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ABSTRACT

A method is presented for predicting the failure strength and failure mode of
mechanically fastened fiber reinforced composite laminates. The method in-
cludes two steps. First, the stress distribution in the laminate is calculated by the
use of a finite element method. Second, the failure load and the failure mode
are predicted by means of a proposed failure hypothesis together with
Yamada’s failure criterion. A computer code was developed which can be used
to calculate the maximum load and the mode of failure of joints involving
laminates with different ply orientations, different material properties, and dif-
ferent geometries. Results generated by the present method were compared to
data and to existing analytical and numerical solutions. The results of the pres-
ent method were found to agree well with those reported previously.
Parametric studies were also performed to evaluate the effects of joint
geometry and ply orientation on the failure strength and on the failure mode.

1. INTRODUCTION

A MONO THE MAJOR advantages of laminated composite structures over con-Aventional metal structures are their comparatively high strength to weight
and stiffness to weight ratios. As a result, fiber reinforced composite materials
have been gaining wide application in aircraft and spacecraft construction.
These applications require joining composites either to composites or to metals.
Most commonly, joints are formed using mechanical fasteners. Therefore,
suitable methods must be found to determine the failure strengths of

mechanically fastened joints. A knowledge of the failure strength would help in
selecting the appropriate joint size in a given application.
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Owing to the significance of the problem, several investigators have developed
analytical procedures for calculating the strength of bolted joints in composite
materials. Among recent studies are those of Waszczak and Cruse [1], Agarwal
[2], Garbo and Ogonowski [3] and Wong and Matthews [4]. As will be discussed
in Section VII, previous methods provide conservative results and underestimate
the failure strength, often by as much as fifty percent. The major objective of
this investigation was, therefore, to develop a method which a) predicts the
failure strength and a failure mode of mechanically fastened composite plates
with better accuracy than the existing analytical methods and b) can be used
readily in the design of mechanically fastened composite joints.
An issue is whether a two or three dimensional stress analysis is required. If

the stacking sequence is known to be important, then a three dimensional
analysis, such as that used by Rybicki and Schmueser [5], must be employed.
For open holes in glass-epoxy, boron-epoxy and graphite-epoxy laminates,
Daniel, Rowlands and Whiteside [6] found that the stacking sequence did have a
10-2001o effect on strength and could alter the failure mode. Whitney and
Kim [7] however, showed that for quasi-isotropic graphite-epoxy laminates the
notch strength was independent of the stacking sequence for notch sizes which
caused tensile failure before delamination at the straight free edge. In ex-
periments on pin-loaded holes in glass fiber reinforced plastic plates, Quinn and
Matthews [8] showed that both the failure mode and the strength did indeed de-
pend on the stacking sequence.
Wong and Matthews [4] used a two-dimensional finite element analysis to

calculate stresses and strains in the bolted joint problem, arguing that it is known
that when the laminate is constrained laterally by washers in bolt-loaded holes
then the stacking sequence is unimportant. Based on such a two-dimensional
analysis, they found a correspondence between the calculated strains and ex-
perimental data from tests on glass fiber reinforced epoxy resin.

It seems clear that to some degree three-dimensional effects are present, but
they may not be critical. Weighing the available evidence, a two-dimensional
finite element analysis was chosen for the present work. In addition to the lateral
constraint argument, we were swayed also by the following facts. 1) The results
obtained from the analysis are close to the experimental data, as will be shown
below. 2) The stacking sequence, when important, seems to involve 10-20% ef-
fects, which would appear to be within the tolerances of the state of the art
analyses. 3) The relative simplicity and inexpensiveness of a two-dimensional
code over three-dimensional ones should make it an attractive design aid.
A second ingredient in the analysis is failure. Here the failure load and the

failure mode are predicted by means of a new failure hypothesis together with
Yamada’s [9] failure criterion. Another remark regarding the stress analysis
should be made here. Three dimensional effects are most significant near boun-
daries and interfaces, but the failure hypothesis adopted here involves stresses at
some distance from the pin-hole interface.
The computer code which was developed can be applied to joints involving

laminates with different ply orientations, different material properties, and dif-
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ferent configurations, including different hole sizes, hole positions and
thicknesses.

