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The first eigenvalue of a correlation matrix indicates the maxi-
mum amount of the variance of the variables which can be ac-
counted for with a linear model by a single underlying factor. When
all correlations are positive, this first eigenvalue is approximately a
linear function of the average correlation among the variables.
While that is not true when not all the correlations are positive, in
the general case the first eigenvalue is approximately equal to a
lower bound derived in the paper. That lower bound is based on the
maximum average correlation over reversals of variables and over
subsets of the variables. Regression tests show these linear approxi-
mations are very accurate. The first eigenvalue measures the pri-
mary cluster in the matrix, its number of variables and average cor-
relation.

REGRESSION analysis employs R2 to answer the familiar question of
what proportion of the variance of a dependent variable can be ex-
plained by a set of independent variables. However, the distinction
between independent and dependent variables is often not required,
particularly in measurement studies where the researcher is interested
in determining the extent to which several measures tap the same un-
derlying syndrome. The appropriate statistic in this situation is the
first eigenvalue (B,) of a principal component analysis. It indicates the
maximum amount of the variance of the variables which can be ac-
counted for with a linear model by a single underlying factor.

Since factor analysis is usually treated as a complicated black box,
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there are no guidelines for intuitive understanding of its statistics, in-
cluding the eigenvalues. However, all component analysis does is map
the n(n - 1)/2 correlations among n variables into n eigenvalues and
their associated eigenvectors, so the eigenvalues must be functions of
those underlying correlations. Even if the functions are complicated
and nonlinear, they might still be approximated well by a linear rule.’ I

Discovering how the eigenvalues relate to the correlations would in-
crease our intuitive understanding of them and of component analysis
more generally. That is our focus in this paper, beginning with the
case of all positive correlations and moving on to the general case.

All Positive Correlations

Our linear relationship between the first eigenvalue and the under-
lying correlations is already known when all correlations are positive.
Morrison (1967: 244-245) shows that when all correlations equal r(r >

0),

What relationship holds when all correlations are not equal? Say that
all the correlations are set equal but then some correlations are in-
creased. For positive correlations, increasing some of the correlations
would increase the amount of the variance which can be accounted
for a single component. Of course, the central tendency of the correla-
tions also increases as some correlations are increased. This suggests
that the first eigenvalue may be a function of the central tendency of
the correlations when the correlations are all positive. Following Mor-
rison’s result, we might expect that a linear relationship which would
closely approximate the first eigenvalue would be2

where r is the mean correlation.
To examine the relationship between the first eigenvalue and the

central tendency of the correlations, we have constructed a large num-

1 For example, for three variables, the first eigenvalue, &lambda;1, is

&lambda;1 = 1 + 2 rms cos(1/3 arccos(r12r13r23/rms3)),
where rms is the root mean square correlation: &radic;(r122+r132+r232)/3 a function which
is not linear in the correlations, even if it might be well approximated by a linear func-
tion.

2 This estimate would also be expected to apply when there are only a few, small,
nonsystematic negative correlations.
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ber of three and four variable correlation matrices3 and computed
their eigenvalues. Figure A plots the mean correlation for each three
variable correlation matrix on the horizontal axis against the corre-
sponding first eigenvalue on the vertical axis. The relationship be-
tween the first eigenvalue and the mean correlation is clearly near lin-
ear. When the first eigenvalue is regressed on the mean correlation,
the best fitting linear regression equations are

3 variables: A/ = 1.07 + 1.94r (R2 = .990; N = 220) (3)
4 variables: À1’ = 1.05 + 2.97r (R2 = .996; N = 300).

These regressions confirm the rule we suggest in equation (2).
As an example, consider the correlation matrix

1.0 .4 .3
.4 1.0 .3
.3 .3 1.0

3 All three variable correlation matrices were generated with r values between 0.1 and
1.0 in steps of 0.1 (0.1, 0.1, 0.1; 0.1, 0.1, 0.2; and so on up to 1.0, 1.0, 1.0). A total of 220
correlation matrices resulted. Each point in Figure A represents the r and &lambda;1 obtained
for one of these correlation matrices.
Ten sets of positive correlations among four variables were constructed with an em-

phasis on maintaining variance on the mean, maximum, and minimum correlations
along with independence of those statistics. These sets were not chosen with respect to
their clustering properties. The sets were as follows:

