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A General Theory of Minimum-Fuel Space Trajectories

by
Iucien W. Neustadt +

Introduction: This paper is concerned with the trajectories of

vehicles moving in free space, i.e., of vehicles that are subject only to
gravitational and propulsive forces. The following problem is fundamental
in the control of such trajectories: Given the vehicle position, velocity,
and mass at a specified initial time, find a propulsion program that brings
the vehicle to a prescribed terminal state (in a terminal time which may be
free or fixed) with a minimum expenditure of fuel. Such a program will be
called optimal.

The mathematical treatment of this problem depends very strongly on the
model used for the fuel expenditure. In the case of a rocket engine, an ex-
cellent approximation is that the rate of fuel consumption is proportional
to the magnitude of the thrust vector, and this article will deal exclu-
sively with this representation.

We shall assume throughout that no constraints are imposed on the ve-
hicle position and velocity. This assumption is physically reasonable in
many (but by no means all) space problems. Further, except for a brief dis-
cussion in section 9, we shall always suppose that there is no constraint
on the allowed value of the thrust vector. Minimum-fuel thrust programs in
the absence of any such constraints generally consist of a finite number of

impulses. Although impulsive corrections can never be realized by an actual



rocket engine, a knowledge of the optimum impulses will often make it pos-
sible to compute the optimum, or near optimum, thrust program in the pres-
ence of the thrust amplitude limits which must exist in actual engines.

The problem described above is clearly a variational one. In order to
permit impulses, and yet have a precise mathematical formulation, it is
necessary to place the problem in a somewhat unorthodox framework, and
thereby arrive at a non-classical variational problem. This development is
carried out in section 2. In section & we show that this framework is a
reasonable one by proving both an existence theorem for solutions of the
resultant variational problem and an approximation theorem which states that
solutions of the unorthodox variational problem can be approximated by con-

ventional thrust programs to any desired degree of accuracy.

In sections 3-6, necessary conditions that an optimum thrust program
and associated trajectory must satisfy are derived. Many of these condi-
tions have been previously obtained by examining the necessary conditions in
the presence of a thrust amplitude constraint, and then passing to the limit
formally as the maximum allowed amplitude tends to » (see, e.g., Lawden [1]).
In section 9 we show that this limiting argument is, in a sense, justified,
and also prove an existence theorem for optimum trajectories in the presence of

thrust amplitude constraints.

Some specific examples of contemporary interest are discussed in section T.
Ewing [2] in 1961 adopted a viewpoint very similar to the one taken
in this paper in his investigation of the same problem for the particular

case Wwhere the gravitational field in which the vehicle moves is uniform.



The case where the gravitational field is linear in the space coordinates
has been previously treated by the author [3]. While preparing this manu-
script, it has come to the author's attention that the problem discussed in
this paper has recently been studied, but from a slightly different view-
point, also by Rishel [L].

2. Problem formulation: The motion of a vehicle that is subject only

to gravitational and propulsive forces can be described by the following

differential equations:

. Ti(t)
rs = Gi(ri,rs,rs,t) + i = 1,2,3
1 iVt1lst2513y M(t) 5 1€ 02

where r;, rz, and rz are the coordinates of the vehicle center of gravity
in some inertial, Cartesian coordinate system; Gy, Go, and Gs are the com-
ponents of the vehicle acceleration due to the action of the gravitational
force field; Ti1, To, and Ts are the components of the vehicle's thrust
vector; and M is the vehicle mass. Denoting the vectors (ri,rs,rs), (Gi,
Gz2,Gs), and (Tl,Tg,TS) by r, G, and T, respectively, we may write down the

single vector differential equation

) (2.1)

Io= gt o

The rate of change of mass, M, is the negative of the fuel expenditure rate

and, for a single rocket engine, is given by

Iz

M = - (2.2)
g Isp ’



where H H denoted the Euclidean norm, and g and I (the nominal accelera-

b
tion due to gravity at the earth's surface and the specific impulse of the
fuel, respectively) will be assumed to be known positive constants. We de-
note (g Isp) by A.

We shall also suppose that s&-,-) is a continuous, bounded function
from E5 x E; to Ej (Em denotes Euclidean m-space) possessing continuous
bounded first partial derivatives with respect to all of its arguments.
This assumption is consistent with the conventional models of gravitational
fields.

Throughout this paper we shall assume that an initial time t, (with-
out loss of generality, and for ease of notation, we shall set t, = 0) and
initial values for egs. (2.1) and (2.2) have been given: M(0) = Mj >0,
r(0) = 1oy L(0) = yo- If F(*) is a summable function from [0,o) to Es
satisfying the inequality k/qmug(t)ﬂdt < AM,, then it follows from standard
existence theorems that eqs? (2.1) and (2.2) with T(*) = E(*) have a unique
solutionl for 0 < t <o that satisfies the above initial conditions. This
gsolution will be denoted byva(tag), M(tiﬁ); iﬁtag) denotes the time deriv-
ative of ;w(t;“g),

Finally, we shall suppose that there are given functions‘hi(',',')
from E5 x E5 x [0,) to E;, where i = 1,...v and v < 6, with the following

two properties: 1. The hi are continuous and have continuous first par-

tial derivatives with respect to all of their arguments. 2. If Ht) =

]

= ((2,5):2€Es, yeEs, hi(xw.x,t) =0 fori=1,...,v}, then H(t) is a smooth

manifold in Eg for each t > 0. For each t > 0, let J#(%) denote the class



of all summable functions F(-) from [0,t] to Es that satisfy the relations
T

f IECe)lat < aMp and by (z(%5E),
°
speaking, 7 (T) consists of all thrust programs that "transfer" the vehicle

t;F),t) = 0 for i = 1,...,v. Physically

from the position Io. and velocityxo at t = 0 to a new state (at the time

t) that satisfies the boundary conditions h,(r,7,%) =0, i =1,...,v.
M A

In the sequel, we shall consider two variational problems. The first,

the fixed terminal time problem, consists in finding, for a given t; > O, an
~ A
element E‘/( JEF(t1) such that M(t1;F) > M(t1;F) for every F&*(t1). The

second, the variable terminal time problem, consists in finding a time t; > O

and an element ;F\( *)¥_#(t1) such that M(tl;:F\) > M(t;F) for every pair (t,F)
with £ > 0 and E&}"(t) In concrete terms, the basic problem is to find a
thrust program that, for the given initial values, achieves prescribed bound-
ary conditions, and that, in so doing, maximizes the terminal mass.

If v = 6 and H(t) consists of a single point for each t, we shall say

that the variational problem is a fixed endpoint problem; if v < 6, the prob-

lem will be called a variable endpoint problem.

let us now consider variational problems that are derived from, and
equivalent to the above problems. Namely, replace egs. (2.1) and (2.2) by

the equations

(2.3)

o =
Pt

where Zy By Q) and u are 3=vectors, a( ,+) is the same function that appears

in eq. (2.1),and }&S ) is assumed to be an absolutely continuous, bounded



function from [0,o) to Ez. We shall consider solutions sz( ), B,( .) of egs.
(2.3) that satisfy the initial conditions ~zv(o) = 75 andﬁl(O) = Xo. Fora
given bounded, absolutely continuous function )47,( .) from [0,00) to Ez, we shall
denote the solution of (2.3) with Eﬁ') = w(+) that satisfies the given initial
conditions (it is easily seen that this solution exists and is unique for
0 <t <w®) by 5/(‘0;3&), Ae/(t;M). We shall also say that ﬁ(t;x) is the trajectory
that corresponds to W.

For every t > O, we denote by}/(g) the class of absolutely continuous
functions w(-) from [0,t] to Es for which the relations w(0) = O and
h; (B/an’ z(%;w) ﬂ_‘gt =0 for i=1,...,v are satisfied.

