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ABSTRACT: The classical ACK model for multiple cracking in a tensile specimen of a
fiber reinforced brittle matrix composite does not account for flaw size distribution of the
matrix. In this paper, a stochastic treatment of the damage process in the form of multiple
cracking in discontinuous random fiber reinforced brittle matrix composites is presented.
The effect of matrix flaw size distribution (initial matrix damage) on composite strength
and crack spacing is analyzed. The flaw size distribution of the matrix is simulated by a
Monte Carlo process. In the simulation, a Weibull-type function is assumed. The condi-
tions for crack growth depending on initial flaw size and external loads as well as fiber
bridging effect are highlighted. Unique merits and deficiencies of the current study are
also discussed.

KEY WORDS: fiber composite, multiple cracking, fracture mechanics, stochastic
simulation.

1. INTRODUCTION

IN BRITTLE MATERIALS such as concrete and ceramics, fiber reinforcement
is commonly used to improve their strength and toughness (Evans, 1990;
Shah, 1991a; Shah, 1991b). Further benefits by addition of fibers include pseudo
strain-hardening behavior and notch insensitivity. The former leads to much
enhanced ductility (Marshall and Cox, 1987, Wu and Li, 1994), whereas the
latter contributes to improved composite reliability (Leung and Li, 1989; Mar-
shall et al., 1985).

In pseudo strain-hardening composites, extensive damage can be observed on
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the specimen after first crack load in a uniaxial tension test (Li and Wu, 1992).
Sub-parallel cracks are formed on the matrix as the load increases towards the
composite ultimate strength, which can be several times higher than the first
crack strength. The multiple cracks, bridged by fibers, contribute to the contin-
ued inelastic tensile strain, and are typically accompanied by a significantly
reduced stiffness in comparison to the undamaged material. This damage process
is terminated when one of the multiple cracks opens up as the bridging load
acting across this crack softens, when fibers are pulled-out and thus localizing the
failure onto this crack plane.

Continuum damage mechanics (CDM) considers a uniform damage over the
volume of materials prior to damage localization, and shows how the load carry-
ing capability of given cross-sections is deteriorated by a single quantity w
(damage parameter) (Kachanov, 1958, 1961; Fanella and Krajcinovic, 1985;
Krajcinovic, 1979; Loland, 1980). In the past, CDM has been applied to study the
mechanical properties of brittle materials as well as fiber reinforced brittle matrix
composites (Fanella and Krajcinovic, 1985; Krajcinovic and Fonseka, 1981;
Loland, 1980). While often complicated, there is an increasing trend in CDM
research towards more physically based modelling (Ju and Lee, 1991; Lee and Ju,
1991; Sumarac and Krajcinovic, 1989), in which physical parameters can be ex-
perimentally measured.

In this paper, attention is given to the evolution of matrix cracking originated
from preexisting defects. Initial damage including pores and cracks in the com-
posites will become activated to grow at various external loads. It should be noted
that initial damage depends on existing flaws due to processing as well as cracks
generated by shrinkage or other environmental effects at the time of testing.

Aveston et al. (1971) first proposed the conditions for multiple cracking in
continuous aligned fiber reinforced brittle matrix composites, notably known as
the ACK theory, and lay the foundation for subsequent research (Li and Leung,
1992; Li and Wu, 1992; Marshall et al., 1985). In these models, uniform distri-
bution of identical flaw size in the matrix is implicitly assumed. Consequently, a
deterministic composite strength during multiple cracking is predicted, and
usually does not agree well with experimental findings, as shown in Figure 1 for
a discontinuous random polyethylene fiber reinforced cement. This discrepancy
is also found in a continuous aligned SiC reinforced calcium aluminosilicate
(Cho et al., 1992; Yang and Knowles, 1993). A rising load carrying capacity
beyond the first cracking strength during multiple cracking resembles strain hard-
ening of metals, often referred to as pseudo strain-hardening. Multiple cracks
develop over a wide range of load levels. Besides the difference in observed
stress-strain curves, the distribution of crack spacing also shows evidence against
the assumption of identical flaw size. A simple calculation can be used to com-
pute the crack spacing, x, on the basis of force balance (Aveston et al., 1971; Wu
and Li, 1992).
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Figure 1. (a) Schematic representation of tensile stress-strain curve of fiber composites
with a deterministic matrix strength (b) experimental stress-strain curve of random discon-
tinuous polyethylene fiber reinforced cement paste (Vi = 2%, L; = 12 mm, plasma
treated).
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where V,, and V; are the volume fractions of the matrix and the fiber, R is the
radius of the fiber, o, is the single-valued matrix cracking stress, and 7 is a
constant shear stress.

