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ABSTRACT

The equivalent current model of a perfectly conducting rectangular plate is
modified to correct for singularities at and near grazing angles of incidence
and observation and to account for the interaction between the corners of the
plate. A traveling current wave model is applied to the edge currents of the
plate, and empirical formulas are derived from data obtained using a
CGFFT code. Results are obtained for the edge currents and for the far
field backscatter for both principle polarizations.
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I. INTRODUCTION

Many techniques exist for determining the scattering from polygonal planar
structures. Numerical techniques utilizing the method of moments, finite elements, and
CGFFT methods provide rigorous solutions to the exact integral or differential equations
characterizing the field behaviour of planar structures of any geometry. For structures
having dimensions greater than several wavelengths, however, these numerical techniques
become overly demanding as far as computation time and computer memory is concerned
while ensuring adequate convergence of the solution. Thus high-frequency approximation
techniques continue to be of great importance in the prediction of scattering from such
structures.

The high-frequency techniques developed over the years such as geometric optics,
physical optics, geometrical theory of diffraction, physical theory of diffraction, uniform
theory of diffraction, and equivalent currents have limitations depending on the shape of the
structure and direction of incidence, such as scattering directions and field singularities
along shadow and reflection boundaries [1] [2]. With aspects of incidence and observation
at or near normal for the perfectly conducting polygonal plates of interest here, physical
optics gives a straight forward and accurate prediction of the scattering, since the surface
current over the illuminated side of the plate gives the dominant scattering. Away from
normal, though, the edges of the plate cause the dominant scattering effects. The
equivalent current method then is of special interest in studying polygonal plates since the
surface fields near the edges are collected at the edges and equated to fictitious edge

currents [1]-[6], and the far scattered field is expressed as a contour integral of the currents



around the perimeter of the plate. This method also has the advantage over the other
diffraction techniques in that the scattering can be predicted for arbitrary aspects of

observation [3].

The equivalent current model has its limitations, especially in that it has current
singularities at grazing directions of incidence and observation. The model also is lacking
in that it does not predict the interaction of the surface currents between the edges and the
coupling from one edge to another or the diffraction from the corners. One attempt at
improving on this limitation was made in [7] by combining a first-order equivalent current
model with a corner diffraction formulation, which was developed empirically. Results
were presented for a variety of polygonal plates, but the direction of observation was
limited to the plane of incidence. An approximation for the diffraction by the edge and
vertex of a semi-infinite wedge was presented in [8]. The vertex diffraction is only
presented for an edge wave excited by a dipole or plane wave at grazing angles. In [9], the
geometrical theory of diffraction (GTD) was combined with the moment method to form a
hybrid technique. The moment method subdomain basis functions were applied to regions
on the plate where the GTD was inadequate, such as corners. In this way the hybrid model
exactly accounts for the surface fields in the vicinity of regions which entire domain basis
functions cannot characterize. The accuracy of this method greatly depends on the chosen
combination of the basis functions, and the method is thus not completely rigorous without
some prior knowledge of the scattering characteristics being investigated.

In this report we attempt to improve on the equivalent current model by
investigating the actual currents along the edges of a perfectly conducting rectangular plate
and then modeling them empirically. The process will certainly grant insight into the
complex scattering mechanisms of the plate, such that applications of the model can be

made to planar structures of other geometries and materials.



II. EDGE CURRENT ANALYSIS

A plane wave incident in the principal plane for a perfectly conducting rectangular

plate is given by

-ik(y sin@’ - z cos&)

Foz=-£Ye (1a)

-ik(y sin@’ - z cos @)

Ep,)=%e (1b)

for H- and E-polarization, respectively, as shown in Fig. 1. This incident wave induces a
surface current J, which in turn can be considered the source of the field scattered from the

plate. The scattered field is then characterized by the integral equation

ESF) = ikZ ” J(7")e F + k1—2 VV]G(F,F Y dS’ )
~

where I is the unit dyad and G(r,7") is the free space Green's function. The surface
integral is open since the plate is assumed to be infinitesimally thin. The surface current
distribution in (2) can be determined by matching the scattered electric field to the incident
electric field on S’ such that the tangential component of the total electric field is zero over
the plate surface. Once the surface current is calculated, the far field scattering is given by
the radiation integral

ol - Y eikr Yo -&'E\YQF' ’
E(F)--lkZmJ;JS’xfo(r')e ds ?3)

where 3 is the direction of scattering.