II. PROBLEM STATEMENT

Consider a plate (length L, width W, thickness H) made of N fiber reinforced
unidirectional plies. The ply orientation is arbitrary, but must be symmetric with
respect to the x, = 0 plane (see Figure 1). Perfect bonding between each ply is
assumed.
A hole of diameter D is located along the centerline of the plate (xi = 0) at a

distance E from one end of the plate. A rigid pin (diameter D), supported out-
side the laminate, is inserted into the hole and a uniform tensile load P is ap-
plied to the plate. The load is parallel to the plate and is symmetric with respect
to the centerline. Hence the load cannot create bending moments about either
the xl, x2 or x, axes. Moreover, for symmetric laminates, in-plane and bending
effects are uncoupled. It is desired to find

1) the stresses and strains in each ply,
2) the maximum (failure) load (Pj that can be applied before the joint fails,

and

3) the mode of failure
Point 2 refers to the fact that, according to experimental evidence,

mechanically fastened joints under tensile loads generally fail in three basic
modes referred to as tension mode, shearout mode, and bearing mode. The type
of damage resulting from each of these modes is illustrated in Figure 2.
The objective listed in point 3 above, is to determine which of these modes will
most be responsible for the failure.

Figure 1. Geometry of the Problem.
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Figure 2. Illustration of the Three Basic Failure Modes.

The calculation proceeds in three steps. For a given geometry and load
1) the stress distribution around the hole is calculated,
2) the maximum (failure) load is predicted, and
3) the mode of failure is determined.

The details of these steps are presented in Sections III-V.

III. STRESS ANALYSIS-GOVERNING EQUATIONS

The stresses in the laminate are calculated on the basis of anisotropic theory
of elasticity and classical plate lamination theory. Accordingly, in the analysis,
planes are taken to remain planes, the strain across the thickness is taken to be
constant [Fij = f(x,, X2)] and only plane stresses are considered (013 ~ 023 = 033
= 0). Under these conditions, in the absence of body forces, force equilibrium
can be expressed as [10]

The subscripts i and j may have the values 1 or 2 and the comma denotes dif-
ferentiation w.r.t. x,. Consider now an elastic laminate of volume Vo containing a
loaded hole as shown in Figure 3. Stresses are applied over the surface area Ai.
The surface area AR is rigidly fixed (no displacement), while the surface area AF
is free of applied stress. The total surface area is

Let us denote by Ui arbitrary displacements (test functions). The only require-
ment is that Iii be continuous, differentiable and be zero on AR. By multiplying
eq. (1) by ~i and taking the volume integral of the resulting expression we obtain
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Figure 3. Configuration of an Elastic Laminate with a Loaded Hole.

Employing the identity

and utilizing Gauss’ theorem, eq. (3) may be written as

On the free surface AF the stresses are zero, while on the surface AR the

displacements are zero. These conditions give

The surface traction at each point on AL is given by [10]
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Equations (5)-(8) yield

The stress-strain relationship for a linear elastic body is

The subscripts k and I may take on the values of 1 or 2. The strain displacement
relations are

By combining eqs. (9)-( 11 ) we obtain

Because of the laminate symmetry, the following simplification may be made

The subscripts i, j, k, and I are related to m and n as follows

The reduced laminate moduli Em&dquo; are given by

where hP is the thickness of the p-th and Qp is the transformed reduced stiffness
matrix for the p-th ply [ 1,12] .

