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DIFFUSION OF NEUTRONS IN A HEAVY ELEMENTS MEDIUM

AND

APPLICATION TO THE MULTIGROUP DIFFUSION THEORY

1.0 INTRODUCTION

The main nuclear interactions which occur during the diffusion of neutrons
with energy between 0.1 mev and 10 mev in a heavy medium (AD 100) are

elastic and inelastic scattering, capture and fission.

Fast reactors are mediums of this type. The neutron spectrum ‘obtained
from different reactors shows a broad maximum about 0.1 mev and extends

up to the 3-5 mev region.

The fission cross section of 235 and P?39 are almost constant in this
energy range with an average value about 1.5 barns. The U238 fission
cross section has a threshold at about 1 mev rising to about 0.55 barns
so that it assumes considerable importance in the energy range under

discussion.

The capture cross sections (n,y) are rather small except for U238, and
are well known experimentally. In this energy range, the inelastic
scattering is the major mode of the neutron energy degradation'and is, as
a consequence, one of the most important nuclear parameters. Elastic
scattering is no longer an important source of neutrons degradation,

hence its importance is lessened.

The multigroup diffusion method has shown to give fairly accurate results
for the flux distribution and critical mass of a fast assembly, so long

as the radius is reasonably large.*

* P/609 (International Conf.-Geneva) A survey of the theoretical and
experimental aspects of the fast reactor physics. (ANL)
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For small assemblies diffusion theory is less accurate since the neutrons
mean free path is not small with respect to the geometrical dimensions

of the assembly. In cases where more accurate results are required, the

Sy method developed by B. Carlson ¥ can be used. This method retains the
angular dependence of the neutron flux. It has been programmed for the
IBM-701 with S-4 in a multigroup form using spherical geometry using both
three and ten energy groups.* For small assemblies (i.e., E.B.R.I where

r = 10cm), the diffusion method gives a critical radius which is 9% higher
than that given by the S) calculations. For larger assemblies, the critical

radii results of the two methods agree.

In solving the multigroup diffusion problems, a numerical method can be

used for the integration of the equations. Knolls Atomic Power Laboratory
has provided a program for the IBM-650 automatic computing machine.¥%* In
order to use this program to solve a specific reactor design, group parameter
involving the various cross sections must be computed. Using the inelastic
slowing down treatment developed in this report, the inelastic scattering

removal probabilities for U235 and P239 are computed.

The numerical method used in the KAPL program, which is the same presented
by Ehrlich and Hurwitz in Nucleonics, 54%, is discussed in the final part

of the report.

LA-1891 B. Carlson, Solution of the transport equation by S, approxi-
mation.

¥%  KAPL-1415 One space dimensional multigroup for the IBM-650.
Part I, Equations.

KAPL-1531 One-space dimensional multigroup for the IBM-650.
Part ITI, Machine program.



2.0 SCATTERING OF NEUTRONS WITH HEAVY NUCLET

2.1 Elastic Scattering

The elastic scattering is a reaction of the type

n + ZNA —9ZNA + n
It is important to know the angular dependence. At low energies
( 0.1 mev) the angular distribution of the elastic scattered neutrons
in U238, U235, P239 and others with A> 100, shows a single maximum
in the forward direction. As the energy of the incoming neutron
increases, the peak in the forward direction is more pronounced, but
there also appears a secondary maximum.* As the energy of the
incident neutrons gets higher than E = 2.5 mev, these secondary maxima

are displaced toward smaller angles.

With use of the continuum model, which requires that the spaing of

the energy levels in the compound nucleus to be small compared to

their widths, the angular distribution can be predicted and is in
agreement with experimental data in the prediction of the strong forward
peak shape. However, this method fails to explain the fact experiment-
ally found that the total cross section of intermediate and heavy -
elements measured as a function of the neufron energy shows a

broad mexima and minima (between 0.5 > cos 5 -1) which shift slowly

with atomic weight.

