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ABSTRACT

TWO QUEUES IN TANDEM ATTENDED. BY A SINGLE SERVER

by
Miguel Taube-Netto

Chairman: Herbert P. Galliher

We consider two service stages in tandem with infinite queue
capacities in front of each stage. There is a single server who performs
the service in both stages by switching from one stage to the other
according to certain switching policies. Switchées can occur only after
& service completion or, if the server is inactive, at arrival epochs.

The arrival process is assumed to be Poisson and the service processes are
independent rénewal processes.

We analyze the behavior of the system under six different switching
policies, namely

1. Switch to the other stage whenever the number of customers in
the present stage is zero.

2. The first stage has nonpreemptive priority over the second.

3. The second stage has nonpreemptive priority over the first.

L. Switch to the second stage when it has N customers and come
back to the first stage when all N customers are served.

5. Operate as in Item 1 except that the switching from the second
to the first stage can take place only when the number of customers in
the first station is at least N.

6. Operate as in Item 1, but give nonpreemptive priority for the

first stage when it contains at least N customers.






For the steady-state situation, we obtain, for each policy
the state probsbilities, the Laplace-Stieltjes transform of the distri-
bution of the time a customer waits until the beginning of service in
each stage, the distribution of the busy period of the server (except
for Item 4) and the bﬁsy periods of the stages. For the first three
policies we also consider the case of random duration of switching from
one stage to the other. An efficient method is provided for calculating
numerically the expected values of the busy period of the stages for
the policy in Item 1. This method makes use of generating functions,
and an iterative technique to find their boundary'points in a manner
similar to Takacs' analysis of two queues with independent arrivals

attended by a single server.
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CHAPTER I

INTRODUCTION

l. The Problem

In this‘study, we consider certain gqueueing situations in which
customers arrive at a two-stage queueing system according to a Poisson
process with constant arrival rate, A. Each customer requires two
sequential types of servicings. Both servicings are performed by a
single server, who switches from one type of service (one stage of the
system) to the other, according to some switching rule (policy). The
server can even be temporarily removed from the system and, therefore,
not available in either stage. The special case of instantaneous
switching will recieve most of our attention in this thesis, however,
for some switching rules, we shall consider the length of the switching
times (or simply the switching times) as random variables with arbitrary
distributions with finite moments.

The service time processes in each stage are assumed to constitute
independent renewal processes with distributions Sl(t) and Sz(t).
These‘processes are also assumed to be stochastically independent of
the arrival and switching time processes.

In the analysis of this problem we shall assume infinite queue
capacity in front of each service station. A customer arriving at the
system will wait for service in the first stage unless the server is
ready to service him in that stage, in which case, service immediately

begins. When a customer completes service in the first stage, he



immediately goes to the second stage, where he will Join the second
queue, except that if the server moves with him (with zero switching
time) to the second stage and no other customer is already walting
there, then his service in the second stage will commence without any
wait. In each stage, customers are served in their order of arrival.
How long customers wait depends somewhat upon the policy which the
server follows in switching from stage to stage. We will consider
several alternative policies, described below.

When a customer is in service in either stage the server waits
until the current servicing is completed and then decides whether to
remain in the present stage, switch to the other stage or remove
himself from the system (the three possible states of the server). When
the server is idle (removed or not busy because his present state is
empty) he waits in the stage until the next arrival and then decides
where to locate himself.

A criterion for these decisions by the server could be obtained
if we are able to attach a cost structure to the behavior of the system.
This structure woula include, for instance, the cost of service in each
stage, the waiting costs, idle costs and switching costs. With such a
quantitative cost description we could use the expected average cost or
the expected total discounted cost, as optimization criteria, and apply
the techniques of Markov renewal programming (in the case of finite queue
capacities) to find an optimal decision policy. However, due to the size
of the state space (number of customers in each stage and the state of
the server), the amount of calculation is very large. Also, as we may
intuitively expect, an optimal policy might be quite complex and difficult

to implement.



An alternative to this situation is to restrict our attention
to "simple" decision policies for which a complete analysis of the
behavior of the system is feasible. These policies may be suboptimal,
but because we know better their effects on the system, we may consider
them for situations where only a qualitative aspect of the costs is
known., This is the approach of this study.

We consider six policies. In fact three of these policies are
particular cases of one of the others, however there are advantages
to presenting all of them separately. Since we are only interested in
the steady-state effects of each policy, we assume that the policy
becomes effective when the system is first emptied. The six policies
are:

1. LNB (leaving no backlog). Switch to the other state whenever
the number of customers in the present stage reaches the falue zZero.,

2. GSSP (second stage priority). Switch to the other stage
whenever a service is completed in the present stage. In this case the
server follows the customers through the two stages of the system. This
is merely an M/G/1 queueing situation.

3. Fsp (girst stage E;iority). Customers in the first stage have
nonpreemptive priority over customers in the second stage. This means
that the server switches to the second stage when the first stage
becomes empty, and returns to the first stage when, at a departure from
the second stage, there is at least one customer in the first stage, or

when no customers are left behind in the second stage.



For the next two policies, define Qk to be the number of customers
in stage k, k = 1,2.

L. sss (Q2 = N). Switch to the second stage when Q2 = N and
return to the first stage when all of these N customers are attended.
(If the initial value of Qz is greater than N, the server can, for
instance, start by attending all Q2 customers. )

5. SFS (QI‘Z N). The server switches to the second stage only
when the first stage becomes empty. He stays in the second stage until
it becomes empty, unless the number of customers in the first stage,
at service completion epochs in the second stage, is at least N. 1In
this case the sérver returns to the first stage. SFS (Q1 z_N) stands
for switch to the first stage when Q1 > N.

6. W, S (wait for Ncustomers in the first stage). Switch to the
second stage when the number of customers in the first stage is zero;
attend all customers accumulated in the second stage (a total of at
least N) and then go back to the first stage if the number of customers
in it is at least N, otherwise remove the server from the system until
N customers are accumulated in the first stage (this value, by the
nature of the arrival process, is reached with probability one in a
finite time).

Notice that under these policies, except the last one, the server

is never removed from the system. Notice also that LNB = WOFS (or LNB =

]

WIFS), FSP = SFS(Q1 > 1), SSP = 885(Q = 1) and LNB = SSS(Q = =),
2 2

Justifications for considering these switching rules are as follows

If the switching costs are negligible when compared with waiting costs,



we may use the SSP policy in the case of high waiting cost in the
second stage, and the FSP policy in the case of high waiting cost in
the first stage. Under the LNB policy, as under the previous ones,
the server tends to switch too many times when the traffic Intensities

S

are low, however this may be a good policy when the switching costs are

small and the waiting cost in each stage are of the same order of

magnitude. Policies 55S(Q = N), SFS(Q > N) and W FS, which we call
2 1

1

"reluctant switching policies," are designed for situations of high

change over costs. The policy WNFS is convenient when the server
7
charges for his services even if he is idle (but present) in the

system; under this policy the idle periods occur only when the server

is removed from the system and, therefore, free of charge.

2. Background

In this study it has not been our objective to discover or
develop practical applications gf the above gueueing model. However
it seems that this model could represent various practical situations
of sequential service operations. For example: a doctor who first
attends his patient for preliminary examination then, in a second
phase, takes care of more detailed diagnosis; a repair man who takes
care of machine breakdown on a provisory basis, until there are enough
machines with provisory repairs to Justify a second phase of service
where each machine is oyerhauled; a small computer installation where
the compilation and execution of program takes loading and unloading
of the compiler (which is stored in a deck of cards). An interesting

possible application is the case of two bridges over a river where ships,



in order to pass under each bridge must have each one of them open.
The automobile traffic over the bridges is interrupted when a ship is
passing under it. Suppose that at least one of the bridges must be
available for automobile traffic. Suppose that the arrival of ships
from one direction (the ships coming from the other direction can be
scheduled) is a Poisson process. Here the bridge open to ships
represents an available server.

The basic feature of our model is the fact that each departure
from the first stage corresponds to an arrival at the second stage.
This arrival need not be the same unit departing from the first stage.
Thus, it is not necessary, as in the examples above, to have a unit
(patient, machine, computer program or ship) flowing through the system.
We can imagine a situation where a repalr man uses a special set of
tools for each job. Each set of tools is used only in one job, and
they have to be cleaned up by the repair man and returned to a tool
crib. The cleaning operating can be performed at any time. Here each
completion of a repair generates a set of dirty tools which will Joint
the queue of the second stage of the system.

Numerous investigators have studied sequential queuveing systems,
but only Nelson [13] has considered the case of a single server. He
considers two service centers in tandem with Poisson arrival and
exponential service times in each center. A single server switches
from one center to the other according to five switching rules, for
example: 1) when the server completes service, his next assignment is to

perform an operation on that job which has spent the lengest time



in the system; 2) when the server completes a processing operation,

his next assignment is to perform an operation on the job that requires
the least service time; 3) the server switches to the other center when
the present center is empty. Nelson uses simulation in order to find
the mean and the variance of the time in the system, for various wvalues
of the traffic intensities of each center. In another paper, Nelson [12]
studies the case of assigning a single server to one of two machines

in tendem, with the objective of minimizing total in-process inventory
cost, over the time period 0 < t < T. He assumes deterministic arrivals
and the service times are known a priori. This is a case of what

Cooper [6] calls scheduled services (this means that the service times
are known when the customer or job enters the system. Nonscheduled
services is the case in which the service time is drawn from a certain
distribution at the time the service is initiated). Recently,

Sahney [17] studied the problem of two machines and one man with setup
times, where each job is processed only in one machine. He assumes that
all Jobs are avallable for processing at the time zero, and obtains

an algorithm to solve the problem of finding the sequence of jobs which
minimizes the mean flow time of jobs. This corresponds to the

scheduled situation of two parallel service stations and one server.

The nonscheduled case, in which the arrivals to each station are
independent Poisson processes, is quite relevant to this thesis because
the methods of analysis are‘somewhat related. In Section 3 of Chapter II
we shall refer to Takécs' [20] work, where he examines the problem of

two queues in parallel, with independent Poisson arrival processes and
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general renewal service time processes, attended by a single server,

who switches, without delay, from one queuée to the other when the present
queue 1s empty. He obtains the Laplace-Stieltjes transform of the
waiting times in each queue. The case of random length of switching
times is studied by Eisenberg [8]. He considers two switching rules
(switch when present queue is empty, and the case in which one of the
queues has nonpreemptive priority over the other) and finds the Laplace-
Stieltjes transform of the waiting times. Recently, Eisenberg [9] has
extended his retults to a system of queues that are attended periodically
by a single server. Avi-Itzhek, Maxwell and Miller [3] consider the
problem studied by Takécs (above), and, by intuitive arguments, find

the expectations of queueing times as well as the first two moments of
the busy periods.

As mentioned earlier, the problem of sequential queues has been
studied by numerous investigators. Reich [15] proves that the lifetimes
(service time included) of a customer in the two stages of a queueing
systém, with two exponential service stations in tandem, with infinite
queue capacities and Poisson arrivals, are mutually independent. 1In 1963,
Reich [16] generalizes this result for a sequence of m single-channel
facilities. In 1964, Burke [L4] shows that the waiting times (excluding the
service times) in the stages of this system are stochastically dependent
and in 1968 [5] he generalizes Reich's result proving the independence of
lifetimes in the stages of a sequential queueing system, where the second
service time is not necessarily exponential. When intermediate waiting-

room capacities in a sequential queueing system are finite



the waiting times are quite dependent, since the size of queue depends
on whether there is space available downstream. Avi-TItshak and

Yadin [2] considered the particular case of two service stations and
no intermediate queue, with Poisson arrival and general service
distributions. They derived the transforms of the steady-state
distributions of the queueing times and the number of customers in

the system. Neuts [14] examines the case where the queue capacity in the
first stage is infinite and finite in the second stage. The service
time distributions in the first and second stages are, réspectively,

of the general type and exponential. His results include the busy
periods, blocked time in the first stage, and the equilibrium conditions
of the system. The effect of blocking in the utilization of exponential
service stations in series is analyzed by Hunt [11] in one of the

pioneering investigations of queues in series.

3. Summary of Results and Organization

This thesis is concerned with the description of stochastic
aspects of the queueing system sbove, under each of the indicated
policies. We are interested in the state probablities of the system,
the waiting times until service begins in each stage, the busy period
of the server, and the busy periods of each stage.

We assume steady-state conditions. For most of the cases the
sufficient condition for .existence of the steady state is 1 - p1 - p2 >0,
vhere p, = AE[S ] is the traffic intensity in the stage k, k = 1,2.

1
We define:



m(k,i,3)

g

In
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steady-state probability of having i customers in the
first stage and J customers in the second stage, Just
after a departure from stage k.
expected number of customers in stage k just after
departures from stage %.
time that a customer waits until he commences service in
stage k (W includes S and W ).

2 1 1
length of the busy period of the server. Time elapsed
since the server started attending a customer who, at his
arrival, found the system empty, until the next time the
system becomes empty again.
interval of time during which the server is continuously
present at the first stage.
interval of time during which the server is continuously

present at the second stage.

the case of random length of switching times the definitionms
11
and B"" are slightly different.

the following table we indicate the number of the page where

each result can be found. In the table, R and Z designate, respectively,

random and zero switching time.

I
Except where indicated in Table I, the distributions of BS, B

and BII are found explicitly. For the waiting times, Wk, we only

obtained their Laplace-Stieltjes transform and the mean value.

Chapter V contains some numerical calculations and concluding

remarks.
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Fach chepter is divided into sections which may be subdivided
into subsections. The sections within a chapter are numbered by n(n =
1,2,...) and the subsections are numbered by n-k(n = 1,2,..., kK = 1,2,...).
The equations are numbered within sections, for example, Equation (3.11)
means the 11lth equation of section 3 of the present chapter. References

to other chapters are made by stating explicity the number of the chapter.

L. Terminology and Methods
In addition to the symbols already defined the following

designations will be helpful:

l-customer: A customer in the system who has not completed service in
the first stage.

2-customer: A customer in the system who has completed service in the
second stage but not in the first stage.

T : Time at which the nth departure occurs (departure from

either stage).

En : Type of the customer departing at Tn.
Qk n ¢ Number of k-customers in the system just after Tn.
-
Ph,n[(l’a’b) - (k5,1,3)] = P[En+h - k’Q1,n+h - l’Qg,n+h - J’En - Z’Ql,m
= a =b .
’Qzan ]

From the assumptions on the arrival and service processes, the
stochastic process (E_ Q. _,Q } is a homogeneous Markov chain, that is,
n, 1,n’ 2,n
the probabilities above are independent of n for all (Z,a,b) and (k,i,j).