Now the derived fixed terminal time problem consists in finding, for a

given t1 > 0, an element @ +)e&(t1) such that

ta & +) du(t
| s f 2Ly

6]

for every '}‘,J.Gé/(tl); the derived variable terminal time problem consists in

finding a time t1 > O and an element ﬁ( < EH(t1) such that

f n@l‘_u &t <f 1)) g
0 dt
for every pair (r,u) with v > 0 and Béy('r)
We shall show that the original and derived variational problems are
equivalent. Namely, we shall exhibit a mapping ® that, for each ti > O,

is one-to-one from 3#(t.) onto_&(t,) (if we identify elements in F(t1)



that differ only on a set of measure zero), and shall prove that FEZ(t1)

is a solution of the original problem if and only if @(E) is a solution of

the derived problem (whether the problem is fixed or varisble terminal time).
Define the mapping ® as follows. IfiE(-Xi}fztl), let;E(-) = (F(+)) be

the absolutely continuous function from [O,tl] to Eg that is given by

t F(s)
u(t) = LE—— s, 0< 1t < t1. (2.4)
A [ iz

We shall show that ® is one-to-one fromwjfktl) onto_éfktl), and that

o~L ="F, where F(+) =%(u(-)) for gay(tl) is defined by

F(t) = exp{u(t;a)) ‘—1%;3)- , 0<t <ty (2.5)
t
ptsa) = - %[ ”%s‘zll ds + In Yo, O<t<ty. (2.6)

Note that‘E(t) is defined by (2.5) for almost all t€[0,t1], since an absolutely
continuous function has a derivative almost everywhere. At points where
Qg/dt does not exist,lg(t) may be defined arbitrarily. Since Qg/dt is sum-
mable, the integral in (2.6) is finite.

Consider egs. (2.3) with u = QQE), where Eﬁ;z(tl). It is clear that

o( +3u) is absolutely continuous in [0,t1], and that, a.e. in [0,t1],
"w M

Slpig) = : J(t)
eltsu) = Gp(tsm),t) + e (2.7)

Since



2005w = x5, f(05u) = z(0;u) +u(0) = v, (2.8)

M

it follows that (replacing u by o(F)), for all t€[0,t1],

olee(F)) = x(t:B), z2(t50(F)) + o(F)(t) = r(t;F). (2.9)

Hence, @(E)Eﬁ(tl) by definition of #(t1) and .&At1), or o(F(t1) ) &(t1).

Also (by (2.2), (2.4) and (2.6)), for all t€[0,t1], we have that

M(t;E) = exp{u(t;9(F))]. (2.10)

A

Let us show that\]?(j(tl))C}f(tl). Thus, let F =‘?(B), where EG/(tl).
It follows from (2.5) and (2.6) that exp(p( +5u)} is absolutely continuous in

[0,t1], that exp{i{0;u)} = M, and that, a.e. in [0,t:1],

i [exp(u(t;w)}] = - A"llLPj(t)H, (2.11)

t1
50 thatf |LFV(t)”dt < AM_, and (see (2.2)), for all t€[0,t:1],
o]
exp(p(t;u)) = MtM¥(w). (2.12)

It is clear from (2.3) that ,»é(t’.B) is absolutely continuous in [0,t1]. Also
(see (2.3), (2.5) and (2.12)), p(t,'}i) satisfies eq. (2.7) a.e. in [0,t1].
By definition of #(t1), u(0) = 0, so that relations (2.8) are satisfied.

Hence, for all t€[0,t;],

oltsw) = z(6:%u), 6w +u(t) = z(4:¥yw), (2.13)

1.

from which it follows that Eéj/(tl). Now the relation 0T =¥ is a consequence



of (2.2), (2.4)-(2.6), and (2.12), and it only remains to show that @ maps
all of the solutions of the original variational problem onto all of the

solutions of the derived problem. But it is a consequence of (2.6) and

(2.12) that if H,ieﬁ(ti), i=1,2, then M(t1;'¥(u:)) > M(tg;‘i(gg)) if and

t]_ t2

only if f El(s)Hds < f H}gg(s)llds, and this immediately implies the de-
e} ¢}

sired result.

Note that egs. (2.9), (2.12), and (2.13) describe the correspondence
between solutions of eqs. (2.1) and (2.2) and solutions of egs. (2.3) when
Bv and E =£ correspond under the mappings ¢ and V.

If }vlv(.) is an absolutely continuous function from [O,t;] to Es, then

ta
-GN (2.14)
A dt ~

where STV u, the strong total variation of’E, is defined (see [5, p.59]) as

follows:

m
STV u = sup Z”E(Ti)‘;{(”ri-l)“;
i=1

with the supremum taken over all finite partitions 0 = 75 < 11 <...< T = t21
of [0,t1]. For scalar-valued functions (where STV reduces to the total
variation), relation (2.14) is well-known. The proof of (2.1Lk) (see, e.g.,
[6, p.209]) carries over from the scalar-valued to the vector-valued case
with only minor modification.

Thus, the original fixed terminal time problem is equivalent to the

problem of finding, for a given ti1 > O, an element ﬁéﬁ(tl) such that



SIVA =  inf  SIV y; (2.15)
ueH(t1)

and the variable terminal time problem is equivalent to that of finding a

number t; > 0 and an element @Eﬁ(tl) such that

STV . = inf STV

ueH(t)
t>0

(2.16)

0,t1] [0,t]%

where STV[O,t] denotes the strong total variation over the interval [0,t].
Unfortunately, there is, in general, no element @g(tl) that achieves

the infimum in the right-hand side of (2.15) or of (2.16). To circumvent

this difficulty, we shall embed the sets &/(t) in larger sets »(t) possessing

the following two properties: 1. If u(+) is any element of t), then there

u(s) as n » » for
wv

exist functions yu,( eZ(t), n =1,2,..., such that n(s) >

all s€[0,t], and STV Yy * STV y as n > (see theorem 4 in section 8). 2.

There is an element QEM(t) such that STV[O,t]{,&,\ = inf}'fy(t)STV[O,t]}}/ (see

theorem % in section 8). Consequently, infge}{(t)STV[O,t]H = inf&e;/(t)STV[O,t]}},'
For each T, 0 < T < ®, we define #(%t) as follows. ILet ¢Ht) = {B('):)i

from [0,T] to Es and contimuous from the right in (0,%), u(0) = 0, STV[O,E]E<°°}'

For every weB(%), eqs. (2.3) with u = ¥ have a unique solution in [0,F] that

satisfies the initial conditions 2(O) = Yo, 49/(0) = Iy. We shall also denote

this solution by z(t;3), o(t;¥). Then, for each T >0, let

ME) = () B, n1(p(Fiw),2(Bi)4(F),8) = 0 for 1= 1,...,01.

o

It is obvious that H(T)CH T)cOXF).

10



We shall denote by @3(®) the set of all functions from [0,®) to Eg
whose restrictions on [0,%], for every T > 0, belong to @3(%).

We shall henceforth be concerned with the extended variational problems
defined as follows,

The extended variable terminal time problem consists in finding a

number ti, 0 < 1 <o, and an element @é?f(t-l) such that

~ t>0

The extended fixed terminal time problem is analogously defined.

Sections 3-6 are devoted to the derivation of necessary conditions that
solutions of the extended variational problems must satisfy. In section 5,
we consider the variasble terminal time problem, and in section 6, the fixed
terminal time problem.

3., Variational equations: In this section, t; is an arbitrary fixed

positive number and:@( ) is an arbitrary fixed element of @(tl). Denote
o(t5D) and z(t;8), for 0 < t < t1, by P{t) and 2(t), respectively. Let

“m v Aar N A

_/\() denote the continuous matrix-valued function on [O,tl] whose 1i,J-th ele-

ment A\ ij 1s given by

AN(t) = #ee 20 0<t <t (3.1)

11



For every function E(-)€€3(t1), let §5(-;3) and 9x( +;u) denote the

absolutely continuous functions from [0,t;] to Es that satisfy the equations

62 tyu m) t)&p( )

(3.2)
e [3p(t;u)] = Bz (t;u) +ult) - A(t)
d_'t ax ,4«9 0 ’44/ e ~r
almost everywhere in [O,tl], and assume the initial values
5z(0;u) = ®p(0;u) = O. (3.3)
2% 2 “w giae

We shall refer to egs. (%.2) as the variational equations associated

withjﬁﬂt). Since these equations are linear, their solution is given by the

well-known variations of parameters formula, which here takes the form

~t
sty = - | Ba(o)hle)da(e)ia(s) 1y(s) o) as,
[0}
(3.4)
t .
oltin) = - | DKa(6)a(e)oale)iale) ] n(s)AMe)las,
0]
where the 3 X 3 matrices X;(t) and Y;(t) (i = 1 or 2) satisfy the dif-
ferential equations
Ki(h) = ANB)X(8), Ti(t) = Tilela(t), O<t<ty, i=1lorg,
(3.5)

and the initial conditions



X1(0) = X2(0) = -¥1(0) = ¥2(0) = I, X3(0) = Xz(0) = ¥,(0) = ¥2(0) = O,
(3.6)

I being the ldentity matrix. The matrices X;, Y; also satisfy the following

identity:

X1(t) Xa(t)\AYi(t) Ya(t) I 0
. =( >, 0<t< 1. (3.7)
X1(t) Xa(t)/ \e¥a(t) Yo(t) 0 I

In conventional physical models of gravitational fields, the function
gﬁ-,t), for every fixed t, is the gradient of a twice continuously differentia-
ble scalar-valued function on Ez. Under this hypothesis, A (t) is symmetric
for every t, 0 <t < ti, in which case (3.5) and (3.6) imply that Yi(t) =

T T
= -X2(t) and Yo(t) = X3(t) for 0 <t < ti. This computationally useful re-
sult, which is known as Schmidt's theorem, but is apparently originally due
to Siegel (7, page 14], was brought to my attention by O. K. Smith.

