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ABSTRACT

From the basic equations of thin cylindrical
shells consistent with Love's first approximation, three
uncoupled displacement equations of motion are deduced
without any further approximation. Comparison is made
with the work of other authors, who have used a variety
of approximations in arriving at the equations of motion
of cylindrical shells. Thus, in a qualitative manner,
further insight is gained on the effectiveness and prac-
ticality of these approximations in the solution of prob-
lems of cylindrical shells.
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TECHNICAL REPORT NO. 1
ON THE EQUATIONS OF MOTION

OF CYLINDRICAL SHELLS

INTRODUCT ION

The formulation of the classical theory of thin elastic shells, and
in particular cylindrical shells, has received repeated attention in the 1lit-
erature.* The basic assumptions used in the classical theory consistent with
the conventional assumptions for displacements*¥ are: (1) the thickness h of
the shell is small compared with the least radius of curvature R of the mid-
dle surface; (2) the strains and displacements are sufficiently small so that
quantities of the second and higher orders may be neglected in the components
of strain; (3) the ecomponent of stress normal to the middle surface is small
compared with other components of normal stress and may be neglected in the
stress-strain relations; and (4) the normals to the undeformed middle surface
remain normal to the deformed middle surface and suffer no extension. The
last two assumptions imply neglect of the transverse normal stress and shear
deformation respectively.

The classical theory of shells in the sense of Love's first approx-
imation? is based on the four assumptions mentioned above, with a further
stipulation that the ratio Z/R (see Fig. 1) is neglected in comparison with
unity in the expressions of both stress-resultants and strain-displacement

*The completé bibliography of the subject is beyond the scope of this paper.
For an exposition of the general theory of shells, see reference 1.

**These are U, V, and W along the x, s, and z directions, respectively (see
Fig. 1); U(x,s,z) = u(x,s) + zu'(x,s), V(x,s,z) = v(x,s) + zv'(x,s), W(x,s,z)
= w(x,s) where u' = -(W/)x) and v' = -(JW/)s + V/R) are consequences of
assumption (L).
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Fig. 1. The coordinate system for
a circular cylindrical shell.

relations.* In applylng the classical theory to special cases, some authors
have introduced still further approximations besides Love's first approxima-
tion, while others have either abandoned assumption (3) or retained terms of
the order (Z/R)2 in the stress~resultants and strain-displacement relations.
It should be mentioned that a general theory has recently been givenl** which
is based on assumptions (1) and (2) only, thus accounting for the effect of
both transverse normal stress and shear deformation.

In the present paper, a set of uncoupled displacement equations of
motion for circular cylindrical shells is obtained, consistent with Love's
first approximation, without any further assumptions. Comparison is then
made between the resulting characteristic equation and the works of other
authors who have employed a variety of approximastions in arriving at the
coupled equations of motion.

THE COORDINATE SYSTEM

The coordinate system for a circular cylindrical shell is shown in
Fig. 1; the x-axis is directed along the generator of the cylinder, s is meas
ured clockwise in the circumferential direction, and the z-axis is directed
inward along the positive normal to the middle surface of the shell. The co=-
ordinate curves x and s, as lines of curvature, specify the position of a
point on the middle surface, and the square of a linear element for the tri-
ply orthogonal coordinate system (x,s,z) may be shown to be

*See equations (4) and (6) of this report.
**Also see reference 3.
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2
(ds)2 = dx° + (l —"§> ds® + dz© ’ (1)

where a is the radius of the circular cylinder.

THE BASIC EQUATIONS OF THIN CIRCULAR CYLINDRICAL SHELLS

In order to make our discussion self-contained, we record here the
basic equations for circular cylindrical shells in accordance with the clas-
sical theory, where the effects of transverse shear deformation and normal

stress are neglected. From these, the basic equations commonly known as
Love's first approximation will be deduced.

Fig. 2.

An element of cylindrical shell showing the
stress-resultants and the stress couples; N; = Ny
+ (JNg/dx) dx, N§ = Ng + (JNg/9s) ds, ete.