and

— N2 = 27xLlax
Xi = L = NG 5 2ml¥x for discontinuous random fiber )]

where L, is the fiber length, ¥ ( = 4/7g) is the correction factor for 3-D fiber
randomness, g is the snubbing factor, and x is defined in Equation (1). Hence
after crack saturation, a final crack spacing of between x and 2x is expected.
Kimber and Keer (1982) have calculated the average value of the crack spacing
for multiple matrix cracking when the matrix strength is a deterministic value,
based on analogy with minimum average spacing between cars of length x parked
at random in an infinite line. Their results yield an average spacing of 1.337x.
However, experimental observations of multiple crack spacing in steel/epoxy
(Cooper and Sillwood, 1972), in carbon/glass (Yang and Knowles, 1992), and in
SiC/calcium aluminosilicate (Cho et al., 1992) do not support this prediction.
Instead, better agreements between theory and experiment are found when a
distribution of matrix cracking strength is assumed (Cho et al., 1992; Cooper and
Sillwood, 1972; Yang and Knowles, 1992).

Regarding the nature of the distribution of matrix cracking strength in compos-
ites, it is not yet well understood. The origin of such strength distribution may be
attributable to 1) a distribution of matrix flaw sizes, 2) interaction of matrix
cracks, and 3) variation of fiber reinforcement. The first two factors have been
recently examined by Zok and Spearing (Spearing and Zok, 1992; Zok and
Spearing, 1992) for a unidirectional SiC/CAS composite. The variation of fiber
reinforcement includes interfacial bond strength (7) and volume fraction (V)
within the composites. These non-uniformity are generally caused by the pro-
cessing of the composites. Even in the continuous aligned fiber composites, fiber
volume fraction still varies (Barron-Antolin et al., 1988; Prewo and Brennan,
1982). Non-uniform fiber dispersion in a discontinuous random fiber composite
is more profound when severe fiber entanglement or poor workability occurs. In
addition, Kagawa and Honda (1991) discovered a distribution of frictional bond
strength of unidirectional SiC/LAS by protrusion method. The implications of
such variations in 7 and V; is that the composite property may vary from location
to location via the bridging law (bridging stress versus crack opening relation-
ship), (6), which is locally dependent.
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For unidirectional composites to which most ceramic based composites
belong, in addition to the distribution of the matrix cracking strength, the
strength of the fiber also follows a distribution which governs the magnitude of
the achievable toughness due to fiber pullout after fiber fracture inside the matrix
(Curtin, 1991; Knowles and Yang, 1992; Sutcu, 1989). Research on discontinuous
random fiber composites is much scant. Nevertheless, rapidly growing demands
for fundamental understanding of the mechanical behavior of discontinuous ran-
dom fiber composites call for closer examination of the pseudo strain-hardening
phenomenon in such composites which might possess processing ease and low
cost compared to continuous aligned system. This is particularly important in
cost-sensitive applications such as in the construction industry.

In this paper, focus is placed on modelling the damage evolution during strain-
hardening in discontinuous random fiber reinforced brittle matrix composites. A
stochastic treatment of multiple cracking is presented based on the weakest link
concept originally proposed by Weibull (1951). The flaw size distribution of the
matrix is simulated by a Monte Carlo process. Consequently, the effect of matrix
flaw size distribution (initial matrix damage) on composite strength and crack
spacing is analyzed and discussed. The issue of variable bond strength (7), fiber
volume fraction (V;), and fiber strength (¢,,) is not addressed in the present work.

