOELASTIC MATERTALS

In this section, we deduce explicit solutions for the two viscoelastic Max-

well and Kelvin materials. Rather than set down the expressions for the steady

state displacement and stress function amplitudes in their entirety, we instead

10. With the use of known relations of the type (see e.g. [15, p. 201])
[)
Y. (£%x) ‘[beexw. berx | + =% [ keax +< feec x]

solution (25) for the range @?<E/(pR2) may be reduced to (26);

in this con-
nection compare with [11, Egs. (42) to (45)].

11



obtain the expressions for the quantity A (iw) as well as

A
E( > (27)

2/% [s —_

which occur in the solutions (21) and (24). With these results and recalling
that for the steady state amplitude the quantity (s-iw) is to be replaced by
unity, numerical evaluations of the solution may be readily accomplished.

For the Maxwell solid, with the aid of (5a), (13a) and (14), A (iw) and
the expression (27) become, respectively

X@w)"[@@“} () 5 + 5 () e
(E/p)yz {—;(/w) (‘Cco).j

<[ (g;/ﬁ))i ~ (cw )X ——(/W) (Cw)>}g ‘%
T

(28a)

and

AV
= £l

2

S RO L
U@’ (% ﬂ* e [ ©

/z

(28b)

where

-
Y - led T ot 2

3(-Y)
- 2
4 z;Lyb‘ fg‘(/f)d Tw (29a)

E{ﬂ_)__z_ - ()
@/c)



£k
-l rw -l (m)ﬁ[ (72/2) ]
;V' - tan —Tan (29b)

2 2
—_ Y = ()ry) TXL
3 (/+ ) 3 ( + )

In the case of Kelvin solid specified by (5b), expressions corresponding
to (28) and (29) are given by

X (-»)
N [ Ky } L i@ u)] @
XOC{C‘)) = [ (/_))) ] (% y.l. < Z ) [(7‘3—;)2. +(z_®)1l (/-/-[10.)1) %

< /-2)/ [( ) ‘@@)2} (30a)

N (Zco)z [ = (;//ﬁc) e )z _(Cw) D&’/ y 64,- —4%

and
2 /1 2 ‘}3
& (3 (G |
b (A D oo ] e
e )+ @o’
(30p)
wnere < /2 )
% = z;m/_‘ j(co ; [/—2y< R /r )— }
=2 &Py .
[ 2(/-21/)] /"“’ [( RZ_ ) - (‘(@)] (31a)
-2 Tan’ -t @)
v-=27)
| 2 f{&)_l/j )1 (zw 2} I -
W ___‘l‘:a/’; [/-—zy R/c - ) o ———ZLaa'L Tw
’ ) 2
-zy) ( ) (Za))zj /-2
(31b)
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NUMERICAL RESULTS. DISCUSSION

As an example of the foregoing solution, we consider an unlimited shallow
shell with R/h = 30 subjected to an 0501llat1ng load of the type (11) distributed
over the circular region O = r/f = a/f = 0.256; and then we obtain numerical re-
sults for Maxwell and Kelvin materials [characterized by (R/T)/(E/p)l/2 =5 x 10°%],
as well as for the case of the elastic medium. With the notation

¢ M o . &M

(32)

F‘BZ

2m )?, ) B, m

where subscripts b and m refer to the bending and membrane stresses, respectively,
the plots of amplitudes of axial displacement, maximum bending stresses, and mem-
brane stresses versus (r/4) for all three media and for two values of (Rm)/(E/p)l/Z
(i.e. 0.8717 and 1.113%6) are displayed in Figs. 1 to 5. We note that the ampli-
tudes of membrane stresses in Figs. 3(b) and 4(b), although small at the origin,
do not vanish at r = O, and that for both values of (Rw) / E/p 1/2 the amplitude
of (OQﬂn) is 180° out of phase with that of d, p for both Maxwell and Kelvin
media. In comparing the amplitudes of the stresses shown in Figs. % to 5, it

may be of interest to note that the stresses of the elastostatic solution of the
corresponding problem, shown in Fig. 6, have the same character as those of Fig.
5(a); other features of the results in Figs. 1 to 5 are self-explanatory.

Two interesting characteristics of the steady state solution (24) exempli-
fied in Figs. 1 to L, should be emphasized. The first is the difference between
the displacement and the difference between the stresses for the the two frequency
ranges in the case of the Maxwell material. The second is that a corresponding
difference is not to be found for the Kelvin material. As discussed below both
of these characteristics are dependent upon the nature of the Kelvin functions
of complex argument in solution (24).

The argument of the Kelvin functions involved in the solution may be spe-
cialized to the Maxwell and Kelvin materials according to (28) and (30) respec-
tively. Thus, 1t is seen that in the case of the Maxwell material the phase of
the complex argument is nearly zero for the "low" frequency range [w2 < (E/p)/RZ],
and nearly /4 for the "high" frequency range [@w? > (E/p)/R2], while in the case
of the Kelvin material tne phase of the arguments is nearly n/8 for both frequency
ranges. Turning to the relations between the Bessel and Kelvin functions of com-
plex argument, such as (15)

~ i 7
_ L P ¢4
E%Z‘-l— 3;(6 2)1-.3:(@ g)}
which occur in the solutions, and again considering the two materials separately,

1L



it is seen that for the Maxwell material excited in the "low" frequency range,
the Bessel functions must be evaluated along a path which approaches the lines
n/% or -n/4 asymptotically in the complex plane. When the Maxwell material is
excited in the "high" frequency range, on the other hand, the Bessel functions
must be evaluated either along a line which approaches the real axis asymptoti-
cally for increasing z or approaches the imaginary axis asymptotically for in-
creasing z. The distinctly different behavior of the Bessel functions.along the
imaginary axis as compared to that along the real axis accounts for the differ-
ent stress and displacement distributions in the two frequency ranges.

Since the solution for the Kelvin material does not exhibit a change of
phase in the argument as the exciting frequency noves from one frequency range
to another, the stresses and displacements are not qualitatively distinct for
the two ranges. The dissimilarity of displacement and stresses for the Kelvin
material as compared to those of Maxwell for either frequency range is again due
to the phase angle of the argument. From the properties of the Bessel functions
occurring in (21), one may conclude, in fact, that for any linear viscoelastic
material the qualitative nature of the steady state stresses and displacement is
determined exclusively by the behavior of the phase angle in the argument of the
Kelvin functions.

15
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For small values of the argument (\a), the Bessel functions and their deriv-
atives become

J,(0a) = | I, O =

k™

J/ D) & - 2= ) I: (ha) = aX

2

5 a
J,(0) 2 _1Oa 2
T00  aX TOe  aX

where ; is Euler's constant.

Likewise for small values of the argument (Aa), the Kelvin functions and
their derivatives may be written as
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2 a A A
be (N, a) = 222 — N al
2 254500
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2 %
2
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4 2 4
4 3 3 7
M/(XOCL) = ———):‘1—?—' + A 4 -
2* 276
be. /O\oa) _ N a _ /\f o ..
2°. 6
/2%/()&) = - / + 7T>\°a_*_‘
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2 2 )‘6
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Membrane stresses for Maxwell material.
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