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ABSTRACT

By means of a more recent method of asymptotic integration due to
Langer, a solution is obtained which is valid at the apex of the shell and
involves Kelvin functions. This solution reduces in the limit to the known
theory of shallow spherical shells, Specifically, the stress distribution
is obtained for ellipsoidal shells under a uniform load distributed over s
small area about the apex.
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TECHNICAL REPORT NO. 6

ON ELASTIC ELLIPSOIDAL SHELLS OF REVOLUTION

INTRODUCTION

In a previous paper [l], it was shown that the resulting differential
equations for small deformation of thin elastic shells of revolution, as given
by Reissner [2], may be combined into a singlé second~-order complex differen-
tial equation. This differential equation is valid for shells of revolution
of uniform thickness and a large class of nonuniform thickness.

In the present paper, the solution of the complex differential equa-
tion mentioned is obtained by means of a more recent method of asymptotic in-
tegration due to Langer [3]. This solution is valid at the apex of the shell
(where a second order pole is present in the differential equation) and involves
Bessel functions of complex argument. Specifically, shells closed at the apex
¢ = 0 and subjected to uniform distributed load over a small region about the
apex is treated. Also included is the reduction of the solution to the known
results for shallow spherical shells [4].

THE BASIC EQUATIONS

With the use of cylindrical coordinates r, ©, z, the parametric
equations of the middle surface of a shell of revolution, as shown in Figure 1,
are

(1) r=r (¢) , z-=2z2 (&)
and
(2) r'=acos §, z'=asing

where a=[(r')® + (z')z]l/a

¢ is the inclination of the tangent to the meridian of the shell and the primes
denote differentiation with respect to &.
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To make the paper self-contained, we record here the relevant equa-
tions of the small deflection theory of elastic shells of revolution with axi-
symmetric loading, as given in [2].

rV = —frapvd§
aN§ = r‘H + 2z'V; ¢Q = -z'H + r'V.
oNg = (rH)' + r apg
rN¢ = (rH) cos ¢ + (xrV) sin @
(3) rQ = <(rH) sin@ + (xV) cos @

ri

D
Mg = g lB* + v 8l
D Ir!
MO=6Z[I""B+V5J

I
u = “E-H(NQ‘VNg)

PA .
f[E—ll'(Ng - VI\TG) -~ rt 6] at,

where Ng, Ng, and Q are the stress resultants; Mg and Mg are the stress couples
(Figure 1); H and V denote the "horizontal" and "vertical” stress resultants
related to @ and Ng; u and w are the displacements in the radial and axial direos
tions, respectively; P is the negative change in ¢ due to deformationj Py and

are the components of load intensity in the r and z directions; h is the
thickness of the shell; D = Eh3/12(l~v2) and E and v are Young's modulus and
Poisson's ratio, respectively.

=
1

The components of stress, due to the stress couples (bending) and due
to stress resultants N¢ and Ng (membrane), as well as the shearing stress r,
are defined in the usual manner by

- 6Mg - ) oM
Ugbs("gb)max = 3z * %p = (ogp)max = T2
(4) otm - Ng , ooy - Ng , o o= )
n n 2h

where the subscripts b and m refer to bending and membrane stresses, respectively
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It was shown in [1] that the differential equations in B and (rH),
resulting from (3) and the equations of equilibrium and compatibility, as
derived by Reissner [2], may be combined in the normal form:

2 1/2
(5) W (24203 (8) +A (W - (F + 1k G) £(¢)

)
o::‘ ':3‘
 Iny

provided that k, given byt

S SR A - y)BLY/E
(6) ko=-53 (w = 2) +{1 l:2p.2 (vA 2{'}

is constant.

