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1. INTRODUCTION

In the last several years the use of matrices to characterize time-varying,
discrete-time, linear systems has been growing. For example, Friedland (Ref. 1), has
done much important work in this area. Cruz (Ref. 2) has shown how this idea can be
employed in the design of control systems. Recently, the author showed (Ref. 3) that
many of the frequency response concepts of time-invariant systems could be generalized
so that they were meaningful for time-varying systems. So far attention has been centered
on single-input, single-output systems. It is the purpose of this article to show that the
previously developed methods can be applied, after certain changes and re-interpretations,

to multivariable systems.



2. MATRIX REPRESENTATION FOR MULTIVARIABLE SYSTEMS

Consider the multivariable systems shown in Fig. 1. The input on the kth

input channel, wherek = 1, ..., m, is represented by the sequence {xk(tl), xk(tz), cee,
xk(tN)} . Correspondingly, the output from the jth output channel, where j = 1, ..., n, is
represented by the sequence {yJ(tl), y](tz), ceey yJ(tN)} . Note that it has been assumed
!I yI
2 LINEAR , MULTIVARIABLE , 2'
X y
——>1 TIME-VARYING , DISCRETE- [
o™ TIME SYSTEM y"
S e—

Fig. 1. Block diagram of multivariable system under consideration

that the sampling times are the same for all channels. Although this assumption is not
required, it is employed here to simplify the equations which follow. The mathematical
model assumed for this system is

Yt = ) eyl tRey) (1)
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where gjk[tﬂ ,ts] is the output of the jth channel at time tﬁ caused by a unit input in the kth

channel at time ts' It is assumed here that the system is in its zero state before t,, that

17
is, all initial conditions are assumed to be zero. 1 Equation 1 can be recast in the following

matrix formulation:

1In the case where this assumption is not possible, the initial state can be incorporated

into the input vector and a development similar to the one presented here can be carried
out.
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() (6)

It is clear that y(t ,) characterizes the output on all channels at time t!Z; i(ts) characterizes

2
the input on all channels at time t _. Gt 0 ,ts] characterizes the output on all channels at
time tﬂ caused by a unit input on all channels at time tS and can be looked upon as the

"multivariable unit response.' In order to simplify the expressions which appear below,

Eq. 2 is further condensed by writing it in the form

y = Gx, (7
where
EM [alt, ,t,] ot tyl | EN
: . vity) - e x(ty) ,
_37(tN)_ —G[tN,tl] e G[tN,tN]_ ] i(tN) J (8)

and G is referred to as the system matrix.

It should be noted at this point that G is an nN x mN matrix (i. e., with nN
rows and mN columns). Therefore the matrix G is not necessarily square, which leads

to an interesting and obvious consequence. The matrix G can be rectangular either in the

form (for n > m)

>




or in the form (for m > n)

bl

In the first case, it follows from the rectangularity of G that not all output vectors in
nN-dimensional space are realizable (i.e., for some ;there does not exist an X such that
3=r = G;zc). In fact, all realizable }zf's must be in a subspace of dimension less than or equal
to mN (the equality holds if G is of maximal rank). In the second case, it follows from
the rectangularity of G that, regardless of the explicit form of G, X-vectors in a subspace
of dimension (m-n)N cause zero output [i. e., the null space of G has a dimension of at
least (m-n)N]. Using the vocabulary of filter theory, one could say that such a system

would have a nontrivial stop band.



3. BACKGROUND TO TRANSFORM METHODS

At this point it is worthwhile to reconsider the basic goal behind transform
techniques. Simply stated, the goal is to transform, where possible, a given operation
into the operation of multiplication by a function (e.g., the transfer function). Let L de-

note some given linear operation such that
y = Lx , (9)

where x is an element of the input space2 or domain and y is an element of the output space
or range. L is transformed to a multiplication in the desired sense if an invertible trans-

formation T and a function ¢(1x) can be found such that
L =T ¢r)T. (10)

Thus, if L is a linear transformation of a space H, into itself, T is a linear transformation

1

of H1 onto a space H2, and multiplication by ¢(x) is a linear transformation of H2 into

itself, we have the following situation

A classic example of such a transformation to a multiplication is offered by
the well-known use of the Laplace transform with linear, time-invariant systems. There
T is the direct Laplace transform; ¢(x) is the transfer function with the complex numbers

K

A, taken along the Wagner-Bromwich contour; and T_l is the inverse Laplace transform.

2The element x might be a function or a sequence, for example; the corresponding spaces
would be function or sequence spaces. Inthe case of the systems considered in this
article the element x is a sequence and the space is a sequence space.



Another well-known example in the same spirit is the diagonalization of a square matrix by
means of a similarity transformation. There L is the matrix to be diagonalized; T is a
nonsingular (i. e., invertible) matrix; and ¢()) is a diagonal matrix. This diagonal matrix
can be viewed as equivalent to a function defined on the integers from 1 through N (L being
an N x N matrix). Thus, ¢(1) = A 1 the first entry on the diagonal; ¢(2) = A g, the second
entry; and so on through ¢(N) = )\N. If, in a similar manner, an arbitrary vector upon
which the diagonal matrix operates is viewed as a function--say x(A), defined on the
integers 1 to N--then operation with the diagonal matrix can be viewed as a multiplication
of the function x(\) by the function ¢(x). This latter example leads one to refer to the
general process as a "'diagonalization of L' whether L is a matrix or not. A detailed
discussion of the philosophy behind such diagonalization applied to continuous-time systems
is given by Zadeh (Ref. 4). Finally, it must be emphasized that such a diagonalization is
not always possible.