When h = 1 we drop the subscript h in the notation above.
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The infinite system of linear equations

2 ®© ®
K(i)i:j) = Z Z Z nt(l,a.,b) P[(E:a:b) - (k,i:j)]
‘ l=1 a=0 b=

(k = 1,2 ; i,J = 0,1,25...)

with the restriction

2 ®

}z }: E: (k,i,j) = 1 ,

k=1 i=0 j=0
will be referred to as the stationary conditions (in the text the
restriction above is always implicit), and the set {n(k,i,j)} as
the stationary distribution of the chain.

In order to make sure that our policies are comprehensive as
described, we will simply confine attention to the stationary
distribution, i.e., the steady-state situation.

The analysis of each policy starts by‘writing down the statlonary
conditions and then obtaining the generating functions

i=o j

o0 00
i3 -
Uk(X:Y) = Z Z X yaﬂ(kyli.]) (k = 1,2)
J4=0 :
which are used for finding the expected values

Q _ o1 )
k4 Uz(l,l) axk
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Qk = Ul(lll)le + Ug(l,l)ng (k = 1)2)

and

The waiting time distributions, Wk(t), are characterized by

their Laplace-Stieltjes transforms, W. (s), in terms of Uk(x,y),

k

from which we can obtain the expected values Wk.
The distributions of the busy periods, Bs(t), BI(t) and BH(t),
are found in terms of n(k,i,j) and of the distribution of the busy
period of an M/G/l queueing system with appropriate service time
distribution.
In general, given a random variable V, we use the symbols
V(t), V (or E[V]) and V(s) for the distribution of V, the expected

value of V, and the Laplace-Stieltjes transform of V(t), respectively.

We also define

and

as the probabilities of having i arrivals during a service time of
a l-customer and 2-customer, respectively. The corresponding

generating functions are
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which converge for Ix] < 1 and ]yl < 1.
Additional symbols are defined in the text as they become

necessary.



1. Introduction

CHAPTER IT

LEAVING NO BACKLOG

Tn this chapter we study the LNB policy (Leaving No Backlog).

Under this operating rule the server remains in one stage until it is

empty (no backlog), then he switches to the other stage. We consider

separately the cases of zero switching times and random switching times.

of pertinent random variables.

finding the state probabilities, based on properties of the busy period

We use transform methods in order to find the expected values

of an M/G/1 system.

We also present a direct approach for

2, Stationary Conditions (Instantaneous Switching)

second stage after he completes the service of the last customer present

In this case the server becomes immediately available in the

in the first stage, and vice-versa. We have

(2.1)

(a)

(c)

m(1l,1,1)

ﬂ(l:i)j)

N(E:i:j)

1]

]

i+

pi—a+1

3 eat1 n(1lya,J - 1)

ﬂ(2,a,0) + Pi ﬂ(2,0,0)

(i>0,32>2)

% s w(2,8,§ + 1) + ch (1,0, + 1)

-16-

(1>0, j>0)

(i 20)

2

)
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Multiplying both sides of these equations by xlyl and adding

separately
oo {41 0
i i
22)  UGew) < ) ) By x@a0ly ¢ ) by x(E0,0ny
- i=o a=1 i=o0
o0 o 141
. 13
+ Z Z P, oy M(Lrasd - xy
j=2 i=o a=1
and
o] e o]
@3 Uy - ) ) e (1,03 ¢

j=0 i=0 a=0

which, in view of the property

(2.4) i

and the fact that =(1,1,0) =0, (i > 0), give

[0 RN ¢ o)
ey Ve,
a,i , Catl,i+a
i=0 8a=0

(x - 1)n(2,0,0) + U2(X,O) - Ul(o;y)

(2.5) U (x,y) = yP(x)

x - yP(x)

and
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Ul(O’Y) - U (X:O)
= Q(x) .

(2.6) U (X;y) =
z y - Q(x)

Tn order to characterize completely the distribution {n(k,i,j))
by the transforms Uk(x,y), we need to determine Ul(O,y), Ug(x,O) and

n(2,0,0).

3. Determination of U, (0,y), U (x,0) and m(2,0,0)

since |Q(x)| < 1 for |x| < 1, it is clear that the denominator
of the right-hand side of Equation 2.6, for each x in the domain
]x[ < 1, has only one root in the domain !yl < 1, namely y = Q(x).
The numerator of Equation 2.6 must vanish when y = Q(x) because

|U2(x,y)\ < 11if |x| < 1 and |y| < 1. Thus, letting Q = Q(x), we get
(3.1) U (x,0) = U (0,Q) .
2 1

If |y| < 1, the inequality |x| > |yP(x)| holds on the boundary
of the domain ix] < 1. Therefore, by Rouche's theorem, the denominator
of the right-hand side of Equation 2.5 has just one root in the domain
Ix] < 1. If ly’ = 1 we prove by the Taylor expansion of P(x) about
x = 1, that the inequality |x| > |yP(x)| = |P(x)| holds on the boundary
of the domain lx] < 1 + €, for small €, under the restriction
p_ = (d/dx)P(x)\X:l < 1, which we shall assume. We have

o]

P(L+¢€) = 1+ p e+ E: %T_P(n)(l)en

n=g

<l+pe+(l-pl = 1+e ,
1 1
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for some € > 0. Hence, by Rouche's theorem, the equation x = P(x)
has the same number of roots in the domain |x| < 1 + € as the equation
x = O, namely one root. Since x = 1 is a root of x = P(x) we conclude
that x = yP(x) has just one root in the domain |x| < 1, given lyl < 1.
Denote this root by 8(y).

When x = 8(y), that is x = yP(x), the numerator of the right-hand
side of Equation 2.5 must be zero, since ]Ul(x,¥)| < 1 in the domain

|x| < 1 and ly| < 1. Thus, letting & = 5(y), we get
(3-2) Ul(O)Y) = UZ(S:O) + (8 - 1)“(2:0}0) .

Next we present an iterative scheme for determining Ul(x,y)
and Uz(x,y). A similar scheme is used by Takacs [20] in the case of
two queues in parallel attended by a single server.

Let X, =X and y_ =¥ with }x| < 1 and ly[ < 1. Define X, and

y;r 120, by

(3.3) Xinn ~ S(Vi)
and
(3.4) Vig = Q(Xi> .

Substituting Equations 3.3 and 3.4 into Equations 3.1 and 3.2 we get

(3.5) v (%) = U (x;4,00) + n(2,0,0)(x, ., - 1)



-20-

and
(3'6) Ug(xi,O) = Ul(ojyl+l) .

Adding Equations 3.5 for i = 0,2,...,2N-2, to Equations 3.6 for
j_ = l,3,o-o,2N-l, we Obtain

N
(3.7) Ul(oyy) = TT(E,O:O) z (Xgn_l - 1) +U1(O’y2N) .

=1
Similarly, let i = 1,3,...,2N-1 in Equation 3.5 and i = 0,2,...,2N-2
in Equation 3.6. Adding up these equations we get

N
(3.8) UE(X,O) = x(2,0,0) Z (x2rl -1) +U2(x2N,O) .
n=1

We shall now show that X5 and Yoy tend to one as N tends

N

to infinity, and that the series

N
}: (X2n-1 - 1) and ii (x2n - 1)

n=1

are convergent. We will first study the behavior of the functions

Y(l)(x) = E(ET and Y(z)(x) = Q(x)

which have been used in definitions (3.3) and (3.4). We have the

following properties:
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; _1 .
y(l)(o) = 0 ; y(l)(l) = 1 ; y(l)(O) N
yil)(l) = 1l-0 3 y(z)(o) = q y(?)(l) = 1 ;
y{g)(o) = a yzz)(l) = o,

Also notice that y(l)(x) = y(z)(x) implies
x - P(x)Q(x) = O ,

which, by Rouche's theorem and the condition 1 - pl - p2 > 0, has

just one root in the domain ix| <1 (see arguments preceding Equation 3.2).
Since x = 1 is a root, we conclude that the graphs of y(l)(x) and

y(z)(x) have no intersection in the domain \X’ < 1, except at x = 1.

From the preceding properties and the fact that yl(x) is

convex and y(e)(x) is concave (since P(x) is convex), we can sketch

the graphs of these functions as in Figure 1. It is clear from

the graphs above that the sequences {xn] and {yn} converge to one.

In order to prove that the series

N

E: (1 - in—li

n=1

is convergent we obtain

* *¥
v(x) = (L-p)x+p and y (x) = px+(1-p) ,
1 1 2 2
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which are the equations of the tangents to y(l)(x) and y(g)(x),

respectively, at x = 1. Define

Xi+1 -1 - o) yi T1 - P

and

~
I

i = P (e
for i =0,1,..., withx =x_ andy =y, By the convexity of y(l)(x)
* X%
and the concavity of ¥, \(x) we have y, \(x) >y (x) and y,_\(x) <y (x).
(2) ()7 = ()Y =
This implies 1 - x_ =1 - SEO, 1-x <1- 5:'2,.... Therefore it suffices

to prove that
N

Z (1 - Ean_l)

n=1

converges. This can be easily seen from the definitions of E; and 5&,

from which we get

n-1i

p
- ) o ]
1 Xgn-l a <fl -0 > (1 yo) :
1
N —
This proves the convergence of 2, (1 - x ), since 1 - p -p > 0.
no1 2n-1 N 1 2
In a similar way we can prove the convergence of 2, (1 - Eén)'
n=1
We may now write
o
G99 A = ) @-x )
en-1

and
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(3.10) Az(x) = }z (1 - Xen)

which are positive and finite for Ix] < 1 and |y| < 1.

Hence, Equations 3.7 and 3.8 become

(3-11) Ul(O:Y) = 'ﬂ(2:O:O)Al(Y) + Ul(o)l)
and
(3-12) UZ(X’O) = -ﬁ(2,O,O)A2(x) +‘U2(llo) .

Setting x_ = y_ =0 in Equations 3.3 and 3.4 we get X, = X

n=0,1,..., which implies A (0) =1 +.A2(O). Noting that U (0,0) = 0
1 1

and UZ(O,O) = n(2,0,0) we obtain

(3.13) Ul(O,l) = U2(l,O) = Al(O)n(Q,0,0)
which yields
(3-1A> Ul(O)Y) = [Al(o) - Al(Y)]ﬂ(2}O:O)

and

(.15 U (5,0) = [4(0) - & (x)1x(2,0,0).

¥
See remark following Equation 6.6 for the interpretation of A (0).
1
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The value of r(2,0,0) is found from the condition U (1,1) +
1
U2(l,l) = 1, where U (1,1) and Uz(l,l) are obtained from Equations 2.5
1

and 2.6 by applying L'Hopital's rule. We get

(3.16) 1(2,0,0) = 3 (L-p -p) -

We see that the condition for nonsaturation is 1 - pl - p2 > 0.
The factor 1/2 in Equation 3.16 is due to the fact that the same
customer is considered twice in the émbedded chain.

At this point we have completed the characterization of the
steady-state joint distribution of the number of customers in each stage
of the systemvand the type of departing customer, n(k,i,j), which is
done by Equations 2.5 and 2.6 where the values of Ul(O,y), UZ(X,O) and
7(2,0,0) are given by Equations 3.14% through 3.16. 1In Section 7 we
shall present a preferable method for finding n(k,i,j). We shall also
give an example to show that the approach of this section is very

efficient for calculating BT ana BT,

L. Expected Number of Customers

In this section we shall calculate the expected values le, Q£ 5

Q.f and Q, which are defined in Chapter I.
The partial derivatives of Uk(x,y) are obtained from Equations
2.5 and 2.6. The limits of these derivatives, as x and y tend to
one, are indeterminate; however L'Hopital's rule can be applied in
order to resolve the indeterminacy. The first and second derivatives

of U (x,0) and U (0,y), which are necessary in the calculations, can be
2 1
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obtained by using Equations 3.1 and 3.2. The derivatives of S(y) are

found, by implicit differentiation, from ®(y) = yP[3(y)].

Let
. xgE[(sl+ sz)zj
(1) % T T - o -e)

This is the expression for the average number of customers waiting
in an M/G/l queueing system whose service time distribution is the

convolution 8 *Sg(t) (Cooper [6], page 164). We get the following
1

results:
1l - pl
(k.2) Q. = (pl +Q,) T i !
1 2
_ - 92
(.3) le = (1 + P ¥ QO) T-p v9 °
1 2

= 1

(b.4) Q, = (1 + o, * QO) T
1 2

- 1
(k.5) o, = (b *o) 70555 >

g - L
(&.6) Q. = 3 (pl te ¥ Q)

- 1 1
(%.7) Q. = z@+e *teo, +2) 55

1 2

5 - ) ) 1
(k.8) O, = [+e,+p(-p)+(2-0)0] 1 5 e,
(4.9) T - +(+p)(p +Q)] Tt

2 1 2 2 o

1L-p +0p
1 2
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(%.10) Q = [L+( +p)@-p +p)+(3-p +p)a]
1 2 1 2 1 2 O

1
2(L -p +0p)
1 2

In the following table we compare (when S and S are exponential)
1
some values of Q 5 obtained by Nelson [13] through simulation (32,000
arrivals), with the values calculated by Equation L,9, for various

values of p and p .
1 2

Table IT
Values of Q 2 Obtained by Simulation and by Equation 4.9
p =0.1 p =0.2 p =0.3 p =0.45 p =0.6 p =0.7 p =0.8
1 1 1 1 1 1 1

p =0.8 p =0.7 p =0.6 p =0.45 p =0.3 p =0.2 p =0.1
2 2 2 2 2 2 2

Simulation

(Nelson [13]) 8.51 8.50 8.86 10, 1k 13.13 18.04 19,96
Equation %.9 8.5k 8.38 8.73 10.90 13.11 17.96 29.80

2. Waiting Times

Let Wk denote the time a customer waits until he commences service

in stage k (w2 includes W and S ). We can find the Laplace-Stieltzes
1 1

transform of Wk by an argument that is also available for the M/G/1

queueing system. A customer departing from the first stage will leave

behind him i customers who arrived during his waiting time W and his
1

service time S . Thus
1

o0

1 ..
U Zl,ls Z Tf(lJlJJ
1 —

Jj=o

0 i oAt
) = Jf -KAQQETE———- aw * s (t)
0 . 1 1
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which gives

T ﬁl[X(l -x)] - gl[K(l - x)]

or

N 2U (1 - S/X,1)
(5.1) W (s) = —1 —
* 5 (s)

where RE(s) > 0 and |\ - s| < A,

Similarly, a customer departing from the second stage will leave
behind him (in both stages) i customers who arrived during his waiting
time Wa (which includes his waiting and service time in the first stage)

and his service time S . Thus
2

1 : ® ()t e
T (L) Z n(28,1 - a) = [ I aw, * s (t)

-0
a=0

which implies

(5.2) W (s) = -

where RE(s) > O and IK - sl < A,

The expected values of W and W are obtained by differentiation
1 .