The various quantities occurring in (5) and (6) are defined by

W=<nj/2( (B + 1k ¥); i
Vo= LG, n - “2(”2”1/2’1«2 - 222()
v e[t [ 52 =

(7) A o .
o - e[l R R )
F = QHZE% (rv7) cot @
O [ I

- [_(i/ZEEi)’ ;1:_] Ty - PI'I}
- Vo= e 20 (9 e0)
® A-p e -

I1This restriction, although obtained in an entirely different manner, is
similar to that given previously by Meissner E5].
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m m
(8) Q = Eﬂg (rV), Pg = Eﬁg‘r a Py

where hy is the value of h at some reference section (say £ = ¢5) and rp, the
length of the normal intercepted between the generating curve of the middle
surface and the axis of rotation, is given by rp = r/sin ¢. In what follows,
the other principal radius of curvature, that is the radius of curvature of the
generating curve, will be denoted by ry.

For ellipsoidal shells of revolution, the equation of the middle sur-
face in rectangular Cartesian coordinates is specified by

2 2

>
+
N
+
N
N
I.._l

a c

a and ¢ being the semi-major axes of the ellipsoid. Selecting the independent
variable £ as ¢, it follows from the geometry of the middle surface and (2)
that @ = ry. Thus, the radii of curvature are

2

c a
(9) r = o0 = é[l + pz COS? ¢]372} I'o = [l . 02 C052 ¢];/2
and
10 _ a sin ¢
(10) : [1 + p2 cos2 §]1/2
_ 2 - g2
(11) p? = ~

) a s w (Y (], ) - e 9

and when the thickness h is uniform,

(13) &8 = 0, A = - (2)2 (1 + o2 cos? )%/

Since we are mainly concerned with shells of uniform thickness, in the re-
mainder of this paper hgy will be replaced by h, unless otherwise stated.

As remarked previously [1], for ellipsoidal shells r; is not constantj
it follows that when h is uniform, k is a function of @. However, with a view
towards approximating k by a constant so that the condition for the validity of
equation (5) is fulfilled, we note that restriction of (c/a) to O (1) is con-
sistent with WA << 2u® and by (6),
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,:1-(!&5)2:]1/221'1 or k == 1.

2u

With this approximation, equation (5) is valid and the coefficient functions

'F and A read:

2 (L + p2 cos® ¢)“5/2
(1) A2 cot” ¢ RN
; 2 2 .2 +
L \a (L + p° cos™ @)
where
A, - o p= sin'.2¢72 + 3 _I:lpz cos 20 1 (_q_)’z[?sinz ¢ + pZ cos® Qf]
16 L1+ p® cos28! 2 LI + p2 cos® 2 \a/ L(1 + p2 cos® @)%

and the transformation for W in (7) is

(15) W = (i) l:sin @ (1 + p2 cos? ¢)]l/2 (B + i V)

c

SOLUTION OF THE DIFFERENTIAL EQUATION BY ASYMPTOTIC INTEGRATION

Inspection of the coefficient function /) as given by (L4) reveals
the presence of a pole of second order (at ¢ = 0) in the differential equation
(5). Consequently, the solution of (5) by the classical method of asymptotic
integration fails to yield a solution valid at the apex of the shell. In
order to obtain a solution of (5) which is valid at @ = Q, recourse will be
made to a more recent technique of asymptotic integration, due to Langer [3].

According to Langer, it becomes necessary to modify (5) into a new
- normal form. For this purpose, we introduce a new independent varisble t as
follows:

(16) t = sin g-, ag = 2 133%27172

Then (5) may be written as®

2
(17) Aot @ 13,2 (L) A(t)]w - R(1-t2)1/%
at®  1-t® at 1-t2 1-t2

2If 1t 1s desired to cover the entire region of the shell, i.e., 0 < o} < =,
instead of transformation (16) t = sin §/2q should be used. This entails re-
placing the factor 4 by 4q® in (17) where q > 1.
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where
. 3 mi/2 ‘
(18) R - T I ORERES