In addition to the obvious fact that such a "'diagonalization' simplifies the
representation of the operator L (assuming L is "diagonalizable'), several specific aspects
should be noted. Perhaps the most important of these relates to the tandem operation of
two operators, say L1 and L2’ which can be diagonalized by the same transform T. In

this case,

L, =T ¢1()\)T
and

L, = T-1¢2()\)T . (11)

It immediately follows that

-1 -1
LLy = T 9, (\)TT g,(\)T

T, ()ay(0)T

i

" lg,(\)e ()T

I}

L2L1 . (12)

Thus, T also diagonalizes the operators Lle and L2L1 as well as L1 and L2' Carrying

kq. 12 further, if L , Ln form a set of operators which can be diagonalized by

1 Loy ove



T, then any polynomial function3 of these operators and their inverses where they exist
can be diagonalized by T. (For example, consider the familiar case of polynomials of the

derivative operator, d/dt, and the Laplace transform as T.) Finally, it should be noted
in Eq. 11 and Eq. 12 that a necessary condition for L1 and L2 to be diagonalized by the
same T is L1L2 = L2L1. Since not all linear operators commute, one cannot expect to

find a T which will diagonalize all operators. Thus, an all-purpose transform, in the

sense of Eq. 10, is not possible. On the other hand, it is possible to find T's which

diagonalize all members of large classes of linear operators. One such class is made up
of time-invariant linear differential operators.

An important result of the above statement about polynomials is that the
diagonalized identity operator is the identity operator in the transform domain regardless

of the transform used. This fact is easily appreciated, since I = L% or
TIT =1 , (13)

where I is used to denote the identity operator before as well as after transformation. The
importance of this property arises in the diagonalization of polynomials of the form (I + L),
for if T diagonalizes L, it also diagonalizes (I + L). For example, if L1 and L2 can both
be diagonalized by T, then both sides of

I+ Ll)y = sz (14)

can also be diagonalized by T; and the importance of equations in the form of Eq. 14 for
feedback systems is well-known.

It is convenient for the magnitude |¢(A)| to have some significance. In
particular, Parseval's (Plancherel's) theorem or its analog is desirable. Returning to

Egs. 9 and 10

y = Lx

T'lqs(x )Tx

Assume that L is a bounded linear transformation from a Hilbert space H1 into itself and

3 . .
This statement is valid for a larger class «f f inctions than polynomials.



T is an invertible linear transformation of H1 onto H2 . Let Tx = X(A)and Ty = Y(A) and

denote the inner products on H1 and H2 by (y,x)Hl and (Y,X)Hz , respectively. Inthe case

of square-integrable functions these become

n

%)y J y(®x)dt

and

(Y, X)g = [ YX)ar (15)

2

where the bar denotes the complex conjugate. The goal is to relate (y, y)H to (1) and

X(x). It follows from Egs. 9 and 10 that

(Lx, Lx)H

(v,y)
Hy 1

[T g0 Tx, T lg(0)Tx] . (16)

If the adjoint4 of T lis designated by (T_l)* and (T_l)"‘T-1 is replaced by Q, then Eq. 16
is equivalent to
(¥:¥)g = [#(A)X(2), Qe(X)X(N)] (17)
Hy fy
The usefulness of the above expression depends on the nature of the transformation Q.

The desirable situation is for Q@¢(x)X()) to be easily expressible in terms

of #(A)X(x). For example, if T is a unitary transformation, 5 then T_1 = T*; therefore,
Q = I, the identity transformation, and Eq. 17 becomes
(7,9 = [#)XQ), s(0)X()]y (18)

1 2

4Recall that the adjoint of an operator A which maps Hj into H2 is that operator A%,
mapping Hy into Hy, for which

(Au’ V)Hz = (u; A*V)Hl
for all u in Hy and all v in Hy.
5Recall that L can be ""diagonalized" by a unitary transformation if and only if it is

normal, i.e., commutes with its adjoint, L*L = LL* It is not true that all
""diagonalizable' operators are normal.



Thus, in the case of the Fourier transform pair6

X(x) =f x(t)e_jzmdt

-0
and

»
—_
-
~
n

0 .
[ x()e2™an |
=0

where the implied T is unitary and, thus, Q = I, Eq. 18 becomes
© 0 L .
JovEmae = [ e0)BO)X)XM)d (19)
-0 -0

Thus, 1¢())]? indicates the energy transfer capabilities of the system. On the other hand
the transformation Q in Eq.17 may not lead to a simple interpretation of the magnitude of
¢(1). Infact, there is no reason to expect a simple correlation between the {6(2)] and
the energy transfer capabilities of the system. Thus, much of the insight and many of the
analytic techniques associated with the use of transfer functions based on the Fourier (or
Laplace) transforms may not carry over to the general case. Clearly, it is unfortunate
when they do not.

In summary, then, the diagonalization discussed above has certain advan-

tages and certain disadvantages. The advantages are as follows:

Al' If the operators Ll’ ceny Lrl can be diagonalized
by a transformation T, then any polynomial func-
tion of these operators and their inverses (where
they exist) can be diagonalized by T. Among
other things this property allows an operational
calculus based on the multiplication and addition
of transfer functions to be developed. In particu-
lar, if the transform T diagonalizes L, then it
also diagonalizes I + L, where I is the identity

operator.

6 : . : .
Here x(t) is restricted to the intersection of square-integrable and absolutely integrable

functions. In order to consider all square-integrable functions the Fourier-Plancherel
transform must be used.

10



A2. In certain cases, for example when L is normal, L
can be diagonalized in a way that leads to a mean-
ingful generalization of Parseval's (Plancherel's)

theorem.
The disadvantages are as follows:

Dl' Not all linear operators can be diagonalized in the
above way. For example, not all matrices can be

so diagonalized.

D,. Given any transformation T, only a relatively
small class of linear operators will be diagonaliza-
ble with it. In other words, there does not exist
one transformation T which will diagonalize all or
even a relatively large segment of the set of all

linear operators.

D,. Parseval's (Plancherel's) theorem can be meaning-

fully generalized only in special cases.

In the next section, a transform technique is introduced which overcomes some of the
above difficulties at the cost of sacrificing advantages. Moreover, it adds an advantage
which not even the Laplace transform as usually applied to time-invariant systems has:

for a multivariable system, it yields one transfer function instead of a matrix of transfer

functions.