IV. STRESS ANALYSIS-FINITE ELEMENT METHOD

To perform the calculations, the problem illustrated in Figure 1 was

simulated by the geometry given in Figure 4. Because of symmetry the stresses
were calculated only in one half of the body. Along the symmetry axis, displace-
ment is allowed only in the x, direction. Along the lower edge of the plate,



476

Figure 4. Configuration of a Joint Approximated in the Finite Element Method.

displacement is allowed only in the xl direction. The intersection of the sym-
metry axis and the lower edge is considered to be rigidly fixed.
The spatial distribution of the surface traction T, depends on the magnitude of

the applied load, on the material properties, and on the geometry in a complex
manner. It is extremely difficult to determine the exact distribution of Ti inside
the hole. To overcome this difficulty a cosine normal load distribution was
assumed. With this approximation Ti becomes

The angle 9 is in the x,-xz plane and is measured clockwise from the xz axis
(Figure 1). For isotropic materials the cosine normal load distribution (eq. 16)
was found to represent closely the actual load distribution [13]. Wong and Mat-
thews [4] also used a trigonometric distribution. Calculations performed by
previous investigators also showed that for composite materials the stress

distribution inside (in contrast to on boundaries) the body is insensitive to the
assumed load distribution [1,3,14]. Therefore, eq. (16) should suffice for the
purpose of the present analysis which is to determine the overall strength of the
joint.

Equations (12) and (16) give, noting that in two-dimensions volume and area
integrals reduce to area and line integrals, respectively,
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Figure 5. Grid Used in the Finite Element Method. Right Hand Figure is an Enlarged View of the
Grid Around the Hole.

Solutions to eq. (17) were obtained by a finite element method. Isoparametric
four-node elements were used. The grid sizes were unequal. Smaller grids were
used in the vicinity of the hole to obtain a better resolution of the stresses. Utiliz-
ing the symmetry about the x~ axis, a grid (consisting of 306 elements) was
placed on one half of the laminate, as illustrated in Figure 5.

The displacements in each element can be expressed in terms of the

displacements of the four nodal points [15]

The subscript a designates the nodal points (a = 1,2,3, or 4). Na is the shape
function described in detail in Ref. [ 12] . q;a is the displacement at the nodal point
a in the i direction.
We define a stiffness matrix for the g-th element as
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Kf(Jka is an eight by eight matrix. The subscript fl may take on the values 1,2,3,
and 4. Accordingly, eqs. (17), (18) and (19) yield,

where r Lg are segments of the hole boundary on which the forces are applied.
The functions q¡(3 are arbitrary functions and hence eq. (23) can be written

where the global stiffness matrix, Ki(3ka and the load vector F;(3 are given by

The elements of K¡(Jka and the components of the vector Eo are known. Hence,
qka can be obtained from eq. (21) using the Gaussian elimination method. Once
qka are known the displacements ui are calculated from eq. (21). Then the stresses
and strains can be calculated from eqs. (10) and (11).

V. PREDICTION OF FAILURE

To determine the load at which a joint fails and the mode of failure, the con-
ditions for failure must be established. In this investigation the joint is taken to
have failed when the combined stresses have exceeded a prescribed limit in any
of the plies along an approximately chosen curve (denoted as the characteristic
curve). The combined stress limit is evaluated using the failure criterion pro-
posed by Yamada [9]. The coordinates of the characteristic curve are established
by extending Whitney and Nuismer’s failure hypothesis [ 16] (developed for
open, unloaded holes) to loaded holes.

1) Failure Criterion

Numerous criteria for failure have been proposed in the past [17,18,19,20].
Although the concepts underlying the different failure criteria may be different,
the results of the various criteria are generally quite similar. Here Yamada’s
failure criterion is adopted [9]. This criterion is based on the assumption that just
prior to failure of the laminate every ply has failed due to cracks along the
fibers. It states that failure occurs when the following condition is met in any
one of the plies
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no failure

failure

ox and a~, are the longitudinal and shear stresses in a ply, respectively (x and y be-
ing the coordinates parallel and normal to the fibers in the ply). X is the
longitudinal tensile strength of the ply. Sc is the shear strength of a symmetric,
cross ply laminate which has the same number of plies as the laminate under
consideration. As indicated in eq. (24) failure occurs when e is equal to or
greater than unity.

2) Failure Hypothesis-Characteristic Curve

Here we propose that failure occurs when in any one of the plies the combined
stresses satisfy an appropriately chosen failure criterion at any point on a
characteristic curve. The characteristic curve (Figure 6) is specified by the ex-
pression

R,,, and 7?oc are the characteristic lengths for tension and compression [16,21].
These parameters can be determined experimentally by measuring the tensile and
compressive strengths of notched laminates. Rot and Ro<: depend only on the
material. Therefore, the coordinates of the characteristic curve also depend only
on the material, and are independent of the geometry and the stress distribution.