The stress-resultant and the stress-couple differential equations
of equilibrium, which may be obtained from Fig. 2, are:
I

0Ny ol
_§+,._...]§.§+P
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and QMi AMsxu _ ’
e =0
d d
I;f -:)-Mf-- Q = O ? (3)
Ny = Ngx = —EE
where the stress-resultants and couples are defined by
f(h/z) . f(h/Z) 1
l\TX = Oy (l —;g> dz ; Ns = Oy dz
-(h/z) -(b/z)
- (4a)
+(h/z) +(h/z)
Nx.s = Oys (l - g)dz ; Nsx = Oyg 4%
-(h/z) -(h/z) {
+(b/z) . +(n/z)
@ = O%z <l —;> dz 5 Qy = f gz 92 ( (ko)
-(n/z) -(b/z)
+(h/z) . +(h/z) ]
Mx = f Oy (l —a>zdz H Ms = Og zdz
-(h/z) -(h/z)
X (ke)
+(n/z) +(h/z)
M= f st<l —-:—) 2dz 5 M = o, 24z
-(b/z) -(n/z) ]

and Py, Pg, and P, represent the effective external as well as body forces
per unit area of the middle surface of the shell.

These may be written as
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EN

2
u s

PX = —ph a-t;2+Px
Ev _ L

P, = -oh c)1:2+P$ (5)
2

- on ¥ .7
PZ = =ph ()‘b2+PZ

—

where Ex » Pg, and Ez do not involve the displacements u, v, and w and p de-
notes the density.

It may be mentioned that the last equilibrium equation in (3) is

merely ean ldentity, and that in the first two of equations (3) the effect of
rotary inertia has been neglected.

The pertinent strain-displacement relations are

€ = 'AE =-Z ﬁ
o x e
e, = 1 (ﬂ_ﬂ>_2<ﬁ+£ﬁ.‘i> (6)
(1-2)|\9s = )s?  ags ;
e = 1 7i_z\|dw o/ B 1w\, [m_, 25w
X8 (1 - é) a/iogx dXgs a gx 08 X8
- J
and the corresponding stress-strain relations are given by
7
0, = - (ex+ves)
oy = I _’ 2 (<-:S +.vex) e (7)
S
%% T 2(1 + v) “xs

J

where E is Young's Modulus and v is Poisson's ratio.
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The basic equations of the theory of thin shells in the sense of
Love's first approximation may now be deduced if the ratio z/a is neglected
in comparison with unity in equations (1), (4), and (6). Thus, this approx-
imation affects the stress resultants and stress couples, as well as the com-
ponents of strain given by equation (6).

If we write trne components of strain in the form

€x T Sx t ZAg € = eg * 2k €xs = Cxs t Zlgs (8)
then from equation (6), the membrane strains or components of strain at the
middle surface (z = 0) are

=H_E; e =QY.+.& (9)

€x = €s XS

ox Js a 09X 9s

and the expressions for the change of curvatures are given by*

X =__ﬁ. xs____iﬁl_ew; _}.C)lazﬁ(]_o)

x e a )s Js° xs g X )x)s

Introducing relations (7) into the stress-resultants (4a) and the
stress-couples (Lc) with the appropriate neglects of z/a terms, performing
the required integration, and making use of relations (8), the following

stress-strain relations result: -

Eh
N, = — (e + veg)
1-v
Eh
N, = 5 (eg + vey) r (11a)
1-v
Eh
N = N = e
XS sx o(1 + v) X8 )

*Tt appears that there is no uniformity in the literature for the expression
of twist Yy . Love,2 Timoshenko,% and others write [-(2/a)(dv/}x) -
2()2w/yx9s)] for the twist (when conformed to our notation), while Y, Of
‘this paper is in accord with that of reference 1. In the spirit of Love's
first approximation, if "the neglect of z/a in comparison with unity" 1s in-
troduced in both equations (6) and (4) before deriving equations (11), then
Yxs is given by equation (10). However, if thils approximation is introduced
following the substitution of (6) into equation (4), then Yyg would have the
form given by lLove and Timoshenko; in this connection, see reference 5.
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My D(Ax *+ VAs)

=
n

< D(Xg + ¥X,) & (11b)

D!l - V!
M = Xxs

Xs o

where D = En3/12(1 - Vo).

By equations (8), (7), and (11), the pertinent components of the
stress tensor are given by

Ny 12z
UX = -+ —?;,Mi
h h
N 12z
o, = — +— M 4 (12)
h h
N 12z
X
O%s = ==+ — MXs
h h ]

It should be noted that Q, and Qg cannot be obtained from the ex-
pressions (4b) since, by virtue of assumption (4), oy, and og, have been neg-
lected. However, if equation (10) is substituted into the first two of equa-
tions (3), the expressions for Qy and Qg will result.