(0) =

u
~

Integrating egs. (3.4) by parts, using (3.7) and the fact that

_N0) = ;
__Bﬁo) 0, we obtain

the integrals in (3.8) being in the sense of Stieljes.
For every/gﬂ-)éé}(tl) and real number o, let Qg(E,a) be the element in

E3z X Eg X E; given by

13



and let
= &x(f,0) = (0,0,8TV ).
Now define the set W in Eg X Ez X E; as follows:
W = [%(ﬁ,a):ﬁé@(tl),az 0}.

Clearly, WLW.

Since, for every u and ¥ in<Q3(t1) and real number B, we have
STV(u+w) < SIV u + SIV y, STV(Bw) = |BlSTV u,

it follows at once that W is convex.

(3.10)

(3.11)

(3.12)

The set W is analogous to the cone of attainability described in

[8, Chapter 2], and is also patterned closely after the convex set of var-

iations introduced by Warga in [9, section III].

Let B,be an arbitrary nonzero row vector in E;. Iflﬂ = Qﬂlaﬂ?’”7):

where ﬂﬁEES{ﬂ?EEa, and n7€E1, let p(t;n), for 0 <t < t1, be the row vector
v Ty

defined by

esn) = ) LML), &) = X(e) + (), 1

It follows at once from (3.7) and (3.13) that

p(t13n) = 12, p(t131) = - 1.
m “ ~m e

1h

1l or 2.
(3.13)

(3.1k4)



If we consider p(~;/a‘) to be a function from [0,t1] to Ez (for ﬂvfixed),

we conclude, by virtue of (3.5) and (3.13), that p(+;n) is twice continuously

PPN

differentiable and that

p(t:1) = pltsnea(t), 0<t< . (5.15)

Lemma 1. If there is a nonzero vector M = (Mi1,...,M7)€E7 such that
W

xS 1

$

for all ®xEW, then M7 < O.
i
Proof. The hypothesis of the lemma, together with the definitions of W,
W , and -B(t;—ﬁ) (see (3.8)-(3.11) and (3.13)) imply that, for every u€®B(t1),

" .

‘tl tl
| e +Toewu s [ pemale) T ewE (5.6)
O o s e
We first show that My # O. Suppose the contrary. Then, (3.16) takes the

form

t1 t1
f (tsjpdu sf p(t;j)dﬁ\ (3.17)

M o M
o] 0]

Since (3.17) must hold for every Eg@(tl), it follows that B(t;i) =0 in
[0,£1]. Hence, E(t’;ﬁ) =0. In pa.rticular,w(O;j) =~f3(0;i) =0, i.e., (see
(3.6) and (3.13)) El(;ﬁ/) =£2(ﬁ) = 0. But this implies that (see (3.7) and
(3.13)) (M1yeeesTg) = 0, i.e., j]: = 0, and this contradiction shows that
Tr # 0.

By hypothesis, E-ng(ﬁ,l) gj'w , 50 that (see (3.9)-(3.11))77 < O.

Since Tz # 0, M7 < O.

15



Lemma 2. Suppose that ﬁ( ) # 0. If there is a vector T = (f1,...,T7EEs

with M7 = -1 such that jy-%x < :ﬁ,'wo for all&xEW, then

- ~m

max p(tsT)| = 1, (3.18)
0<t<t
and
t1
oy _ /N
| e = s o (5.19)

6]

Proof. Iet Q = maxoststlllﬁ(t"ﬂ)”’ and let T€[0,t1] be such that

lp(;M)|| = ©. Define j()é@(tl) as follows :

Ofor 0O<t<r

1

K [p(T;_ﬁ)]T for 1<t < %1

(an obvious modification must be made if T = 0), where K > 0 is arbitrary.

Then

s

ta
fg(t;ﬁ)dﬂt) = K°. (3.20)
o]

As in the proof of lemma 1, we can show that (3.16) is satisfied for every

Be@(tl) and in particular, for u = i Since STV % = KQ, we conclude that
t1 t1
f p(t;M)dw - STV w = Kao(Q-1) gf p(t;n)ad - STV & (3.21)
"4 A P b d "
But (3.21) must hold for every K > O, which implies that O < 1.

16



It is easily verified that

t1
f p(t;m)at) < | max [lp(t;M)[| STVR = @ sV A,

so that

f p(t;ﬁ)d;ﬁ - STV < (Q—l)STV@S 0. (3.22)

t1
f p(t;n)dd - STV ©£> 0. (3.23)

Combining (3.22) and (3.23), we obtain (3.19).

If 0 <1, it follows from (3.19) and (3.22) that sw/@: 0, i.e., ¥ =0,
This contradiction shows that @& = 1, i.e., (3.18) holds. This completes the
proof of lemma 2.

Lemma 3. The interior of W is not empty.

Proof. ©Since W is convex, it is sufficient to show that W does not be-
long to any flat in E- of dimension less than seven. Suppose the contrary.
Then there 1s a nonzero vectoriﬁ = (ﬁl,...,ﬁ7) in E- such that (because
W)@, = T-0x for every ®xEW. In particular, Te®y = j@gﬁ(@)l), so that

(see (3.9)-(%3.11)) M7 = O. But this contradicts lemma 1, and thereby proves

lemma 3.

17



If Bﬂ(')""fﬂﬁ(') are arbitrary fixed functions in (Xt1), we define

the functionagg-,-) from [0,0) X E; to Ez as follows:

T
( - Zabf@(t) + Bm(t) for 0 <t < t3,

J=1 j=1

55,81, 0,87) = (5,8 =3 (5.2
7 7

(l ) Z%’)ﬁ(ﬂ) ’ 25333(’“5) for ¢, < t < @,
J=1 j=1

Note that, for every fixed ®€E;, u(-,8€{3(w). For ease of notation, let

p(t,a) = ﬁ(t;u(';E))J Z(t) ) = Z(tiu(')é)),’ 0 <t <. (525)

mw g kR, W AL Tk

We shall also consider p(-,-) and z(+,*) to be functions from [0,o)x E; to
-

b4

Es. It is easily verified that, for 0 <t < ti,

,\S(t’O) = ﬁt); Z(t,O) = :'Z/X‘t) (526)

s A

It follows from well-known theorems on the dependence of solutions of
differential equations on parameters that ngt,g)/éﬁi and éﬁ(t,ﬁ)/&éi exist
and are continuous functions of t andlg;in [0,0) X E7. In addition, for fixed
fé, these derivatives are absolutely continuous functions of t which, for

almost all t€[0,t1], satisfy the equations

d_(az(t,a)> _ 9G(p(t,8),t) op(t,3)
at 384 or %4

(3.27)

d /3p(t,8)\  0z(t,3) i
E( 36, )‘ *usle) - ),



together with the initial conditions 02(0,8)/08, = 00(0,8)/08; = 0. In par-
" P S 4

ticular, it follows from (3.26) and (3.1)-(3.3) that, for 0 < t < ti,

< . )> = 0z(t3u4), “‘-——p( ’”“)) = %p(tsu1), 1 = 1,...,T.
®; 5 =0 - 3%; /5 =0 i3 oo

L. A fundamental lemma: In this and the next section we shall suppose

that /”1;2( .) is a solution of the extended variable terminal time problem, and
that t1 > O is the corresponding terminal time. We shall keep the notation
introduced in section 3.