11



4. TRANSFORM TECHNIQUE

Lanzcos (Ref. 5) has shown that all system matrices, G, can be decomposed

as follows:
T
G = (YAD)AX™ (20)
where

(i) Y is a matrix whose columns are pairwise orthog-
onal to one another and each is of norm +N. At
this point the norm employed is the familiar
Euclidean norm. This decomposition is general-
ized subsequently so that norms based on arbitrary
inner products can be employed. If n, the number
of output channels, is greater than or equal to m,
the number of input channels, then Y is an
(nN x mN)-matrix. If n < m, then Y is an

(nN x nN)-matrix.

(ii) Af = 1/N and is referred to as an increment of

generalized frequency.

(iii) A is a diagonal matrix with all non-negative entries.
Ifn>m, A isan (mN x mN)-matrix. If n < m, A

is an (nN x nN)-matrix.

(iv) X is a matrix (XT is the transpose of X) whose col-
umns are pairwise orthogonal to one another and
each is of norm +N. If n > m, X! is an
(mN x mN)-matrix. If n < m, XT is an

(nN x mN)-matrix.

12



= | YaF

nem | = | YaF || A X7

Fig. 2. Form of the decomposition

The relation between the sizes of the above matrices is illustrated in Fig. 2. This de-
composition is essentially the same as the one used with single-input, single-output
systems (Ref. 3). The fact that it is valid for nonsquare matrices allows the present
extension to multivariable systems. As in the case of single-input, single-output sys-
tems, it is shown below that XT acts as a direct transform, A acts as a transfer function,
and (YAf) acts as an inverse transform.

Given a system matrix G the decomposition indicated in Eq. 20 can be

carried out in the following manner. Since

T - (xaf)ay?®
and

T, .1

YY—IA—f

even for rectangular Y's, it follows that

T

GTG = (XADHAZXT

Thus, the columns of X are eigenvectors of GTG and the main diagonal entries in A are the
positive square roots of the eigenvalues of GTG. Note that A is uniquely determined but X
is not. If the entries in A are distinct this lack of uniqueness for X arises from the fact
that (-1) times an eigenvector is also an eigenvector. If the entries in A are not distinct

the lack of uniqueness is evidenced in a less trivial manner. For example, if GTG =IorO0,

13



any X-matrix satisfying (iv) is suitable. Given X and A, the Y-matrix is determined from

the relation

YA = GX

This relation uniquely determines Y if A is nonsingular; otherwise, Y is only uniquely de-

termined on the range of G.

Case I: n > m

Assume for the moment that there are more output than input channels, that

is, n > m. The matrices in the decomposition are then of the following structure:

yi(tl) y;(tl) e yrlnN(tl)
y?(tl) yg(tl) e yIZnN(tl)
yrll(t1 ) yg(t1 ) ynmN(t1 )
yilty)  valty) yo N (ty)
yilty)  yalty) y2 ()
Y =
yilty)  yolty) yonts)
Y1ty Talty) v ()
vty valty) Yo Nt
vilty)  valty) AR (3 (21)

An equivalent, simplified form of this matrix is

14



M- - _ 7
yilty)  velty) ey n(ty)
Vilty)  Tylty) Y nts)
Y =
¥ylty)  Yolty) Vonte) | (22)
where
RN
vl
vt j=1, ..., mN
yit) = |
) K=1...,N
t 3
Lyj(tk)_ (23)

An even more concise notation is

Y = [Y¥g oe Von! (24)
where
—§j(t1>1
vilty)
i -
L§j(tN)_ (25)

1t
—
Do

Thus, the vectors §j’ j

= = 1
(yj,yk) = 6jk N (SjkN, where ij = Kronecker delta symbol. Here

., mN, are mutually orthogonal and of norm +N, that is,

= 1 1 2 2 n n
The matrix A is an (mN x mN) diagonal matrix with nonnegative main diagonal

entries, that is,

15



where)\iz 0, i=1, 2, ..., mN.

The matrix XT is an (mN x mN)-matrix with mutually orthogonal rows of the

form

1 2 m 1 2 m 1 m
xl(tl), xl(tl), cee s Xy (tl)’ xl(tz), xl(tz), cee s Xy (t2), v, xl(tN), cee s Xy (tN)

1 2 m 1 2 m 1 m
XT _ Xz(t1)’ Xz(tl)’ ey Xy (tl), xz(tz), xz(tz), ey Xy (tz), cee, xz(tN), cee s Xy (tN)

1 2 m 1 m 1 m
Lme(t1 ), me(tl), e me(tl), me(tz), cee, XmN(tZ)’ cee, me(tN), ceey me(tN)

(28)
This matrix can be simplified to 7
xy(ty) xy(ty) mNt)
xyty) xy(ty) mntz)
X =
] Xty Xty X ONEN) (29)
or
X = [il,iz, ey imN] , (30)

where substitutions analogous to those used with the Y-matrix are employed. Moreover,
the vectors Xj’ j=1, 2, ..., mN, are mutually orthogonal and (xj,xk) = ij/Af = ﬁjkN.
It is important to note that G>:ci = )\ij;i, i=1, 2, ..., mN. This relation and the orthog-

onality of the ):{i-VeCtOI‘S and the ?i-vectors is the key to what follows.

It can be seen from Eq. 20 that the first step in the operation of a decom-
posed G on an arbitrary input, >=<, is XT)=(. It will now be shown that this first step can be
interpreted as taking the direct transform of X to obtain its generalized frequency domain

representation. First note that the orthogonal set of vectors, >=<1, ceey ;{mN’ spans the

linear space of all possible inputs. Thus, an arbitrary input, i, can be uniquely repre-

sented in the form

7Note that X and not XT is written.