The five independent differential equations of equilibrium, namely
equations (2) and the first two of (3), remain unaltered in the present ap-
proximation. But it is noted that in view of the last of equations (1lla),
the identity of the last of moment equilibrium equations (3) is not satisfied.
This discrepancy is due to the approximation introduced and it is difficult
to see how this can appreciably affect the solution of a specific problem.

Equations (9), (10), (11),(12), and the first two of (3) constitute
seventeen equations in the seventeen unknowns M M Mis' Nx’ Ns o) Q )
Qg exs €5y x5} Ax» Xs» Xxss @nd u, v, and w. These equations describe com-
pletely the state of stress and deformation of a thin circular cylindrical

shell.
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REDUCTION TO THREE PARTTAL DIFFERENTIAL EQUATIONS

We now reduce the seventeen equations of the preceding section to
three displacement equations of motion, as follows. Eliminate Qy and Qg from
(2) vy (3), and using relations (11), (9) and (10), we arrive at three cou-
pled independent equations involving u, v, and w.

%u, (1 -v) %, (1+v) 9% v v .(_1.;__).p = 0 (1%)

)x2 2 Js@ 2 J)x)s & Jx Eh
Qv %, (3-v) (1+k)ﬁ+(1+k)a-—~-—L
2 J)x)s 2 )2 a 98
[ (13b)
+1«:a4L-+1«:a v, (1-v8) g = 0
)x2)s as Eh 8 ]
v Ju _ka,d&___ ks, &_. 1v ka2 A__
a Jx Jx2)s 80 & )s Jxk
r
(13c)
-ekaz—-a-—— kae'a————+i——-—l—lP = 0
3x233 Qs a2 Eh J

where k = h2/12a2,

We shall now uncouple equations (13) and obtain three equations,
one involving u and w, one in v and w, and a single differential equation in-
volving w alone. This may be carried out as follows:

1. Apply the operators J2/)x° and )2/)s® to (13a) independ-
ently of one another, and in each case solve for terms
containing v.




[r——
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Apply the operator )2/)x)s to (13b) and using the
results of the previous step after some combination,
the resulting equation becomes

2.

(1 + vfi f*u _rg‘éaw 1 aiw
(1 + 17 2(1 - v) . Jx2)e2 & )x * a dx)s?
k| v v 3% (14 v) v w
a ‘:Y x> ' (1 -v) axasé} (1-v) ka[:3x59s2 i axas”:]
+M(l+k) 2&?_1.3&4.(1_\,)32?&-(1*”)2&.22&:0
Eh s )2 Eh  Jx)s

whereVlF = ah/éxlL + 2(3u)/ax2552 + ab'/()s)4 .

UNIVERSITY OF MICHIGAN —

(1ka)

In an analogous manner, application of the same operator as before

to (13b) and (13a) yields

1+ v)2

(1 + )T 4 L Ay _(eev) 3% 1w .

axease )x2)s  a §s?

a

-

2

L+

v (3-v) ow

2(1 - v)
.[(

1 - v) )xMs

R
(1 -v) gx2335 ’ 385:]

1 + V)2 ()QPQE -

(1kb)
Eh

_3_2__P5_+(l_v) ()EPS __(
B 98

.Lg

Similarly, by operating on (1lha)

Eh

%98

%

with J/)x and on (1bb) with 1/)s

and combining these results with that obtained from the application of V™ to

(13c), we obtain
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+ (3 +v) i + A6ﬁJ'— (1 + v)® ke, [? Yu + P :”

+ i&7h

a

1 by
O + Eiﬂi7hw -;3:—-‘-"‘{%7hw - (1- uz)'gzz

+v2k {')hw + —2 P }-kae[(e +v) —&—

_Q+wy v 1 %R 1 2 1

7

k(1 + k)

(1 - v) yxBye Jxltys?

2yt 3| 2(1 - v) 03382 yx2ys3

¥ (lhe)

|:33V + 33"-J+ v [21)-——513" + (1 - v) &J
J (

x2)s  Qs? 1-v)aD | Jx)s® Jx 2

(1 -v)aD (L+k)Jx)s (1 -v)aDd(L+k)

xeas

pra La-v 3313{] 11 (1+v) ¥ry 1 VAT

2 38| aD (L +Kk) (1L -v) dx)s@ D

J

If we now introduce equations (5) into equations (1k4), we observe
that the latter are not as yet uncoupled. The terms containing v and u in
equations (1llba) and (14b) respectively may be eliminated as follows:

1.