Expanding the coefficient function 4 /\ (t)/1-t2 in (17) by partial
fractions, there results

boa(e) | 3A A
(19) 1 - ) L5 + 2
where

(20) N\, - Il ST ,:~5/4 (c/a)* (1-2t2)2 . g[_l{l
t

1-12 2 (1-t2)2 [14p2 (1-2t2f12 2
is bounded in /t/ <1, i.e., In 0< ¥ < =
Now, by means of the transformation
(21) W o= (1- £2)t/e y

we obtain from (17) the new normal form

&7 3 2 ¥ 2. =3/k 0 =
(22) —— + 81”[(1-t)]+_;é.+A3W_R

o

t

where

(23) As = Aa +

(1-t2)"t + 2 £3(1-t3)"2
L

o+

is bounded in /t/ < 1.

Since the particular solution of (22) depends on the specific load-
ing, we shall consider in this section only the solution .of the homogeneous
differential equation associated with (22).

As pointed out by Langer, the homogeneous solution of (22) may be
3

written as , , (l)
e )
Wy x\l/2 v -1/2 § 1/ ‘721/4 exp—ﬁ-i H “(n)
(24) _ i [(E) I;l-tz)l;zj ] + K
Wa -)ni H](-2)(71)

3 -
The numerator of the second term in the coefficient of W in (22), when written
as 1/4 [1-(2P ] corresponds to 1/4 [1-A2] in Langer's notation. The order of
the Bessel functions in the solution of (22) is determined by 1/2 A.
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where
1/4 |-o/+ log [(21° 2)+/?)

-1/2
(25) ko= [}“‘25357%] (12 2)1]2 O(e)

and O(e) denotes a bounded function.

In (24), H£l%n) and an(n) are Hankel functions®*

(26a) N CIERS Y |
and
(26b) b - \}P _'iEE'“7" at .

In view of (24) and (25), it follows that the homogeneous solution
of (22) may be represented asymptotically by

(27) Wy = k_jLéTWZ Y“ f“{iﬂ”m)+§ﬂamq

1-t2)*

which is valid in /t/ < 1 and where the constants A and B are complex. It is
advantageous to express solution (27) in terms of Kelvin functions, as follows:

(28) Wy = [(1 T T y/a{zl [bery (s) + 1 beiy (s)]

~t2)t

+ By [kery (s)+1 keiy s]}

where

(29a) s = (Bu2)t/2 §

and '

(29b) A, = A, + 1A , B = By + 1B

By means of (15), (21), and solution (28), we record the expressions
for By ¥, B!, and V', since they are required in the solution of specific

problems.
§\r/2 3

~ 2 2 2y21)-1/2 /2
B = <§'€} {(l-t [1+p=(1-2t2) ]} [ﬁ:gz)trz] {Ao bery (s)

i (30a)
A beip (s) + %kulw)-mkalgg

*The notation used is that of Watson. See reference[6].

T
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_ -1/2
o= (%)1/2{(latz)[l+p2(l-2t2)2]} 1/2 &1—’;%)1% Ay beiy (s)

(30a)
+ A; ber; (s) + By keiy (s) + By kerp (s)}
. b y/2 ey T R
B = BX + (2uB)1/2 (2"{) [14p2(1-2&fT /2 mg} Jla
(300) 1/2 —1/2F & 1/2
Vo= ux o+ (203)1/2 @E) [14+07(1-2t3)2] m] S

where again primes denote differentiation with respect to @, t = sin ¢/2, and

Z

T [14p2(1-2t2)2)3/% § {1 - § a—t—})gg [14p2(1-2£2)2] /%
1 {1-5t2 802t (1-t2)%/ A

[1+p2(1-2t2)(11-12t2) ]} -

E)e(1t2)1 /2 T TLep2(1-2t2)2]
(30c) 1
= = [Agvers (s) - Ay beir (s) + Bo kery (s) - By kedy (s)]

C/Vo %;‘ [Ag beiy (s) + A; bery (s) + By keiy (s) + By kery (s)]

REDUCTION TO THE THEORY OF SHALLOW SPHERICAL SHELLS

In this section, we consider the transition from the solution (30)
to the known results for shallow spherical shells, due to E. Reissner [4]. For
this purpose, we first examine solution (30) for the case of a spherical shell
and then proceed to show its reduction and correspondence to the limiting case
of shallow shells.