Figure 6. Description of the Characteristic Curve.
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In this investigation the characteristic curve is used together with the Yamada
failure criterion. Accordingly (see eq. 24), failure occurs when the parameter e is
equal to or is greater than unity at any point on the characteristic curve

No failure

Failure

It should be emphasized that the above failure hypothesis is used here in con-
junction with the Yamada failure criteron. However, the hypothesis is general,
and is not restricted to Yamada’s criterion. The characteristic curve proposed
here may be used with any other failure criterion.

3) Solution Procedure

Whether or not a joint fails under a given condition is determined as follows.
For a given load

a) the stresses (0~, 02* au) are calculated in each ply using the finite element
method described in Sections II, and III,

b) the longitudinal and shear stresses (ox,axy) are evaluated in each ply
employing the transformations

where P7 is the angle measured counter clockwise from the x,-axis to the x-axis of
each ply.

c) the parameter e is calculated (24) along the characteristic curve
d) if e equals or exceeds the value of unity (e > 1) in any ply along the

characteristic curve, the joint is taken to have failed.
The procedure outlined above is used to predict whether or not failure occurs

under a given load. Due to the assumption of a cosine normal load distribution
around the hold (eq. 16), the calculated stresses are linearly proportional to the
applied load P. This fact together with Yamada’s failure criterion gives

The relationship is utilized to determine the maximum load (Pj which can
be imposed on the joint. For a given load P, values of e are calculated on the
characteristic curve as discussed above (points a-d). The highest value of e (e.) is
determined, and the maximum load is calculated by the expression
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so when P = Pmax’ eo = 1.
The calculation procedure described in the foregoing also provides the loca-

tion (angle 9/) at which e first reaches the value of unity on the characteristic
curve. (Figure 7). A knowledge of Of provides an estimate of the mode of failure.
When 9f is small (ef = 0 *) failure is by the bearing mode. When 0, -- 45 ° failure
is due to shearout. When 0/ == 90 ° failure is caused by tension. In summary, we
take

At intermediate values of Of failure may be caused by a combination of these
modes.

VI. NUMERICAL SOLUTION

A computer code (designated as BOLT) was developed which is suitable
for generating solutions to the problem formulated in Sections II-V. The re-
quired input parameters and the output provided by the code are summarized in
Table 1.

Figure 7. Location of Failure (e = 1) along the Characteristic Curve.
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Table 1. Input Parameters Required
by the Computer Code and the
Output Provided by the Code

A Fortran listing of the code and a sample input-output may be obtained from
the Department.of Mechanical Engineering and Applied Mechanics, the Univer-
sity of Michigan, Ann Arbor, Michigan.

VII. RESULTS AND DISCUSSIONS

Results were generated to assess the validity and accuracy of the method and
the computer code. In addition, parametric studies were performed to evaluate
the major characteristics of bolted joints.

1) Isotropic and Orthotropic Plates

Stress distributions were calculated in isotropic plates containing both unload-
ed (open) and loaded holes and in orthotropic plates containing unloaded holes.
These problems were selected because analytical solutions are available for com-
parisons with the results of the present method.
An analytical solution for the stress distribution in an infinite ( W -> 00) iso-

tropic plate containing an unloaded hole was given by Timoshenko [22]. The
stress distribution in such a plate was also calculated by the present method. The
parameters used in the numerical calculations are given in Figure 8. A large
width ( WlD = 14) was used in the calculation to approximate an infinite plate.
The results of the present method and the analytical solution of Timoshenko are
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Figure 8. The Stress 0] along the x,-axis in an Isotropic Infinite Plate Containing a Circular Hole.
Comparison of the Present Results with the Theoretical Results Given by Timoshenko.1221
Parameters used in the Numerical Calculatons: o = 1.64 MPa, D = 2R = 7.62 mm, WID = 14,

EID = 14, LID = 28.