2
of Equations 5.1 and 5.2. We get

Q
O S o = AW
(5.3) wl = = wl(s) o = sl or Qll x(wl + sl) s

where @ is given by Equation 4.2,
11
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o d | 2.4 =
(5.4) W2 T T ds wg(s)ls—o TN ax Uz(x,x) x=1 2
1 — — - - —
= $£Q@ =85 or @ = MW +5) ,
2 2 2 2 2

where @ 1is given by Equation 4.9.

6. Busy Periods

Clearly there are two different categories of busy periods. First,
the busy period of the server, BS, is the time elapsed since the arrival
of a customer who finds the system empty, until the departure of a
customer who leaves an empty system behind him. Notice that at the
completion of a busy period of the server, regardless of the order in
which the customers are serviced, all of the customers have completed
their two-stage service, which has the distribution Sl * Sg(t).
Therefore, this busy period has the distribution of the busy period of
an M/G/1 queueing system whose service time distribution is 5 * Sz(t).
Tts expected value is 85 - (5; + 5;)/(1 - P - pg) (Cooper [6],
page 176).

We define BI and BII as the time the server is continuously
busy in the first and second stages, respectively.

The busy period BI starts immediately when the second stage is
emptied and i > 1  customers are present in the first stage. In this
case the distribution of BI will be Bi(t)’ the distribution of the busy
period initiated by i customers in an M/G/1l queueing system with service
distribution Sl(t)' When i = O the busy period starts at the time of

the next arrival and it has distribution B (t). Thus
1
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o0

(6~l) BI(t) = ['I‘T::lf;'(')')‘ [n(E,0,0)Bl(t) + Z r[(2,i,0)Bi(t)] .

2 i=0

I

The Laplace-Stieltzes transform of BI(t) is

(6.2) BL(s) ﬁrz%:67-‘{ «(2,0,0)B(s) + }: ﬁ(2,i,0)[§(s)]i:}

1=1

ﬁ;{%;57 '{ % (1 - P - 02)[§(s) - 1] + Ug[g(s),Oi}

where B(s) = gl(s) and gi(s) = Eg(s)]i, since B, is the sum of i

independent initial busy periods (that is a busy period initiated by

just one customer). The value of Ug[g(s),O] is given by Eguation 3.15.
The distribution of the time the server is continuously servicing

2-customers 1is

€5 B - gy ) L0.) S5

J=1

%
where S 9(t) is the j-fold convolution of the service distribution Sz(t)

with itself. The Laplace-Stieltzes transform of BII(t) is

€y 6 - sy ) r0DE ()7

j=1

- U'T_Té,l Ul[o,ég(s)] .
1
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The expected values of BI and BII are

(6.5) gL - - L5

and

nﬂmoq

=T 4 oIT _ 1
(6.6) B - B (s) s=0 = TI01)
1

where U (0,1) and U2(1,O) were obtained from Equation 3.13 and A (0)
1 1

is given by Equation 3.9.

Remark
We notice that
S +89

_ 1 1 2 1 -5
BrE 2o T-o -pz‘A(ﬂB
1 1

This implies that Al(O) ="'§S/(§'I +-§iI) is the average number of cycles

in the busy period of the server (a cycle starts when the server commences
service in the first stage and terminates when all the customers, who
were served during the busy period in the first stage, have completed

service in the second stage).
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{. Alternative Approach for the Calculation of the State Probabilities

In this section we present a direct method for obtaining the

state probabilities n(k,i,j). It is based on known properties of the

busy period of an M/G/1 system.

b (1)

a, (n)

(7.1)

where

(7.2)

and

Define
= probability that i departures occur during a busy period of the
first stage that starts with m customers (i > m > 1).
= probability that n arrivals occur during the service time of i
2-customers (i > 1, n > 0).
= probability that, starting with an empty system, the termination
of the kth cycle occurs when there are n customers in the
first stage (k> 1, n> 0).
We have
(o]
¢ (n) = }: b (i)a, (n) (n > 0)
1 1 1
i=1
[o0) o]
= i >
ck(n) E: }: ck_l(m)bm(l)ai(n) (k>1, n>0) ,
m=1 i=m
i-m
bm(l) = T u/‘ 9) M as (%) (i>m>1)
0 (i - m)! +
0 n .
- *
a,(n) = J[‘ 1531— e ag Yt) .
i o B 2
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The state probabilities n(2,n,0) can be written as

0

(7-4) n(2,n,0) = T((E,O,O) z Ck(n) (n > 0) ,
k=1

where 7(2,0,0) = 1/2(1 - o - pz). The probabilities =(1,i,j), and
w(2,1,j) for j # O, can be calculated by Equations 2.1.

The average number of cycles during the busy period of the server

5 T =) w0 .
k=1

8. Comparison of the Methods of Sections 3 and 7

With the objective of comparing the iterative approach of
Section % with the alternative approach of Section 7, we have made
a few experimental computations for the case of exponential service time.
Evidently, if we need to calculate each value of the state
probabilities, the method of the previous section is preferable. However,
o0
when we need only Ul(O,l) = Uz(l,O) = '§ 7(2,i,0), as in the cases
of the expected values 5{, 5 ana T (;;Z Section 6), the iterative method
of Section 3 has some advantages. We shall illustrate this point by
the following computations.
Iet A =1 and, congequently, pl = §; and p2 = gé. We assume
that Sl and 82 are exponentially distributed and calculate the values

of ¢ (average number of cycles during the busy period of the server)

by each of the methods mentioned above, for various values of p_ and p2.
1
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Scheme of Section 2

We first obtain

P(x)
and

Q(x)

]

1

1
1+ (1L -x)p
1

1]

S IML - x)]
1

1
1+ (1 - ‘
+ ( X)02

S ML -x)] =
2

Using Equations 3.3 and 3.4 we get

Yy
and
(8.1) Vi
Thus
(8.2) X; 4

X

i+1 2
= = (1+ X, - P x;
szi+lj ( pl) i+1 1 1+
1
1+ (l - Xi)p2

o
P
“
p—
]
o
O

(since |X1+1| < 1 for [yil i.l)' In order to calculate the quantity

¢ = A (0) (see remark following Equation 6.6) we construct Table III
1

from Equations 8.1 and 8.2, where Yo = 0.

p =p_ =0.h
1 2

This table corresponds to
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Table III

Illustration of the Iterative Scheme of Section 3 for p = p = 0.k
1 2

Y 0.86807 / .

6 0.92777 / —

7 - \ 0.88798
30 0.99950 &

31 L T 0.99932

The value of ¢ = A (0) is £ (1 - x
! i=o

values of p and p we get the values of Table IV, where i is the
1 2 (0.0001)

0o =
23.‘_1) = 1.8787. For other

number of terms in the series of A (0) for having an accuracy of
1

0.0001.
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Table IV

Values of Z-for Different Traffic Intensities

P =0, 1 2 1(0.0001)

0.900 0.800 0.100 9

" 0.450 0.450 26

" 0.100 0.800 L1
0.500 0.k00 0.100 5

" 0.250 0.250 T

" 0.100 0.400 9
0.100 0.090 0.010

" 0.050 0.050 )y

" 0.010 0.090 L

The values of Table IV were

(MTS system of The University of Michigan).

calculated by an IBM 360/67 computer

(e}

1.390
2.295
2.895
1.165
1.358
1.516
1.010
1.052

1.091

The CPU time for

calculating all the cases was about six seconds (including compilation

of the Fortran program).

b. Computations Using the Method of Section T

We first find

b (i)
m

n

i

from Equation 7.2, and

ai(n)

(n

2 - m -
i-m

+ 1

n

il

il

p
2
1+0

p
S

1l1+p
1

1
l+p
1
1 B
1+ B
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(n).

from Equation 7.3. Next, we use Equations 7.1 for calculating Cy
Equation 7.5 is then used for obtaining c. Table V gives the values
of E‘(for the same values of the traffic intensities of Table IV),
where N is the number of terms of the summations of Equations 7.1
through 7.5, and t is the approximated CPU time (in seconds) for

compiling the Fortran program and calculating the values of ;; for all

traffic intensities.

Table V
Values of ¢ Calculated by the Direct Approach, for Different Traffic
Intensities and Different Truncations of the

Infinite Summations

D= p +p 0 o N=25 N=10 N =15 N=20
12 ! 2 t=7 t=27 _t=122 t =200
0.900 0.800 0.100 0.90L 1.033 1.032 1.119
" 0.450 0.450 1.261  1.640 - 1.850 1.970
" 0.100 0.800 1.k27  1.991 2.309 2.500
0.500 0.400 0.100 1.092 1.150 1.161 1.163
" 0.250 0.250 1.295 1.354 1.358 -
" 0.100 0.k00 1.426 1.513 1.516 -
0.100 0.090 0.010 1.010  1.010 1.010 -
" 0.050 0.050 1.052 1.052 1.052 -

" 0.010 0.090 1.091 1.091 1.091 -
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Comparing the values of ¢ in Tsbles IV and V we see that this
second approach is quite inefficient for high values of the total
traffic intensity p = p1 + pz. In the first method the convergence
is quite satisfactory for all values of p.

In using the direct approach for more general cases, we expected
to have difficulties with the integrations of Equations 7.2 and 7.3,
in addition to the large amount of calculations involved in the
recursive relationship (7.1). 1In using the iterative scheme of
Section 3 we, in general, expect no difficulties in obtaining P(x)
and Q(x), and the solution of Xy, = G(yi) can be found by simple
search techniques, because of concavity of yi = xi+1/P(xi+1).

Hence we conclude that, in general, the iteration scheme of
Section 3 1s a better method for calculating the expected values of

BI, BII and c.

9. The Case of Random Duration of Switching

In this section we shall review the previous sections under the
assumption that there is a random time Tkﬁ with general distribution

Tki(') for switching the server from stage k to stage & (k,2 = 1,2 and

k # 2). Define

® i -\t
k% () e
(9.1) ty _[ —T d’I‘kQ(t) >
0

the probability of having i arrivals during the switching duration

T

e Also define



=30~

9.2) Ryt = Y A = T - )]

In this case the stationary conditions are

i+; i-a+)

R - 21
9.3) (a) 71,1 = §7 ) gl o, 7(2,8,0)
=1 b=o
i+1
+ £21p m(2,0,0) + t2! p.m(2,0,0) (1 >0)
b Ti-b+i s o DP3Mests 2
b=1
i+,
©) 1,50 = Y o3, MLy -1 (120,522)
=1
1
12
() m2,1,3) = )t a;y 1,0, + 1)
b=o

i
+ Z qi_a TT(2,EL,j + l) (i z_oa J _>_O) s

8=0

from which we get

(x - 1)»5;1 m(2,0,0) + R (x)U (x,0) - Ul(o,y) B

- x)
(9.4) UI(XsY) = % - ;fP(x)z
and
R (x)U (0,y) - U (x,0)
- Q(x)
(9 5) Uz(X’Y) o ¥ - ax) -
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Notice that in the case of instantaneous switching we have tgl =R (x) =

12

R (x) = 1, in which case Equations 9.4 and 9.5 reduce to Equations 2.5

21
and 2.6.

By the arguments used to derive Equations 3.1 and 3.2 we get

(9.6) U (x,0) = R (x) U (0,Q)
2 12 1

and

(9.7) U (0,y) = R (8)U (8,0) + (8§ - 1) t2! 7(2,0,0) ,
1 21 2 (o]

where § = 8(y) is the inverse function of y = x/P(x).

Using Equations 3.3 and 3.4 we get

(9.8) U (x50) = R (x)U (O5y,, )
and
— 21
(9.9) Ul(o,yi) = RZI(Xi+1)U2(xi+1’O) + (xi+1 - 1)tO m(2,0,0)

Set i = 0,2,4,... in Equation 9.9 and multiply each resulting
equation respectively, by 1, R (x )R (x ), R (x )R (x )R (x )R
12 1 21 1 12 1721 1712 T3 21
., seti=1,3,5, ..., in Equation 9.8 and multiply each resulting
equation by R (x ), R (x )R (x )R (x ), R (x )R (x )R (x)
21 1 21 1 12 1 21 2 21 1 12 1 21 3

R (x )R (x ), ...; adding all together we get
12 2 21 5
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(9.10) U1(O’Y) = —W(E,0,0)ﬁ{ (y) + B (y)Uu (0,1) ,
1 1
where
(9.11) Bl(y) - [ I R12(X2n+1)R21(x2n+1)
n=o
and
© n-1
(9.12) Al(y) - tél 2{: - xzn—l) l l Rlz(xzi+1)R21(X2i+1)
n=o i=o

Similarly, set i = 0,2,4,..., in Equation 9.8 and multiply each

. . R R
resulting equation, respectively, by 1, R12(XO)R21(X2)’ 12(xo) 12(X2)

Rlz(xz)Rz1(xu)""; set 1 = 1,3,5,..., in Equation 9.9 and multiply

each resulting equation, respectively, by R (x ), R (x )R (x )R (x ),
12 O 12 0 21 2 12 2

R (x )R (x)R (x )R (x)R (x), ...; adding all together we get
12 0 21 2 12 2 21 % 12 4

(9.13) U (x,0) = -m(2,0,0)A (x) + B (x) U (1,0) ,

2 2 2 2
where
(9.14) Bz(x) = l l Rlz(xzn)R?_l(xzn,rZ)

n=o »
and
0o n-.1

935) A (x) = €2R G0 ) (-x) || R (R (x)

n=, i=]
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where

when a > b.
The velues of Ul(O,l) and Uz(l,o) can be found from Equations 9.10
eand 9.13 by setting x =y = 0, and noticing that UI(O,O) = 0 and

Uz(o,o) = T(2,0,0). We have

+
A1(0> 1 AZ(O)
(9.16) Ul(O,l) = Bi(o) m(2,0,0) and Uz(l,O) = TS0 m(2,0,0) .
2
But when x =y =0 ( =Y, = 0) we have x n = X1 n=0,1,2,...,

which implies AI(O) = t21[1 + A (0)) and B (0) = t;lB (0). Hence
1 2

i
o]
—~
—
»
o
|
—~
N
o
o

(9.17) UI(O,l)

which substituted in Equations 9.10 and 9.13 yields

A (0)
(9-18) U (OSY) = EL('O_)' B (Y) - A (y) '”(29090)
1 1 1 1
and

(9.19) Uz(x,O)

H
(vs}
%

I
=4
=
N
O
o
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For the case of instantaneous switching we have tél =R (x) =

12
oo

R (x) = 1 and, consequently, B (y) =B (x) = 1, A (y)=2 (1 - x )
21 o 1 2 17 =0 2n+1

and A (x) = £ (1 - x n). Therefore, Equations 9.18 and 3.19 reduce
2 2
n=,
to Equations 3.14 and 3.15, respectively.
In order to determine n(2,0,0) we use the fact that U (1,1) +

U (1,1) = 1 and apply L'Hopital's rule to find

lm U (xy) k=1,2

x> 1
y>1
we get
l-p =-0p
(9.20) 7(2,0,0) = 1 2 .
21 ey A (0)
2 + A(T  + S S
tO ( 12 T21) B (0)

Notice that, independently of the switching times, 1 - p -
1
p2 > 0 is the condition for the system to be unsaturated.