2. RELEVANT MECHANICS

The current analysis for matrix crack propagation is based on fracture
mechanics approach where matrix damage is related to the most critical flaw
(e.g., dominant crack oriented perpendicular to the loading direction) at a given
cross-section of the composite. The matrix of the section of the composite is
considered totally damaged when a crack runs through the entire cross-section
resulting in complete loss of load-carrying capability. Nevertheless, the compos-
ite can still survive if the bridging fibers can bear the additional loads. “Fiber
damage” is related to debonding process followed by either fiber pull-out or rup-
ture. Matrix damage can be progressively developed throughout the composite
and finally completed at all sections without the formation of localized fracture
zone of the composite, whereas fiber damage can occur independently of matrix
damage and throughout the composite until a complete failure is reached at a par-
ticular section. The uniqueness of fiber reinforced brittle matrix composites exhi-
biting pseudo strain-hardening behavior includes the co-existence of the process
of matrix and fiber damage as well as uniform complete damage in the matrix
prior to composite failure.

The conditions for pseudo-strain-hardening in discontinuous random fiber
reinforced brittle matrix composites have been formulated and discussed in detail
elsewhere (Li and Leung, 1992; Li and Wu, 1992; Li et al., 1994). Only a brief
description is given as follows. The pseudo strain-hardening process is made
possible by the stress transfer capability of adequately designed fiber reinforce-
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Figure 2. First crack strength and bridging stress at midcrack position; conditions for
steady state cracking requires these curves to meet, i.e., K < Ken (normalization is made
by ¢ = o/os, 0 = Vir(Li/dy)/2 and T = /clca/s® where c = flaw size, ¢, = [L{Ec/2Kyp)
[x/16(1 — v?P], & = (21/(1 + n)ENL/DY), and n = (VEEYAVmEn)).

ment in the composite. The role of fibers is primarily twofold. First, the bridging
action of fibers should provide sufficient toughness relative to crack tip toughness
so that the critical crack can propagate in a “steady-state” manner. In fiber com-
posites, the extension of a matrix crack is accompanied by fiber bridging across
the crack flanks. The bridging stress increases as the crack opens until reaching
the same magnitude of the applied loads. Subsequently, the crack flanks flatten to
maintain the constant applied stress level, and the cracks propagate without any
further increase in applied loads. Figure 2 illustrates such requirements for
steady-state cracking schematically. Second, the maximum bridging stress (o.,)
imposed by fiber/matrix interactions should exceed the steady state strength (o.,).

g, < 0, 3)

Equation (3) provides a general condition for pseudo strain-hardening. This
expression includes all relevant microparameters such as fiber property, fiber
geometry, matrix property, and interface property. Exact formulation depends on
the bridging law specific for a given composite system. For example, in discon-
tinuous random fiber composites in which fiber pull-out is expected (as the case
in this study), the bridging law can be derived as (Li, 1992)

0,[2(8/8,)*'* — (8/8,)] ford =< 6,
() = (o, (1 — 28/Ly)? foré, < 6 < L,/2 @)
0 for L,/2 < &

where 6, = 7L}/[E,d;(1 + )] is the crack opening corresponding to the maxi-
mum bridging stress
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In Equations (4) and (5), V;, L;, d;, and E; are the fiber volume fraction,
length, diameter and Young’s Modulus, respectively. 7 is the fiber/matrix fric-
tional bond strength, and g = 2(1 + ¢™?)/(4 + f*) where f is a snubbing
coefficient (Li et al., 1990) which must be determined experimentally for a given
fiber/matrix system. The snubbing coefficient raises the bridging stress of fibers
bridging at an angle inclined to the matrix crack plane, appropriate for flexible
fibers exiting the matrix analogous to a rope passing over a friction pulley.
Finally, » = (V;Ep/V.E,), where V, and E,, are the matrix volume fraction and
Young’s Modulus, respectively.