Operate on both equations (13a) and (13b) with
2(1 + v) (p/E)(32/)t2).

Subtract the results in each case from (lka) and
(1¥b) respectively, to arrive at equations (15a)
and (15b). In equation (1l4c), the terms involving
u and v are

10
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2(1 - v) ad(l+k)Ix)s? | Jx s | as 1 -vaD )22

Qrv? 1 E,Am&z]@i(vév)_ v_pn 32

)y Sy Pul, @ +v)wen 1 32 33V'>
¢ 3x3§2 *a- Jx? ' (L -v) aD 1+ k §t2 3x23s

1 ph_1 |, 35v+(1_v)33vjl+l+v_p_}l 12/ ¥\,
1-vaDl+kJt2| )x2)s s 1-vaD1+kat2<axas2>

and the elimination of these from (lhc) is accomplished in the following man-
ner:

1. Apply the operator v/[k(1 + k)a21[)/Jx] to (1ka).
2. Apply the operator 1/[k(1 + k)a®][§/)s) to (1kb).
3. Add the results of steps 1 and 2.

4, Apply the operator l/(kab')vlt to (13c) and subtract
the result from that of step 3.

5. Subtract the result of step 4 from (llic) to obtain
equation (15c).

The differential equations (15) are the uncoupled equations of mo-
tion of circular cylindrical shells in the unknowns u, v and w.*

It is clear from the differential equations (15) that the order of
the primitive equations (13) has been raised from an eighth-order to a six-
teenth-order set of partial differential equations. But, since the homogene-
ous differential equations associated with (15a,b) do not yield independent
solutions, the result is mathematically consistent with the existence of four
boundary conditions at each edge of the cylindrical shell.

¥Since k = h?/12a << 1, it is reasonable to dimplify these equations by re-
placing the quantities (1 + k) by unity.

11
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(1+ 600 T4 + (l+v)2k Y _(l+v);p_3_2_
" 2(1 - v)  x°)s® E )t

-

J'(l+k)[?_£2+(l_v)a-z—u-}.;.g&.'.(l_v)‘{lg_u_z(l-‘ve)pf)zul

)52 152 12 352 g 2
v w1, _ _2v v (1 +v)
a () ng i a <l 1-v k) )xasg (1 -v) @  (158)

()5W + ()5W +(l+vlp !)2 g}iﬂ +Ll_i_—?-)-(l+k)
)x3)s2 gxéslL E Jt2 | & x Eh

—

B PN % B ) A 3] A W
J & (}xe Eh  )xgs E°h J 2

102 _2+v 3% +ka[2 3, 3= v YOw +35w] | (150)
1

(Lt v) (22 | 2QW gy AWy d0W | 1A
B 32| ads )x2ys  Js Eh

rg iz_-ﬁi-g- (1 -v) ﬁﬁ - (1+v) QQEX _2(1+v)(1 - V2) o 1)2-133 =0
L £ & Fh Jt?

12
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-

L, L i
T8 + Lok . 220 - va) Y A 2 A
v ;E v a®h?® ax —E ax ( - V) ax2332

L P Pu_, Pu], 2+v)
i a® {32 * V)gx )s® *BrY) axagsh gs J a? )x2)s?

2 v g
. K7Pw) + ag«aagx(vgw+ -k

b1-v) )xR)s?

. 2 5 - v) ()6 6 fl + 'V) 3 :l
[( ") 3"“95 P0G g e T i pE

ph 32 ks (1 +v)2 YN au_um_ w) + X
+aDat2[§7h 2 (1 -v) px7)s° " (1 - v) ) +

2, 2 2,3 2 . -
,(l+v)a2_ Lka ‘)Q(VQW)*—&E-‘--LE;(V%) (3 v+2k).VW
(1 - v) 9x (1 -v) )s (1 -v) ps a(l - v)

{15¢)

_kad(3 - v + 23)‘76w N 22 agw 2 &Eﬂ vka (1+ v)2 2 JL_
(1 -v) a(l - v) )x*  a(l - v) &sg E yx°