9.1 Expected Number of Customers. Defining'ek2 = AE[T. . ] and

k&

using Equations 9.6 and 8.7 we obtain

2
(9.21)  u" (0,1) = i—umgﬂ ) n
1-p - Z
1 a2 ! y=1 ( P 02)(1 oot 02)

VET +T )21 U (0,0) + (8 + 6 >@ v 20 U (0,1)
12 21 1 12 21 2 1 1

T A2E[s2]U (0,1i> +pp + 20 t2! w(2,0,0)
=P 1 1 1 2 1 0

b (224 121 1(2,0,0) + L y2e[s?]
2 (0] 2T 2 2
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and
2
(9.22) v (1,0) = £ U (x,0) = A2E[T2 U (0,1) + 68 p
2 de 2 x=1 12 1 12 2
+ 1-A2E[sz] + i ‘ AME[(T +7T )2?Ju (0,1
2 2 (QA-p -p)A=-p +p) 12 21 1y
1 2 1 2
+ (6 +6 )<% + 20U (0,1) + 1 A2E[S? U (0,19
12 21 2 11 1- Dl 11

+pp + 20 t?! 7w(2,0,0) + 1 (}k + 21 w(2,0,0)>
1 2 1 0 [}

1-p5 \2°
1
* A2E[S2] + & A2E[s?] | ,
1 2 2
where

A (0)
= ——d—

Ul(O,l) 575 m(2,0,0)

and m(2,0,0) is given by Equation 9.20.

From Equations 9.4 and 9.5 we get

] (1 - p )A" + A2E[s?]A!
(9.23) == U (x¥) : :

- 2
= 21 -p )
) CL1,lg
G2 v | = frivon
y=1

(9.25) o~ Uz(x,y)l = -
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(9.26)  =U (xy)| = fu'0,1) ,
2 X=1 1
y=a
where
A" = (8 +8 U (0,1) +p + 12! m(2,0,0)
12 21 1 ) 2 o}
A" = [A*E[T* J+20(6 +6 )+20 06 JU(0,1)+6 p
21 1 12 21 12 21 1 21

+ 20 t21 m(2,0,0) + p p +U"(1,0) ,
1 0 1 2 2
B" = A%E[T? JU (0,1) - 02~ U"(1,0) .
127 1 2 2
The expected values Ekz,b'k s 5 2 and 5 can be obtained by using

Equations 9.23 through 9.26.

9.2 Waiting Times. Equations 5.1 through 5.4 still hold for

this case of random length of switching. The quantities 5' and
, 11

Q of Equations 5.3 and 5.4 are obtained by the procedure indicated
.2
above.

9.3 Alternate Approach Ffor the Calculation of the State

Probabilities. Let bi(n), ai(n) and ck(n) be as defined in Section T,

and let t?g be defined as in Equation 9.1. We consider the server

busy during switching times. We have

2



(9.27) °1(n> tilbi(J)t}fa (n - 2) (n >0)

[
i}
o

Cse
fl
=

> s
[
i1

and

e

oln) = mgo iz=:o Z gck_l(m)t_,flbimu)t;zaj(n-z)

J=itm f=o

(k>1, m>0) .

These equations represent the fact that new arrivals may occur during
the switching times le and T21' As in Equation T.4, the state

probabilities m(2,n,0) are given by

(9.28)  m(2,n,0) = n<z,o,o>}: o ()

where m(2,0,0) is given by Equation 9.20.

The quantity

(9.29) o = Z ke, (0)
k=1

is the average nunber of cycles during a busy period of the server

The remaining state probabilities are obtained from Equations

9.3.
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S ‘
9.4 Busy Periods. A busy period of the server, B , commences

.y

when the server is idle in the first stage and a new customer arrives,

it terminates when, at the end of a switching interval Tzl’ the system
is empty. BI is the time the server is continuously present in the
first stage including the switching interval T , BII is defined

12
similarly.

Let Bi be the busy period of the server when the switching is
instantaneous. In the case of random duration of switching, in each
cycle of the server, additional arrivals have to be served and each
of them will add a random time to Bi which has the distribution of Bi.

We conjecture that on the average we have

(9.30)
=5 = = i R .

where BO = (S1 + Sz)/(l - pl— pz) and C is given by Equation 9.29.

However, we do not ﬁtilize this conjecture.

The distribution of BI and BII are given by

I 1 .
(9.31) B (t) = T Z Z m(2,1,0) ;1B1+J (t)
2

i=; J=0

Z (2,0,0)t2'B *T (t) + m(2,0,0)t2!B *1 (%)
J J o1 12

—

ot bt

and
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o0

S S *3
Y- T Y r,0,3) 80 v (1)

1
J=1

(9.32) T

where Bi*le(t) is the convolution of the busy period distribution of
the first stage, initiated by i customers, with the switching time
*
distribution le(t). Szj * T2 (t) is the convolution of the distribution

1

T21(t) with the j-fold convolution of the service time distribution

S (t) with itself.
2

The Laplace-Stieltjes transform of these distributions are.

12 2

(9.33) B'(s) = gioy |1, (008, [B(s)] {Uztﬁ(s>,ol - n(z,o,o>]

+ T (s) tR [ﬁ(sﬂ-—tZI] m(2,0,0)
21 o

12

+ T (s)t2'B(s)m(2,0,0)
12 (¢]

and

9.3k Bll(s) = —2— % (s) U [0, (s)]

where Uz(x,O) and UI(O,y), R21(x), tgl and m(2,0,0) are given by

Equations 9.16, 9.2, 9.1 and 9.20, respectively.
The expected values of BI and BII are

ﬁI

pd 4
(9.35) BY = - =B (s) __,

b ——
(0] 2'”-(2:0 SO)
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and

- ~IT
(9.36) . 43

(v}
!
i
—
]

21 ) () 2m(2,0,0)

where AI(O), BI(O) and T(2,0,0) are given by Equations 9.12, 9.11 and

9.20, respectively.

Note: Do not confuse 81(0) of Equation 9.11 with the distribution of

the initial busy of the first stage at t = 0, which is zero.

Notice that when E’Zl =T =0 we have B (0) = £2! = 1 and

12
m(2,0,0) = 1/2(1 - P - pz); therefore Equations 9.35 and 9.36 reduce

to Equations 6.5 and 6.6, respectively.



CHAPTER III

SIMPLE NONPREEMPTIVE PRIORITY

1. Introduction

In this chapter we determine the operating characteristics
of the SSP policy (second stage priority) and of the FSP policy (first
stage p;iority). Under the SSP policy the analysis of the behavior of
the system is quite simple since each phase of each customer's service
is performed without interruption. This is the case of an M/G/1
queueing system. However, in order to be consistent with the analysis
of the other policies, we shall choose the Markov chain embedded at
departures from either stage. The switching durations can be assumed to
be part of the service times, therefore we present only the case of
instantaneous switching. This policy could also be called "follow

the customer,"

since the server switches to the second stage when the
customer is served in the first stage. By contrast, in the FSP policy
the server switches to the first stage at the service completion of

2-customers if one or more l-customers are present.

2. The SSP Policy

Since there is no queue in the second stage, the state of the

system is characterized by the pair (k,i) where k = 1,2 indicates the

stage from which the customer is departing, and i 0,1,... is the

number of customers left in the system by the departing customer. We

denote by m(k,1) the steady-state probabilities. We have

-50-
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(2.1) (a) m(1,1i)

1}
=3
N

-
[V
o]

+
3
oY
\V]
o

o}
T~
j=
v
‘_.J
L

—~~
o’
3

——~
no

T

1]
=
’_l
©

o

Q

Notice that a customer departing from the first stage is considered

[o]
to be in the system. The generating functions Uk(x) = T om(i,i)x,
k = 1,2, are 1=0
(2.2) U1(x) = P(X)[UZ(X) - m(2,0)] + xP(x)m(2,0)
and
1
(2.3) U (x) = =Qx)u (x) ,
2 X 1

from which we get

x(x - 1)m(2,0)P(x)

(2.4) U (x) =
1 x - P(x)Q(x)

The value of T(2,0) is obtained from Equations 2.3, 2.1 and

the condition Ul(l) + U (1) = 1. We get
1
(2.5) m(2,0) = §~(1 -p -p)
2

The expected number of customers in the system at departure

epochs, 5} is given by
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where

9 = —rr X ﬁ‘(x)
% T T & ke

is the expected number of customers in the system Just after the completion

of service in the kth stage. We have

(2.7) Q = 1+ p+ Q °
1 1 o
(2.8) Q = p +p +Q .,
2 1 2 o}
T - L
(2.9) Q = 5 (1+ 201 + DZ) + Qo s
where
A2E[(S + S )?]
Q= 1 2
(o]

21 -p -p0)
1 2

Notice that Equation 2.8 is the Pollaczek-Khintchine formula for an
M/G/1 queueing system where the service time distribution is the
convolution of Sl(t) with Sz(t).

The time a customer waits until he commences service in the
first stage, Wl, and the time he waits until he commences service in

the second stage, W , have distributions whose Laplace-Stieltjes
2

transform are given by



(2.10) wl(s) = T N
! : SI(S)
and
A - s
(2.11) v (s) 1 UZ( k )
2.11 W (s) = ~ R
2 Uz(l) S (s)

where RE(s) > 0 and |>\ - sl < X. The expected values are

(2.12) W = =(q -1)-5
1 AT 1
and
(2.13) W= %—5 -3
2 2 2

The busy period of the server, BS, has distribution

n- 1)! 1 2

00 t n-3 _ * *
Bs(t)=2%f %M—L—)-exudsn*snm) ,
n=, 0

which is the distribution of the busy period of an M/G/1 system with
service time distribution S1*Sz(t)' The busy period of the stages, Bl

IT
and B"7, have distributions S1(t) and Sz(t), respectively.
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3. The FSP Policy

Under this policy the server goes to the second stage only when
he has finished attending all of the customers in the first stage.
Once in the second stage, the server keeps attending 2-customers who
are present as long as no l-customers have arrived. If an arrival
occurs during the service time of a 2-customer, the server completes
serving that customer and then switches to the first stage. If he
succeeds in finishing all the present 2-customers and no l-customers
are yet present, he goes to the first stage and waits for the next
arrival.

We first study the instantaneous switching case. The stationary

conditions are

i+,
(3.1) (a) m(1,4,1) = p, m(2,0,0) + Z P g+, (252,0) (1 20)
a=
i+ i+

(®) m(1,i,3) = z pi_a+1n(l,a,3 - 1) + Z Ps gt (2,a,§ - 1)
a=1 a=,

(C) W(2:isj)

1]
Q
3
P
’.J
w

o
L J

Cue
+
}—l
+
Q

3
Py
n
w

(@
T
+
I_J
P
H

A\
(@]
L ]

Cse
A\
(@]

from which we obtain
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xﬂ2mﬂ)+U(xJ)—U(OJ)—UgOJ)
2 1

(3.2) U (x,y) = yP(x)
! x - yP(x)

and

(3.3) U (xy) = =a)U (0,y) + U (0,5) - m(2,0,0)] .
2 N 1 2

From the arguments preceding Equation 3.2 of Chapter II, and

Equation 3.2 we get
(3.4) UI(O,y) + Uz(O,y) = &m(2,0,0) + Uz(ﬁ,y) ,

where 6§ = §(y), as before, is the inverse function of y = x/P(x). The
value of m(2,0,0) is obtained from Equation 3.2 by applying L'Hopital's rule
whne x and y tend to one) and the condition U (1,1) = U2(1,1) =1/2,

1

Mmmngmmt5u)=1amia'u)=(1-plfﬂ We get
1
(3.5) m(2,0,0) = §-<1 -p -p)
1 2

Remarks

This result and the results (3.16) of Chapter II and (2.5) of
the previous section are expected, since, under the corresponding
policies, the server is active whenever a customer is present in the
system. This does not happen when the system is controlled by the
policies SSP(Q2 > N) and W FS (Chapter IV). Under a SSP(Q2 > N) policy
the server is inactive when he finishes serving all l-customers and

there are less than N 2-customers; under a W_FS policy he is inactive

N



-56-

when he finishes all 2-customers and there are less than N
l-customers.

From Equation 3.3 and 3.4, when x = § = §(y), we get

(3.6) U (0,y) +U (0y) = Yyif—g@(-f-) m(2,0,0)

which substituted into Equations 3.2 and 3.3 gives

[y - Q(@)Ix - [y - o(x)] + Q(8) - Qlx)

(3.7) U (x,y) = yP(x)m(2,0,0)
! [x - yP(x) 1y - Q(8)]
and
(6 =1)Q(x) 1-p -0p
(3 8) Uz(x3y) = 1 2

y - Q(8) >

This last equation, for y = O, gives

N}

i

X _ 1o 4
(3.9) m(2,1i,0) = 5 (1 P pz)qo

Using Equations 3.1 we can obtain the remaining state probabilities.

3.1 Expected Number of Customers and Waiting Times. The expected

values of the number of customers in each stage at departure epochs are
found by the same procedure of Section 4 of Chapter II: from Equations
3.7 and 3.8 we find the derivatives of Uk(x,y), as x and y tend to unity,
by applying L'Hopital's rule. The derivatives of § = §(y) are calculated

from §(y) = yP[8(y)] by implicit differentiation. Letting
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Q =
© 2(1-p =-p)
1 2
we getl
_ 1-p -0
(3.10) Q = (p + Qo) ,
11 1 1-op
1
(3.11) Q = (1+ Q,) £ ,
21 1-p
1
(3.12) Qe = o ,
12 2
and
(3.13) by - (p1 *Q) T 5

1

— —

The quantities Qk s Q K and a'can readily be obtained from the

above results.

The waiting times W and W2 are as in Section 5 of Chapter IT,
1

where Uk(x,y), k = 1,2, is given by Equations 3.7 and 3.8.