To interpret this experiment, the strong interaction hypothesis was

replaced by the assumption that the incident neutron interacts with

*¥ M. Walt & H. Barschall, Phys. Rev., 93:1062 (1954)

P/588 Angular distributions and non-elastic neutron scattering.
(Los Alamos) (Internation Conf. - Geneva)
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the average potential produced by the other nucleons.* ' The assumed

potential is a complex square well of the form

<3
—~
H

|

= -Vo (141 &) r<R
V(r) =0 r>R
where

R = 1.45 Al/3 x 10713 cm; Vo = 19 mev and § = 0.05.

The calculated total cross sections are in good agreement with the

experimental values for  neutron energies up to 3 mev for heavy nuclei.

If the differential elastic cross section for.scattering through
an angle © is known, the inelastic scattering and transport cross
sections can be obtained from the total cross section. These cross

sections are given by the following expressions

0in = op - Jo(e)dw

1l

Utr GT - fc(g) cos edw
dw solid angle between © and ©+de
o(e) diff. elastic cross section through ©

o total cross section.

It can be said that (@) is a parameter rather accesible by experi-
mental techniques. In the last years, measurements have been
performed for many nuclei and for several neutrons energies up to

14 mev.¥**

* H. Feshbach & V. F. Weisskopf, Phys. Rev., 90:166 (1953)
** M. Walt & H. Barschall, Phys. Rev., 93:1062 (1954)

P/588 Angular distributions and non-elastic neutron scattering.
(Los Alamos) (International Conf. - Geneva )

Interaction of n's (1.0;1.77;2.5;3.25 & 7 mev) with Nucl.- Phys. Rev.,
104:1319 (1956)
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2.2

Inelastic Scattering

The inelastic scattering is a nuclear reaction of the type

A A
n + NZ —aNZ +n+ 7

The inelastic scattering becomes important when the incident neutron
energy is of the same order or higher than the first excited state

of the target nucleus. For incident neutron energies below this
threshold, the (n,7) is the more probable process. At neutron energies
between 10 mev>E 20.2 kev for nuclei as U235, U238 and P239, the
inelastic scattering is the more probable process. Nuclear reactions

with proton or o emission will be very rare for these elements.

The use of the statistical theory of nuclear reactions permit the
computation of the inelastic scattering cross section and the pre-
diction of the energy distribution function of the outgoing neutron.
The cross section for a d(n,n) inelastic process may be written
o(n,n) = o, N,

where 0, is the cross section for the formation of the compound nucleus
and N, is the relative probability that a neutron will be emitted, and
is given by

M
e

M, =

oM

n 18 the partial width of the compound state for the emission of a
neutron, averaged over the compound states which are excited by the
incoming neutron. The sum in the denominator should be extended over

all the particles which are ejected.



2.3

The application of the statistical model for the compound nucleus
permit drawing the important conclusion for reactor physics that the

inelastic scattering is spherically symmetric.¥

The distribution function obtained for the (n,n) reaction is**

f(E'5E)=a %—, exp (-J%—,— E)

where a is a numerical parameter that is adjusted from experiment,

E' is the incoming neutron energy, and E is the outgoing neutron energy.

The (n,2n) Reaction

When the neutron energy is above many mev (E> 2.5 mev) the (n,2n)
reaction becomes relevant. In this case, the residual nucleus is
left after the emission of the first neutron in an exeited state
with an excitation greater than the binding energy of a neutron.
Therefore, in absence of competition from other modes of decay, the
emission of a second neutron is then possible. The cross section

for this process is

€n —_ -
o(n,2n) = o, [~ f(E/E) 4E
0
where
En = E—Et
Ey = threshold energy for the (n,2n) process.

The energy distribution function of the outgoing neutrons (including

the first and second neutron) is given by the following expression¥

* NY0-636 Final report of the fast neutron data project (NDA)

*¥Phys. Rev., 52,295 (1937)
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F(E'>E) = J—;—, {EE e ® +2[§exp {_(§ -")} +x ((§-1)e'§j§’dy-l>
where

X = FE- E; §=x-xb = \I_E— (B'-Ep)

Eb = energy required to remove a neutron from the nueleus.

Experimental information about inelastic scattering cross sections
can be found in recent publications.¥ Theoretical values can also

be obtained using the statistical model.*¥

The (n,2n)reacth&s cross sections for reactor material are quite
small for the energies between 0.1< E <3 mev (fast reactors). Hence,
it can be neglected in fast reactor calculations without introducing

an appreciable error.