16



. mN
X = ), rxAf (31)
where the rj's are constants. Taking the inner product of both sides of Eq. 31 with ):(i

yields

=
il
—_
‘NII
el
—
il

1, 2, ..., mN (32)

-

for the determination of the r.l's. In a manner similar to that employed in the single-input,
single-output case (Ref. 3), the sequence made up of the ri's may be considered to be a
"frequency domain representation' or transform of X. Moreover, a piecewise constant
function, RX(f), of generalized frequency can be introduced as the frequency domain repre-
sentation of x. This function is obtained by associating an increment Af of generalized

frequency with each ):c.l—vector. Thus, RX(f) is defined as follows

r. (for (i-1)af < f < iAf, i=1,2, ..., mN
1 -
RX(f) =

0 lform <f<n (33)

where, again, Af = 1/N. An illustration is shown in Fig. 3. The frequency domain is de-
fined to include the interval m < f < n and RX(f) is defined to be equal to zero on this in-
terval so that the input and output frequency domain representations can be compatible. In
general, the generalized frequency domain is defined to be 0 < f < max[m,n] . Since it

can be seen from Eq. 30 and Eq. 32 that

>4
Edll
]
|
=1 g =
w DN =
—J

r (34)

mN| ’

it follows that XX can indeed be viewed as the direct transform, that is, X X yields Ry(f).
Finally, it is easily shown that this generalized frequency domain represen-
tation leads to a meaningful generalization of Parseval's (Plancherel's) theorem. In fact,

trivial calculations show that

17



R, (f) —=

I
1

f=m f=n
=mNAf =nNAf

Fig. 3. Frequency domain representation of an input vector.,

that is, RX2 (f) can be viewed as ""energy' per unit bandwidth.
In a similar manner, the generalized frequency domain representation of an
arbitrary output, ):l, is given by

mN

= ) cy.af, (36)
jo1 13

~<n

and it follows that a function CY(f), analogous to RX(f), can be defined in the generalized

frequency domain, 0 < f < n, by

1

c. for (i-1)af<f<iaf, i=1,2,...,mN
Cy(f) {

0 form <f <n (37)

so that

(v,5) = [ cy(Dd (38)

and CY(f) can be viewed as the transform of ; It should be noted that arbitrary vectors in

the nN-dimensional vector space which contains the output vectors, 3:7, can not be repre-

18



sented as a linear combination of the 3:1j-vectors as in Eq. 36 because these vectors span
only the mN-dimensional subspace which is the range of the G-matrix under consideration.
Therefore, this transform is not, as presented here, applicable to the whole nN-dimensional
vector space. CY(f) has been defined equal to zero in order to emphasize the fact that the
range of G is a proper subspace (recall that here we are considering the case m < n).

The functions Rx(f) and CY(f), then, are the frequency domain representa-
tions of the input and output respectively. The subscripts X and Y indicate that the trans-
forms are with respect to the }:(.1- and ?i-vectors respectively. It is now easy to introduce
a generalized transfer function relating RX(f) and CY(f). It is clear from the decomposition
(Eq. 20) that the output corresponding to an input }:(i is Aiffi. This follows from the fact that
A is a diagonal matrix. Thus, in the spirit of the definitions of RX(f) and CY(f), the trans-
fer function for the system can be defined by

A for (i-1)af <f < iAf, i=12,...,mN

Af) =
0 form <f<n. (39)

It follows that the generalized frequency domain representation for the system operation is

given by

Cy(f) = A(f) Rylf) 0<f<n (40)
and from Eq. 38 that
o n
¥,y = [ A% R (Ddt
(0]

Moreover, it follows from Eq. 24 and Eq. 36 that the matrix multiplication of AXT)=< by (YAf)

is equivalent to transforming CY(f) to the time domain by the "inverse transform™ (YAf).

CaseIl. m >n
So far it has been assumed that n > m; if m > n it is merely necessary to
interchange the roles of m and n. The frequency domain becomes 0 < f < m. The matrix

Y becomes an (nN x nN)- instead of an (nN x mN)-matrix, A becomes an (nN x nN)- instead

19



of an (mN x mN)-matrix, and XT becomes an (nN x mN)- instead of an (mN x mN)-matrix.
Thus the original operation has been transformed to a multiplication by a
function A(f) defined on the interval 0 < f < n (or 0 <f < m depending on Case I or II).
However, this has not been accomplished by means of the similarity transformation dis-
cussed in Section 3, for the inverse transform implied by (YAf) is not necessarily the in-
verse of the direct transform implied by XT. The question is how do the advantages and
advantages of this transform method relate to those listed at the end of Section 3.

and G, ? Given

First, what about tandem operation of the two systems G1 9

Q
t

(Y AD)A X

and

9]
I

(Y,A0)4,X,

the desirable situation is to have8

B T
GG, = (Y,8DA[AX,

A sufficient condition for this reduction to take place is Y2 = Xl’ for then XlT(YzAf) =L

When G1 and G2 are invertible this condition is necessary for then
T T T
(YlAf)A 1A2X2 = (YlAf)Alxl (YzAf) A2X2

which yields

T
AA, = AlX1 (YZAf)A

172 2

and

T
X, (Yy0f) = I

8Here it is assumed that the indicated matrix multiplication makes sense.

20



which implies that Y2 = Xl' In case G1 or G2 or both are not invertible, it again follows

that

AA, = AX. (Y. ADA

172 11(2 2"

When A1 and A2 are both invertible (this can happen in spite of Gi not being invertible),

Y2 = X1 is still a necessary and sufficient condition. If either A, or A, or both are not

1 2
invertible, that is, have zero entries on the main diagonal, then Y2 = X1 is no longer a
necessary condition, for some of the rows in XlT and some of the columns of Y2 may be

multiplied by the possible zero entries in A1 and AZ’ respectively. It follows that the nec-

essary condition becomes that Y2 = X1 except for the columns multiplied by zero. However,
since these latter columns are not uniquely determined and can be chosen so that the cor-
responding ones in Yz and X1 are equal to one another, it can be said that the desired re-
duction takes place if and only if Y2 and X1 can be selected so that they equal one another.
Finally, note that this is a general statement that applies in all cases where the decomposi-

tion of G, or G, is not unique.

1 2
It follows from the foregoing remarks that given G1 = (YlAf)AIXIT, one
representation for the set of all Gz's for which the GIGZ = (YlAf)AlAZXZT is

B T
Gy = (X A0AX,"

where A2 and X2 are arbitrary or constrained by the requirements of physical realizability.
In any event, this class of G2's is not empty; therefore, the concept of the product of two
transfer functions representing tandem operation does carry over in a certain sense. On
the other hand, it is true, for example, that the transfer function of G? is not necessarily
A% (f); and this would be true if a similarity transformation were used.