3.2 Busy Periods

With instantaneous switching the busy period of the server, BS,
has the distribution of the busy period of an M/G/1 system with service
time distribution Sl*Sz(t). The reasoning for this is as in Section 6

of Chepter II. The distribution of BI is

[0} [>°]

t) = Z ﬂ(2,i,j)Bi(t) + m(2,0,0)B(t)
(0]

i=, j:

(3.14) B
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and its Laplace-Stieltjes transform is

(3.15) Bl(s) = Uz[ﬁ(S),ll - U (0,1) + TT(2,0,0)I~3(S)]

2
P -q

* 5o =
pl 2 0

where B(s) is the Laplace-Stieltjes transform of B(t), the busy period
of an M/B/1 system with service time distribution S (t). Uz(x,l) is

1
given by Equation 3.8. The expected value of BI is

(3.16 B = S
) 2-p =-p -qa 1
1 2 o
In order to find the distribution of BII, we see that, when this
busy period starts, the state of system is (1,0,)) with probability

II). The server will

W(l,O,j)/Ul(O,l) (conditional to the start of B

complete service of Just one 2-customer with probability (1 - qo)

and in a time with the distribution S (t); of Just two 2-customers with
2

probability (1 - qo)qo and distribution S:Z(t); of just k 2-customers

with probebility (1 - qo)qk—

o | end distribution S’Z‘k(t), 1<k <,

J 225 of Just J 2-customers with probability qg and distribution

S:j(t). Therefore we get

1T

® J=1
(3.21) Be) = E’T%’,ﬁ Z (2 - q)m(1,0,3) Z ‘qi‘lsgk(t)
! J=2 k=

+ Z ﬂ(l,O,j)qg—IS:‘j(t) ,
J=1
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whose Laplace-Stieltjes transform is

~11 1 . 1
(3.18) B (s) = ——=— | (1-gq)8§ (s)+ 57y
1- qOSZ(s) ° UI(O,l)

and whose expected value 1is

=II 1
. B = : ‘
(3.19) R a———
1 2 o

s

The average number of cycles during the busy period of the

server is
- = l-a
(3.20) ¢ = ___Eﬂ__m_ = 1 4+ S S
—T . =IT 1-p -0
B + B

3.3 The Jase of Random Duration of Switching. In this

subsection we shall use the notation of Section 8 of Chapter II.
The sefver, after finishing all l-customers, goes to stage 2.

The switching duration is a random variable T1 with distribution T (t).
2 12

During T some customers may arrive, but the server will attend to
12

the next 2-customer before switching back to the first stage.
The stationary conditions are
i+,

(3.21) (&) w(1,i,1) = tgl p,m(2,0,0) + m(2,0,0) Z t;_lp

a=

i—a+1

i+; 1i-a+1

21 .
£ ) )T e, m(2a0)  (320)

a=1 b=o
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i+1 i+1 i—a-'-l
(b) T[(l,i,J) = Z pi_a+17r(lsasj - l) + Z Z
a=, a=, =0
21 .
t pi_a_b+1w(2,x,j -1) (1 >0,3>2)
i
() m(2,5,3) = )7 2% a; (1,0, + 1) + q(2,0,) + 1)
a=o
(1 2 0, J 2 0)
which yield
_ 1 21
(3.22) Ul(x,y) = 75 | o xyP(x)m(2,0,0) + yP(x)

(R (x) - t2H)m(2,0,0) + R (x)
21 o) 21

U (x,y) - U (0,y) =R (x)U (0,y)]
2 1 21 2

and

alx) rq (x)U (0,7) + U (0,y) - m(2,0,0)]

(3.23) Uz(x,y) - .

Applying the arguments preceding BEquation 3.2 of Chapter II to

Equation 3.22 we obtain

(3.2L4) U (0,y) = =R (8)U (0,y) + [(8§ - 1)t2' + R (8)]In(2,0,0)
1 21 2 (0] 21

+R (8)u (8,y)
21 2
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R <6>q +(y—qo)(6-1)t21+(y—q )R (8)-R (8)Q(8)
(3.25) UI(O,y) = &l — 0 o' 21 21 —
v (y-q +yR (é)qotO -RZI(G)Q(s)[(y-qo)312(6)+qoto ]

¢ }"TT(E »0 so)

Equation 3.23, as y -+ 0, implies

(3.26) Uz(x,o) = aQ(x)Rlz(x) + BQ(x) ,
where
d
o = %U(O,y)' and B = ‘d's;U(O,Y)
y=o0 y=

This means that

i

. - 12

(3.27) m(2,1,0) a j{: q t;2, + B,

ax=o
The quantities o and P are given by
(3.28) o = 220 — ?21 o 1(2,0,0)

4 (- poqoto IS )
and
1 12

(3.29) B = = (2,0,0) )

The remaining state probabilities are given by Equations 3.21.
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The quentity m(2,0,0) is obtained from Equations 3.23, 3.25

and the fact that U (1,1) = 1/2 (because each customer corresponds
2

to two departures).

(3.30)

H(Q,0,0) =

Letting §

-

k2

= \E[T

—

k2]

XTRR we have

- -0 -p =8 -8 )+q t'2(1-p -
(1 qo)(l p-p-0 21) .t (1 P oz)

21
- +
(1 qo)to aQ

t21t12
0o o

from which we see that the condition for nonsaturation is

(3.31)

We notice that (912

p +p + (8 +06 )-
1 2 12 21

21

1
thO

1+ T -

2 =1

%

+6 )1+ qotéz/l - qo]—lrepresents the portion of

the total utilization of the system corresponding to the switching

times. The quantity [1 + qotéz/l - qo]—1 is the "share' of each

customer in that portion.

(3.32)

(3.33)

(3.34)

and

Using Equations 3.22, 3.23 and 3.25 we get

0

9x

[~

|

Uz(x,y)'

X=1

¥=1

Uz(x,y)l

Ul(x,y)‘

X=1
=1

X1
¥=1




(3.35) %; U (x,5) = b AT 4

[(1 - pl)A” + AZE[Sj]A'] ,

where
1 21 1
' = + + 6 - m(2,0,0
A 56 [to =y (6 oz)] (2,0,0)
q t12
0 O
+ + + -0 U
[612 °, (pz 21) 1-aq ] 1
A" = Loazg[r? 14 [EAZE[TZ ] - AZ%E[(T + 7T )2]J7r(2,0,0)
2 21 21 21 12
+| A2E[(P + T + 8 )2] - [2A2E[T2 ]
21 12 2 | 21
q t12
- AE[(T + 8 )2]] 2.0 _ A2g[s?]| vu
21 2 1- a, 2 1
and
- - BL
vo= Ul(o,l) = o m(2,0,0)
" "
u' = g‘-—-U (O,y)' = [B ¢l -3B'C + E-:— 'n(Q,0,0)
1 & 1 — o0 2 C
with
B! = =3—[1-p - P, * (1 - q )t?!]
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l-q +6
B" = 8§ + T (2t12 +0 )+ 0 21
21 - Dl o 21 (1-p )2
[2p + 7 al A2 E[Szi] + 1 A2E[T2 ]
1 Ol 1 1 - pl)z 21
- ME[(T + 5 )?%]
21
1-q qt.”
¢! = —=L (1 - - -6 -8 + 1 - -
1 01 ( pl pz 21 12) —Dl ( pl P )
1 A2E[S2]
pl °o° (1-0)2 l1-p
1 1
. t12p - (1 - +0 +0
[qO o P ( qo)(o2 . 12)]
)\2
- (1 -q)E[(T +T +58)2]
(1-p )2 o 21 12 2

The expected values of the number of customers at departure epochs
are easily found by using Equations 3.32 through 3.35.
The waiting times W1 and W2 are as in Section 5 of Chapter II,

where Uk(x,y), k = 1,2, is given by Equations 3.22 and 3.23.
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The busy period of the first stage, BI, starts at the completion
of the switching time T21’ when the state of the system is (2,1,3)), with
i>1and J>20,o0ori=]J=0. The probability of the set formed by all

of these states is

H

(3.36) P U (1,1) - U (0,1) + mw(2,0,0)
(0] 2 2

1-p =p -6 =8 -g(1- tl2)2
pl ; pz 1.2 21 qo( qo)( (¢} )

2 21 21,12
- +
(1 qo)to qoto to

During the switching time T21 new customers may arrive, say k customers.
The server will then be busy in the first stage for a time le plus

a busy period initiated by i + k customers, Bi+k’ whére i is the number
of l-customers present at the beginning of T21' By definition T1 is

2
part of BI. We have

[o0] [+ -] [~
I o ;L_... <7 > 21
(3.37) B (t) = P [ z L m(2,1,3)%, Bi+k*T12(t)
i=  J=0 k=o
21 *» $21 *»
+ Z w(z,o,o)tk 13k le(t) + w(z,o,o)to B1 le(t):’
k=,

T
where PO is given sbove. The Laplace-Stieltjes transform of B (t)

is
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(3.38)  Bs) = -*f;-—-[R (3()1[ U [B(s),1] - U_(0,1)]
0 21 2 2

+ m(2,0,0) [Ru[ﬁ(s)] - tél + ];(s)”

and the expected value is

S
(3.39) T —— [P 6 + -g-—U (x.y)i + 1(2,0,0)
0 21 X 2 =

y=1

+ E‘. [ 1l + P o 77(29030)]
12

where 9/93x Uz(x,y)|x=l, m(2,0,0) and P_ are given by Equations 3.32,
3.30 and 3.36, respe%%ively.

The distribution of the busy period of the second stage (which

includes T ), BII(

t), is
21

(3.10) p(t) =
3

(1 - t!2) m(1,0,3)T *s (%)
(0] 21 2

1

=1

Z £12 7(1,0,3)(1 - q )g"? 5" Kap (t)
o o 2

k:

™~1s

o 21

J=2 1

o]

+ Z £12 w(l,o,a)qi‘ls*j*u*“(t) ,
J=1



where the first term of the right-hand side corresponds to the case

when new customers arrive during the switching time T , that is,

12
IT

B~ =8 + 'I'21 (T : is considered part of the busy period of the second
2 2

stage); the second term corresponds to the cases when the server succeeds

IT
in completing service of k 2-customers, that is, B = Sil) + ... F S(k)
2

+ T21 where S(n) (n=1,...,k) have distribution S (t); the third term
2 2

corresponds to the cases when all of the present 2-customers are

serviced.
The Laplace-Stieltjes transform of BII(t) is
£12
(3.41) Bhs) = (1= t})T ()8 () + —2
o “T21 2 ~
1~ qosz(s)

1 al) 2
+ U [osqos (S)]}
1 2

and the expected value is

.tIZS .
(3.42) Bl(s) = (1-12)(T +F)e-22 -4 & L

o 21 2 1- o o B $12
o)

where C' and B' are given following Equation 3.30.



CHAPTER IV.

RELUCTANT SWITCHING

l. Introduction

In the two previous chapters we studied three simple policies which
are quite likely to be considered for the control of our queueing system.
In general we have to balance the behavior of the system, at least
gqualitatively, in terms of switching costs, waiting costs and service
costs. We mentioned that the SSP-policy is good when the waiting cost
in the second stage is high, and the FSP-policy if preferable when the
opposite occurs; the LNB-policy is better when the switching cost is the
critical factor.

It is desirasble to have some intermediate alternatives, for
example, how to avoid high queues in the second stage without incurring
high switching costs. To this end we shall now consider more general
control rules which can still be qualified as "simple" in the sense of
feasibility of implementation. Under these policies we shall see that the
server is comparatively reluctant to switching. We will examine three
policies, namely:

SSS(Q2 = N). The server continues availsble iﬁ the first stage until
the number of 2-customers reaches the value N. When this happens the server
goes to the second stage and serves all the present 2-customers before
switching back to the first stage. The label of this policy intends
the rule "Switch to the Second Stage when Q2 = N." Notice that the SSP

policy is the SSS (Q2 = 1) policy.

-68 -
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SFS (Q > N). After finishing all of the l-customers (end of the
L2

busy period of the first stage), the server goes to the second stage. He
stays there until all of the present 2-customers are served, unless the
number of l-customers reaches the value N. In this case the server
completes the service of the present 2-customer and then goes back to

the first stage. The label of this policy intends to rule "Switch to the
First Stage when Q1 > N." The FSP policy is the SFS (Q1 > 1) policy.

WNFS. After finishing all present 2-customers the server switches

immediately to the first stage only if the number of l-customers is
equal to or greater than N, otherwise he is removed from the system
(not available in either stage) and comes back to the first stage only
when the number of l-customers reaches the value N. The server stays in
the first stage until all of the l-customers complete service (end of
the busy period of the first stage), then goes to the second stage.
The LNB poli;y is the W1FS policy except for the fact that the server is
never removed under the LNB policy. (It would be better to define WOFS
as the LNB policy.)

We shall discuss the effect of these policies on the queue sizes,
waiting times and busy periods &s we did in Chapters IT and III, but

only the case of instantaneous switching will be considered.

——

2. The SSS (Q = N) Polic
g 2he folicy
The stationary conditions are
i+

(1) () w(1,5,0) = ) w(2,8,0p, , + 72,000, (120)

a=,

3

(Eq. 2.1 cont.)



()  m(1,i,3)

(C) ﬂ(l,i>j)

(a) m(2,1,3)

(e) m(2,i,N - 1)

(£) m(2,1,3)

=]
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i+
D mlLang - py_, * (1,0, - 1y,

a=

) mMeeedde (120,083 N-2)

il
o
[ e
i [\/J
=3
l_l
w
o
=
heg
e
]
®
™
v
o

0 (1>0, >N

When G(x) = I xan(l,a,N) is defined, we obtain the following

a=0
generating functions:

(2.2)
8) (X)Y)
1
and
(2.3) UZ(X,y)

Fuz(x,o) - U (0.y) - o (x) + yom(1,0,8]]

- m(2,0,0) + x[Ul(O,y) + m(2,0,0)

N
- y ﬂ(laOaN)]

yP(x)
x - yP(x)

v 6(x) - U (x,0)

Q(x)
y - Q(x)
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In order to completely characterize the state probasbilities
T(k,1,j) we now need to determine m(2,0,0), UI(O,y), Uz(x,O) and
G(x):

Since IUZ(O,y)I <1 for |y] <1, in particular when y = q>

Equation 2.3 yields
N N
(2.4) '"(23030) = q'O W(l,O,N) = qo G(O)
and then, by taking the derivatives of UZ(O,y) at y = 0, we get

(2.5) m(2,0,3) = T(2,0,0)

1
qj

o}
From Equations 2.2 and 2.3, using the arguments preceding

Equation 3.2 of Chapter II we get

N
UZ(S,O) - y‘NG(G) +[<§;) - ] (l "6)7]'(29030)
1l -

(2.6) Ul(O,y) = 5
U (8,0) - was) ,\7
= — +[<qo> -ﬂ m(2,0,0)
and
(2.7) U (x,0) = [0 o(x)

where § = §(y) is, as befare, the inverse function of y = x/P(x).
At this point it only remains to obtain G(x), since the quantity

m(2,0,0) is, from Equation 2.4, equal to ng(O).
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We have
N
3
(2.8) 6(x) = T = U (xy) ,
LE =0
where, from Equation 2.2, we can write
| 3" S Nk
(2.9) v r) = 260 ) (M A atey) S mte)
. ! e £ 3y
with
A(X,}') = Y[UZ(X,O) = (l - X)TT(Q,0,0)]
+ 11 - 0m(1,0,0) - GW - y(1 - XU (0,y)
2 p(xy) = U (x,0) + (1 - x)[G(0) - q"] - G(x)
dy o v=o 2 )
- (1 - x)Ul(O,y)
= -0 - @I 6 + (2 - 016(0) - o))
- (1 - x)Ul(O,y)
k X
E—E.A(x,y) = -(1 - x) Q‘E-U'(O,y) = -(1 - x)kU(k—l)
3y y=o SV y=o '
(2 <k < X)
and
B(x,y) = L
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N-k ' N-k

)| e WL oy oy

ay =0 N"k+1

X
Hence
(1 - x)[eE)]" N 1 )
_ - X x L X

(2.10) G(x) = el - 1,6(0) + Z X! (P(x)) Y,

The quantities ng) = (dk/dyk)Ul(O,y)]

2.6 and 2.7 in terms of G(k) = (d/dx)G(x)]X=o, 0 <k {N-1. Then, by

(k)

taking the derivatives G in Equation 2.10, we will have a system of

(0) o) 4m-1)

are obtained from Equations

N linear equations and N unknowns, namely G

We have

(2.11) U = (L<k<N-1)

The formule for differentiation of a function of a function is

k
k
a _ (m) : ’
(2.12) ;;E‘g(g) = EE? f (g)}iz (k,al,az,...,ak)
m=o
a a (k) %
. [g(l)] l[g(z)] 2¢ee [g ]
summed over a + 2a + ... f kak = k and al + a2 + ...+ ak = m.