<&3g> e (3 - v+ 2K)(1 + V) P—v2<3-2-‘-’> +2kad (1 +v) £ V“( 2)
Jt

ot E 32

L2+ v)p B o (1 + V)1 - vg)( ) W ke + )2 )5F,
a E )2 et En )x2

. 2kal(1l + v) ) (\725 )+ a(3 - v + 2k)(1 + V)V2§ _2a(l + v)(1 - ¥v2)

Eh Js 8 Eh 2 Eh
9.321;& 2(1 + v) <v£z+z)i> + L _.&_&35 +v.3._3§+(2-v)~3——3§s
E )t2 Eh x ys/| ap| gxe®  3x° 3E)s

+E§-WAPZ} [-2(l+v —L—We—)+ 1- @)-a—(vzﬁ _2(1+v)
5 aEh

&Xi_ﬁ} : 08’ a

222 |

15
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DISCUSSION AND COMPARISON WITH THE WORKS

OF OTHER AUTHORS

In order to verify at least partially the results of equations (15),
let the displacements u, v, and w be of the form

-~

[0
n = Z An R ILIPN E:- elpt
n=0
o]
v = z Bn»e%’x/a sin 22 e1pt [ (16)
a
n=
o]
W o= Z Cn e/ oog -a- elpt

n=0

Substitution of (16) into the primitive differential equations (13), in the
absence of quantities denoted by Px, Py, and P,, ylelds three equations in

the coefficients A,, B, and C,. The characteristic equation obtained by set-
ting the determinant of these coefficients equal to zero is identical with

the characteristic equation which may be obtained directly from equation (15c).
If, in the characteristic equation, the quantities (1 + k) are replaced by
unity, then there results

2
-E',nz __g_é_:___?l rpg] >\6Z‘.+ [61.).’4' - 2(2 + V) n2 + l-v _7p2

(1 -v) k

(1 - v) k

(2= ne+.;>+.i_e_.;,epﬂ b < [zm 23+ vy by 2 2

((é-v) b <5;ev>> ! <.1_3_:_v_u+(T%_v_)_ne> 2 (1)

l-v (l-V)k

+ [nB - 2o + ot -7‘p2<é—--"-'----11 nf + El-t+ -1-1-2-> +y2ph

l-v k k

o —
. -V§_+ 2 1’1""+ 2 ..]: _____g_.._:_l;73p6 = 0’
l-v k 1-v l-vk
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where y = [(1 - v2)pa2]/E,

The characteristic equation associated with the differential equa~
tions (15) when the displacements are independent of time may be obtained from
equation (17) by putting the terms involving p2 equal to zero. Thus,

~

A8 - w26 + [%—;—!g + 6nl —2(2 + v) n%] Al

+
+ |E-lm6 +2(3 + v) nl‘—-‘(5—-2——51’-l ng} Ae ’ (18)

+ w8 -2nd +nt] = 0.

<
Since the characteristic equation is relatively easy to obtain, it

furnishes a convenient basis for comparison with the results (equations of
motion) given by other authors. 'To be consistent, in the comparison that fol-
low, quantities of the type (1 + k) will be replaced by unity. Also, the dis-
placements will be assumed to have the form of equations (16).

Flﬁgge6 and Byrne7 retain terms of the order (z/a)2 as compared to
one in the stress-resultants (4) and strain-displacement relation (6), which
results in the following characteristic equation when the displacements are
independent of time.*

- 2
A8 - 2(2n2 - v) A6 + [l Lo 6né} A
k

~

+ [-bn® + 2(k - v) 0t -2 (2 - v) 0] A2 | (19)

+ w8 -2l = 0.

J

Comparison of equations (18) and (19) reveals that retaining terms
of the order (z/a)2 in equations (4) and (6) may result in only a small ef-
fect*¥* in the equations of métion.

If, in the second of equations (2), the term Qg/a is neglected as
compared.with the other terms, and at the same time the expressions for the
change of curvatures are simplified to read

e ; Q% . o i » (20
7(}{ aXQ XS XXS axas ( )

*See equation (78), page 125 of reference 6.

**One should recall that replacing (1 + k) by unity does not nullify the
effect of retaining the (z/a)? terms; compare equations (11), page 118
of reference 6, with equations (13) of this report.