In summary, when the decomposition presented in this article is employed a
multiplication of transfer functions results for certain classes of tandemly connected
systems--just as multiplication of transfer functions results for certain, presumably other,

classes of tandemly connected systems when a decomposition based on a similarity trans-

formation is used.

21



Next consider the question of the decomposition of I + G. If the decomposi-
tion of G is given by9

G = (YAD)AXT

and Y # X, it follows that (YAf)IXT # 1. Then
T
I+ G # (YAD) (ILA)X

which means that except for the special case Y = X, transformation of I + G and G cannot
be carried out by the same Y and X transformations. This is not the case, of course, when

similarity transformations are used.

In regard to a generalization of Parseval's (Plancherel's) theorem, it is
clear from the foregoing discussion that a meaningful generalization is always possible.
This is an extremely important property and one which is not present when similarity
transformations are employed. Another advantageous property of the present decomposition,
and one not present with a similarity transformation, is that it can be applied to an arbitrary
system matrix, G. So much for advantages and disadvantages.

One last point: The nature of the transform implied by the matrix XT and its
constituent >=<i—vectors should be carefully appreciated. Since arbitrary inputs, §, are rep-
resented as linear combinations of the ):ci-vectors, the ):(i‘s can be viewed as basic or funda-

mental inputs, and the response to these fundamental inputs completely characterizes the

system. The key point is that these fundamental inputs can and probably do involve simul-

taneous inputs on more than one channel, which is in contrast, for example, to the approach
to time-invariant multivariable systems implied when the final system characterization is a
matrix made up of transfer functions. There each column of the transfer function matrix is
the Laplace transform of the output when a unit impulse is applied to one input channel while

the other input channels have zero input. Thus, the present approach might be characterized

9Here G is assumed to be square.
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as treating all input channels simultaneously rather than one at a time. Related remarks

can be made regarding the (YAf)-matrix and its constituent ;i-vectors.
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5. EXTENSION OF SINGLE-VARIABLE RESULTS TO
MULTIVARIABLE SYSTEMS

It has been shown in Ref. 3 that many important results follow from the
matrix decomposition discussed in the foregoing section when it is applied to matrices
representing two-port systems (single-input, single-output channel systems). Since the
same decomposition has been applied here to matrices representing multivariable systems,
it is not too surprising that many of the results pertaining to two-port systems also pertain
to multivariable systems. Some of these extensions are outlined below:

Gain. The entry )\i on the main diagonal of the A-matrix is referred to as
the gain over the frequency interval (i-1)af <f < iaf.

Gain-Squared Bandwidth Product. The gain-squared bandwidth product, ®(G),

is defined by

max{m,n] min[m, n]
o(G) = A2 (f)d = Y x 2t (41)
) i=1

Moreover, it should be noted that

&G) = ), g.2[t,t,]af
i,k ¢ 1K

where the gij2 [t t,]'s are the elements of G.

Norm of G. The norm of G, |IGll, is defined by

Gl = max NIGxIl .
x| =1
It can be shown that
IGIl = max Ay (42)

1
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Assuming for the moment that the )\i's are distinct and that A 1 > Az > il > )\n (or Am

N N
it follows that for all x-vectors of a fixed norm, say /N, the one causing an output vector
with a maximum norm is )=<1 and the corresponding output vector is A 1; r Considering all
input vectors of norm /N which are orthogonal to )zcl, the one which causes an output vector
with a maximum norm is )=<2 and the corresponding output vector is )\23:'2 . This pattern con-
tinues through )zan (or )::mN) and )‘nN;nN (or AmN}:'mN)' This is an important property of
the decomposition presented and shows that the }zz.l and ;i-vectors characterize the "extremal"
inputs and outputs of the system. In case the Ai's are not all distinct, as assumed above,
any fixed norm linear combination (say norm equal +/N) of >:<i-vectors associated with equal
A i's yields an output vector whose norm is both independent of the linear combination used
and the maximum output norm possible over the appropriate subspace of inputs. For
example, if A 1 > )‘2 > 00> )\j = Aj+1 > Aj+2 > 0> AnN (or ’\mN) and the input vectors
of norm /N which are orthogonal to }=<1, §2, ceny ij-l are considered, the X's associated

with the maximum output are all linear combinations of the form a}:(j + b§j+ , where

1

2 2 _ . = =
a“+b“ =1, and the corresponding outputs are ax J.y]. + b j+1yj+1'

Bandwidth. As in the case of two-port systems, a meaningful generalization
of the concept of bandwidth is given by
2(G)

w = TRk (43)

Physical Realizability. Let the columns of the matrix XT be designated by

u].(tk), where
j -
Xl(tk)
j
x5(t, )
i 27k k=12,...,N
u](tk) = Xé](tk) { j ) 1’. ’m
i
) (44)
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The Gj(tk)'s are referred to here as the input ensemble vectors. Let the rows of the

matrix (YAf)A be designated by \:Ij(tk):

L
A 1Y)
) A g¥o(t) k=12,...,N
Vj(tk) =
i=1L2,...,n
i
() (45)

The v].(tk)

appreciated that the matrix G corresponds to a physically realizable system if

's are referred to as the output ensemble vectors. Referring to Eq. 3 it can be

G[tk,tr] =0 forr>k. (46)
This is easily shown to be the case if and only if

[\=rj(tk), ut)] =0 forr>k. (47)

That is, the output ensemble vector at time t, must be orthogonal to all input ensemble vec-

k
tors occurring later in time. Roughly speaking, the output at any time is "independent' of
all future inputs.

In the case of single-input, single-output systems the G-matrix for a physi-
cally realizable system is lower triangular. For multivariable systems this is not the case;
however, it can be seen from Eq. 2, Eq. 46 and Eq. 47 that matrices representing physi-
cally realizable systems are what might be called "lower staircase,’ that is, Eq. 3 is lower

triangular.