Let
Nt1) = r, Aty) +Hqe1) = 3. (k.1)
By hypothesis, (r,v)EH(t1), or hi(g,:\z,tl) =0 fori=1,...,v, and
STV[O,tl:l/{EIS STV[O,t]}th for every u€M(t) and every t > O. (L.2)

For (x,y,t) in a neighborhood of (}-,ir",tl), there is a parametric representa-
M A -”m

At sy

tion of the manifolds H(t) = {(x,y):x€Es,¥Es,hs(x,y,t) =0 for i = 1,...,v}

of the following form:

X = Al(f_;t))
(4.3)
y = l‘o.?(i}t);

where Al( ) and"?}hg( .,-) are functions from a neighborhood of (0,t1) in
Eg-y X Ey (let this neighborhood be of the form Nj X Nz, where NfCEg-y and

NoCE;) to Es, possessing continuous first partial derivatives with respect
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to t and the coordinates of’g, and

'E/ = ,Z\;l(o)tl)}
(4.4)
z; = l?(o)tl)~

If we have a fixed endpoint problem, so that v = 6, Ay and Ao are continuously
At laad

differentiable functions from a neighborhood to t; to Es with

Mlta) = 1, (1) = ¥ (4.5)

Let Vh;(x,y,t) denote the vector in Eg defined by
hi ohy ahi dhy Ohji ohy .
vh:'L = ) ) ) ’ ) s 1 =1,...,v.
0x1 Oxp Oxs Oyi Oyz Oy

By definition of a smooth manifold, the vectors VhiQﬁjy,t), i=1,...,v, are

linearly independent whenever (x,y)EH(t). ILet T denote the hyperplane of

W A

dimension 6-v that is tangent to H(t:1) at (§£i)’ i.e.,
. d

=

T = {(X)y):XéE3JX€E3}[vhi(z}’—i}tl)}’(‘}E—

M W

b yo¥) = 0, i=1,...,v}
(4.6)

{

If v = 6, T consists of the single point (E;j), Now define the set Q in E4
V4

as follows:

Q = {(X‘?)Y'-‘_/::STV @*’(X)Z(}‘(’,‘ZET,OC < 0}. (LH'.T)

M e M

It is easily seen that Q is convex. If v =6, Q is the ray L = (ax(M,a):a < 0}.

Let
Do Ae)ReD) - B
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and, for every‘Hj-)€QB(tl), OFE; and KE,, let

6£(E:Q)A) = 6}&(}1‘_)@) + A‘@ ()4-9)
and let
V={&Wg¢ﬁ%@hﬂazofw<A<@. (4.10)

It is clear that WCV, that V is convex, and that @ €WK (see (3.10), (L4.6),

(b.7), (4.9), and (4.10)).

We now prove a fundamental lemma.

Lemma 4. If there is a number A > O such that‘ﬁﬁ-) is continuous in

(t1-M\,t1), then Q does not meet the interior of V.

This lemma is similar to lemma 11 in [8, page 112]. The proof we shall
give below is based on the proof given by Warga of an analogous lemma [9,
lemma 3.1].

Proof. Iet us assume that the lemma is false, so that there is a point

géQ that belongs to the interior of V. ILet
Voo d

Q@ = (E—E’E-E’STV@{-&)’ (k.11)

where (§a§>€T and o < 0. If a = 0, we replace Q by -€, where € > 0 is suf-
ficiently small, and thereby obtain a point that also belongs to both Q and
the interior of V. Thus, without loss of generality, we shall suppose that
Q<0 in (Lk.11).

Since g is an interior point of V, there are seven points A},..ni§7, in

w

V, such that Bo, X1, ..-5X7 BTE vertices of a 7T-simplex which contains g in

s
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its interior. Iet‘&j = 5§(wj,a. A.), where wj(-)é43(tl) and Qs > 0. For

w737
every €, 0 < e <ty, and j = 1,...,7, define’Ej(';GXEQB(tl) as follows:

wj(t) if 0<t<ti-eort =t
44

}}/j(t;e) = _
yyj(tl) if t1-e <t < t3.

It is easily seen that SEQEJ(-;e),aj,Aj) > Xy 8s € > 0 for each j.

Hence, for any fixed € > O sufficiently small, the points @ and 8§QEJ(.56),

aj,Aj) for j = 1,...,7 are vertices of a T-simplex which contains q in its

L)

interior. ILet €, be one such €, denote‘Ed(-;eo) simply’by'Ej(~), and let

= 55(

}‘J;j(');a ) J=1,.0,T- (k.12)

w, i
wd 373
Then the vectors (gﬁtﬁb), j=1,...,7, are linearly independent, and there

are positive numbers 7yo,71,...,77 such that

‘9 = Z')’JQJJ, 2’}'(] = 1. (h-.l5)

Note that the functiOns;gj(~), j=1,...,7, are constant in [ti-€g,t1).

Iet 7(+) be the function from E; to E; defined by

T(Sl,-..,b-?) = T(E) = t1 + ZSJAJ, ()-4-»14)

let Ao = min{\,eq}, and let N be a neighborhood of O in E- such that T(3)€N2
and T(3) > ti-Ao whenever DEN. Iet u(+,8), e(+,8), and z(:,8) be defined as
in section 3 (see (%.24) and (3.25)). DNote that u(-,:) is continuous in t and

22



B for t€(t1-Mo,®) and all BEE,.
For each DEN, let E(-, ED(t1) andw(-;S D (7(8)) be defined as

-

follows:

ge58) = Qo) + Zaj[uj(t)iﬂt)], 0<t<ty, (4.15)

u(t;8) = u(t,8) for 0 <t < (), UW(8);8) = W(t1;8). (L.16)

M- A ad “an M v e

It is clear that u(t;0) =qt) for 0 <t < t1. If 7(®) = ta, then
E(t;E)) = 41‘1,(t,§‘) for 0 <t < t1, and obviously STV[O,T(E)} ( ,M) = STV[O,tl}l{( ,Q)
It easily follows that the same equality holds if T(E) > t1, and it is not

difficult to show that, if 7(3) < ti1, then

;8), (k.17)

~r

STV10,(5) 150 "38) < STV[0,4, 14

i.e., (4.17) is satisfied for all DEN.

Note that (see (4.16) and (3.25)), for 0 <t < T(d),

o(t:8(+58)) = p(£,8), =z(%:8(-38)) = z(%,3). (L4.18)

M w W POARRE £

v) both belong to T, the entire line segment joining

AL~

Since (E,E) and (E,
the two points (assuming that they are distinct) belongs to T. Denote this
segment by 73 2 is tangent to H(t,) at (T,v). Hence, 7 is tangent at (?E)

L e e

to a smooth curve I on H(t1). Iet I be represented parametrically as

((Aalgls),t2), Aol

g
w ~ Ty

(s),tl)): -1 < s <1}, where 3() is a continuously

differentiable function from (-1,1) to Ni, o(0) = O, and
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6-v

6-v
a,Z}_‘L(O,tl) dO'.](O) Z 57\2(0,1‘,1) d.U.](O) ) L
( Z doj  ds So;  as ) (F-5,3-7).  (4.19)
J= =

If (x,y) = (r,v), and this must be true if v = 6, we let I' consist of the
single point (EAE), or, equivalently, let o(s) = 0, in which case (L.19) re-
mains valid.

Let ©(+,+) be the function from N X (-1,1) to E7 defined as follows:

@(61;“-:57:5) = @(5)5) =
o

n o

T
.(51(3)-§;(§,'s),fz(,é)tgs(_é,)f_gz(_é,S), Zaj[swﬁj-swmj]-sa) (4.20)
J=1

where the f;(*) are functions from N to E; defined as .follows:

£1(8) = p(7(8),8); £208) = z(+(3),8); f£a(3) = U(r(8);8),(k.21)
and the g; +,+) are functions from N X (-1,1) defined by
fk(E’S’) = l‘k(ﬁ(s)ﬁ(é))’ k = lor 2, (4.22)

We shall show that 8(-,*) is continuously differentiable in N X (-1,1).
It follows from (4.15), (4,16) and (4.21) that fa(+) is differentiable

and that

ofs(8)
%, ui(t1) - A+1). (4.23)

It was shown in section 3 .hat the partial derivatives Qg(t,§)/861 and

0z(t,8)/0d; exist and are continuous functions of t and & in [0,0) X E.