A. Equivalent Current Model

For far field scattering from plates of dimensions greater than several wavelengths,
high frequency approximations can be made instead of solving (2) directly. The equivalent
current (EC) model suggests that for high frequency plates, the diffracted field is attributed
to fictitious equivalent currents flowing along the edges of the plate. That is, the surface
currents near the edges are dominant scattering sources, especially away from normal
angles of incidence. The diffracted field is then given by the contour integral

E%P) =- ik%ig—f [z I(F) 8 x 8 x 2+ M(7) § x ?] e 7 ge (4)
o

where I and M are the electric and magnetic equivalent currents, respectively, and 7 is the
vector direction of the edge contour C’ which bounds S’. Expressions have been derived
by Michaeli [3] for the edge currents in general by applying (3) to two perfectly conducting
surfaces bounding a straight edge. Assuming the surface current is concentrated near the
edge, an endpoint evalutation is performed for the integral in (3) which is normal to 7. In
the high frequency limit for the length of the edge, the integral is solved for a canonical
wedge problem or, for the problem at hand, a half plane. Matching this solution to the
integrand of (4) gives expressions for / and M. Thus the equivalent currents / and M at the
edge are effectively the average of the tangential and normal components, respectively, of
the surface current J in the vicinity of the edge.

The first problem encountered in using Michaeli's solution is that the equivalent
current coefficients become singular along the shadow and reflection boundaries. Michaeli
presents a correction to the singularities in [4,5]. The singularities can also be resolved in a
more straightforward manner by using the incremental length diffraction coefficients
(ILDC) derived by Mitzner for the edge currents. Knott has shown that these ILDC can be

seperated into Michaeli's current coefficients and a physical optics term, both of which are



singular on the shadow and reflection boundaries [4]. Since the ILDC contain the
difference of these, the singularities of each cancel. The ILDC then account for the
diffraction due only to the edges, and the scattering due to physical optics current integrated
ovef the illuminated surface of the plate must also be added.

Other limitations of the model not corrected by Michaeli or the ILDC of Mitzner are
apparent in the expressions for the equivalent currents. For the case of H-polarization (H-

incident parallel to the leading edge of the plate) and backscatter, 8 = &', Mitzner's EC

model gives
kL
i , 6’ -¢—2—c058'
M, =Ftan0 tan—2--1 e ‘ (5a)
= _l__ 1 ikz cos@’
=%z e ¢ G0
i , ’ i—2—cose'
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where the subscripts denote the edges as labeled in Fig. 1. At grazing, 6’ =0, the current
on the plate should become zero for this polarization. The front edge current M, becomes
zero as expected. However, (5b) and (5d) show that the side edge currents /, and I,
become singular, and from (5c), the back edge current M5 approaches a finite, nonzero
value. When the incident field is E-polarized (E-incident parallel to the leading edge of the

plate), the equivalent currents on each edge are

kL .
i , ; -:—2—-cos8
I =251 - an6’ + sec6) e (62)



I, =-42 cotg gl cos? (6b)
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and it is noted that the side edges have both electric and magnetic equivalent currents. At
grazing angles of incidence, the plate has a finite surface current for this case. The front
edge current /, becomes a maximum and is finite at grazing as expected, while the side
edge currents become singular and the back edge current approaches zero.

It is also apparent that the EC model does not account for the interaction between
the comners of the plate , since infinite edges were assumed for the canonical solutions.
Any coupling from one edge current to another via the corners or the plate surface has also
not been included since each edge current coefficient is calculated independently of the
location of the others. And the cross coupling between the two vector components of the
surface current caused by the finite dimensions of the plate would produce both electric and
magnetic equivalent currents for each edge, but such is not the case for the EC model. The
task at hand then is to determine which of these factors might be used to improve the EC
model by removing the singularities of the side edges and correcting the back edge
currents. The investigation may also reveal other dominant scattering mechanisms not

accounted for in the EC model.