Pseudo-Inverse of G. The system matrix G is not necessarily invertible; in

fact, if G is rectangular it will not be invertible regardless of its structure. On the other
hand, given a desired output § it is often necessary to find an input §, if one exists, which

causes }:7 That is, given G and 37, an X must be found such that

Gx =

<l

—
N
o

=

Assuming that
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G = (YapaxT |

it follows that Eq. 48 has a solution if jr_' is an element of the space spanned by the columns
of Y (i.e., ;i—vectors) associated with nonzero Ai's. Simply stated, 3:' must be in the range

of G. If 37 is in R(G), then it follows that a solution to Eq. 48 is given by

X, = (XanATYTy | (49)

where A" is a diagonal matrix for which )\i+ =1/ if A, # 0and x.1+ =0ifx, =0. I Ghas

a nontrivial null space, then the general solution to Eq. 48 is

where ):(N is any element in the null space of G and, owing to the selection of §o’ §N is
orthogonal to ):<0. The validity of this latter statement follows from the fact that the null
space of G is orthogonal to the subspace spanned by the columns in X associated with non-

Zero A i'S' Thus,

‘§0" < H;o + §N” for all X, that is, if a solution exists ):(0 is the

N)
""'smallest' one.
Now assume that }:f is not in the range of G, that is, G}zco = ;o # }:7, where }:<0

is determined from Eq. 49. Since

(YAD)AX T (Xat)AT YTy

~<
I
9
B
I

(YanartyTy |

it follows that ;0 is the orthogonal projection of 37 onto the range of G. Thus, §o is the

vector in the range of G ""closest" to 37, that is, ||37 - G)=<|| is minimized by ;(o' Obviously,

y. = Gx0 = G(x0+xN) R

thus, again, “ io“ < " 2=<0 +X Note that when G exists it equals (XAf)A+YT.

l
Whether G"1 exists or not, (XAf)A +YT is referred to as the pseudo-inverse (Refs. 5, 6

and 7) and is designated by G

Finally, the physical realizability of G does not necessarily imply that G'is
physically realizable. For example, consider the following matrix representation of a phy-

sically realizable single-input, single-output system. If
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0 1 0
its pseudo-inverse is
0 1 0
Gt =10 o 1
0 0 0

which does not correspond to a physically realizable system.
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6. EXAMPLE

Consider the two-input, two-output channel system characterized by the

following difference equation:

1 k-1 k-1 1 1
vyl kel k1 ey ] <l
- | N N N k =1,2,...,N)
Fog|  i-EL B Peen| |
ylo) 0
y2(0) 0 (50)

It follows from Eq. 50 that the inverse, G 1, of the system matrix for N = 10 is given by

1 [ 0 0 0 o 0 0 0 0 0 0 0 [4 [ 0 0 0 [ o—‘
0 1 0 0 0 o 0 ° 0 4 [ o 0 [4 4 0 0 0 [ 0
-1/10 -9/10 1 o 0 o 0 0 0 [4 0 0 0 [ ° [ [ 0 [ [
-9/10  -1/10 [ 1 [ o 0 ° 0 o 0 0 o 0 0 0 0 o o 0
[ 0 2/10 -8/10 1 [} [} 0 o 4 [] [ 4] [} [ o (<] [ [+ 0
0 [ -8/10  -2/10 0 1 0 4 0 0 0 0 0 0 [4 [4 [ [ [ [
[ 0 [ 0 -3/10  -7/10 1 o 0 [ 0 0 [ [ 0 0 [4 o 0 [}
[} <] ] ¢} -7/10  -3/10 [ 1 [} ] 0 [} [} o [] 5} [} -} [} [
0 0 o 0 0 [ -4/10  -6/10 1 0 ° [ 0 0 0 0 0 o o [+
a [ 0 0 [ 0 [} -6/10  -1/10 0 1 o o [ o ° 0 0 [ [ 0
o [ 0 0 0 0 0 0 4 -5/10  -5/10 1 [} 0 0 0 [4 [} [ 0 0
(] 0 [} [+] [} <} [ o -5/10  -5/10 (] 1 [ 0 (] 0 0 o} 0 [
0 0 0 [ 0 0 0 0 o [} -6/10  -4/10 1 0 0 [ 0 0 0 o
o 0 o o o o o 0 4 o -4/10  -6/10 0 1 0 0 [ o o [
o [ o [ 4 [ [ 0 0 [} o [} -7/10  -3/10 1 4 [} o [ 0
¢} [ ] 0 0 0 [} 0 0 5} [} ] -3/10 -7/10 4} 1 [ [ [} 1}
0 o o 0 0 0 0 0 0 0 0 0 0 0 -8/10  -2/10 1 [ 0 0
[ ] [ o o} [} [} o [ (] 5} <] 1} 0 -2/10  -8/10 1} 1 [ <]
o 0 o 0 0 0 [ 0 o [} 0 0 0 0 0 0 -9/10  -1/10 1 0
L 0 0 0 0 0 0 0 [} 0 0 [ 4 [ [ 0 0 -1/10  -9/10 [} 1
(51)

Note that the nonsingularity of this matrix follows from its lower triangularity and from the
fact that all its main diagonal elements are nonzero. Since the decomposition of G is given

by
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it follows that

|

(XAf)A™ ly

(Yat)ax? |

T

Therefore, the decomposition of G_1 as given in Eq. 51 is equivalent to the decomposition of

G itself. It was found with the aid of a digital computer that the parts of this decomposition

are as follows:

0.5
0.145
0.283
0.288
0.423
0.423
0.550
0.550
0.66k4
0.664
0.763
0.763
0.845
0.845
0.908
0.908
0.951
0.951
0.973
| 0-973

Y1

0.423
0.423
0,763
0.763
0.951
0.951
0.951
0.951
0.763
0.763
0.k23
0.423
0
0
-0.423
-0.423
-0.763
-0.763
-0.951
-0.951

Y2

0.003
-0.003
-0.005
0.005
0.004
-0.004
-0.003
0.003
0.001
-0.001
0.123
-0.123
0,454
0,454
0.913
-0.913
1.305
-1.305
1.497
-1.497

3

-0.824
0,824
1.377

-1.377

-1.328
1.328
0,781

-0.781

-0.224

0.224

0.002
-0.002
0.003
-0.003
0.004
-0.00k4
0.005
-0.005

i

-0.664
-0.664
-0.973
-0.973
-0.763
-0.763
-0.145
-0.145
0.550
0.550
0.951
0.951
0.845
0.845
0.288
0.288
-0.423
-0.423
-0.908
-0.908