* M. Walt & H. Barschall, Phys. Rev., 93:1062 (195k4)

P/588 Angular distributions and non-elastic neutron scattering.
(Los Alamos) (International Conf. - Geneva)

Interaction of n's (1.0;1.77;2.5;3.25 and 7 mev) with Nucl.
Phys. Rev., 104:1319 (1956)

*% NYO0-636 Final report of the fast neutron data project (NDA)



3.0 SLOWING DOWN OF NEUTRONS BY INELASTIC SCATTERING IN A HEAVY ELEMENT MEDIUM

3.1 Neutron's Energy Loss

After an inelastic scattering the energy of the neutron is reduced
by the amount of the excitation energy of the residual nucleus and
by the recoil energy loss. This last is exceedingly small for

heavy nuclei.

Ilet ¢(u') be the neutron flux at lethargy u' and Zis (u') the corres-
ponding macroscopic inelastic scattering cross section. The number of
inelastic scattering collisions per cc per sec experienced by the
neutrons in the lethargy element du' are

Zs g (ut)plut )au!
The number of neutrons that will emerge in the lethargy element du
will be

zis(u')ﬁ(u')fn(u' —u)du' du
where fn(u' —u) is the normalized distribution function. (See

Appendix 1)

If the lethargy range is divided into intervals Aui (i = 1,2,3,...,n)
the number of neutrons that will emerge in du originated by inelastic
scattering in Au' will be

[ Ziglu)par) £ (ut »u) dut du | (3.1.1)
Aul

The following average values will be defined

/ Zj_s(u')du" =<Z.is> . M' and
AR Au'

[ plaaw =gy, o

-8-



For slow varying functions in an interval, it can be assumed that
the average of the product is the product of the average, and making
uge of the mean value thercem for integrals , expression (3.1.1) can

be written

<:Zig>£mr . <¢>Au' .| . fn (u' »u) du’ du

Hence, the total number of neutrons that will emerge in the

interval M will be

<Zi;Au‘ . <¢> . fAu fAu' fn (u‘-—>u) du' du = S(u'—-—m) (3.1.2)

Maett

The double integral can be analytically computed. If the index i

is associated with the group Au, and "n" with the group Au, expression
(3.1.2) can be written

S(i-n) = <ZLs>l <¢)l P(i- n)

where -

P(i~>n) = fi In fn(i—an) du du' (3.

(U]
[

LAY

S

P(i—an) can also be expressed as
P(i»n) = p(i-n) IAY]

from where
P(ion) _ Ji Jn fnli»n) du au’

p(i—a n) Al Al

(3.1.4)

p(i—an) can be interpreted as the average probability that a neutron
e n

which made an inelastic scattering in the group "i" will emerge in

the group "n."

Expression (3.1.2) as is written, can be introduced in the diffusion

equation as the inelastic scattering source term.



3.2 The p(ion) Function

The normalized inelastic scattering distribution function is*

r [&
f (u'—au) du = -a E expl” VE' R
n EY 1-(1+ Yar exp{— al!

1
where the normalization factor Ci = 1_( + {aE') exp {__qgjﬁ}

(see Appendix 1) will be slowly varying and nearby unit for most of
the relevant energies because of the rather large value of the parame-
ter "a" for U235, P239 and U238, and can be treated as a constant.

Hence, from expression (3.1.3) is obtained

P(i»n) = (-1)¢; [5 [, %?— exp {_ F—‘ E} dE du' (3.2.1)

The index i and n corresponds to the intervals Ahi and Ahn of the
lethargy range. u; and u. are the extremes of the interval Ahi’ hence,
i
+ -
Dpg =up - U W
Corresponding in the energy range will be
+ +
Ui -——)Ei
u, —E;
i i

- +
therefore E; >-Ei

it is also true that

U_+— N
i Ui

and correspondingly

+ -
Bp =By
E. u,
i i
? path of integration
gt +
i et

* NY0-636 Final report of the fast neutron data project. (NDA)

AFRE-T/R-1500 Mrs. M. E. Mandl, Multigroup theory with an
application to the inelastic scattering in uranium.
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let

]

£

and

from the last expression dx = ; dE, expression (3.2.1) becomes

P(1i -»N) = (-l)Ci G_ fn X exp {- } dx du'

= (-l)ci fi -X exp {"X}

therefore

-(x; exp {-x;} + exp {-xi} i] du'.