Figure 9. The Stress 01 along the x,-axis in an Isotropic Plate of Finite Width Containing a Loaded
Hole. Comparison of the Present Results with the Theoretical Results Given by De Jong [14J.
Parameters Used in the Numerical Calculations: D = 7.62 mm, WID = 5.0, EID = 4.0,

LID = 14. D.
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compared in Figure 8. There is excellent agreement between the stresses

calculated by the two methods.
The stresses in isotropic plates containing loaded holes were also calculated.

Plates of infinite and finite widths were considered. Calculations were per-
formed for the parameters given in Figure 9 and Table 2. From the calculated
stresses, the stress concentration factor was determined. The stress concentra-
tion factor is defined as

where (a2)max is the maximum stress in the plate and B is the bearing stress de-
fined by

The stress concentration factors obtained by the present method were com-
pared to those reported by previous investigators (Table 2). The maximum dif-
ference in the stress concentration factors given by the different methods is
about 20 percent. The stress concentration factor given by the present method
differs from the values given by previous investigators at most by 15 percent.
The stresses in an isotropic plate of finite width containing a loaded hole are

shown in Figure 9. The stresses calculated by the present method are in excellent
agreement with De Jong’s approximate solution [14].
The stress distribution in an orthotropic plate of finite width containing an

open (unloaded) hole was also calculated. The calculations were performed for a
plate with the symmetric laminate lay up of [0/90]5’ An analytical solution for
this problem was provided previously by Nuismer and Whitney [21], who
modified Lekhnitskii’s earlier solution [23] for an infinite plate. The results

Table 2. Stress Concentration Factor (SCFJ
Around a Pin Loaded Hole in an Isotropic Plate

of Infinite Width. Comparison of Present
Result with Those Obtained by

Previous Investigators.

&dquo;Present results were calculated for the case: D = 7.62 mm
10.3’~, WID = 8, EID = 4, LID = 14.
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given in Figure 10 show excellent agreement between the stresses calculated by
the present method and by the analytical solution.
The aforementioned comparisons indicate that the present method predicts

the stress distribution around loaded and unloaded holes with high accuracy.

2) Failure Strength and Failure Mode

Failure strengths of mechanically fastened composite joints calculated by the
present method were compared to available data and to failure strengths
predicted by other numerical methods.

Failure strengths of joints in two graphite-epoxy laminates were measured by
Van Siclen [24] and by Garbo and Ognowski [3]. The test conditions are sum-
marized in Table 3. The failure strengths of the joints under these conditions
were also calculated by the present method. The values used for the material
properties Sc, Raft R&oelig;, will now be discussed. Tests done by Yamada [9] on
glass/epoxy laminates showed that the laminate shear strength S. of a 0.762 mm
(0.03’’) thick specimen is two to three times higher than the lamina shear
strength. For Graphite/Epoxy T300/SP 286 (0.04’~ reported upon here, S, was
taken to be 2.5 times the shear strength S given by Van Siclen [24]. Since the
thickness of AS/3501 laminate was 5.28 mm (0.208’) thick, a multiplier of 1.7

Figure 10. The Stress 01 along the xi-axis in an Orthotropic Finite Plate [0/90)5 Containing a Circular
Hole. Comparison of the Present Results with the Theoretical Results Obtained by Nuismer and
Whitney [21). Parameters Used in the Numerical Calclations: material: GraphitelEpoxy T300/
5208, El =149.8 GPA, E2 = GPa, G12 = 5.39 GPa, v23 = 0.29, a = 2.3 MPa, D = 24.5 mm,

WID = 3.0, EID = 4.0, LID = 14.0.
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was used and good results were obtained. The factor of 2.5 was also tried for the
AS/3501 laminate. It was found that the results differed by less than 5% from
the above predictions. It is worthy to note here that in our experience, the
predicted strength is insensitive to the value of S, except for laminates having
over 7007o unidirectional fibers in the loading direction.
Nuismer and Whitney [21] determined experimentally Roc = 1.092 mm