B. Side Edge Currents

To analyze the actual side edge currents, the surface currents were generated using a
CGFFT program, which gives a numerical solution to (2). The program was run for a 24
by 4A rectangular plate, with sampling elements of 1/20A4 by 1/20A and a 3.5 percent
tolerance of convergence. The tangential surface current component along edge 2 and
1/40A from the edge is plotted in Figs. 2 to 5 for H- and E-polarizations. The two angles of
incidence considered are ¢ = 10, 60 degrees. The oscillations observed in the current
distribution near grazing angles indicate a strong interaction between the front and back
corners of the side edge. Using a traveling current wave viewpoint, the current induced by
the incident field on the edge of the plate experiences a reflection and transmission at each
of the corners. The reflected waves are guided by the edge as they travel back and forth,
continually reflected at the corners with transmission (corner coupling and radiation)
occurihg as well. The net traveling current on the edge could then be represented by the
superposition of three components, the forced component flowing with the incident field
and two reflected components traveling in opposite directions from each corner. The
forced component travels with the phase velocity of the incident field along the edge, and
we will assume that the reflected components have the propagation constant of free space.

A general expression for the electric current along the side edge is then
I, = a(0) € ¢ + b(6) € + c(6") e )

>fficients a, b, and ¢ are assumed to be independent of z.
Given that the three components of (7) are traveling with three different velocities,
they also have three different spatial frequencies. The Fourier transform of (7) with respect

tozis



iz =2nL [a(e’) sinc%‘{kz-k cos@’) + b(0) sinc%(kz-k) + ¢(0) sinc%(kﬁk)] ®)
where £, denotes the spectral domain. To verify this traveling wave viewpoint, the edge
current data of Figs. 2 to 5 was Fourier transformed numerically, with the results plotted in
Figs. 6 t0 9. To make a comparison, the coefficients a, b, and ¢ were calculated by point
matching (7) to the plate data at the zeros of the arguments of the sinc functions. For H-

polarization,
a(10°) = 17.2¢"16, b(10°) = 17.16'16!, ¢(10°) = 1.9¢07
a(60°) = 4.4 | b(60°) = 2.162% , ¢(60) = 2.4¢"0-"8

and (7) was plotted in Figs. 6 and 7 using these values. As shown, excellent results are

obtained for both angles of incidence. For E-polarization, the point-matching yielded

a(10%) = 9.6¢26 | p(10°) = 13.0¢%92, ¢(10°) = 1.4¢70-78
a(60°) = 1.6, b(60%) = 0.2¢%2 , ¢(60°) = 0.15¢07® .

Again, excellent results were obtained for & = 10 degrees as plotted in Fig. 8, but for 6’ =
60 degrees, it is seen in Fig. 9 that the peaks do not coincide exactly for the a component.

The approximation to the edge current was compared to the plate data by plotting
(7) in Figs. 2 to 5 using the above component coefficients. In Fig. 2, the approximation to
the current is in good agreement with the plate data. The current of (7) does not show the
same increasing amplitude of the oscillation with z since any "standing" (non-propagating)
currents near the corners were not accounted for. The accuracy of assuming k as the
propagation constant of the b, and ¢ components has also not been verified. The same is
the case for the comparison in Figs. 3 and 4. In Fig. 5, E-polarization with 8 = 60

degrees, the component curve gives a good average value of the edge current but does not



characterize its shape as in the previous cases. This points again to the discrepency noted
in the Fourier transform plot of Fig. 9. In spite of the differences in the current plots, the
comparisons of the Fourier transforms of the current gives evidence that the dominant

current components have been identified.

C. Back Edge Currents

As mentioned above, the back edge currents need to be corrected or modified for
both polarizations. For H-polarization, the back edge current is a magnetic one, which can
not be obtained from the electric surface current data of the plate directly. This magnetic
current is associated with the surface current normal to the back edge and is an isolated
effect in the EC model. What actually occurs is a strong coupling between the front and
back edges over the surface of the plate near grazing angics of incidence due to the surface
current normal to these edges. Thus for plates of high frequency widths W we will use the
solution to an infinite strip with a cross section of L to represent the scattering from the
edges 1 and 3 and from the surface [10]. This solution accounts for the edge currents M,
and M; of (5) and the PO surface current and will be presented in a later section.