~r »w
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Further, a’yzv( *,*)/ot exists and is continuous in [0,») X E;, and inasmuch as
AU‘.’( *,*) is continuous in (t1-Ao,») X E;, Bﬁ( *+,+) /ot exists and is continuous
in (t1-Mo,®) X E7 (see (3.25), (2.3) and footnote 2). It now follows from
(4.21), (4.14), and (2.3) thath/l(-) and,f/g( *) have continuous derivatives

in N, and that, for ¥N,

0fa(8) _ [ 9g(t,8) ] .
384 ( 35+ >t e + [2(7(8),8)+u(-(8),3) 144

(L.2o4)

oe(@) _ (5_4%&% + alop(r(5),5

Because of the differentiability properties that we have assumed for the

functions g(+), M(+,+), and A2(+,*), it follows from (4.22) that Ma(-,*)

L

andlz‘\.,g( *,*) have continuous first derivatives in N x (-1,1), and

6-v

o) | Audgle) o) an
1 aO'J ’
J=

ds ds
(L4.25)
%(é,s)’ _ Melals),(3)) b, k = 1or2.
384 ot

It follows from (4.20)-(4.25) that 8(*, ) has continuous first partial

derivatives in N X (-1,1). In addition, by virtue of (4.1k4), (3.28), (3.26), .

(3.24), (4.1), (4.8), (3.9), (3.10), (4.9) and (Lk.12),

(ﬂgﬂ) = ®f = Q- (L.26)
®; Js =0
s =0
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Also, it follows from (4.20), (L4.25), (L4.14), (4.19), (4.11), (3.10), and

(4.13) that

(’a%%s_)>6 = - iﬁ@@‘%% (4.27)

o~
S

nn
o

If v = 6, thegﬁi are functions only of t, and obvious notation changes must
be made in (L4.8), (4.22), and (4.25), after which egs. (4.26) and (4.27)
follow in the same way.

Now consider the vector equation
quéys) = 0 (L.28)

for the unknown d as a function of s. For s = 0, it is easily seen (see
M

(4.20)-(4.22), (L.14)-(4.16), (3.26), (4.1) and (4.4)) that (L4.28) has the
solution13’= 0. Because of (4.26), the Jacobian of eq. (L4.28) at/E/: 0,

s = 0 is the determinant of the matrix whose columns are the vectors (Qij$o)-
This Jacobian does not vanish inasmuch as these vectors are, by hypothesis,
linearly independent. Since’Q(-,~) has continuous first partial derivatives
with respect to all of its arguments in a neighborhood of (0,0)€E, X Ei, we
can appeal to the implicit function theorem and solve eq. (L4.28) for‘glas a
continuously differentiable function of s in a neighborhood of s = 0. BSay
’E’=ﬁé(s) = (¢1(s),...,¢i(s)). Thenﬂé(O) = 0 and %g/ds can be obtained by

differentiating (4.28) implicitly:

26



Z s) 493(s) , 98(g(s)s) _

ds Os

In particular, for s = O, we obtain, by virtue of (4.26) and (4.27),

T T
Z(ﬁj'ﬁfo) Eé‘éii) = Z 75(2500) - (k.29)
J=1 J=1

Since the vectors Qﬁjﬁfo)) J=1,ee,7, are linearly independent, (4.29) im-
plies that d¢j(0)/ds = 74 for each j. Recalling that 75 > 0 and ¢j(0) =0
for each j, we conclude that ¢j(s) > 0 if s 1s positive and sufficiently
small. Also,lg(s)+ O as s »+ 0.

Thus, let s, 0 <5 < 1, be sufficiently small that ¢ JEN, ¢J >0

for each j, and jég%(E) < 1. Denote ¢(5) and ¢;(s) by & 6 and 6J, respectively,
J=1

so that 8(3,5) = 0. Iet T = 7(8). It follows from (4.20)-(4.22) that

Z(?:E) +E(?’_§) = _2\:2(“_(5));)1 (M’Bl)
7
Zgj[STVEj-STV@‘aj] = s0. (lLBQ)
J=1

But (4.30), (4.31), (4.18), and the representation (4.3) of H(t) imply that

hi(p@5H(+58)),2(m50U(58)) + H(r38),7) = 0, 1=1,...,v, (L.33)
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i.e. (see (2.17)), ;g-;5)€3¥(?). But it follows from (L4.17), (4.15), (3.12),

fead

(h.52), the non-negatively of the aﬁ and 53: and the relations s > o, a < o,

that
STV[O;Fug'iE) < STV[O’tlﬁy-) + 850 < STV[O,tlﬁy.),

contradicting (4.2), and thereby proving lemma k4.

5. The necessary conditions: We now prove the following theorem which

provides necessary conditions for the extended variable terminal time problem.

Theorem 1. Letiﬁ') be_a nontrivial (i.eﬁ,ii# 0) solution of the ex-

tended variable terminal time problem, let t1 be the corresponding terminal

time, and let 6(t) be the corresponding trajectory. Suppose that the points
Ve d

of discontinuity of‘ﬁg') do not cluster at ti. Then there exists a twice

differentiable (column) vector-valued functionlg(') from [0,t1] to Ez such

that
(#ﬁl—— ¥(t) (5.1)
for all t€[0,t1],
max lugt)ﬂ = 1, (5.2)
0<t<ts
and
nta T
b/ [W(0)] aXt) = STV{O’tJJ{} (5.3)
0]
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Let (4.3) and (L4.4) be & parametric representation of H(t) in & neighbor-

hood of (@(tl) 2t HNt1),t1) = (E,E,tl), and let T be the hyperplane

n V(-) satisfies the following transversality

~

tangent to H(t:) at (E}E?.

conditions:

W) (D) = ¥()(y-F) for all (x,y)eT, (5.4)

At A A Al

or, equivalently,

1%

(X/(tl)’ -l(tl)) = Zinhi(;f,i,tl) for some real constants i, .-..,Hy,

i=1
(5.41)

and

-w(tl)-[G(?,tl) - M}j(tl)-[j - MJ = ¥(t2) [R(52) Q1) 120

- g ot ot
(5.5)
If |[W(t)]] <1 in some interval [t',t")C[0,t1], :} ) is constant

for t' <t <t". gi:ﬁgT) %jﬁXT-) for some T€(0,t1], then [¥(7)| = 1, and

there is a.number nT such that

iﬁ(T) -/ﬁ(’r_) = I{T’\'IJ:(T), ke > 0. (5.6)

If 0 =40) #4X0%), then [¥(0)] = 1, and Q(07) = k, ¥(0), where k, > 0. In

particular, if D = {t: W(t)]| = 1, 0 <t < t1} is a finite set, then4X-) is
'~ ? - - ~

a_step function whose points of discontinuity all belong to D, and whose

jumps are given by (5.6) or the modification thereof if T = O.
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Note that eq. (5.4) is satisfied trivially if v = 6, since, in this case,

T consists of the single point (Eﬁji). Also, if v = 6, O\;(0,t1)/0t @ = 1 and

M

2) in (5.5) should be replaced by @&i(tl)/dt.

Proof. By lemma 4, Q does not meet the interior of V. Since:ngVﬂQ,ﬁgo
is a boundary point of V. Now both V and Q are convex, and VOW, so that, by
virtue of lemma 3, the interior of V is not empty. Hence, there is a sup-
porting hyperplane to V at @, that separates V from Q. Iet’j:= (M1,M2,17) # O,

where EEGES’ j?€E3,and N7€E1, be a normal to this hyperplane directed so that

.65

w

33l
331

‘Wo < -9 for all BEV, Q. (5.7)

By virtue of lemma 1, relations (5.7) allow us to conclude that N7 < 0. With-
T
]

out loss of generality we shall assume that Tz = -1. If we let¥t) = [p(tiﬁ) 5
~

eqs (5.2) and (5.3) follow from lemma 2 (see (3.18) and (3.19)), and eq. (5.1)
follows from (3.15) and (3.1).
Let (x,y) be an arbitrary point of T. Then (see (L4.6) and (4.7)),

M s

(E-?,y-V,STV”ﬁﬂéQ, and (:§f§,-y+z;STV”ﬁN€Q. Consequently, by virtue of (5.7)

Mo ~

TMe(xT) + Je0(y-7) = 0,

Taking (%.14) into account, we obtain (5.4). The equivalence of (5.4) and
(5.4") follows at once from the definition of T (see (L4.6)).