(0.043’~ for Graphite/Epoxy T300/5208. Even though the material used here is
T300/SP286, the same value of Rot = 1.092 mm was used. For AS/3501-6, Gar-
bo and Ogonowski [3] reported a range of experimental values for Rot between
0.457 mm (0.018’~ and 0.609 mm (0.024’~. A value of 0.584 mm (0.023’~ was
used in this report.
No direct measurements of Roc are available. Values for this parameter were

estimated as follows. Nuismer and Labor [27] reported data for a related
parameter Aoe for AS/3501-5. This parameter enters into the &dquo;average stress
criterion&dquo; defined by Nuismer and Whitney [16]. The value of Roc for

AS/3501-5 was determined using the A~ value given in Ref. [27] and eqs. (5)
and (8) of Ref. [21]. This value of Roc was used here for AS/3501-6. For
T300/SP286 the value of Roc was determined as follows. A value of the
Aot(=O.15’) was reported by Nuismer and Whitney [21 ] for T300/5208. Further-
more, Nuismer and Labor (27) found the ratio Aoel Aot for AS/3501-5 to be 2.7.
Using this ratio, and the value ~(0.15&dquo;) the parameter A, was calculated
(Aoe = 0.405’~. From the known value of Aoe the parameter Roc was then
calculated by the procedure outlined above for AS/3501-6. The material proper-
ties used in the calculations are listed in Table 4.

Comparisons between the experimental and predicted failure strengths are
given in Table 5. In these tables comparisons between the data and the failure

Table 4. Material Properties Used In the Calculations

18IThis value was used for laminates containing more than 7096 (by volume) of 0 degree plies.
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Table 5. CompeiYsons Between the ExpeiYmental (PJ and CIIlculs&oelig;d (PeJ Failure
Loads. Case Numbers Correspond to Test Condltions Glven in Table 3.

strengths predicted by Agarwal [2] and by Garbo and Ogonowski [3] are also in-
cluded.

As can be seen, of the three analytical methods in general the present one
predicts the failure most accurately. In most cases, the failure load given by the
present method agrees with the data within about 10% . On the other hand, the
failure loads given by the Agarwal and by the Garbo and Ogonowski method
can be in error by as much as 50 percent.
One point is of interest here. When there is a high fraction of zero degree plies

in the laminate the laminate fails in the shearout mode. In this case the
calculated results are sensitive to the value of the laminate shear strength S, For
example, when the S, value obtained with cross ply laminates is used to calculate
the failure load of [0/±45/90]~ laminates containing 70 percent of 0° plies the
calculated and measured values differed by 35 percent. On the other hand, if the
shear stress of the individual ply is used in the calculations the difference be-
tween the calculated failure load and the data is only 15 percent.

Failure loads calculated by Waszczak and Cruse [1] are compared to data in
Table 6. Waszczak and Cruse’s method also yields failure loads which are in
error by as much as 50 percent. The present method was not applied to
Waszczak and Cruse’s data because the material properties needed for the
calculation were unavailable.



489

Table 6. Comparisons Between Experimental Failure Loads and the
Values Pmdicted by Waszczak and Cruse [11

It is interesting to note that the accuracies of all four methods (present, Agar-
wal, Garbo and Ogonowski, and Waszczak and Cruse) depend on the ar-
rangements of the plies in the laminate. In general, the analytical predictions are
most accurate for quasi-isotropic laminates ([0/±45/901j equal volume frac-
tions) and are least accurate for angle ply and cross ply laminates. However,
even for angle ply and cross ply laminates the present method yields results
within about 10 percent accuracy, in contrast with the results of other existing
methods of solutions, which may be in error by as much as 50 percent.
The failure modes predicted by the present method were also compared to

failure modes observed experimentally. These comparisons, given in Table 7,
show that the present method predicts well the mode of failure.
The aforementioned comparisons between the results of the present method

and the data show that the method predicts with good accuracy both the load at
which the joint fails and the mode of failure, thus creating confidence in the
method. One final remark should be made here and that is on the form of the
characteristic curve (eq. (25)). As a &dquo;sensitivity&dquo; study, we also tried elliptical
and straight line forms. We found that strength prediction based on the ellipse
differed by as much as 40% from the experimental data and also the predicted
failure mode was incorrect. The straight line form led to even more serious
errors.