The above conditions can be graphically shown in Figure 3 where normalized
first crack strength is expressed as a function of K and ¢; K is the ratio of crack
tip fracture energy absorption rate to the energy absorption rate in the fiber brid-
ging zone behind the crack front whereas € is the normalized flaw size. For a
composite with a K larger than K.,.,, the material will fail immediately at the
first crack strength. Although toughened by the presence of fibers, the composite
remains essentially notch-sensitive as in a Griffith material. For a composite with
a K smaller than K_,.,, the material will undergo multiple cracking at the steady-
state strength (o,,), and fail at the maximum bridging stress (o,). The material
strength becomes independent of flaw size, as long as ¢ is larger than ¢, where
¢, is defined by the value of K (details refer to Li and Leung, 1992). In addition,
there is a range of ¢, < ¢ < ¢, (Figure 2), for which multiple cracking is
guaranteed.

Figure 3. First crack strength decay with flaw size; for K > K = 0.188, material
remains notch-sensitive; for K < K.« = 0.188, material becomes notch-insensitive in
plateau region (circle indicates the beginning of the plateau, i.e., Cs).
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3. COMPUTER SIMULATION

The position and size distribution of matrix flaws are, in general, random
occurrences. Thus, the event of the failure can be modeled as a stochastic process
and will be approached here based on statistical analysis. To simulate the forma-
tion of multiple matrix cracks from various flaw size under tension, a one-
dimensional array of volume elements, each of unit cross-sectional area, is used.
A flaw size is then assigned to each element by Monte-Carlo simulation. It refers
to the use of mathematical models to study systems that are characterized by the
occurrence of discrete, random events (Gottfried, 1984). These individual events
are represented by random variables whose values are generated by a computer,
and governed by a Weibull distribution function as below:

FeL) = exp | - L%(—Cc—) ] ©)
where F is the cumulative probability of flaws having size smaller than c in an
element of length L, m is the shape parameter (or Weibull modulus) and ¢, and
L, are the reference flaw size and element length. The above notation follows
Spearing and Zok (1992), which gives better physical meaning to c, taken to be
¢, (Figure 2). For convenience, let L, = Ax, where x, is the crack spacing of a
discontinuous random fiber system [Equation (2)], and \ is the dimensionless
scaling factor and a measure of the population of flaw size in relation to the refer-
ence flaw size c,. For large \, a significant number of initial flaws have a size less
than c,. The element length L is typically a fraction of x, and 1/10 is used in the
current calculation with a long gage length of 100 x,. Hence a total volume ele-
ment of 1000 is used in the simulation process. The flaw size distributions are
shown in Figure 4 for m = 2 and 10.

It should be noted that Equation (6) is formulated on the basis of flaw size dis-
tribution which will then be used to compute the strength of the composites
through the relationships described in the mechanics section. This is different
from the strength distribution approach (Cho et al., 1992; Mihashi, 1983) where
a probability function is expressed in term of strength directly. A factor of two
difference appears in the shape parameter (m) of linear-elastic-fracture-
mechanics materials for these two formulations.

The simulation of matrix cracking proceeds as follows. Once a flaw size, c, is
assigned to a given element, ¢ will be checked against the crack growth criteria
(Figure 2):

1. ¢ > ¢,. This is the case of steady state cracking. Hence the composite
strength (= first cracking strength) is equal to the steady state strength, i.e.,
O = Of = Og.

2. ¢, > ¢ > ¢;. Multiple cracking can still occur with increasing composite
strength until reaching the maximum bridging strength, i.e., 0. > o.,.
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3. ¢ < ¢;. No further crack propagation is possible, since the composite
strength is limited by the maximum bridging strength (0.), i.e., 0. < g,. This
marks the end of multiple cracking.