Consider the points §S§ﬁ;0,il) =A$b%§?0f V (see (4.9), (4.10), and

— — AN\
(3.10)). It follows from (5.7) that ’g-(i@ <0, t.e., TC= 0, and the

"~

equality in (5.5) follows from (4.8), (4.1), and (%.14).
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The final conclusions of the theorem are direct consequences of (5.2)
and (5.3) (see [3, theorem 3]).
It only remains to prove the inequality in (5.5). If‘ﬁﬁtl) =jﬁit1),

the inequality is obvious. If At1) #@t1), then lW(t1)]| = 1, and, since
"o “3e

[w(£)]| <1 for 0 < t < %,
W

2

O_<_(d” d:)ll )t=tl = 2y(a) Y1), (5.8)

Relations (5.8) and (5.6) imply the inequality in (5.5), completing the
proof of theorem 1.

The vector-valued function Qiﬁ-),jﬁﬂ')) is analogous to the adjoint
variable in the formulation of the Pontryagin maximum principle, or to the
Lagrange multipliers of the classical calculus of variations. Relation (5.3)
corresponds to the maximum principle itself, or to the Weilerstrass E-con-
dition.

If the set D is finite—say D = [Tl,...,Tl}-—therxﬁﬁ°) is determined
by 6+{ scalar parameters: six initial values for eq. (5.1), and the £ con-

stants K. in (5.6). Indeed, given the values of these parameters and the
i

initial values/&ﬁO),ﬁB(O), it is possible to "simultaneously solve" egs.
(2.3) with u =4 and eq. (5.1), and determine 4 through (5.6).
M W av

6. The fixed terminal time problem: In this section we shall derive

the necessary conditions for the extended fixed terminal time problem. Thus,
let t1 > O be fixed, and let‘ﬁi-) be a solution of the corresponding extended

fixed terminal time problem. We shall keep the notation introduced in sec-
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tion 3. Iet ( »¥) be defined by (L4.1), so that, by hypothesis, h;(T,v,t1) = O
m

T
w

fori=1,...,v, and
~
STV[O,tl]}i < STV[O,tl]B, for every u€d(t1). (6.1)

We define T and Q as in section 4 (see (L4.6) and (4.7)). Corresponding to
lemma 4, we have the following proposition.

Lemma 5. The set Q does not meet the interior of W.

Note that here it is not necessary to assume thatj§°) is continuous in
(t1-A\,t1) for some A > O.

Proof. The derivation is almost identical to that of lemma L, with cer-
tain simplifications, and we shall only outline the necessary arguments.
Assuming the contrary, we show that there are points;gj = §§(Ej’aj)’
J=1,¢..,7,8uch that each’$j€w and;fodﬁl"°°ﬁ£7 are the vertices of a T-
simplex that contains a point a of the form (4.11), with a < O, in its in-
terior. We let TQQ) = t; for all $¥E,, and consider solutions of eq. (L4.28)
near s = O, where @(+,+) is again given by (4.20)-(4.22) and (4.16), and
the function.mﬂ-) has all of the properties described in section 4. Rela-
tions (L4.26) and (L4.27) can now be derived as in section b4, except that
(L.26) can be obtained without having to show that ég(thg)/at exists in a
neighborhood of t: (since 7(+) = t1). The continuity of‘ﬁzin.(tl-%”tl) was
used only in showing the existence of this derivate, and consequently the
extra continuity hypothesis can here be dispensed with. It then follows

as before that there is a vectorji possessing the same properties as in

section 4 such that egs. (4.32) and (4.33), with T = t1, are satisfied.
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But these equations are inconsistent with relation (6.1), and we have a con-
tradiction. This completes the proof of lemma 5.

We now have the following theorem.

Theorem 2. Let“X ) be & nontrivial (i.e., A% 0) solution of the ex-

tended fixed terminal time problem, t; being the terminal time, and let/p\( )

be the corresponding trajectory. Then there exists a function ¥(-) from
K

[0,t1] 1o E5 such that ),",( o) andi}( -) satisfy all of the conditions stated in

thecrem 1 with the possible exception of (5.5). If the points of discontinuity

of 4 +) cluster at ti, then, in addition,

(d“dit”') -0, [wsl = 1. (6.2)
t

ar
=13

Proof. Just as the existence of a vector T = (M1,M2,M7) which satisfies
ay ar Az

(5.7) followed from lemma 4, it is here a consequence of lemma 5 that there

is a vector T = (T1,M=,T7) such that
v AL

M-0x < 7
W o T A

o < T-0 for all BxEW and 9‘?@, . (6.3)

=D,
Ay

With the exception of (5.5),the conclusions of theorem 1 now follow from (6.%)
as in section 5. Since ]L}E(’f)“ = 1 at all points of discontinuity of i}g and
]L{(t)“ is differentiable (and certainly continuous) at t = t1, the last
sentence of theorem 2 follows at once.

Note that if:yﬁ( -) is a solution of the extended variable terminal time
problem, it is a fortiori a solution of a fixed terminal time problem. There-

fore, theorem 2 also provides necessary conditions for the case excluded in
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theorem 1; i.e., if the points of discontinuity ofjg-) do cluster at ti, the
conclusions of theorem 1 remain valid, with the exception that (5.5) must be
replaced by (6.2).

T. Examples: Let us apply theorems 1 and 2 to some problems that are
of contemporary interest.

First consider the variable terminal time, fixed endpoint problem (some-
times referred to as the "rendezvous" problem) in whichgﬁl(t) anduég(t) (the
functions that describe H(t)) represent the position and velocity, respectively,
of an actual or fictitious target at the time t. The equations of motion of

such a target can be written in the form

%ﬂ = 22(t) 9%%1 = GM(t),t) +a(t) , (7.1)

where/gﬁt) is the non-gravitational acceleration experienced by the target.
Since (7.1) must hold, in particular, when t = ti, relations (5.5) in this

case take the form (see (L4.5))

W(ta)-alts) = (1) Me1)t7)] > o.

M

If a(t) = 0, i.e., if the target is in a "free-fall" trajectory, we obtain

jﬁtl)'ﬁgtl)ﬁgti)] = 0, (7.2)

vhich implies that either t1) =4(t1), or that |L‘{,(t1)|| =1 and (see (5.6))

W(tl)-$(tl) = 0, i.e., relations (6.2) are satisfied.

M

Also consider the following three variable endpoint problems.
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The first, the so-called "intercept" problem, is the problem in which
the vehicle terminal position is specified (but may depend on the terminal
time), and the terminal velocity is arbitrary. In this case, egs. (A,B) can

be put in the fom x = A1(t), ¥y = o, and

Ht1) = T = {(x,3): x = 2M(ta)) -

Ay ns

The transversality condition (5.4') in this case implies that_i(tl) = 0,
Consequently, ”E(t)” <1 for t' <t <ty and some t' < t31, so that, by

theorem 1, Egtﬁ is constant for t' <t < ti. This conclusion is valid whether
the problem is with fixed or variable terminal time. For the variable terminal

time problem, relations (5.5) take the form (since Wt1) =::(t1) and ¥(t1) = 0)

i(tl)"[i‘ dxl(tl)J _ 0.

dt

As a second example, consider the case where the terminal velocity is
specified (but may depend on the time) and the terminal position is arbitrary.
Then, egs. (4.3) can be put in the form x = g, y = Mo(t), and the transversal-
ity condition (5.L') implies that/ﬁﬁtl) = O whether the problem is for fixed

or variable terminal time. For the variable terminal time problem,(5°5) takes

the form

yy(m)«[g(g,m 9,%‘6_2,} - 0.

In the third example, the "transfer to a specified orbit” problem, we

shall assume that G(E!t) igs independent of t. Here, the vehicle terminal
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position and velocity are to be the same as the position and velocity at any
point on a specified solution curve (i.e., orbit) of eq. (2.1) with T = O,
1

Thus, for every t > 0O,

K(+) ={<,§<s>g<s>>=-m<s<w, 2ol -y, Bo) . o3()), 50) = 5, 3(0) %

ds

wheretgiandnE/are given vectors in Ez that specify the orbit. Then, in the

notation of section 4,

T = {QEWdV, F+0G(T)): ~» < 0 <o} ,

T A e Ay

and the transversality condition (5.h) takes the form

E"l}(tl) = G(T)-¥(t1) & (7.3)

s

Since H is independent of t, the functions»&l anddég can be chosen to be in-
dependent of t, so that, for the variable terminal time problem, we have (by
virtue of (5.5) and (7.3)) that (7.2) holds, i.e., eitherlﬁ(tl) =;§(t1) or
egs. (6+2) hold.