Set Correlations Maximum Minimum Mean
1: .80 .75 .70 .65 .60 .10 .80 .10 .60
2: .90 .40 .35 .30 .25 .20 .90 .20 .40
3: .90 .84 .78 .72 .66 .60 .90 .60 .75
4: .40 .34 .28 .22 .16 .10 .40 .10 .25
5: .95 .92 .89 .86 .83 .80 .95 .80 .875
6: .20 .17 .14 .11 .08 .05 .20 .05 .125
7: .61 .60 .59 .41 .40 .39 .61 .39 .50
8: .90 .80 .70 .30 .20 .10 .90 .10 .50
9: .80 .76 .72 .68 .24 .20 .80 .20 .567

10: .80 .76 .32 .28 .24 .20 .80 .20 .433

All 30 distinct permutations of values across variable pairs were yield a total of 300 cor-
relation matrices for four variables. 
Note that we have not restricted the correlation matrix to be positive semidefinite for

several reasons. A matrix of Pearson r correlations need not be positive semidefinite if
there is pairwise deletion of missing data. Also, the matrix is not necessarily positive
semidefinite if Yule’s Q or tetrachoric r are factor analyzed as an approximation to
multidimensional Guttman scaling. As a result, we are investigating the eigenvalues of
symmetric matrices rather than features specific to positive semidefinite correlation ma-
trices.

Other central tendency measures&mdash;such as the median, the midrange, or the root
mean square&mdash;could be used in this analysis instead of the mean. For three variables, &lambda;1
is actually an exact nonlinear function of the root mean square. Only results for the
mean are reported here since it yields the highest R2 values for a central tendency mea-
sure which is easy to compute. The median or midrange could be substituted because of
their simpler calculation, but at greater loss of predictive accuracy.
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Since the average correlation is .333 and the number of variables is
three, equation (2) yields the estimate for A, of 1 + (3 - 1)(.333) =
1.667. The actual first eigenvalue is 1.669, so the estimate is excellent.
Actually, the estimate deteriorates slightly as the variance of the cor-
relations increases. Consider the correlation matrix

1.0 .9 .3
.9 1.0 .3
.3 .3 1.0

Since f = .5 and n = 3, equation (2) yields the estimate 1 + 2(.5) =
2.000. The actual first eigenvalue is 2.068, which is further away from
the estimate than in the previous example but which is still quite close
to the estimate.
While we have investigated only the three and four variable cases

systematically, we would expect equation (2) to hold more generally.
As an example, consider Verba and Nie’s (1972: 388) matrix of the
correlations among thirteen political activities in the United States:

1.0 .71 1 .60 .19 .19 .18 .13 .17 .18 .17 .09 .11 I .12
.71 1 1.0 .64 .21 1 .19 .20 .14 .17 .18 .18 .10 .13 .14
.60 .64 1.0 .24 .26 .25 .18 .20 .23 .22 .14 .17 .18
.19 .21 .24 1.0 .47 .35 .27 .27 .22 .24 .23 .24 .22
.19 .19 .26 .47 1.0 .50 .46 .36 .27 .31 .24 .26 .22
.18 .20 .25 .35 .50 1.0 .45 .37 .30 .23 .24 .25 .21
.13 .14 .18 .27 .46 .45 1.0 .36 .20 .22 .22 .17 .19
.17 .17 .20 .27 .36 .37 .36 1.0 .24 .21 .12 .19 .20
.18 .18 .23 .22 .27 .30 .20 .24 1.0 .34 .28 .26 .27
.17 .18 .22 .24 .31 .23 .22 .21 .34 1.0 .38 .29 .23
.09 .10 .14 .23 .24 .24 .22 .12 .28 .38 1.0 .22 .19
.11 .13 .17 .24 .26 .25 .17 .19 .26 .29 .22 1.0 .23
.12 .14 .18 .22 .22 .21 .19 .20 .27 .23 .19 .23 1.0

Since r = .249 and n = 13, equation (2) gives the estimate 3.990,°
which is very close to the actual (Verba and Nie, 1972:62) 4.05.
The proportion of variance accounted for by the first component is

~;/M. Substituting equation (2) for A;, the proportion is approximately
equal to ( 1 /n) + (n - 1 )r/n. As the number of variables becomes very
large, ( 1 /n) approaches zero while (n - 1 )/n approaches one, so this
proportion approaches r. Thus, the proportion of variance accounted

.