After all flaws have been examined at a given stress level, the stress is in-
cremented and the process is repeated until the maximum bridging strength is
reached. At each stage, the distribution of crack spacing is determined.

4. EVOLUTION OF MATRIX CRACKING

Typical results of the simulations on crack spacing distribution are presented
in Figure 5 at two levels of stress for m = 2 and A = 300. Similar trends are
obtained for other pairs of m and \. Since there is no available data on m and A
for the matrix used in our experiments, m = 2 is chosen based on reported
values ranging from 4 to 8 (after conversion from strength based function to flaw
size based function) for plain cement and concrete in the literature (Ashby and
Jones, 1986; Mihashi, 1983). A slightly lower value was used in order to account
for the additional flaws induced by the reinforcing fibers (2% fiber reinforcement
used in the experiment). In the current study, X is treated as an adjusting parame-
ter to fit the experimentally determined cracking frequency versus composite
strength curve. As shown in Figure 6, a good match is found when \ is equal to
300. Hence m = 2 and X\ = 300 are used throughout in this study.

Materials used in this study consist of type I Portland cement, silica fume and
superplasticizer with water/cementitious ratio of 0.27. Discontinuous polyethy-
lene fibers (L; = 12 mm, d; = 38 uym, and E; = 120 GPa) were used as-
received to reinforce the paste at a volume fraction of 2% . Tensile coupon speci-
mens of size 304.8 X 76.2 x 12.7 mm were prepared and tested under direct
tension in a servo hydraulic tester. Detailed mix proportions and testing proce-
dure can be found elsewhere (Li et al., 1994).

4.1 Distribution of Composite Strength

It was observed during the experiments that the locations of matrix cracking
occurred randomly within the available gage length, beginning at o,, and ending
at g,. A video camera is set up next to the specimens and continuously record the
occurrence of cracking. Crack spacing distribution can then be analyzed on
computer with the aid of frame grabber and image analysis program at any given
load levels. The stress-strain curve plotted together with the average crack
spacing vs strain of the polyethylene fiber reinforced cement paste clearly show
the coincidence of crack saturation with the peak load (i.e., d,) in Figure 7. In this
case, the composite strength during multiple cracking varies from 2 MPa to 3.3
MPa. A picture showing crack evolution with composite strain level is presented
in Figure 8.
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Figure 8. Computer scanned image of crack evolution at various load levels (see Figure 7)
during multiple cracking (frames showing approximately same locations).
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4.2 Distribution of Crack Spacing

Crack spacing (normalized by x,) can be plotted against composite strength
(normalized by ¢,,), as shown in Figure 9 where x, is computed to be 2.2 mm
[from Equation (2)]. In deriving x,, 0...(= 2 MPa) is taken from the experimen-
tal data, 7 (= 0.66 MPa) is deduced from the maximum bridging stress, and the
snubbing factor g is assumed to be 1.5 (Li and Wu, 1992). A good agreement of
average crack spacing vs composite strength is obtained between the simulation
and experimental results. This comparison is made on the basis of average crack
spacing. However, experimentally determined distribution of crack spacing after
crack saturation differs with the simulation. As revealed in Figure 10, the simula-
tion gives a higher portion of small and large crack space compared to the
experimental data, although both of them have same average value. This discrep-
ancy is probably caused by crack interaction which is not considered in the pres-
ent simulations. Zok and Spearing (1992) suggested that interactions between
adjacent cracks lead to reduced strain energy release rate when the crack spacing
falls below twice the slip length [i.e., x in Equation (1)] for continuous aligned
fiber composites. Hence cracking is prohibited within immediate neighborhood
of existing cracks until external loads are further increased.