8. Existence and approximation theorems: In this section we shall

prove that the sets }#(t) possess the two properties described in section 2.
We first prove an almost self-evident, but nevertheless interesting,lemma.

We shall say that a functionnﬁﬂ°) from [0,1] to Es is regular if4§(°)
is continuous and piecewise smooth, and if @?/dt is of strong bounded varia-
tion in [0,1].

Lemma 6. Let h(+) be a regular function from [0,1] to Es, T an arbitrary

positive number, and zo and zi arbitrary vectors in Es. Then there exists a
m “
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function u(+)€¢3(E) such that the solution z(+), p(+) of eas. (2.3), with

= U and initial values p(0) = h(0) and z(0) = z,, satisfies the equation
v Ay At ar 2

u
M

o(t) =_E£t/€) for all t£[0,t] as well as the boundary condition

V. 4

(%) +3(E)

Z
L%

=Z1.

Proof. For each t€[0,t], let

t
/g;(t) = fﬁ(ﬁ(S/?),s)ds * 25 (8.1)

0

and let the function W( .)EL3(T) be defined as follows:

(M> for 0 <t <1t
+
ds S=(t/€)
wt) =40 for t = 0O
tz1 for t =% .

Since the functionug(',-) is bounded, it follows that the function”£(~) de-
fined by (8.1) is of strong bounded variation in [0,t]. LetA§(=) = (l/EZE(a)-
-6(-). Then TEB(t). If we set z(t) = £(t) and o(t) =£(t/€) for t€[0,t],
it can be verified directly that the functions}g(“) and‘8(°) are a solution
of egs. (2.5) with;g =;E that satisfy the initial and boundary conditions
prescribed in the statement of the lemma.

Let K(+) be a function whose domain is [O,») and whose range is the

class of subsets of Eg. Preserving the notation of section 2, we shall in

addition denote, for every T > 0, by #(T;K(+)) the following subset of #(T):

Ve d

HEK()) = (3(-): 5()EME), o(t;3)EK(s) for every +£[0,%]]
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We now prove the following existence theorem.

Theorem 3. ILet t; be a given positive number and let K(:.:) be a function

from (0,00) into the class of all closed subsets of Esz with the property that

there is at least one regular function () from [O,l] to Es such that

M

h(t/t1)EK(t) for every t€[0,t1], }}/(O) = r_, and (ﬁ(l),z)EH(tl) for some y€Es.

Then 3(t1;K(+)) is not empty, and there is an element@( EMt1;K(+)) such
that
STV[Q)tl]’g( ) = inf STV[O’tl]E( ) (8.2)
' R (t15K(4))

Proof. The fact that #(t1;K(+)) is not empty follows immediately from
lemma 6. If #(t1;K(:)) is a finite set, the theorem is trivial. Thus, let
41‘111( ), n=1,2,..., be a sequence of elements of ®(t1;K(+)) such that

lin STV[o ¢ ]9y = _ inf STV, 4,14 - (8.3)
noeo A t13K(-))
Denote the functions z(:;un) andme( “5un) bym.v:n( .) and/fn( .), respectively.
Because the function G(-,-) is bounded, the derivatives zn(-) as well as the
functions ,En< <) themselves are uniformly bounded, and the En( -) are equicon-
tinuous on [0,t1]. Since ,},,ln(o) = O for each n, and the numbers STV[Ojtl]B«nﬁ
n=1,2,..., are bounded, it follows that the functions %( *) are uniformly
bounded on [0,t;]. Consequently, the derivatives ’én( +), which exist almost
everywhere in [O,tl], are uniformly bounded and the functions pn( ) are them-
Vo d
selves uniformly bounded and equicontinuous on [O,t;]. Appealing to Arzela's

theorem [6, p. 122] and the Helly selection theorem [11, p. 222], we conclude
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that there is a subsequence of the u () (which we shall continue to denote
by 4., without loss of generality), and functions »E'DO( ),‘500( ), andﬁw( °)
from [0,t;] to Es, where u, is of strong bounded variation and z, and o, are

ool

continuous, such that, for every t€[0,t:],

11m49n(t) =)3°°(t)’ limfn(t) = fm(t), 11m£n(t) = ‘gw(t).(S.h)
-0 n-oo n-e

Also, it is easily seen that lim , STV w > STV[lim _u, 1, i.e. (see (8.3)

and (8.4)),

STV“EL00 < inf STV u . (8.5)
e t13K( +))

Now define the functiong ) from [O,tl] to Ez as follows:

+
u(t ) for 0 <t <ty

m 00
At) = (8.6)
Bm(t) for t =0 or t =ty .
Since Wum( ») is of strong bounded variation, "uw(t_{_) exists for each %(0,t1),
and since there are at most a denumerable number of points at which a func-
tion of bounded variation is discontinuous, il\(t) =,Eoo(t) for almost all t in
[0,t1]. It is easily seen that STV < STV u , so that, by virtue of (8.5),
P
STV 2 < inf STV u . (8.7)
He — av
veR t1;K( )
P4
It follows from (8.4) and (8.6) that 2(0) = 0, so that 4 )€ t1).
In addition, because of (8.4), (8.6), and the continuity of the functions
h; we have thatfw(O) =T, /gm(O) = v, and hy (p (t1), ) Zoo (t1) -I@(tl =0
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for i = 1,...,v. Since the sets K(t) are closed by hypothesis, it follows

from (8.4) that o _(t)€K(t) for all t€[0,t1]. Consequently, if we can show

w

(o]
that p () = o(-5Q) and that z () =
A b 4

A A

f( -;@), we can conclude that ‘@\Eﬁ(tl;K( ),

and (8.2) is then an immediate consequence of (8.7).

By virtue of (2.3),

t
pn(t) = 1, +f [,,.Z,n(s)'t}fn(s)]ds , 0<t<t .
0

Since the functionsﬁ, JzZno and,ﬂn are uniformly bounded, we can appeal to

the lebesgue dominated convergence theorem, and conclude that

Z
O b 2
%
Pult) = 1, +f [z,(s)¥Ns)]lds , O0<t<ta,
A et ) e i

where we have also used the fact thatﬁw(t) =:1‘1Xt) for almost all t€[0,t;].

It now follows immediately (see footnote 2) thatgw( ") =zl ,il\) andfw( ) o=
=£( -;:9\), completing the proof of theorem 3.

If K(t) = E3 for every t > O, then #(t1;K(+)) =M (t1), and it is evident
that there exists a regular function .E( *) with the required properties. The

existence theorem promised in section 2 then follows at once from theorem 3.

We now prove the following theorem.
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Theorem 4. Iet‘ﬁf JEM t1) for t1 > 0. Then there exist functions

un('XEA?«tl)J n=12,..., such that: 1. the derivatives an/dt are essen-

tially bounded, 2. u (t) »Xt) for each t£[0,t1] as n + =, and 3.

lim STV uy = STV 4.

Proof. We first prove two lemmas.

lemma 7. l@itw}('),’ﬂg(°),... denote a sequence of uniformly bounded
functions in &3(t1) §ggh_§hg§;ﬂn(t) +:§(t) as n+» for each t#[0,t1], where
X DEG(t1). Then

[0,t1].

n p(t33,) » p(t50) and z(t

3¥n) +;5(tgﬁ? as n-o uniformly in

Proof. Let ©,(-) be the scalar-valued function on [0,t;] defined by
6,(t) = |L8(t;x )- p(t DI+ ]Lzy(twn) t;2)[. Then it follows from (2.3) and
the boundedness of the partial derivatives aGi/BrJ. that én(t) < Ren(t)

+ mg(t)iﬂn(t)u for some positive constant R and all t€[0,t1]. Now €,(0) =0,

so that, for 0 < t < t1,

t
Gn(t) < RL/W en(T)dT'fJf IEﬁT):yn(T)HdT .
6}

t1
It follows from the Lebesgue dominated convergence theorem that\/p 1E§1ﬁ -
0

ixn(T)HdT + 0 and n + o, and the lemma is now an immediate consequence of

Gronwall's inequality.