For E-polarization, there is very little coupling between the front and back edges of
the plate, and thus the strip model would not provide any improvement to the back edge
current near and at grazing. Given the strong front edgc current at grazing angles of
incidence, though, a coupling would occur around the corners and along the sides to the
back edge, providing a finite current. This has been verified experimentally by Knott,
Liepa, and Senior [10] by placing notches on the side edges and observing their effect on
backscatter. As previously mentioned, this coupling is completely unaccounted for by the
EC model. Using a similar three component current model as for the side edge currents,

the back edge electric current is represented by

I =a(0) + b(8) € + c(8) ™ ©



with the complex coefficients assumed to be independent of x. The validity of this model is
verified in Fig. 10, in which the back edge current from the CGFFT code is plotted along
with (9) for 6" = 10 degrees. The coefficients of (9) were determined by point matching in

the spectral domain, giving

a(10%) = 1.1e298 | p(10") = 1.5¢*78 , ¢(10") = 1.5¢°0-78 .

III. MODIFIED EQUIVALENT CURRENTS

A. Side Edge Currents

Of first concern is the modeling of the side edge currents for both polarizations.
For the traveling wave viewpoint applied to the side edge currents, the components b and ¢
are described as the reflections of the component a. This would imply a type of
transmission line model of the edge current, with reflection and transmission coefficients
characterizing the corners. The reflection coefficients would give the coupling between b
and c and the component g at their rcspcctivc corners, while the transmission coefficients
would describe the coupling of a to the adjacent edges. The other coupling which occurs
with the two components of the surface current on the plate will be assumed negligible in
this development. To observe the nature of the incident aspect dependence of the
coefficients, a, b, and ¢ were calculated by point matching (8) to the spatial Fourier
transform of the CGFFT current data along edge 2. The results for a, b, and c are plotted
in Figs. 11 to 13 for H-polarization and in Figs. 14 to 16 for E-polarization.

For H-polarization, it is apparent from Fig. 11 that the coefficient a correlates
directly with the electric EC model expressions for the side edges, having the same singular

behaviour. That is,

10



a(6) =i —2 (10)
sin@

where a, = -3.423, the normalizing factor for a(7/2), to match (10) to the data, as plotted in
Fig. 11. To match with the EC expression in (5b) or (5d), a, = 1/kZ. For the coefficient
b,

b =a@)T,, (11a)

and from curve fitting to the plot of Fig. 12, an approximation to the reflection coefficient at

=-L/2 is
-i‘kz—L (cos@'-1)
I"ba = - c0s(0.80") e (11b)

where the phase term is due to the location of the phase center at z = 0. The magnitude of b
relative to a is independent of L. The singularity of a at grazing then is cancelled by its

reflection at z = -L/2, the b component, since the reflection coefficient approaches -1 as 6’
approaches zero. The expression (11) is plotted in Fig. 12 for comparison. For the

coefficient c,

() =a() [u+b@ T,

=a@) ([ +T,, T, (12a)

where the component ¢ must be given by the reflection of b in addition to a such that the
singularity of a is cancelled at grazing. For the reflection coefficients, it is known that (a)
.4l = 0.3 at normal incidence according to Figs. 11 and 13, (b) that I',, approaches I,
near grazing, since the phase velocity of the a component approaches that of the b
component, and (c) I'p is constant with angle of incidence. Also, I';, could very well have

an angle dependence. As a first approximation, though, let Il .l = II' 3! such that

11



i-k—lé(cose’ +1)

I,,=-03e¢? (12b)

I,=-03¢&%, (12¢)

and the results are shown in Fig. 13. The interaction of ¢ and b at z = L/2 is seen by the
oscillating curve. At grazing, lcl goes to zero as the reflections of @ and b from z = L/2
cancel each other. Using the coefficients of (10) in (7) gives the modified equivalent
currents for I, in (5b), and it was verified that identical results are obtained for /, in (5d).