3) Effects of Geometry and Ply Orientations

Parametric studies were performed to evaluate the effects of joint geometry
and ply orientation on the failure strength and on the failure mode.
The effects of joint width on joint failure is illustrated in Figure 11. In this,

and in subsequent figures, the failure load is normalized with respect to the
ultimate tensile load of the laminate in the direction of the applied load. As is
shown by the results in Figure 11, in general, the maximum load the joint can
carry decreases as the hole size decreases, when the width to hole diameter ratio
is greater than about 3. As the hole diameter approaches the width (wiz - 1)
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Table 7. Comparisons of Predicted Failure Modes with those Observed
Experimentally, T-Tension Mode, S-Shearout Mode, B-Bearing Mode

Figure 11. The Effects of Width Ratio on the Failure Load of Laminates with Different Ply Orienta-
tions. Pf is the Tensile Failure Load of Laminates without Holes. Parameters used in the numerical
Calculations: Material: Graphite/Epoxy T300/SP286, W = 38 mm, E = 50.8 mm, L = 203.2 mm,

H = 1.067 mm, for (0/t45/90J, and [02/z45J, and H = 1.118 mm for [0/9OJ2s.
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the strength reduces to zero (P - 0). Here failure loads were not calculated for
WID less than three because at such low WID ratios the assumption of the
cosine load distribution (eq. 17) is inaccurate [14].
The effect of edge distance E on the failure load is shown in Figure 12. For

the [0/:!:45/90]s and [0/90]2s lay-ups increasng edge distance results in higher
failure loads, as long as E/D is less than about 4. For higher edge ratios an in-
crease in edge distance does not seem to influence significantly the failure load.
For the lay-up [02/:t45]s, the failure load does not vary significantly with EID.

Effects of ply orientation on the failure load are given in Figure 13. This
figure illustrates the effects of two parameters 1) the maximum ply angle + in the
laminate and 2) the change in orientation between two adjacent plies A9. The lat-
ter parameter is referred to here as &dquo;ply continuity.&dquo; The results in Figure 13
show that the failure load increases both with increasing + and with increasing
A6, as long as failure is by shearout mode. On the other hand, the failure load
decreases with increasing + and with increasing A 6 when the failure is by tension
mode. These results indicate that care must be exercised in designing bolted
joints. If there are no other design constraints, the range of ply orientation + and
the ply continuity A0 should be determined with the use of the computer code
such that the joint can withstand the highest load.

Figure 12. The Effects of Edge Ratio on the Failure Load of Laminates with Different Ply Orienta-
tions, Pf is the Tensile Failure Load of Laminates Without Holes. Parameters Used in the Numerical

Calculations: Material: Graphite/Epoxy T300/SP286, D = 5.08 mm, W/D = 5, LID = 14.
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Figure 13. The Fffects of Maximum Ply Angle and Ply Continuity A 0 on the Failure Load ofMechanically Fastened Joints. Parameters Used in the Numerical Calculations: Material:Afpc/ton/co//)’ ~a-y/cn~ Votn~. Paro/n~cry t/yc~ //! yAc NM/ne’r/co/ Cc/CM/o~o/M: Afo~no/.’

Graphite/EpoxY T300/SP286, D = 4.76 mm, YYlD = 5.336, E/D = 2.983, LID = 14.68,
H = 1.397 mm.

VIII. CONCLUDING REMARKS

The model and computer code developed in this investigation can be used in
the design of mechanically fastened joints involving fiber reinforced laminates.
The computer code can be used to determine

a) the optimum geometry of a joint for a given load,
b) whether or not the joint will fail under a given load,
c) the failure load,
d) the mode of failure, and
e) the ply in which failure first occurs (regarded here as total failure).
The good accuracy of the method suggests that it might be worth it to extend

the method to joints consisting of two or more fasteners.
The results of parametric studies performed with the present computer code

show that the material properties, joint geometry, and ply orientation, all effect
significantly the strength of mechanically fastened joints.
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