1
(m) (k)

f and g denote the derivatives (dm/dgm)f and (dk/dxk)g,

respectively, and
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(k;al,az,...,ak)’ =

The coefficients a ,a ,...,ak and (k;a ,a ,...,ak)’, for each term of
17 2 17 2

the inner sum of Equation 2.2, are given by Table 2L4.2 or reference 1,

for 1 < k < 10.

With the above result we rewrite Equation 2.11 as

L
(2.13) u) o Z Zk,Q.g;-EG(‘S)l (12x<N-1)
=0 y
where
(2.14) ne = W) TEm Tee
dy y=o0 0<2<N-1
and
% L
d - (m)
(2.15) — 6(8) = Z r oG (0 <& <N-1)
& y=o m=o
with
> a &y a
(2.16) =), (5B sa ) 67 sy (6% %
1 2 ,Q,
(0 <fm<N-1)
summed over a + 2a + ... + %, =% anda +3 + ... +8a =mn,
1 1 2 1 2 3
and where
L
s Lo sy
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Hence
k )
(2.17) DR 1<k <N-1)
=0 m=o
f a N
(2.18) o = (C) d (1 - x)[P(x)]
ac & p(x)a) N - Mo
and
1o = )\
(2.19) B = iT o (P(x)) lx=o

Then, using Equation 2.10, we obtain the system of N linear equations

(0) 4(1)  4l)

with unknowns G ses ,

c N-1

k 2
(2.20) G(C) B E: E: E: 0LacBc:kngLrJZ,mG(m)

a=; k=) £=0 m=o

N, (o)

+ 0O < e <N - .
028 (1 £c<N-=-1)
This is an indeterminate linear system. One additional equation is
obtained by using the fact that G(1) = 1/2N (which can be seen from
Equations 2.2 and 2.3 and the relatiionship U (1,1) + U (1,1) = 1).
1 2

Equation 2.10 and L'Hopital's rule give



(-

(2.21) ng(o) = 7m(2,0,0) =

o f—
-
]

o)
]

o
N
|
ol g
o

=

2.1 Calculation of T, 2
- "In
)

L Bck and & . Our first step is to

- (dz/dyl)ﬁ(y)ly:o. We have & = yP(8) which

find the derivatives 6(2

gives
-1
(2.22) s - JLQ—E-P(-G) ,
1 -
dy y=o

vhere the derivative of P(§) are found by using Equation 2.12. TFor

example, using Table 2L.2 of Reference 1 , and denoting

(@/ad)P(x)| _= p(¥) _ klp we get
RONIRRE
Ly )
% 6(3) - S(Z)P(l) . [6(1)]2 p(1)
Lol o 400500, g50)(epa) | (00 5

6(5) - a(b)P(l) + {3[8(2)]2 N h6<1)6(3)}P(2)+ 6[6(1)]2 P(g)

i =

RO IO

. ete.
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Thus it is possible to determine 6(2) recursively. We can now calculate

o, PV Bauation 2.16.
The derivative of the expression for Zhp (Equation 2.1L) is

obtained as follows:

(2.23) & [o(8)" i} YZ"‘ b
: k 1-38 _ il °?
& y=o i=o
where
k-1 k-1
(2.24) oy = () S lae)n” () S o (8)
&y y=0 dy v=0
k-1
- (k (m) ’
= (i) Q j{: (k—l,al,az,...,ak_i)
m=0
[5(1)]a1[d(2)]a2 . [6(k—i)]ak—i
with Q&m) = ! q;N, where {q;N} is the Nth convolution of {qm} with
itself, and
(2.25) | b, = £1.i.._ 1 - : Z (1, )’
. | i = T T3 = :z: 38 58 se.ns8y
& y=0 m=0
[6(1)]31 . [6(1)]ai
Hence



The quantity Bck is

o if c <k
(2.27) Bck = ,

a°k X

e [1/P(x)] » if e2>k

dx : X=0

where
A I K = 1
m=0 k

. 8.1 A 8.2 a.c__k
o)1 0B, 1% e I8 )

with Pim) = m!p;F, where {p;F} is the k-fold convolution of'{pm} with
itself.

The quantity aac is

a
(2.28) a = (94 L
ac a dxa ‘ N N =0
[Q(x)])" - [x/P(x)]
e, a¥! 1 ’
- (8.) dxa_l s

Q) 1N - [x/p(x) ]V *°

where
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a
d 1
(2.29) a N N{
ax [Q(x)] - [x/P(x)] 'x=0
a m o
- 1 . ? *N _ 1
= ‘q._g Z (a,algaz,----gaa) [ql BIN]
m=o
a 8,
N 2 N a
® * -
[q2 BzN] cen [q& aNJ
m
l 3
= Z ( 5 Z (a,al,az,..u,aa)
mo = o
a
a 8 FRIERE )
. [q.*N] 1 [q*N] 2 e [qa ]
1 2
since 8 =0 because a < N.

all
2.2 Expected Number of Customers and Waiting Times. Using

Equations 2.2, 2.6, 2.7 and the relationship Ul(l,l) + U2(1,1) =1

we, first get

I
d - 1 - l 1
— U (x,0) = Np G(1) +G'(1) = Sp +G'(2) ,
ax 2 = 2 2 "2
=1
and
= U (o,y)'“ = (- p -p )+ m(1,0,N) - m(2,0,0)
¥y 1 v= 2 1 2

Then, applying L'Hopital's rule in order to evaluate the partial

derivatives of Uk(x,y) at x =y = 1, we obtain
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_ l-p =-p P
(2.30) = ——Ll—2 (5 +q )+ —2—[1/2(N-1)p + 2NG'(1)] ,
11 1 - 1 o _ 2
P 1 0
1 1
(2.31) g = LXi
21 2
(2.32) T = L+ +26(2) ,
12 2 2
(2.33) g, = 5=
22
where
A2E[(s + S )?]
Q, = 2 .
o 21 -p -p )
1 2

The expected values §£ ) a.k and Q'can be found easily from the
gbove results.
The waiting times, W1 and Wz, are given as in Section 5 of

Chapter II.

2.3 The SSS (Q2 = 2) Policy

The long differentiation procedure used in the determination of
G(x), for an arbitrary N, is very simple for N = 2. 1In this subsection
we shall study this case.

Equation 2.10 reduces to

(1 - x)[P(x)]?
[P(x)Q(x)]* - x?

(2.34) G(x) =

a2+ wpx) 0001



where the quantity
(o)

in terms of G =

—~
—
~

(2.35) ’ U1

which, combined with

(2.36) UEJ)

The quantity G(l)

(2.37)

is
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U(‘) = d/dy U (O,y)]y_o is obtained from Equation 2.6
1 1 =

G(0) and G(l) = G'(0). We have

5(1) d

™ Uz(x,0)|x=o + Uz(l’O)

Equation 2.7, yields

(o)

200,00 (1)

+ G

calculated from Equation 2.38. We get
q +2q
IR O I R (O
qo D g2 1

which, combined with Equations 2.36 and 2.21, determines the quantities

(o) (1)

G and U of Equation 2.34. We get
1
(2.38) G(x) = =(1-p -p) l-x -
, 2 1 2 ) x
[Q(x)] - [P(X)]
X
% * po(qo * 2q1) P(x)
q, * po(q + 2q )

and the probability of an empty system,
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4

(2.39) m(2,0,0) = 5 (1-p - p) :
9, * P la, *+ 29 )

Notice that the nonsaturation condition is still 1 —p1 - o2 > 0.

The expected number of customers given by Equations 2.30 through

2.33 are
5 3;;21L;;11&_ __ELL__ 1 '
I e E i URLEES oy IR <1>] ,
= - 3
(2.41) Q21 =3
(2.42) g = 2p +26'(1) ,
12 2 "2
- 1
(20)43) sz - 2 9

where, from Equation 2.38,

p (g +29 )(1~p)
S L 1 %-(3 p - P-1) %0 .
2[qo + po(qo + 2q1)]

(2.44) G'(1) =

2.4 Busy Periods. The busy period BII during which the server

is continuously working in the second stage has distribution

(2.45) BII(t) = S*N(t)
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The busy period BI is defined as the time necessary to accumulate
N customers in the second sﬁage. During this time the server may be
inactive in the first stage. This happens when the first stage becomes
empty and the number of customers in the second stage is less than N.
We see that if BI starts with i l-customers, its duration has the
distribution of the time until the Nth departure from an M/G/1 queue
having service time distribution Sl(t), given that the system starts
with i customers. |

Let aN be the number of times the first stage becomes empty until
Just after the N - 1 first departures. Given uN = k, we see that BI

*k( -t

#
has distribution SIN * A 7(t), where A(t) =1 - e is the interarrival

distribution and S (t) is the service time distribution of the first
1
stage. If le is the number of customers in the first stage at the time

the server arrives from the second stage, we have

N—l 00
I _ .
(2.16) B 1) = 7y ) w(2,1,0)
2 k=0 i=o0
B
P loy = x|a = 1Js * AT(x)
In Takacs ([21], page 98), we find
(2.47) P lo, > k'le =il = PIn<uq =1i+x] ,

where n is the number of customers served in a busy period. Thus

we have



N1 N-i
(2.148) Bl(s) = ﬁ—;—i—,—o—)- Z Z m(2,1,0)
i=o k=0

-[{P[n < NIQ12 =i+k-1]-P[n< NIQ12 =i+ k]}]

. St * A*k(t) + ﬁ'?%??f? :z: m(2,i,0) STN(t) s
2’ i=N :
where N-) o \
P[n < N[le = 3] = Z ﬂ-jw -(-M-)——-t e asln(:r) (N > 3)
oo o (n - 3)!
= 0 . (N < J)

Simplification of the right-hand side of the above equation is not
gpparent.

The busy period of the server, BS, is defined as the time elapsed
since the server starts the service of a l-customer that terminates
an empty period of the system, until the system becomes empty again for
the first time. This busy period may contain, as for the busy period
BI, intervals corresponding to situations when the first stage becomes
empty and the number of customers in the second stage is less than N.

We have not succeeded in finding the distribution Bs(t), nor its

Laplace-Stieltjes transform.

3. The WNFS Policy

Under this policy the server switches from the first to the

second stage when the first stage is empty and returns to the first stage
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when all of the second stage is empty and if at least N l-customers
are present. Otherwise the server removes himself from the system,
and returns to the first stage when N l-customers are present. As
indicated in Section 1, the WNFS policy is a generalization of the LNB
policy discussed in Chapter II. For this reason we expect to have

a sclution procedure similar to the iterative scheme presented in
Section 3 of Chapter II. Some difficulties will arise with this type
of solution, but as in Chapter II, we are able to find the state
probébilities by a direct approach.

The stationary conditions are

(3.1) (a) m(1,i,1) = O (i <N -1)
i+ N-,
(®)  w(1,i,1) = Z m(2,8,0)0; oy * Py, Z m(2,2,0)
a=N 8=0
i+ (t2¥-1)
() w21, = ) e -y, (12037 2)
8=1
i
(@) m(2,i,3) = m(1,0,3 +1)q, + Z m(2,8,3 + 1o,
8=0
(i >0, >0)

The generating functions of {n(1,1,3)} and {«(2,i,3)} are

| U (x,0) - U (0,5) + xH(1) - H(x)
(3.2) Ul(x,y) = yP(x) —2 :

x - yP(x)

and
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Q(x)[U (0,y) = U (x,0)]
1 2

(3.3) U (x,5) = ,
2 y - a(x)
N-3
where H(x) = % m(2,a,0)x>.
a=0

Using the arguments preceding Equation 3.2 of Chapter II, we

obtain

(3.4) U (0.y) = U2(5,0)+5NH(1)-H(5)
and

(3.5) U (x,0) = U(0,) ,

where, once again § = §(y) is the inverse function of y = x/P(x),
and Q = Q(x).
Let x, = x and Yo=Y with !xl <1 and ]y|'< 1. Define x; and

¥is 120, 0y

(3.6) x, = 8,
and
(3.7) Vie, = Q(xl)

Siubstituting Equations 3.6 and 3.7 into Equations 3.4 and 3.5 we get

(3.8) U (0y;) = U (x50 *+ xy, B - Hx, )

and
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(3.9) U (x,,0) = U (0,y., )
2 1

Adding Equations 3.8 for i = 0,2,...,2N-2, to Equations 3.9 for
i=1,3,...,2N-1, we obtain

N-,

_ N
(3200 U 0x) = U Ogy) + Y [ #Q) - n

Similarly, let i = 1,3,...,2N-1 in Equation 3.8 and i = 0,2,...,2N-2

in Equation 3.9. Summing these equations we get

N
(3.11) U (x,0) = U (x,,0) + Z [xy H(1) - H(x, )]
n=;

We proved in Section 3 of Chapter II that the sequences {X.?N}

and {YQN} converge to unity. The sums in Equations 3.10 and 3.11 are

N
convergent, since lH(xi)l <1 for lxil < 1 and the sums I (X2n -1)
N-, n=,
and I (x2n+l - 1) are convergent (see Chapter II).
n=o0

Thus we mey write

(3.12) UI(O,y) = UI(O,l) —Al(y)
and
(3.13) U (x,0) = U (1,0) - A (x) ,
2 -2 2
where
(3.14) A = Y gy ) - g EQ))



k
C)'{
¥

N

) - %,

H(1)]

(3.15) A = ) [E(xy,

Notice that when N = 1 we have H(x) = m(2,0,0), consequently
Equations 3.12 and 3.13 reduce to Equations 3.11 and 3.12 of Chapter III,
respectively.