Since for spherical shells c¢/a = 1, then @ = ry = ra, p° = 0, and
by (7), £ = 1. Hence 2p® =(a/h)m, and the quantitiesaf and § in (1k4) and (26)
become

(31) Y-1, = ge
The solution (30) is now considerably simplified and reads as follows:

(32a) B = Ejg%;iﬂl/z {Ao ber; (s) - A; beiy (s) + By kery (s) - By keiﬁ%

8
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(32a)
v =E~erk{%bﬁ1@)+hbﬂ1®)+%kﬁ1@)+&kﬂlﬁﬁ
2 sin ¢
a 1/2 1/2 d
Bt = BL + (-ﬂm) [2;—%13@] -&-S—{Ao ber; (s) - A; bei; (s)
(32b)
+ By kery (s) - By kety (s)}
Yt o=

h s

v X+ (Em)l/z MI/Z d {Ao bei; (s) + Ay bery (s) + By keiy (s

2 sin ¢

+ By ker; (s)f
where the argument#s? is reduced to

(32¢) s (i m)l/z ¢

]

=

and

(324) Z - -f: (%—co’c g .

According to Reissner [4] a spherical shell is defined as shallow
when r/a ig small compared to unity. This assumption implies that the theory
of shallow shells is valid only for small values of @; in particular, since
'r = a sin @, then for small values of @, r/a=~ . While the argument "s" given
by (32a) is valid for 0 < ¢ < wx, for small values of ¢ it may be written as
s (a/h m)l/2 r/a which is identical with the argument of Kelvin functions em-
ployed in [4]. In view of this discussion, it is clear that for shallow shells
sin g2 ¢ and € = 0 in solution (32). Thus for shallow spherical shells,

using well-known recurrence relations for Kelvin functions, we have

_ g-_ AO"Al - AO+ Al . Bo"Bl _ Bo+By . )
B = e {T ber (s) 5 bei (s) e ker (s) -~ ——— kei (s)
(33)
v o=

da {éo._._‘Al bei(s) + Aothl  per (5) + Bo7B1 kes (s) + BatBr  yer (s)}.
ds 2 2 2 2

To show the correspondence of solution (33) with that of Reissmer [4], we re-
call that the basic dependent variables of his work are a stress function F
and the displacement normal to the middle surface of the shell, which for small
¢ is the same as the deflection w of the present paper. These dependent vari-
ables are related to our B and ¥ by

&

(34) P =, V= mm

4
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f (33) and the solution given in [4] are substituted in (34), it is
seen that a one to one correspondence exists between the two solutions, pro-
vided the coefficient of 1/s in dF/dr is set equal to zero; the function 1/s
arises from the solution of the differential equation<72F = 0. An equivalent
differential equation does not arise in the formulation of shells of revolu-
tion employed here, and this is also borne out by Reissner's subsequent work
on shallow shells [2, p. 243].

ELLIPSOIDAL SHELL UNDER A UNIFORM NORMAL LOAD
DISTRIBUTED OVER A SMALL REGION ABOUT THE APEX

We consider an ellipsoidal shell clamped at the edge @ = /2 sub-
Jected to a uniform normal load P, distributed symmetrically in the region
0<@g< @, @ being small.