5

-0. 745
0. 745
0.795

-0.795
0.234

-0.234
-1.k11
1511
1.322

-l.322
-0.072
0.072

-0,091
0.091

-0.049
0.049
0,014
-0.014
0.051
-0,051

0.845
0.845
0.845
0.845

-0, 845
-0.845
-0.845
-0, 845

0.845
0.845
0.845
0,845

~0.845
~0.845

Y8

-0.716
0.716
0.485

-0.485
0.742

-0.7h2

-0, 8k
0,84k

-1.728
1.728
0.00k

-0.004

-0.001
0.001

-0.002
0.002

0

0
0,001
-0.001

Y9

0.001
-0.001
-0,001

0.001
-0.002

0.002

0.002
-0.002

0,004
-0.004

1.811
-1.811
-0.522

0.522
-0.987

0.587
-0.083

0.083

0.684
-0.684

-
Y10
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0.952
0.951
0.4k23
0.423
-0.763
-0.763
-0.763
-0.763
0.423
0.423
0,951
0.951
[
[
-0.951
-0.951
~0.423
-0.423
0.763
0.763

N
(451

1.020
-1.020
-0.102
0.102
-1.39%
1.39%
-1.242
1,242
<0.4h3
0.443

0.243
-0.243
-0.024

0.024
-0.332

0.332
-0.296

0.296
-0.106

0.106
-0.554

0.554

1.b41
-1kl
-1.165

1.165
-0.572

0.572

0.816
-0.816

13

0.973
0.973
-0.145
-0.145
-0.951
-0.951
0.288
0.288
0.908
0.908
-0.423
-0.423
-0, 845
-0.845
0.550
0.5%0
0.763
0.763
-0.664
-0.664

g

0.007
-0.007
0.008
-0.008
0.004
-0.004
0.001
-0.001
0
0
0.047
-0.047
-0.334
0,33
1.056
-1.056
-1.701
1.701
0.937
-0.937

Y15

1.467
-1.467
1.491
-1.491
0.760
-0.760
0.219
-0.219
0.003
-0.003
o
0
0.002
-0.002
-0.005
0.005
0.009
-0.009
-0.005
0.005

¥i6

0.908
0.908
-0.664
-0.664
-0.423
-0.423
0.973
0.973
-0.288
-0.288
-0.763
~0.763
0.845
0.845
0.145
0.145
0,951
-0.951
0.550
0.550

Y17

-0.763
-0.763
0.951
0.951
-0.423
-0.423
-0.423
-0.423
0.951
0.951
~0.763
~0.763
0
0
0.763
0.76%
-0.951
-0,951
0.423
0.423

Y18

-0.550
-0.550
0.908
0.908
-0.951
-0.951
0.663
0.663
-0.145
-0.145
-0.423
-0.423
0.845
0.845
-0.973
-0.973
0.763
0.763
-0.288
-0.288

Y19




0.973
0.951
0.005

-1.497

-0.908

<0.051

-0.841
0.845

-0.684
0.001
0.763
0.816
0.194
0.664
0,005
0.937
0.550

-0.k23

-0.288
0.145

0.973
0.951
=0.005
1.497
-0.908
0.051
0.851
0.845
0.684
-0,001
0.763
-0.816
-0.19%
0.664
-0.005
-0.937
0.550
-0.423
-0.288
0.1k5

0.951
0.763
~0.004
1.305
=0.423
0,137
0.224
0
-0,083
0
-0.k23
0.572
0.1%
-0.763
0.009
1.701
-0.951
0.951
0.763
-0.k23

o

9 o

0.951
0.763
0.004

-1.305

-0.423

-0.137

-0.224

0.083

-0.h23
-0.572
-0.13%
-0.763
~0.009
-1.701
-0.951

0.951

0.763
~0.423

0.908
0.423
0.003
-0.913
0.288
0.049
0.802
-0.845
0.987
-0.002
-0.951
-1.165
-0.277
«0,550
0.005
1.056
0.145
-0.763
=0.973
0.664

0.908
0.423
-0.003
0.913
0.288
-0.049
-0.802
-0.845
-0.987
0.002
-0.951
1.165
0.277
-0.550
-0.005
-1.056
0.145
-0.763
-0.973
0.664

0,845

-0.002
0.455
0.845

-0,091

-1.486

-0.845

~0.522

0.001

~1.hk)
-0.343
0.845
0.002
0.334
0.845

0.845
-0.845

=)

o o o o

0.845

0.002
-0.455
0.845
0.091
148
-0.845
0.522
-0.001
[
1.4k
0.343
0.845
-0.002
-0.334
0.845
0
0.845
-0.845

0,763
-0.423
o
-0.123
0.951
0,072
1.172
0
-1.811
0,004
0.951
-0.554
<0.132
0.423
o
0.047
-0.763
0.763
-0.423
0.951

0.763  0.664
-0.423 -0.763

[ 0.224
0.123 0,001
0.951 0.550
-0.072  1.322
-1.172 -0.081

0 0.845
1.811  0.004
-0.00k 1,728
0.951 0.ke3
0.554  0.106
0.132 -0.hk3
0.423 -0.908

0 0.030
-0.047 o
0,763 -0.288
0.763 -0.951
-0.423 «0.145
0.951 -0.973
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0.664
-0.763
-0.224
~0.001

0.550
-1.322

0.081

0.845
~0.00k
-1.728

0.423
~0.106

0.4h3
-0.908
-0.030

4
-0.288
-0.951
-0.145

-0.973

=)

0.550
-0.951
0.781
0.003
-0.145
1.k
-0.086
0.845
-0.002
-0. 84k
-0.763
-0.296
1.252
-0.288
-0.219
0.001
0.973
0.423
0,664
0.908

0.550
«0,951
-0.761
-0.003
~0.145
-Lb1
0.086
0.845
0.002
0.848
-0.763
0.29%
-l.242
-0.288
0.219
-0.001
0.973
0.423
0.664
0.908