15
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then the resulting characteristic equation associated with the equation of
motio% is A

2
)‘8*'t—hn2+u7p2:‘>\6+[6nh+gl'v)8p<§5"'22 )
k

(1 -v) 1-v

[ 2
2v72p€| Ay [l&n6+7p <5+2V 2n +5L§_v) n)*>-72pl‘

k k 1-v

< 2 (3 - v) ;) 2. 8. me(é_;_v 6 +gf*_+_r£>+.7epu
1-v (L-v)k 1-v kK k

.(Enh_*_ 2 _l_+(5-V)_r£>__. 2 l75p6] = 0.
l-v 1-vk l1-v k l-vk )

Although this type of approximation* leading to the characteristic
equation (21) has been justly used in special cases,9 its validity in general
is questionable. In fact, comparison of equations (17) and (21) indicates
that the present approximstion has left unaltered the terms involving time
explicitly. It is the complicated form of these terms which gives rise to
most of the practical difficulty encountered in the solution of vibration
problems of shells.

In formulating a theory of shells, ViasoviO at first partially aban-
dons assumptions (3) and (4) and retains terms of the order (z/a)2 as compared
to one in the stress-resultants and the strain-displacement relations. ILater,
his work is simplified and the resulting equations of motion fall within the
assumptions of the classical theory, and the characteristic equation for cy-

lindrical shells becomes*¥* q
- . B ~ 2
)\8 + )\-6 E)-H'IQ + 2v + Lé_vl 7p2 + }\h 6n)+ - (l{. + ‘V) n2 + Ll——_;v—l + 1 + 7P2
1 -v _ L X

+ A2 |-Lnb + (8 - v) n¥ - 2n2 + x52

k 1-v k

.(-i_Mnﬁ)J, 2
l-

n
l-v k¥ 1-v L

SICER2 A 3+v)n2+2n2+(3+2V)>+72pl‘<—(3“’1l.. 4 2)]\
(2

1-v k k 2)
ne
N <_xz—_nn6 Lo e.._k.__k_>+,epu
1-v 1-v

.( 2 nh - 4 n2 + ié.:.!l EE + —_g__«l + 2 >'— 2 75pé} = 0.
1-v 1-v

l1-v k 1 -vk l1-v l1-v k

*Yuan's equation (6a), reference 8, may be obtained directly with this ap-
proximation; his characteristic equation is identical with equation (21)
above when p2 = 0.

**¥See Table 2 of reference 10.

16
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Kennard's recent paperll which is based on the work of Epstein.12

UNIVERSITY OF MICHIGAN

It appears that there are only minor differences between equations
and (22) and these are essentially in the terms involving p2 in the coef-

ficients of A2 and the last bracket.

Finally, we compare the characteristic equation (17) with that of
Kennard's

simplified equations of motion¥* yield the following characteristic equation:

A8 + 26 {;hna + G-v) rp%J + hh [énh (- v) n? *ig—i—!l
1-v 2(1 - v) 2(1 - v)
+ -8 +yp2 (_.QLQ_:_ZI n? -;> + —2 72p£] + A2
k 1-v k 1-v _
| [_m I R ) [ P
2(1 - v) 2(1 - v)
,(éj}-_V)nu (4 -v)(5-v) 2 20% 3+2v (2+V)(3- V)>
l-v 2(1 - v) k k 2(1 - v)
2 (23)
|,.72p)+<_ (3 - V) )4-1'1 > + 1’18 - 21'16 + n)-l- + :mz
(L-vk 1-v
.<_15_-u 6 b vB-v) 4 _(3-v(2-v) p_n* ﬁ)
l1-v 2(1 - v) 2(1 - v) k k
+y2ph <_ B-v) p2rv) 2 4, 0B-v)n® n° l>
(1 - v)? (1-v)2 1-v 1-v k 1-vk
T 1 - v2 75 6:‘ =0

-

As in the previous case, the minor differences between equations

(17) and (23) are in the terms involving p2 in the coefficients of N2 and the

last bracket. It is noteworthy that there is a close agreement between
Vliasov's equation (22) and equation (23).

*Equations (22) of reference 11.
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CONCLUSION

We have not succeeded in arriving at definite conclusions concern-
ing the relative merits of the different approximations used by various auth-
ors in the classical theory of shells. However, on the basis of comparisons

made, at least for cylindrical shells, there appears to be little advantage

in going beyond Love's first approximation. Indeed, any true improvement of
the theory beyond Love's first approximation should take into account the ef-
fect of shear deformation and transverse normal stress.t
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