In view of the presence of a distributed load, it becomes necessary
to obtain a particular solution of (22). Since by the first of (3)

. 2 2 -
(35) o= -8 g%gipn® @ Ltp” cos” § ,0< <@
2 (1+p2 cos? 9)% - -
. _%az sin? § ™ L e , §<p< /2
p

then; as in [h], a suitable particular solution may be obtained approximately
by the membrane theory of shells. Thus, for small values of @, the particular
solution is )

(36) Bp = O

Vo = .o (?.’.)2 In tan ¢
P E \h 2 (1+p2 cos? @)

In the following, the loaded and unloaded regions will be distin-
guished by subscripts I and II, respectively. The requirement that the quan-
tities M¢, Mg, Ng, Ng, Q, w, and w'! remain finite at the apex ¢ = O demands
that

(37a) = 05 Br,IBr,BI, Ly, ¥
-

remain finite where the quantities in the above include both the homogeneous
and particular solutions, i1.e.,

Br = (BH)., + (BP)I ete.

10
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The boundary conditions at the clamped edge ¢ = ﬂ/E are
1
(37p) ¢ = n/2; Brr= 0, VYT = %%5 (rV)
where BII = (B )__ etc., since no particular solution is needed for the un-

loaded region. Also, the continuity conditions at ¢ ¢ are
=. _ _ 1 _ ' 1 _ 1
(370) ¢ = ¢: BI = BII’ WI = WIIJ WI = WII) BI = BII .
Examination of (30) reveals that condition (37a) is satisfied pro-
vided that the constant coefficients of the functions ker; (s) and keij (s) are

set equal to zero at the outset.

Hence, for region I, the solution is given by

iy
5
v - (%-)1/ 2{(1-t2)[1+p2(1-et2ﬂl/ 2 El-t’;l /{]'l/ *fCo bety s + Cy beng

n (a® py _ tan 8
E (h) 2 (1+p2 cos2 @)

The solution for region II, on the other hand, involves (30) only
with all four functions retainéd. The six constants of integration are deter-
mined from the conditions (37b,c) which result in the following six simultan-
eous equations:

Co berp(s) - C1 beip(5) - Ag bery(s) +,A; beiy(s) = B kery(s) + Br keip(s) = 0.

Co bers(5) - Cy beif (§) - Ag beri(s) + A beii(s) - Bp keri(s) + By keij (8) = 0.

Co beii (8) + Cp bery(5) - Ay beii(s) = Ay beri(8) - By keip(5) - By keri(s)
- G tan‘a (1+p2)
(1+p2 cos2 @) 2

C, beip(5) + C1 beri(S) - Ao beir(S) - Ay beri(s) - Bo keiy(S) - By keri(S)

_ g (1#0%) 2)5/4 { 1 pp2 512§ tan gL (5)}

+ -~ =
© (2u2)1/2 | cos2 F (14p2 cos2.@)  (14p2 cos2f R (14p2 cos2§)

'
]

) - A beip(F) + B, kery (5) - By keiy(§) = O

ol

Ag bery (

11
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Ao[beil(-—;)f(ﬁ/E) + (2112)1/2 beii(?)] + Al[berl(?)t(ﬂ/g) + (2u2)1/2beri(§)]
+Bolkets ()L (x/2) + (2422 keif (B)] + Bylkers ()R (x/2) + (242)*/2kery ()]

- . QO v Sinzﬁ (2)2 [2§ (K/Q)]-‘l/Z

(140 cos® P) \a
m (a)2 - =
where Qo = = (g) Pp s 5 = s(), s = s(x/2)

and the primes in these equations denote differentiation with respect to 's'.
. \/._ 2 Py °
Taking a/h = 20, c/a =N2(p° = 1), ¢ = 10°, and v = 0.3,

then the constants of integration are determined as follows:

Co = 0.065738 Qo
Ci = =0.126213% Q4
By = =0.016310 Q,
(40)
By = .0,010468 Qo
A, = -5.55Th x 10°2 Qg

Ay = -2,5676 x 102 0y .

Using (4), the stress distribution for the example treated is-as
shown in Figure 2, ' It is noteworthy that, although the ratio of c/a in the
present example is JEL the resulting bending stresses in the loaded region are
in very good agreement with those of the corresponding example of shallow
spherical shells [4].

12




Fig. 1
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