For E-polarization, from Fig. 14, the empirical results gave
a(6) =-1ia,cotd (13)

where a, = -2.512 to give the best fit of (13) to the actual data for a(€"). For the electric
side edge currents of the EC model, a, = 2/kZ in (6a) and (6e). For the reflected
component b, a comparison of Figs. 14 and 15 reveals that Ibl > lal near grazing. This is
due to the contribution to b by the coupling around the corner of the forced component a on
the front edge of the plate. Considering the side edge currents alone, the sum of a and b
must give a nonzero, finite current at grazing. The summation of the data for @ and b
results in a curve of constant slope with angle, with a magnitude of ~ 0.5 at normal and

~ 6.0 near grazing. Apparently then b successfully cancels the infinity of @ and provides a

constant current at grazing. To accomplish this, it is proposed that

b(8) =a(B) I"ba , (14a)
where
-ii(cose’ -1)
I, =-(sec6'- tan6)e 2 ) (14b)

12



Apart from the phase term, the reflection coefficient is again negative. The plot of (14) is
included in Fig. 15, where an exact correlation is not expected because of the coupling
from the front and back edges. Following the same notion for the ¢ component of the H-

polarization case, the coefficient c for E-polarization is

c(6)=a(®) (I +T,,T,), (15)

and the reflection coefficients are those from (12b) and (12c). These coefficients give the
modified equivalent currents for /, and /, in (6b) and (6e).

The modified equivalent current (MEC) model was compared to the edge current
data from the CGFFT code by using the coefficients of (10) through (15) in (7). For H-
polarization, the results are shown in Figs. 17 and 18. The results are in good comparison
near grazing, but deviate from the CGFFT data at 6’ = 60 degrees in Fig. 18 since the
empirical formulas for b and ¢ in (11a) and (12a) only account for first order reflections and
because of the approximation Il = II'l. The E-polarization results are shown in Figs. 19
and 20. In Fig. 19 the CGFFT curve has almost twice the amplitude of the MEC curve
since there is a strong contribution from the front edge not accounted for in (11). The
amplitudes are more closely matched in Fig. 20 for 6’ = 60 degrees. Thus the reflected
current components added to the EC model for the side edge electric currents have removed
the singularity and have given a good characterization of the interaction between the

corners.

B. Back Edge Currents

- Using the proposed current expression in (9) for the back edge, the coefficients
were calculated as a function of angle of incidence. Figure 21 shows the results for a, and
this coefficient does not become zero at grazing as the EC model gives a zero for I3 in (6d).

A correction then to /3 to fit an empirical expression to the data yields

13



ii cos8’

a@)=ia,il +0.7 (tanb’ - secG’)}e 2 (16)

where g, = -3.0. For the electric back edge current of the EC model, a, = 1/kZ in (6a).
The data for b is plotted in Fig. 22. The reflection coefficient at x = -W/2 is expected to the
the same as the reflection coefficients for the side edge for H-polarization at normal
incidence. So with b given again by (11a), the reflection of a for the back edge is now

AW
I, =-03e? . (17)

The empirical result in the magnitude plot of Fig. 22 shows a discrepency in the accuracy
of (17) because the coupling from the side edges was not accounted for, which would

increase the magnitude significantly. The data showed that for the ¢ component,
c(0) =b(6) (18)

for all angles of incidence. This is expected since the reflection of the component a is the
same at each corner. Figure 23 shows the results for the coefficients of (16) to (18) used in
(9), as compared to the CGFFT data. The discrepancy is again due to the exclusion of the

comner coupling effects, which have yet to be modeled.

IV. FAR FIELD SCATTERING
The far field scattering from the rectangular plate is expressed as a combination of

(3) and (4) for the modeled surface and edge currents, respectively. For H-polarization,
the backscattered field is

14



-ikr
Ey(r.6) = £—[5,(6) + 5,(6) + 5,,(6)] (19)

where the far field amplitudes are

S, = ‘{CZ L sin@ [ 2(0’) sinc%z-'-(cose-l- cos@) + b2(0’) sinckz—L(cos0+ 1)

+ (8 sinck(cos6 -1)] 20)
_ ikZ 5 . kL . kL
S4 = dn L sin@ {a‘t(e’) sch(cos0+ cos@’) + b4(9') sch(cos0+ 1)
+c,(0) sincﬂ‘(cose-l)] 21
4 2
from (10) to (12) in (4) and