0.423
-0.951
1.328
0.004
-0.763
0.23
-0.014
[
-0.002
-0.743
~0.763
0.332
-1.393
0.951
0.760
-0.004
-0.423
0.423
-0.951
-0.763

0.423
-0.951
-1.328
-0, 00k
-0.763
-0.23%

0.014

0

0.002

0.T43
-0.763
-0.332

1.393

0.951
-0.760

0.004
-0.h23

o.423
-0.951
-0.763

0.288
-0.763
1.377
0.005
=0.973
«0.795
0.049
-0.845
[
0.485
0.k23
-0.242
0.102
0.145
-1.491
0.008
-0.664
~0.951
0.908
0.550

0.288
-0.763
-1.377
-0.005
~0.973

0.795
-0.049
-0.845

[
-0.485

0.423

0.2k
-0.102

0.145

1491
-0.008
-0.664
<0.951

0.908

0.550

0.145
-0.423
0.824
0.003
-0,66k
-0.T45
0,046
-0.845
0.001
0.716
0.951
-0.2k2
1.020
«0.973
1.467
-0.008
0.908
0.763
-0.550
-0.288

0.145
-0.k23
-0.824

g

e

o

-0.003
-0.664

0.745
-0.046

S e

g

e

-0.845

¥l
)

«0.001

xe

~0.76

®e

0.951
0.242

e
9

-1.202
-0.973
-1.467
0.008 X6
0.908
0.763 | X
-0.55 | X
-0.288 | X,
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Fig. 4. Generalized frequency response for example system

A plot of the generalized frequency response, A(f), is shown in Fig. 4. Note in Fig. 4 that
A 1 is considerably larger than the remaining Ai's. If the number of sampling times, N,
were increased from 10, it would be found that A 1 approaches infinity as N—c. This is be-
cause one of the eigenvalues of the matrix in Eq. 50 is 1 and its associated eigenvector is
[1, 1] independently of k.

Finally, the insight into system behavior given by Eq. 53 or Fig. 4 is direct
and obvious. On the other hand, the mass of numbers present in the Y and X-matrices,
even for this relatively simple example, can be overwhelming. Clearly, there is a need for
some limited, perhaps not unique, characterization of the Ei and §i-vectors which make up
X and Y. For example, the number of sign changes or sign changes per channel might be
used. Many other possibilities suggest themselves. As more experience is obtained in the
use of these decompositions it should be possible to discover which characterizations are

the more suitable.
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7. ALTERNATE INPUT AND OUTPUT NORMS

So far the decomposition of the system matrix, G, has been based on the

following inner product:

(%,2) = yl(tl) zl(tl) oy 2N ¢

N yl(tN)zl(tN)+ oy 2y (55)

Moreover, this inner product is used to characterize the range as well as the domain of G.
There are many situations in which this characterization is not desirable. For example, it
may not be realistic to weight the inputs and outputs on all the channels exactly the same.
This uniform weighting is implied by Eq. 55 and it may not be desirable to weight all the

sampling times exactly the same, which is also implied by Eq. 55.

Therefore, the decomposition of G is generalized here so that an arbitrary
input and an arbitrary output inner product can be employed. An aribtrary inner product

on a finite dimensional vector space can be represented by

(;_(,;) = ’
1 2P2 2 1

where9 P is a symmetric, positive definite matrix. Let the desired input and output inner

products be characterized by Pi and P0 respectively. Given

y = Gx , (56)

let

9 The matrix P2 is used instead of P in order to avoid the notation +/P. Since every posi-

tive definite symmetric matrix has a positive definite symmetric square root, this pro-
cedure results in no loss of generality.
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Then

|
-
—
1]

But the norm in the v- and G-spaces is again Eg. 55; therefore H can be decomposed as .

before. Thus

H = (YAD)AX .

Then

G = (P;IYAf)AXTP.l

| -1,.T., 2
= (P_"YADA(P, X) P,

= (YP Af)AP X P, (57)
0 o'i i

lX. Thus, the decomposition of G takes on

where YPO = Po

-1 -
Y, APOPI = A, and XP]_ = P].
a slightly altered form. Nevertheless, the analogies discussed previously carry over. It
is easily seen that operation on an arbitrary input vector, )=<, with XVII;'Piz is equivalent to

i

taking the direct transform. Let the rows of X% be denoted ;i . These vectors are pair-
i

wise orthogonal and u):cill VN = l/a/Ef- relative to the input norm determined by Pi’ for

2 xTp ~1p 2p -1y
1 1 1

e,
e
"

XTx

NI

If X is expanded in terms of the }=<i-vectors,



and

Ty = (X’xk)Pi = x Pix,
but
®3,)
T _ 2-
Xp Py x =
l = -
. IJ

Therefore the analogy does indeed carry over. Clearly, A in Eq. 57 acts as a general-

P P,
o'i
ized frequency response, and (YP Af) acts as the inverse transform. It should be noted that
o}
the columns of YP are pairwise orthogonal and of norm VN relative to the output norm
o}
determined by PO2 .

A discussion of the properties of the decomposition in Eq. 57 would parallel
the discussion given for the Euclidean norm, Eq. 55 which is now a special case of Eq. 57.

However, it is of interest to consider the method whereby Eq. 57 is generated. Since

2 T_ 2. 2 T |2
PG P G = XPiAPoPiXPiPi ,

it follows that the ):ii-vectors are the eigenvectors of Pi-zGTPOZG and that the )\iz's are its

eigenvalues. The yi-vectors can be determined from the relation

under the assumption that )\i £0, If )\i = 0, then, as before, the ;i-vectors are also the

xi-vectors and need not be uniquely determined.
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8. CONCLUSIONS

It has been shown that multivariable, time-varying, discrete-time, linear
systems can be handled in a manner equivalent to single-input, single-output systems. A
transform technique for the latter systems is extended to multivariable systems, and fre-
quency response concepts are shown to carry over in a straightforward way to multivariable
systems. The key point of the present development has been a de-emphasis of the channel-
ized character of the input or output and the treatment of an arbitrary input or output as a
single vector in a linear vector space. Thus, much of the insight associated with single-

input, single-output systems has validity for multivariable systems.
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