5. OBSERVATION OF CRACK WIDTH DISTRIBUTION

In addition to distributions of composite strength and crack spacing due to dis-
tribution of matrix flaw, it is observed that crack width also follows a distribution
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Figure 9. Comparison of average crack spacing (normalized by x 4) vs composite strength
(normalized by o) after first cracking of a polyethylene fiber reinforced cement paste
(Vi = 2%) between experimental data and simulation results.
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instead of a single value. This is shown in Figure 11 for the same polyethylene
fiber cement. The crack width ranges from 20 um up to 800 pm. This variation
suggests that the common assumption of single bridging law (o-6 curve, details
refer to Li, 1992) which governs the mechanical behavior of the composite is
questionable. Otherwise, force equilibrium should ensure identical crack open-
ing (or crack width) along the specimen length. At present, there is limited evi-
dence showing variation of bond strength (7) and fiber distribution (particularly
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fiber volume fraction, ¥;) in the composite, which may be responsible for the
variation in 0-6 relationship. Therefore, the matrix strength distribution during
multiple cracking may result from distribution of matrix flaw, crack interaction,
and variation in ¢-6 relation. This issue deserves further study.

The crack width measurement was conducted using a microscope with 50
times magnification on the specimens surfaces after complete unloading. Com-
plete crack closure cannot occur upon unloading due to a reversed frictional
stress which prevents fibers from slipping back into the matrix when the speci-
mens are unloaded (Wu et al., 1994). This is demonstrated in Figure 12. The re-
duction in crack width is typically less than 10% after complete unloading from
peak load. Hence no attempt has been made to correct the effect of crack closure
on crack width measured after the specimens are completely unloaded.

6. FURTHER DISCUSSION

The current study presents an initial attempt at combining the mechanics
aspects of fiber bridging in composites with the stochastic aspects of matrix flaw
size and location for discontinuous random fiber composites. The details of the
mechanics of extension of a bridged crack and the effect of fiber bridging on com-
posite properties, especially the pseudo strain-hardening behavior, are described
by the more fundamental bridging law, i.e., o-6 relationship, which involves all
relevant microparameters [Equation (4)].

In addition, the matrix fracture toughness (X,.) also contribute to composite
strength (first cracking strength and/or steady state strength) which is determined
from a balance of stress intensity factors associated with the applied load, that
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with fiber bridging effect and the crack tip fracture toughness (Li and Leung,
1992; Marshall et al., 1985). In the current calculation (see Figures 2 and 3), an
elliptical crack profile is assumed for mathematical tractability. Further, an uni-
que o-6 relationship and K, are specified throughout the compostie. In reality,
the crack profile is expected to deviate from the elliptical shape since the cohesive
tractions acting on the crack flank vary depending on the crack opening via the
0-6 relationship. The actual crack shape can be obtained by numerical analysis
(Danchaivijit and Shetty, 1993; Marshall et al., 1985). This correction is cur-
rently being investigated by the authors. Since the non-uniform K, and o(5) due
to processing is not taken into account yet, the current parametric values obtained
for the Weibull function of flaw size distribution should be used with caution.
Nevertheless, these corrections (crack shape, K,, and 0(5) non-uniformity) can be
readily accommodated in the current mechanics framework. Finally, it should be
noted that the preceding scheme is valid when the crack length is large compared
to the fiber spacing so that bridging stress can be treated as a continuous pressure
acting on the crack face. This also implies that all cracks under consideration are
bridged by fibers. The effect of short cracks (unbridged cracks) on composite
strength is not included in this study.

7. CONCLUSION

Multiple cracking in discontinuous random fiber reinforced brittle matrix com-
posites is studied and simulated by a Monte Carlo process in this paper. A good
agreement of composite strength and average crack spacing between experiment
data and simulation results is found for a polyethylene fiber reinforced cement
paste (V; = 2%). A somewhat different distribution of crack spacing after crack
saturation is predicted from the simulation. This is probably caused by crack
interactions which are not considered in the present study.

The current approach combining mechanics aspect of crack propagation and
stochastic aspect of flaw distribution provides better understanding and physical
explanation of the psuedo strain-hardening behavior of fiber composites. Prelimi-
nary data suggest that the condition for crack propagation depend on initial flaw
size, external loads, and fiber bridging effect (0-6 relation) which may vary in the
composites. The last factor has not been recognized previously.
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