4 If the mean seems overly tedious to calculate, the median can be substituted. Here,
for example, the median correlation is .22, which leads to an estamate of 1 + ( 13 &mdash;
1)(.22) = 3.64. This would yield an underestimate of the true proportion of variance ac-
counted for by the first component (&lambda;1/n) of only (4.05-3.64)/13 = 3.15%, so it is still a
sufficiently accurate estimate.
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for by the first principal component is seen to be basically a function
of the central tendency of the underlying correlations.

Before concluding the all positive correlation case, it should be
. 

pointed out that Meyer (1975:68) has shown that a lower bound for
the first eigenvalue is

so equation (2) never overestimates the first eigenvalue. The regres-
sions show that the first eigenvalue hugs the lower bound closely.6

The General Case

What happens when not all the correlations are positive? When the
correlations are of mixed signs, it is less obvious that increasing some
correlations would necessarily increase the first eigenvalue, even
though that would increase the mean correlation. As a result, the
mean correlation may not lead to as good an estimate of the first ei-
genvalue. This is shown vividly when we extend our regression experi-
ments to the general case. Again we generated a large number of three
and four variable correlation matrices,’ extracted the eigenvalues, and
regressed the first eigenvalue on the mean correlation. The regression
equations are:

5 Meyer’s proof is based on Rayleigh’s principle for symmetric matrices (R) that

When x is taken to be a column vector of l’s, equation (4) results.
6 Morrison (1967) also gives an upper bound for &lambda;1, which is the largest row-sum of

absolute values of the entries in the matrix:

This upper bound is sometimes close to the lower bound, but often it is not, as in the
correlation matrix from Verba and Nie where the upper bound is 4.73. In general, we
find that the first eigenvalue is closer to its lower bound than to its upper bound, and it
is very close to its lower bound as contrasted to its theoretical range from 1 to n.

7 For three variables, 1771 correlation matrices were generated by using all three var-
iable correlation matrices with r values between &mdash;1.0 and +1.0 in steps of 0.1.
For four variables, the signs of the correlations of the 300 matrices described in foot-

note 3 were permuted in eight ways: all correlations positive, only the first correlation
negative, only the second negative, only the third negative, ..., only the sixth negative,
and all negative. Any other set of signs on the correlations can be obtained by reversing
variables from one of these eight permutations. This procedure results in 2400 correla-
tion matrices for the four variable test.
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Figure 1.

Obviously the first eigenvalue is not always a linear function of the
mean correlation. However, we can use Meyer’s lower bound for A,
given in equation (4) to examine the general relationship between the
first eigenvalue and the mean correlation.

First, say that all correlations are positive except that one variable
has negative correlations with all other variables, as in the correlation
matrix

Meyer’s result shows that 1 + (n - l)r = .867 is a lower bound for the
first eigenvalue. However, reversing the variable with the negative
correlations does not affect the eigenvalues, even though it would in-
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crease the r. Therefore, a higher lower bound for the first eigenvalue
would be obtained by using in Meyer’s formula the average correla-
tion based on the reversed variable. For the above example, reversing
the third variable would give an r of .333 and a lower bound of 1.667
which is very close to the actual value of 1.669. In general, let fmu. rep-
resent the maximum value of r over all possible reversals of the vari-
ables. The lower bound for the first eigenvalue then becomesg

Next, say that all correlations are positive except for one variable
whose positive correlations with some variables exactly balance off its
negative correlations with the other variables, as in the correlation
matrix

1.0 .4 .3
.4 1.0 -.3
.3 -.3 1.0

Applying Meyer’s result would yield a lower bound of 1 + 2(.133) =
1.267. However, if the variable with the inconsistent correlation signs
is deleted, the lower bound of the first eigenvalue for the reduced ma-
trix would be 1 + (n - 2)~_,, or here I + 1(.4) = 1.400. The inclusion
principle (Franklin, 1968:149) implies that the first eigenvalue of a
matrix is at least as large as the first eigenvalue of any submatrix,9 so
this must also be a lower bound for the first eigenvalue of the original
matrix. In the present example, the higher (and, therefore, operative)
lower bound is obtained with the submatrix, and the actual first eigen-
value of the original matrix is 1.400 which is identical to that lower
bound. If we now let f mu. be the maximum average correlation among
m of the variables for all subsets of size m and for all possible reversals
of the variables, the new general lower bound 10 would be

8 This result can also be derived from Rayleigh’s principle, using -1 values in the x
vector for variables which would be reversed and +1 values for the other variables.