(3.2.2)
(3.2.3)

Because of the symmetry of the expression, the integration over the

ftent

interval "i" will be carried out in detail only for the x; part of

the above expression.

Integrating over interval "i," (u'), two integrals are immediately

obtained, namely

II = fi x; exp {lxz} du!

and

+ _ +
12 = fi exp {;XQ} du'

setting

E B
du' = d(ig E%)= - %T_

and from (3.2.2) and (3.2.3)

2
ag = (-1/2) {& E'3/ dE!
Integral II becomes
' +
+ + 1
I = 2B, J exp {-§En}

(E' corresponds to Ei)



In a similar manner and using relations (3.2.2) and (3.2.3) as

+

before, the following can be obtained for 12

Tt fi - %- exP{-gE;} dE; = (2) f§+ Mdg

5

+ + a_ + a_
12»_(2) B, -E o - (2) B; - Ej G
i

where Ei(-x) is the exponential function integral defined for

negative values of the argument by the following expression

For values of the argument larger than x»10, the exponential integral
function defined above can be approximated by the following asymptotic

expansion

This function is tabulated for positive and negative values of

the argument. Hence, the expression regarding x* in (3.2.4) becomes
+ [a +
[?I + Ig] (2) exp {»ED.J%;} - (2) exp {}En.{%%} +
~ i
+ |& + ]a
+ (2) B {-En \I%F} - (2) Ei{-En J%w}
i 1
+ |8 1.
(2) exp {'En J;_} - (2) E; {-En \l;w} -
1 i
+ +
- (2) exp <- En.J§¥ - (2) By - E §¢ .
Ei Ei

I[If it 1s defined a function
a E
4 i

-12-
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3.3
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therefore
+ +| _ - + + +
El + 12] = E(Ei —>En) - B(EéL -»Enﬂ

Using the above results, expression (3.2.4) can now be written

P(1 »n) = C; I:fl’ + I;' - 17 - Ié:[ (3.2.5)

- + + +
o [B(Ei _>En) .. B(Ei > E) -

- - + -
B(E] —E7) + B(E; eEnS] (See Table I)

Remembering expression (3.1.4) p(i - n) will be given

P(i —9n)

p(i »n) = (See Table II) (3.2.6)

+ .
U, = U,
i i

The normalization constant C; can be computed as an average constant

over the group i. In the simplest approach may be used

Ei - Ei+

2

E' =

The function B(Ei —9En) has a useful property, namely

B(ti+2Eo —>tn+lEo) = B(+t1Eo-t"Eo) (See Appendix IT)

This property simplifies calculations in multigroup diffusion problems

if the lethargy range is divided into equal intervals.

Inelastic Scattering Slowing Down

The number of neutrons which are slowed down from i to group n,

using expressions (3.1.2), (3.1.3) and (3.1.4), can be expressed as
s om) =Ty, - ), vl on) -

i-n
if it is set <?£;>i “p(i »n) =2,
s -n) = 27, A (3.3.1)

This expression can be used in the multigroup diffusion theory as the

source term of the diffusion equation for the group "n."



TABLE I

P(i—n) for 132 ang 3?39 (a = 13.4 mev’l)*

lethargy + + + +
intervals | P(i—n) = Cy [B(Ei—eEn)-B(Ei~>En)+B(Ei—9En)-B(E{~>E£)] **

uj u: n=i+1 n=i+2 n=i+3 n=i-+h n=1+45 n=i+6
1|10 | 1.5( .3176 6755 1732 .088 . 069 .0012
2 |1.5 2 .2k9 .1032 .0556 .026k 0176
312 3 .288 .2392 .1283 0145
b |3 |3.5] .123 2217 | .ok3g
5 13.5 L .28k .0685
6| b 5 | .372
715 6 .3087
816 7 .2955
917 8 56
10 | 8 ®
*

*X%

The value of "a" was obtained from NY0-636 from a graph for odd-nuclei
and correspond to U235. The graph was made up using experimental
values of "a" for many nuclei. Between the heavy elements only the
value for Th was experimental. The extrapolated "a" for 7235 and U257

differ so slightly and because of the uncertainty in their values, the

P(i-n) obtained above can be extended to Puso2.