2
9 1
1-c080 .ikL cosé ___2_ g _Q o
S, = 4 / {cose {1 &e sm2 F(JZkL coszﬂ

J

2
_1+cosB ikLcos8| 1 _ 2 "4 6 . 0 (22)
s e l:I J?i:'e cos2 F[ 2kL smzﬂ }

from [10], where F(7) is the Fresnel integral
F(1) = J e’ du |
T

The far field amplitude for the strip is only presented for the backscatter case. The
backscatter cross section of a 24 by 44 rectangular plate was calculated using the CGFFFT

code and (19), and the comparison is shown in Fig. 24. The main contribution to the total

scattering is from the term S, with S; and S4 adding to the peak of the traveling wave

15



lobe. The results are in good agreement except for the null of the traveling wave lobe near

grazing.
For E-polarization, the scattered far field is given by

ikr
E5(r,6) = £-[5,(6) + 5,(6) + Spo(0)]

where the far field amplitudes are

kL kL
_ ikZ ..l_ ) , -t—i—cose' ~¢Tcos6
Sl_z;c—w{kz(l tan@’ + secB’) e e
from (6a) in (4),
ikZ . kW . kW kL o0
S, =7&-W a,(6) + by (6) s1ncT+ c,(6) smc—z——}e 2

from (13) to (15) in (4), and

_ ik . o kL
Spo =2 WL sinf sch(cose + cos6)

(23)

(24)

(25)

(26)

from the PO surface current in (3). Because of the phase difference between the electric

currents on the side edges, their contributions to the scattering in the principal plane cancel

each other. The plot of (23) is compared to CGFFT results for backscatter from the

rectangular plate, as the plot of the cross section in Fig. 25 shows. For the choice of W =

24, the b and c coefficients of the back edge do not contribute to the scattered field. The

discrepancy in the comparison of the MEC to the CGFFT results is then only due to the a

coefficients of the front and back edges and the PO term.

16



V. CONCLUSIONS

The physical interpretation of the side edge currents as traveling wave currents has
proven to be valid and to be at least empirically quantifiable. The MEC model has removed
the singularities of the current for aspects at grazing. Considering higher order interactions
would undoubtedly improve the MEC results, as well as investigating the actual

propagation constants of the b and ¢ components. The model must also be validated for

plates of other dimensions.
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Figure 1. Rectangular plate configuration
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Figure 4b. E-polarization, side edge current on edge 2
of the plate, 6'= 10°, W=2), L=4A.
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Figure 5b. E-polarization, side edge current on edge 2
of the plate, 6= 60°, W=2), l=4A.
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Figure 7. H-polarization, Fourier transform of the current
on edge 2, 8'= 60°, W=2)\, L =4A.
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E-polarization, Fourier transform of the current
on edge 2, 8'= 10°, W=2), =4A.
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Figure 10b. E-polarization, current on edge 2
of the plate, 6'= 10°, W=2), L=4)\.
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for edge 2 of the plate, W=2), L=4A.



900
720{
540{

360

1 B CGFFT,b
- MEC. b
180-_

y/}F

0 —

“u

arg {coef}

-180-

-360{

.54().g M/

-720 -

9004
0o 16 30 45 60 75 90

6’ in degrees

Figure 12b. H-polarization, coefficient b(6°)
for edge 2 of the plate, W=2), |=4A.
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Figure 13. H-polarization, coefficient c(6’)
for edge 2 of the plate, W=2A\, =4A.
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for edge 2 of the plate, W=2)\, L=4A\.
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for edge 2 of the plate, W=2)\, |=4)\.
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Figure 19b. E-polarization, side edge current on edge 2
of the plate, 6= 10°, W=2), =4 ).
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Figure 20b. E-polarization, side edge current on edge 2

of the plate, 8'= 60°, W=2)\, L=4).
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Figure 22. E-polarization, coefficient b(6’)
for edge 3 of the plate, W=2), L=4).
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Figure 23. E-polarization, current on edge 3

of the plate, 6= 10°, W=2)\, =4\
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Figure 24. H-polarization, backscatter from a rectangular
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plate, l=4)\, W=2)\.



i