9 Franklin’s inclusion principle states that the first eigenvalue of a matrix is at least as
large as the first eigenvalue of the submatrix obtained by deleting the last row and last
column of the original matrix. However, reordering the variables in the matrix will not
change the eigenvalues, and induction shows that deletion of more than one row (with
the corresponding columns) would lead to a submatrix whose &lambda;1 cannot be greater than
the &lambda;1 of the original matrix. We shall term this the "generalized inclusion principle."

10 Let &Sigma;r1 represent the sum of the correlations among a subset of m variables. Let &Sigma;r2
represent the sum of the remaining correlations in the matrix. A higher lower bound is
found for the submatrix whenever
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As an example of the calculations involved in equation (7), consider
the correlation matrix

1.00 .90 .40 .20
.90 1.00 .30 .25
.40 .30 1.00 -.35
.20 .25 -.35 1.00

To apply the lower bound formula, we must obtain the largest average
correlation for each subset of two or more variables. For the entire
matrix, the average correlation is .283, which leads to a lower bound
estimate of 1.850 using equation (4). The highest average correlation
for a subset of three variables is .533 (using the first three variables),
which gives a lower bound estimate of 1 + 2(.533) = 2.067. The largest
absolute value of any correlation is .90, so the highest estimate based
on two variable subsets is 1 + (2 - 1)(.90) = 1.900. Since the first ei-
genvalue must be larger than all of these lower bounds, it is the 2.067
which provides the operative lower bound. In fact, the first eigenvalue
is 2.142, very close to the lower bound.
Given how close the lower bound (4) was to the first eigenvalue for

the case of all positive correlations, it is appropriate to examine
whether lower bound (7) is similarly close to the first eigenvalue for
the general case. The correlation matrices generated for regression
equations (5) were reexamined. Figure B plots for each three variable
correlation matrix the lower bound estimate on the horizontal axis

against the first eigenvalue on the vertical axis, and Figure C gives a
similar plot for the four variable matrices. The relationships between
the eigenvalue and lower bound (7) are clearly near linear. The best
fitting linear regression equations are

where LB is the lower bound obtained from equation (7). Thus, the

If the diagonal cell entries are not equal to unity (as would be the case for the classi-
cal factor model), substitution of a vector of one’s in Rayleigh’s principle yields a lower
bound for &lambda;1 of &Sigma;jk&Sigma;rjk/n. Employing the generalized inclusion principle on sub-
matrices of m variables yields a lower bound:

(Once again, it would be appropriate to maximize this also over possible reversals of
variables.) This lower bound would also hold if cell values are greater than 1.0, so this
is a general result for symmetric matrices. Recent work on bounds for nonsymmetric
matrices (for which Rayleigh’s principle does not apply) is reviewed in Brauer and

Gentry (1976).
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lower bound gives a very accurate estimate of the first eigenvalue:

What properties of the underlying correlations are being monitored
by the first eigenvalue in the general case? The size of the primary
cluster of variables in the matrix, in terms of its number of variables
and its average correlation.&dquo; It should be noted that this estimate (9)
is also appropriate for the all positive correlation case and, if the vari-
ables are highly clustered, the revised lower bound can lead to a
higher (and hence more accurate) estimate for the first eigenvalue
than our original estimate (2).

Conclusions

Computers today permit rapid calculation of eigenvalues, but the
analysis here shows how they can easily be estimated by inspection of
the correlation matrix. Additionally, this analysis shows how they
should be interpreted in terms of the underlying correlations. The first
eigenvalue measures the primary cluster in the matrix, its number of
variables and average correlation. ,

11 Since the second eigenvalue of a correlation matrix is the largest eigenvalue of the
matrix obtained by residualizing on the first principal component, that second eigen-
value must similarly monitor the "secondary cluster" of variables, and so on for later
eigenvalues.
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