We now discuss the difficulties of determining H(x). First we
notice that

k
4 u(x) = &y (x,0)
Xk 2

dx X=0 d

(3.16) 15 (0)

X=0

- Uik)(o,o) 0 <k <N-1)

One method to be attempted is to use Equations 3.5, 3.4 and 3.16 in

order to relate the quantities H(k)(o). We have

(3.17) U;(x,O) = Q'(X)U;[O,Q(X)]

and

(3.18) Ulf0,(x)) = 6'[a(x)] vlls[a(x)1,0] + wls[a(x) 11"

- H'[6(Q(x)]]

Unfortunately Q(0) = g, this means that, in general, H(k)(O) will appear
k
i )(q )

as functions of unknown quantities, ol



-89~

Fortunately, however, the state probabilities n(k,i,j) can be
determined by the direct approach of Section 7 of Chapter II, which is
based on the properties of the busy period of an M/G/1 system. Let

bm(i), ai(n) and ck(n) be as defined in Section 7 of Chapter II. We

have
(5.19) c (n) = i by(ia;(n)
izﬂ-l ) |
ck(n) = [Z ck_l(m)} Z bN(i)ai(n)
m=1 i=N
+ ZE: jii ck_l(m)bm(i)ai(n) (k >1) ,
m=N i=m

where bm(i) and ai(n) are given by Equations 7.2 and 7.3 of Chapter II,

respectivelyﬂ The staté probabilities =(2,n,0) can be written as
(3.20) H(2,0,0) = x(2,0,0) ) e (n)  (a>0),
k=1

where (2,0,0) is determined by the relationship

N-1 N-1
(3.21) WH(1) - H'(1) = N Z x(2,m,0) = ) nx(2,,0)
n=0 n=1

1
= = (1 - -
5(L-p -0)

which is derived from Equations 5.3 through 3.5 combined with the fact
that U2(1,1) = 1/2. The remaining state probabilities are found by

Equations 3.1.
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J.1 TExpected Number of Customers and Waiting Times. Using

Equations 3.4, 3.5, 3.21 and the fact that &'(1) = (1 - p )-l, we
1

find that Ui(O,l) = 1/2 and U;(l,O) = 1/2 p_+* Next, knowing that

&"(1) = (1 - pl)_2 [2pl + K2E[Sf](l pl)_l], we obtain

1 1
U"(0,1) = =——————(p +0Q) +
1 - + o)
1 pl p2 1 (l_p)2_p2
1 2
- My - D)u(1) - 5#Y(1)]
and
1 _1—_2 2 211
U2(l,O) = 5\ E[s2] + p2Ul(O,l) ,
where R
2
ME[(s, +5,)"]
Q = .
2(L -p -p_)
1 2
These derivatives are then used to obtain the expected values
Q%K from Equations 3.2 and 3.3. It results that formulas 4.1 through

4,10 of Chapter II are also valid for this case if for QO we substitute
-1
Q@ + (L -p -p) " [N - DE(D) - 5"(1)] .

The probability distributions and expected values of the waiting

times W and Wé are given as in Section 5 of Chapter II. The values of
1

and Q
.2

Uk(x,y) are given by Equations 3.2 and 3.3; the quantities Q
11

are obtained as indicated above.

*

I

)
U'{0,1) = U '
1(0, ) 55 l(x,y) . and Ug(l,O)

0
3 UE(X;Y)
y=1 y

Il
o
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5.2 Busy Periods. For this WNFS policy the busy period of the

server, BS, is the time elapsed from the moment the server returns to
the system (N l-customers and no 2-customers are present) until the
departure of a 2-customer who leaves behind him less than N l-customers
and no 2-customers. In order to find the distribution of BS we notice
that, if the same realizations of arrivals and services are simulated

in an M/G/l system, with service time equal to the sum of the service
times in both stages of our sequential system, and if at the termination
of B> the sequential system has i customers (l-customers), then the
M/G/l system will also have i customers (assuming N customers were
present at the beginning of the simulation), O < i < N, This occurs
with probability =(2,1,0) (unconditionally) and distribution Bi(N—i)(t),
where Bo(t) is the distribution of the busy period of an M/G/1 system

with service time distribution § * S2(t). Hence, conditional to the
1

set of all possible ways of starting the busy period BS, which has

N-1
probability H(1) = » =(2,i,0), we have
i=o
N-1
S 1 ) *(N-1
(3.22) B”(t) = E) Z n(2,1,0) BO(N l)(‘t) .
i=o

The Laplace-Stieltjes transform is

: ~(8) 1 N

(3.23) B/ (s) = ETTT'[B(S)] H [ gts).]
; -5 Eg

(3.24) B = my [WvH(1) - H'(1)]

S +8
1 2

- ZH(1) ’



because of Equation 3.21 and the fact that §g = (S + §é)/(1 -p -p ).
1 1 2
A similar situation occurs with the distribution of the time

during which the server is removed, I(t). We have

. N-1
(5.25) O RN GO RO

where A(t) = 1 - e_Xt is the distribution of the interarrival times.

We get
bo to -y [ ][]
and

(5.27) T = ml-l-yu -p -p) -

.
The busy periods of the first and second stages, BI and B*I, are
defined as before.

For the first stage we have

o0

(5.28) BI(t) = ﬁ—(%isy [H(l)BN(t) +-j£: n(2,i,O)Bi(t)J s

i=N

where, as in Equation 6.1 of Chapter IT, Bi(t) is the distribution of
the busy period initiated by i customers in an M/G/l system with

service time distribution S (t). We get
1
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(5.29) Bli(s) = U—ﬁ,—oy[ml)[ﬁ(s)JN - H[B(s)] + Ug[%’(s),oﬂ ;

where UZ(X,O) is given by Equation 3.13. Equations 3.2 and 3.21 and
the fact that U;(l,o) = 1/2 p» yield
S S

-] 1

- 1 -
(3.30) B™ = 56213367- = R (07

1

where A (0) is given by Equation 3.1k,
1

For the second stage we have

(3.51) B(8) - 5oy i 7(1,0,5)8.9(8)
. =

(3.52) BM(s) = le?%ﬁYUl[O’gg(S”

and

(5.33) B - Q—Ul%_,ﬂ = 2U2—S(-i0) = QA%O)

The average number of cycles in the busy period of the server is

(5 54) ~ ES A1(0> ii [ H(Xgm-l) o) }
o (o] = = = - X
B—'I + gII H(l) = H(l; 2n+1

Z ke, (0)

k=1

1]
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k. The SFS (@ 2 ) Policy

Under this policy the server switches to the other state leaving
no backlog in the present state, except when, at departure of a 2-customer,
at least N l-customers are present in which case the server switches to
the first stage. The analysis of this policy is similar to the analysis
of the WNFS policy. In this case the function H is two-dimensional.

The steady-state probabilities are related by

i+1
(%.1) (a) n(l,1,1) = If(Q,0,0)pi + Z H(e’a’o)pi—a+l (1 2 0)
a=1
i+
() w113 = ) e -Lp L, (O<icn-2
a=1 J>2)
i+1 it
(c) n(1,1,3) = n(l,a,J - 1)p. + n(2,a,j - 1)
1-a+1
a=1 a=N
(i1>N-1
: J>2)
(d) JT(E:iJj) = qiﬂ(l,O,j +1) +Z qi—a (28,3 + 1)
a=0
(9<i<UN-2
j>0)
N-1
(e> “(21113) = qiﬂ(lyoij +1) + z qi-—a n(25a,3 + 1)
a=0

C
v v
o =
p—

I
.
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Letting © ©
H(X:Y) = Z Z XN+a J 1(2,N + a, J)
J=1 a=o
we get
(4'2) . (x’y) ) (X = l)ﬂ(E:OJO) + Uz(xyo) - Ul(O)Y) + H(X:Y) yP(X)
1 x - yP(x)
and
U (O,y) - U (x,0) - H(X:.Y)
(k.3) 0 (y) - 2 Q)

y - Q(x)

Notice that the two last equations have the same structure as
Equations 2.5 and 2.6 of Chapter II. This is expected since the present
policy, for N - », is the policy studied in Chapter II.

Applying once more the arguments of Chapter II we get

() 0, (0,5) = U_(5,0) + (5 - 1)x(2,0,0) + H(5,)
and
(+.5) U (,0) = U (0,0) - H(x,Q)

where Q = Q(x) and ® = d(y) is the inverse function of y = x/P(x).

Using the same iteration scheme of Chapter II, we find

()‘1'6) Ul(O:Y) = Ul(O,l) - H(Q:O)O)Al(Y) +B1(X:y)
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and
(%.7) U2(x,o) = U_(1,0) - ﬂ(2,O,O)A2(x) *B_(6y)
where
(+.8) A = Y -xy)
n=o0
(+.9) B =y (exy)
n=1
(+.10) B, (,y) = Z I:H(X2n+1’y2n) 'H(X2n+1’y2n+2>]
and
(k.11) BZ(X’y) = z [H(XEn’yEn-l) ‘H(Xgn_eyy&,l_l):l .
n=1

The value of x(2,0,0) can be determined analytically from the
equations above and the fact that Uk(l,l) = 1/2. However we can see
that its value is 1/2(1 - pl - p2) since, under this policy, the server
is active whenever customers are present in the system (see comments
following Equation 3.5 of Chapter ITT).

If we let x = y = O in Equations 4.6 through 4.11, we get

A (0) =1+ A2(O) and B (0,0) = Ba(0,0) - H(1,1). Thus
1 1 ¢

(k. 12) U (0,5) = 5(1-p -0 ) (0) -B (0,0)

and
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(4.15) 0,(1,0) = F(L-p -p)A(0) -B (0,0 - H(1,1) .

We shall now obtain the function H(x,y), by finding the state
probabilities n(2,i,j), using an approach similar to the determination
of the function H(x) of the previous section.

Let bm(i) and ai(n) be as defined in Section 7 of Chapter IT,

and define
ck(m,n) = probability that, starting with an empty system,
the termination of the kth cycle occurs when
there are m l-customers and n 2-customers in
the system.
We have
N-1 00
(.14) (a) cl(m,n) = :E: bl(i)ai_n_l(r)al(m -r)
' r=0 i=m+l
0 ©  N-1
(b) ck(m,n) = :E: :E: e, l(u,o)b (1)al 0 l(r)al(m -r)

where IV =max{u + 1, n - v + 1}. From this we get
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0

1
L“. 2 = ~ - - .
(4.15) 1(2,m,n) 5 (-0 -0) c, (m,n)
k=1
With this we can find H(x,y) from its definition.
The remaining state probability, i1f needed, can be found from
Equations 4.1.

4.1 Expected Number of Customers and Waiting Times. Let

o
HX = 5% H(X:Y) )
X=1
y=1

and let H , H , H and H Dbe similarly defined.
yoooxxTyy Xy
-1
Using Equations 4.4 and 4.5 and the fact that 8'(1) = (1L -p ),
1
we find U'(0,1) = 1/2 + Hy and U;(l,O) = 1/2 p, = He- Next, knowing
1

that 8"(1) = (1L - p )72 [20 + AZE[S2](1 - p )™'], we obtain
’ 1 1 1 1

1

u"(0,1) = —————— +Q ) + —m———— + H
1( 1) 1-p +p (pl O) 1-p +p vy
1 2 1 2
and
1 2p
1 0 - __}\2 2 + 21 0 _ 2 _
U2(1) ) 5 E[S2] ngl( Jl) 'l'——_“-_ o - p ny HXX
1 2
These derivatives are then used to obtain the expected values
§££ from Equations 4.2 and %.3. We get
, 1 0,
4,16 ) = + +2p H —e
( ) Qll <pl QO 02 xy) l - + p J
1 2
(4.17) T = (L+p +Q 420 ) e ,
21 2 ° xy’ 1 - 2N te,
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— ) 9]
4,18 =[ c_ ]_____,.2_____
(4.18) Q, L+p +Q szXy N

1

and

~ 1
L, = 2 —_——— .
(k.19) o, = (o +Q+Hy)l_p+p

" The probability distributions and expected values of the waiting

times W and'Wé are as in Section 5 of Chapter II.
1

L.,2 Busy Periods. By the arguments of Section 6 of Chapter II,

the busy peribd of the sefver, BS, has the distribution of the busy
period of an M/G/l system with service time distribution Sl * Sz(t).
Consequently its expected value is 85 - (5; + §;)/(l P - pz).

The distribution of the time the server is continuously serving

l-customers is

™1

(k,20) BI_(t) = WLI) +U (1,0) [Z n(2,i,j)Bi(t)

1=N J

1

[0
+ z n(2,1,0)B, (t) + rc(e,o,O)Bl(t)} .
i=1
where Bi(t)’ as in Section 6 of Chapter II, is the distribution of the
busy period of the first stage initiated by 1 customers.
Knowing that U (0,1) = Ug(l,O) + H(1,1) and B =B =5 /(1 -p )
1 1 1 1

we get
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(k,21) gI(s) = : % [H[ﬁ(s),l] + U2[§(s),0]

la-e e BE -1,
1 2

which implies

o
|

4.22 =T _ 1 - _ 1 —_— .
(+.22) S, - Tp ~pJE(0) - & (0,07 5,
1 1 2 1 1

In order to derive the distribution of the busy period of the

second station, we first get

© n-1
(k.23) A(n) = zz: ai(i) - 1 -\ gii)

i=n i=0
where

I

's"ii) fom 319-1,- as_(t) .