B(EY»Ep) = (2) exp i- %E} - (2) Eii-EnFEﬂ

C; constant averaged over group "i"

~1hk-




TABLE II

pli—»n) for #3° ana pu3?
pli-n) = Eéi:iﬂ%

i uj - ug

n=i+1 n=1+2 n=1+3 n=i-+4 n=i+5 |, n=i+6
1 .21173 45033 11546 .05866 . 0460 .0008
2 ko8 .206k .11120 .0528 .0352
3 .288 .2392 .1283 0145
b 246 b3k .0878
5 .568 .1370
6 |.371
7 .3087
8 2955
9 |.56

10
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4.0 MULTIGROUP DIFFUSION THEORY

4.1 The Diffusion Equation for a Heavy Element Medium (Fast Reactor)

The processes which have to be considered are fission, radiative
capture, inelastic scattering and elastic scattering. The neutron
slowing down is attributed only to the inelastic process. If ¢(u,r)
is the neutron flux at position r, and lethargy u the diffusion equa-~

tion can be written as

1 2 . _ .
- T V< #(r,u) + (Qa + 2is) ¢(u,r) -Qis(r,u Su) + (h.1.1)
+ Qf (I' :u)
where
Ya(u) - Macroscopic absorption cross section

included fission.

Yis(u)

Macroscoplc inelastic scattering cross section.

Z¢r(u) - Macroscopic transport cross section.

i

Qi¢(r,u'->u) - Inelastic scattering source at r.

Fission source at r.

Qf(r)u)

Can be set

A = [ Tis(u) § (ryur) £, (0o w) dur
and

A = ¥x(u) E;kfé (u') Ze (u') au' + plx) Zf(k]
where

k - last lethargy group and L:) X(u) du = 1
A new function for symmetrical cases can be introduced, namely
o(u,r) = r.p(u,r)

and setting



the diffusion equation becomes in the particular case of spherical

symme try 5
ﬁﬁﬂégggg;kﬁh®)+§ﬁﬂuﬂ o(u,r) - (4.1.2)

- fou Zis(u') 0] (u’,r) fn(u'—>n) du' =& Sf(r,u)

Multigroup Approximation

In this part, the procedure given by Fhrlich and Hurwitz, will be
closely followed for converting equation (4.1.2) into a set of
equations, one for each group.* The variable u will be divided

into groups of width Au.

+ - + -
Mo =u. - u (u >u)
n n n n n
wh =W
n n+l

- +
u, corresponds to the incoming neutrons and U, to the outgoing

neutrons of the group n.

After defining

I

n

o(r,u)du = ba @Av(r,u)

and integrating equation (4.1.2) over Auj,. the following equation

is obtained

2
AV (Dga§‘>nAv + Duy {kZis + 2a) é} oAy =
i-1
=n§l fﬁu'i féunZis(u')Q (r,u') . fn(u'—au) du du' +

+ fAu‘n féui Yis(u') ¢ (r,u') fn(u'—au) du du' + fAun S(r,u) du.

* R. Ehrlich and H. Hurwitz, Jr., Multigroup methods for neutron
diffusion problems. Nucleonics, page 23, Feb. 1954,

-17-



Making use of expression (3.3.1) results

-Muy <D§-§1.§) . + Aun {(Zis + Za)@} nAv (k.2.1)
i-1

=2, S(i—an-l) + S(n—»n) + fAu S(r,u) du

i=1 n

4.3 Numerical Method

Expressions similar to (4.2.1) can be written for each group n
in which the lethargy range is divided. The equation will be

treated by a simple finite difference method.

The spatial region will be divided into sub-intervals Or, and the

index m will denote the radius r , at the mth space point. With the

m

use of a simple difference approximation, the second derivative can

be written

d2F§l>  Fhy + Foop - 2FD
w2/ 5
dr Y, (£§)

setting this equation into relation (4.2.1) will be found the

recurrent relation for the Fnf's.

n n
F11;l1+l = ky Fg - Fue1 - L (k.3.1)
where
Kk, =2+ M (e +24s)n - éiis)n P(n-n) ; (Ah - )
n-1 n (Arm)z
2, (Zis)t P(t-n) Fﬁ + AnS(rm,u) du
Il’l _ t=1
m A Dy
n (Ary)?

It is convenient to choose Ar so that the boundaries will occur at
space points. The boundaries conditions for the current into the
medium have to be modified so that the conservation of neutrons is
not altered by the substitution of the differential equations by
difference equations. Hence, the expression used for the neutrons
current is then uniquely determined by the spatial integration.

-18-



The formula that will be used is

r
2
frl r

r2 r r
par =2 $ vy be -<§£ fry + 52 fro + éﬁ fro - éﬁ ¢r£>ér

m=rl

This formula is rigorous if @ is a linear function of r between

ry and Tp since

Iffl I'(I‘v? g)dr = (-¢+ r%g)

r2
1
The neutron current can be evaluated by the 1l.h.s. of the above

equation, and is obtained

2 Trm n n 2. n 1 n

Equation (4.3.1) will be solved by R. H. Stark's method that is con-
venient for solving the equation on fixed point automatic computing

machines. Two new variables will be introduced

A Ij

e N = (4
Op+1 = 7 80 Bm = S hy, .3.3)

J=0

Op and B, satisfies the following recursion relations

1 Pm-1
O+l = Kp - o and B = o + Im

Proof will now be given that for any linear boundary conditions which
involve Fp_1, Fp and Fpy can be reduced by the use of equation (4.3.3)
to a form involving only two values of F.*

Assume that

Fn 41 = Fme1 * Py then

m
FoApyy = Foel Ap + 2, Ay Iy

Iy

J=0

m
= (kp Fpy - Fy oy - In) An + & Ay Iy

J=0

AFRE~T/R-1500 Mrs. M. E. Mandl, Multigroup theory with an appli-
cation to the inelastic scattering in uranium.
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from where the following expression can be obtained

m-1
Fp-1 Am = P Apo1 +,Z 51
J=0
or
Fm-l am = Fm’ + BII'L-:L
Hence, by induction, Fm can be calculated by the following recurrent
relation
F + B
+
po=1 m (4.3.%)
X
m+|

k.4 Boundary Conditions

At the mesh point r,, the physical conditions can be approximated
using any one of the following ways

i _
8., Fm =0

2 4i _|{Tm 1\ .1 Tm 1\ i 2 .
b. - Ty Jm _I:(-E—&'- - -6.) Fm+]_ -(2&' * 6> Fn-1 - 3 Fm]

Case a. - making use of (4.3.1)and (4.3.4), and condition"a" is obtained.

i
Qo = Ky

i i
P+l = Ipe1

Case b. - using (4.3.1) and condition't' is obtained.

da- & [u(F DY

i _&r | 1/F 1 2 1
U

-20-



APPENDIX I

Normalization of f(E'-E)

a
f(E'-E) = %—? 4 \I-';’TE

f(E'-E)

therefore f (E'>E) = (1.1)

LEf(E'—eE)dE

E
and [t (E'»E)aE = 1

introducing a new variable

2 - .
E\j—-—'—x dx—\];, dE

The integral in the denominator of expression (I.l) will be called I

and after integration by parts there is obtained
B
I= fo X exp {-x} dx =1 - (1 + ¥aE') exp {- \JaE'}

from where
a
B exp {-— J;;- E} dkE
fn(E'—>E)dE =8z,
1-(1 + NaE') exp {— \]aE'}

-



APPENDIX II

B(tn+2 Eo —9tj+l EO) =

B L l"—a } _ J+1 &
= (2) eXxp { t Fo m} 2 El {- t Fo \m}
gd+l a ' j a
but { - Eo |———l={-tJE
! { £ \Jtn Eo ° \t" ko

hence

B(+n+2 Eo —>tj+l Eo) = B(t® Eo —atj Eo)

-0,