Now, noticing that BII starts when the state of the system is (1,0,3)
with conditional probability n(l,O,j)/Ul(O,l), and that the server

can complete service of k 2-customers (1 <k<J - 1) with probability

N-1

(4,24) gkj = Z ak_l(r)K(N -r) ,

r=0

and of j 2-customers with probability

(+.25) 553 = E: aj_l(r) ,
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we get

o J
IT 1 . - *k
(4.26) B (t) = W Z _n(l,O,g) z akj S (t) .
J=1 k=1

Instead of obtalning ﬁiI from the equation above we can use the

relationship

[oe]

— g5
(+.27) c = Z ke, (0,0) = ———=% >
= B~ +B

where ck(0,0) is found by Equation 4.1k, We get

§ +8
(4,28) il - - _-]'3'I ;
(L-p -p)c
1 2




CHAPTER V

DISCUSSION

1. DNumerical Comparison of Policies

In this section we compare the effect of policies LNB, SSP and
FSP, for the case of exponential service times, on the average values

—

of the waiting time in the first stage (Wl), the walting time in the
second stage (ﬁ; =W -W - §-), the busy period of the first stage (Ei)
and the busy period of the second stage'(ﬁiI). We consider three
situations of total traffic intensity, p = p1 + pz, representing heavy
traffic (p = 0.9), normal traffic (p = 0.5) and light traffic (p = 0.1).
In each case we obtain curves of the pertinent average value as a function
of the traffic intensity in the first stage (pl) which varies from zero to
0 (p2 varies from p to zero).

Assuming A = 1 and using the formulas of Chapters II and III

(see Table I) we get

Q, = [P*=p (0 -0)1/11~-0p)
1 1

LNB-Policy

=]
]

(p +Q)2-p)/(L=-20 +p)=-p
1 o 1 1 1

W' = [p?2+(p-p)1+p-p0)+ Ql/(1-20 +p)
2 1 1 1 o 1

B o= p /(1= 0)/A (0)

EEI

=p /(1 -p)/A (0)
2 1

where A {0) is obtained as in the example of Section 8 of Chapter II.
1

-102-
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SSP-Policy
W1 = Qo
W' o= 0
2
B = o
1
§1I = 0
2
FSP-Policy
Wo= (p +Q)1-0)/(1=-p)-0
1 o 1 1

W; = o(ol+Qo)/(1-pl)
B =ol/[2—o—(1+o-ol)'1]
BT =P, /12 - p - (1+o—pl)'1]

The quantities above are plotted in Figures II through VII. From
these figures we clearly notice that the effect of different policies
on the average busy period is negligible for low values of p. For all
policies, the average wait in the first stage is minimized near
ol = p/2 and in the case of policies LNB and FSP we see that the average
wait in the second stage increases surprisingly fast as the traffic

intensity in that stege decreases (p increases).
1
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2. Practical Implications of Availability of Numerical Results

For practical employment and engineering consideration the first
question that may be asked is: Are the average values numerically
available? We shall now have a few remarks on this question and more
general aspects.

In the case of policies LNB, SSP and FSP, with instantaneous or
with random duration of switching, the average values of all considered
queueing properties can be easily calculated by the formulas of Chapters II
and ITI,which do not require calculation of the state probabilities.

=IT

The determination of the values of Ei and B"7, in the case of the LNB

policy, takes a few more steps since they depend upon the quantity
o0

2z 7‘(2)1:0)/ L-p - pz)’ but, as

. 1

i=o
illustrated in Section 7 of Chapter II, the iterative scheme developed

Al(O) = U2(l,0)/n(2,0,0) =2

in Section 5 of that chapter is very efficient for finding Al(O) without
explicit calculation of n(2,1,0).

For policies W FS and SFS (Ql > N) we need first to calculate
some of the state probabilities, =(2,1,0), for which we provided methods
of solution. These methods depend upon the values of the probabilities
bm(i) of having i departures from the first stage during the busy
period of that stage started by m customers. These values, in the case
of high utilization of the first stage, may be not negligible for large
i, therefore the nested summations involved must have large upper limits,
which implies a great amount of calculation, as, for example, in the
case of Equations 4,14 and 4,15 of Chapter IV, where we have five
nested summations. Although a straightforward computer program can be

written for these policies, we have not made any actual calculations.
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For the S8SS (Q2 = N) policy, even the calculations of average
values, for which we provided solutions depending on the function G(.),
may be expected to encounter numerical difficulties., In this case the
use of special computer languages with capabilities of symbolic
differentiation might be helpful.

Next we shall comment on the fead&ibility of the calculation of
the distribution of the pertinent random variables: for the state
probabilities, except in the case of policy SSS (Q2'= N), we would

first find n(2,1,0) (0 < i < i, where ij is some truncating value which

T
depends on desired accuracy) for which we provided recursive schemes of
solution, then we use the corresponding stationary conditions for
calculating the remaining state probabilities. The distributions. of
the waiting times, W;(t) and Wé(t), can be found by numerical inversion
of their Laplace transforms (an efficient algorithm is.given by Stehfest [18])
which are given in terms of the functions Uk(x,y). The distributions
BI(t) and BII(t) can also be found by the same approach, although explicit
expressions for these distributions are given in terms of the distribution
of the busy period of the M/G/l system started by i customers, which
may take great amounts of calculation in the case of high utilizations.
Evidently, in the case where BI(t) and BII(t) are given by simple
expressions like, for example, BII(t) = S:N(t) or BI(t);= Sl(t), we would
not use this approach.

As shown in Table I, we were not able to obtain the distribution
of the busy period of the server for the LNB and FSP policies for the

case of random duration of switching, and for the SSS (Q2 = N) policy.
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The difficulties in these cases are due to the fact that during these
busy periods the cycles are not homogeneous in the sense that they are
formed, possibly, by the sum of distinet random variables, For example,
for the LNB policy with random duration of switching, the switching
intervals T12 are combined with the intervals during which the server

is working in each stage. We can say that each customer served during
BS has his average service time increased to 5; + 5; + SO where SO
represents the average "share" of each customer in the total duration
of switching. It is not clear how So can be obtained. In the case of
the SSP policy, since the server follows the customer through the
system, this "share" is simply 5;2 + Tél and, therefore, we can consider
that the service time distributions in the first and second stages are
Sl * le(t) and S _ * TZl(t), respectively. Thus, the busy period 8> has
distribution equal to the distribution of the busy period of an M/G/1
queueing system whose service time distribution is the convolution

S *¥5 *xT7 *7T (%),
1 2 12 21

3. History of the Work

At the beginning of this research we were concerned with two
sequential queues with exponential services and interarrival times,
where the service rates in each service facility could be controlled,
at any time, depending upon the number of customers in each stage of
the system., We assumed at most two alternatives for the service
rate of each facility (which were allowed to operate simultaneously),
each alternative having a corresponding cost rate. Given linear waiting

costs and no setup costs, we intended to characterize the optimal
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policy of changing the service rates, so as to minimize the average
cost rate. Our first step was to consider special cases as, for example,
the case of "local" optimization, in which the decision of changing the
service rate of one facility depends only on the number of customers
in the queue in front of that facility, independently of the number of
customers in the other {optimization by stages). The answer to this
problem turned out to be trivial, since, according to Reich [15]
the departure process of a state dependent M/M/1 queueing system is an
independent Poisson process with the same rate of the arrival process.
With this result we see that the two stages of the system are
Stochastically independent, therefore, the optimal policy is as
characterized by Crabill [T7], in each stage.

Another case is when the service rate in one of the facilities
is constant and the service rate in the other one may vary, depending
on the number of customers in both stages of the system; We did some
numerical experimentation, using Markov decision programming techniques
(Howard's and White's algorithms) in the case of finite queue
capacities, These indicated that the optimal policy is approximately
the same as the optimization by stages. Some theoretical characterizations
were attempted mainly because the algebraic structure of this problem
seemed to suggest some simplifications (the matrix of rate of
transitions is tridiagonal by blocks, each block being sparse and of
simple structure). Fitting to this same algebraic structure is the case
of an M/Ek/l queueing system where the rate in each phase of the Erlang

type of service is controllable, For this problem we were able to
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generalize one of Crabill's [7] results of the controllable
M/M/1 system. In the case of monotone increasing holding costs, under
some restrictions, with two alternatives for service rate, it appears
that the optimal policy is characterized by the values z* and N* such
that, if the number of customers in the system is n < N*, then use
the slow service, if n > N*, then use of the fast service, if n = N*,
then use of the slow service when the service is in phase [ < !* and
use the fast service when £ > z*. However, we do not offer a proof
to this effect.

Still another interesting problem, which later led us to the
problem of this thesis, is the case where the chosen service rate
alternatives at a given time, say ul and ua, must be such that a p +

11
a b < ¢, where a and a are constants and c represents a certain

22~ 1 2

total service capacity.

Analytical results of the cases mentioned above were quite limited
and the numerical experiméntations did not lead us to any discovery
of efficient methods of reducing the cost of the computations to the
point of usefulness. However, a simpler form of the problem with
limited total service capacity, with the additional restriction of Hye
being equal to c/ak or zero, k = 1,2, opened up new possibilities, since
in this case simultaneous service in both stages was not allowed (this is
the case of a single server), It was then possible to assume more
generai service time distributions keeping the analytical considerations

at a tractable level. Using departure epochs, this problem is a Markov

renewal programming problem and, in the case of finite queue capacities,
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the optimal policy can, at least, in principle, be cbtained by Howard's
algorithm in any given case., However, in the meantime we became more
interested in the behavior of special policies that by their simplicity
promise to be of practical significance. This thesis has been

concerned with such policies.

L4, Related Topics and Possible Extensions

Evidently, the six policies studied in this thesis do not constitute

all possible "simple" switching policies. We can, for example, imagine

the case where the server, upon completing the serving of a customer

in one stage, remains in that stage only if the number of customers (Qk)
in it is less than the number of customers (Qz) in the other stage,
otherwise he switches. The "reluctant case" for this policy would be:
The server remains in the present stage if Qk Z-Qz + N, otherwise he
switches. Other policies could be obtained from the combination of the
previously defined policies, for exam?le, policies SSS(Q2 = M) and WNFS
can be followed simultaneously. These new rules can be analyzed by the
methods used in this thesis.

As mentioned in Section 3 of Chapter II, the methods of analysis
for parallel queues [Takacs [20] and Eisenberg [8,9]) are similar to
the methods of this thesis and, therefore, we may expecf that some more
general models, results of the combination of parallel and series queues
attended by one server, céﬁ Ee analyzed by similar methodology. An
interesting problem to consider would be the case where the second stage
of the sequential model receives, besides the customers from the first

stage, an independent Poisson stream of customers. We could also consider
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s parsllel system with two service facilities (F1 and Fz)’ vhere a
customer departing from one service facility, say F1’ is fed into the queue
of facility Fz’ provided that the customer has not received service

im facility Fz. These two models are special cases of a more general

situation where a customer, upon completing service in facility F, , leaves

k
the system with probability Pk and goes to facility FQ (2 #%k; k=1,2;

L

1,2) with probability 1 - Py > provided that the customer has not

received service in Fz. The dimension of the state space for this model

would be quite large, since we have to keep track of all types of
customers in the queues and in service. A simple‘case of this model

is when the arrival rate (of customers coming from outside the system)
to one of the facilities is zero. This corresponds to %the model of this
thesis with the additional condition that a customer departing from the
first stage leaves the system with probability p1 and goes to the second
stage with probability 1 - pl. There should be no difficulties in
extending the results of this thesis to this model, for all of the six
policies.

An important aspect.to be considered is the numerical implementation
of the solutions, mainly the ones corresponding to the reluctant policies,
in particular policy SSS(Q2 = N). The assessment of the accuracies in the
calculation of the state probabilities is very important since all of the
pertinent quantities are expressed in terms of these probabilities. This
is a task that we expect to undertake in the near future. At the time this
thesis was concluded only a few numerical experimentations were made and
no conclusive answers were found. This is why we 4did not include the case

of reluctant policies in the numerical examples of Section 1.
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The method of analysis of the polic& SSS(Q2 = N) seems to be weak.
An alternative approach is to eliminate from the original chain the
departure epochs of the second stage, except the last departure. However
with this epproach we would have a wesker description of the behavior of the
system.

An intriguing question is whether or not there is any relationship
between the iterative scheme of Section 3 of Chapter II and the direct

approach shown in Section T of the same chapter.



[

10.

11.

12.

13.

14,

LIST OF REFERENCES

M. Abremowitz and I. A. Stegun (editors), Handbook of Mathematical
Functions, Dover.

B. Avi-itzhak and M. Yadin, "A Sequence of Two Servers with No
Intermediate Queue," Management Science, vol. 11, 553-56L4 (1965).

B. Avi-itzhak, W. L. Maxwell and L. W. Miller, "Queueing with
Alternating Priorities," Operations Research, vol. 13, 306-318
(1965).

P. J. Burke, "The Dependence of Delays in Tandem Queues," Annals
of Mathematical Statistics, vol. 35, 87L-875 (1964).

, "The Output Process of a Stationary M/M/s Queueing
System," Annals of Mathematical Statisties, vol. 39, 11Lk-1152, (1968).

R. B. Cooper, Introduction to Queueing Theory, The Macmillan Company,
New York, 1972.

T. B. Crabill, "Optimel Control of a Queue with Variable Service
Rate," Tech. Rep. No. 75 (1969), Dept. of Operations Research,
Cornell University.

M. Eisenberg, "Two Queues with Change Over Times," Operations
Research, vol. 19, 386-L01 (1971).

» "'Queues with Periodic Service and Changeover Time,"
Operations Research, vol. 20, 4L40-451 (1972).

R. A. Howard, Dynamic Probabilistic Systems, vol. II, Chapter 15,
Wiley (1971).

G. C. Hunt, "Sequential Arrays of Waiting Lines," Operations Research,
vol. 4, 67L-683 (1956).

R. T. Nelson, "Labor Assignment as a Dynamic Control Problem,"
Operations Research, vol. 1k, 369-376 (1966).

» "'Dual-Resource Constrained Series Service System,"
Operations Research, vol. 16, 32L4-341 (1968).

M. F. Neuts, "Two Queues in Series with a Finite, Intermediate
Waiting Room," Journal of Applied Probability, vol. 5, 123-1k2
(1968).

-118-



-119-

15. E. Reich, "Waiting Times When Queues Are in Tandem," Annals of
Mathematical Statisties, vol. 28, T68-773 (1957).

16. ,"Note on Queues in Tandem," Annals of Mathematical Statistics,

vol. 34, 338-341, (1963).

17. V. K. Sshney, "Single-Server Two-Machine Sequencing with Switching
Time," Operations Research, vol. 20, 24-36 (1972).

18. H. Stehfest, "Numericel Inversion of Laplace Transforms," Communi-
cations of the ACM, vol. 13, No. 1, (1970).

19. J. S. Sykes, "Simplified Analysis of an Alternating-Priority Queueing
Model with Setup Times," Operations Research, vol. 18, 1188-1192
(1970).

20. L. Takacs, "Two Queues Attended by a Single Server,'" Operations
Research, vol. 16, 639-650 (1968).

21. » Combinatorial Methods in the Theory of Stochastic Processes,
Wiley (1967).



?IllHHIHHIIIUI?IHHNIIMHIHIIHI?IIIIHHI\IIIHIHWI

9015 03483 5754