Lemma 8. For every € > O there exists a ® > O, depending only on €,

such that the following proposition holds: If’2&=) is_any absolutely con-

tinuous function in é?(tl) whose derivative is essentially bounded, and 6\

and 2" are_any vectors in Es that satisfy the ineggalitv']ﬁﬂl+- &gﬂ < 8, then
Ve d ped
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there exists an absolutely continuous function

()EG(t:1) with essentially

U
M

bounded derivative such that STV(u:E) < € and
w

oltazn) = eltasw) + 8,  z(tizw) +u(ty) = z(tasy) + w(ta) +fz:(

Proof. Fix ¢ > 0. Let G = sup,_ tug&;,t)H, € =min {e/(7+20), 1,t1},
”)

~ 2

and & = (¢)”. Let w(') be an arbitrary, fixed, absolutely continuous function

w .
Ve
in QB(tl), and let © andj%'be arbitrary fixed vectors in Es such that ”Eﬂ +

i

+ |12}l < 8. Define the elementlig-) of ¢(f(t1) as follows:

0 for 0 < t < t3-€
2t) =« (t-t1¥€)m  for £1-€ <t < ta-

(t-t1)me+2 for t1-¢/2 <t < t1 ,
74 At

where my = (LP/7)-2/ and ms = (22/6)-&676 . It can be immediately verified
M i w e

that‘f§~) is absolutely continuous, that its derivative is essentially bounded,

and that
t1
Ne) =8, | S = P (8.9)
W 5 ad e d
Also,
s 0) = © Ul + ey < B+ olg) <R es - e AP
2 " - € ~ €

(8.10)

Define the absolutely continuous functions o(-), z(-), ¢(*), anddgﬂ°)
e A s

from [0,t;] to Eg as follows:
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(8.11)

I
—~
ct
~—
il
=
o
S
+
=
VS
ct
S—
+
[Van
—~
t
~—r

Since the function/gg',') is bounded, it follows that the derivatives of
z( +;w) and of z(*), and consequently of {(+) and of u(-.), are essentially
A Ca P ~ a~

bounded. Now (8.11) and (2.3) imply that,for O < t < t1,

o(t) = p(tsw) , 2(t) = z(t;w),

~M

and eqs. (8.8) therefore follow from (8.9), (2.3) and (8.11).

Further, u(+)-w(*) ==ﬂﬁ')f;ﬂ'), so that (see (8.10))
STV(u-w) < STV 4+ STV § < 7€ + STV ¢ . (8.12)

Since ﬁ(t) =0 for 0 <t < t;-%, it is a consequence of (8.11) and (2.3)
that, in this interval, p(t;u) = P(t) and z(t;w) = Z(t); i.e., £(t) = O for

-~ e d

0<t< tl—z. Because (°) is absolutely continuous,
s 2

t1 . 1,
g O A LT
0

ti-¢
But [|[¢] < 2G (see (8.11) and (2.3)), so that STV { < oGe; i.e. (see (8.12)),
m R 4
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STV(u-w) < (7+2G)¢ < €. This completes the proof of lemma 8.

" o

We now turn to the proof of theorem 4. Since N +)E*t1), W is of
» 2

bounded variation and continuous from the right in (O,tl) . Consequently,

/1)() has the representation:u:(-)

g ;1})( )ﬁg( ), wﬁerei}l( ‘) andil\g( .) are in

(t1), ;ﬁl( *) is continuous, and/gg( +) is the jump function ofdﬁ} ‘).
let T1,T2,... denote the points of discontinuity of@( +) (or, equivalently,

of W=(+)). Without loss of generality we shall assume that they are infinite
4

in nmber. I_e't Ei =@2(Ti)—ﬁ2(']’£) if Ti % O; Ei =ﬁZ(O+)ﬁ2(O) if Ti = Oc
Then
0
STV = SIVAN + STV , SV = zljjifl <o
i=1
Iet s(+;7) denote the unit step function at t = T:
[0 fort < (—lifTiéo
s(t;T) =< S(TiT) =ﬁ
L,l for t > T, t Oif =0 .

For each positive integer n, define the absolutely continuous functions

EI'I(')’ y;()éa(tl) as follows:

a(t) = Wlita/n) + [(nt/t2)-1100((i11)t2/n) - Di(ita/n)]

L

it %
for — < t < (i+l) ==,
n n

H-
]

Oyeveyn-1 ;



Let f»z:n( ) =;v£;l( )*tup( ). It is clear that 4 (t) >~4t) uniformly in

[0,t1] as n + o, that eachjﬁ#-)EZj(tl), and that

n
S’I‘Vﬁ\n = STV y! + Z Ayl SSTV:\uVl +STVR: = SV . (8.13)
i=1
For every € > O and positive integer j, define open intervals Ij c 8s
)
follows:
IJ)E = (0,e) if 7, = 0 ; Ij,e = (1,-¢,7,) if 7. > O,

and let r(';Tj,e) denote the absolutely continuous, real-valued functions

defined as follows:

r-O for 0 < t < Tj'€ 7]
J1 -
r(t;r,e) =4 = (t-t.+e) fort, -e<t<rT,b if 1.>0,
J € J J - = J J
1 for TS <t t: B
B t -
- for 0 <t <e
€
r(t;73,€) =4 b if T3 = 0.
1 for e <t < t)
let €1,€e2,... be a strictly decreasing sequence of positive numbers, with

€y < l/n for each n, such that, for every n, the intervals I, e ,«..,In,ey
are mutually disjoint and all contained in [O,tl]. Iet the absolutely con-

tinuous function wn(-)élf(tl) be defined as follows:
Vac'd
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n

i ) = jﬁ(“) + Z r(‘;Ti,en)Ei .

i=1

It is easily seen that the derivative Of*En(') is essentially bounded, that

n
- ol (+)E0 = C 4= :
‘ﬂn(t) —;ﬁh(t) for t¢;:ili:€n) Lﬂn(t)dﬁn(t)” < [XiH for tQIi;Gn’ 1= 1,00.,n;

(8.1k4)

and that (see (8.13))
n
STV wy < STV wj + leiiil < STV Q. (8.15)
i=1

Now,]tfiH 0 as i »o; i.e., for any fixed € > 0, there is an i' > O such

that HViH <€ for all i > i'. Consequently, it follows from (8.14) that
Ay
if
”En(t)jﬁh(t)ﬂ < € for all tﬁk,)Ii,En. Since, for each i, I
i=1

i;eﬁjli)€n+l and

00
M Iie, = @, we conclude thatcﬁn(t)igh(t))+ 0 as n + o for every t€[0,t1].
n=1

Recalling that'ﬁh(t)-+ﬁgt), we obtain that

lim w(t) = A¢) for all t€0,t1] . (8.16)
n-o

Further, since;gn(O) = 0 for each n, it follows from (8.15) that the;2n(°) are
uniformly bounded.

Appealing to lemmas 7 and 8, we can assert that there exist absolutely
continuous functions;&n(')él?(tl) with essentially bounded derivatives such

that
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oltasuy) = et
z(ta5un) * un(ta) = AE(tl£§> +4(t1) ,

-

and
STV QBnZﬁn) +0asn-—>o,

Thus, each upEHt1), and (in(t)-un(t)) > 0 as n > o for all t€[0,t1], which,
by virtue of (8.16), implies that
lim u (t) = “At) for all t£[0,t1] . (8.17)
100
Now STV w, < STV4EH+STVQEn'W ). Therefore (see (8.15)), lim sup, STV u, < STVA.
But it follows from (8.17) that lim inf STV u > STV Y. Consequently,
llmnewSTVABn exists and is equal to STVAE“ This completes the proof of
theorem 4.
According to theorems 1 and 2, there is good reason to expect that a
solution:ﬁi') of the extended variational problem is a step function. The

result of theorem 4, as well as the method for constructing the approximat-

ing functions in the proof thereof, together with eq. (2.5) indicate that,

loosely speaking, a minimum-fuel thrust program generally consists of a finite

number of impulses.

9. Bounded thrust problem and limit theorem: In this section we shall

consider the original fixed terminal time variational problem described in
section 2 in the presence of the additional constraint that ug(t)H < p for
all t, where p < o is a given positive constant. This constraint is a math-
ematical representation of the physical fact that the magnitude of the thrust

vector of a rocket engine is always limited.
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The problem may be precisely formulated as follows. Preserving the nota-
tion of section 2, for given positive numbers t; and p, let ga(tl,u)=
= EE(-):J?GF%(tl), mg(t)H < p for all t€[0,t1])}. Then we shall consider the
. . . / b
problem of finding (for given t, and p) an element fk-);é%(tl,u) such that
A
M(tléf) > M(tlifﬂ for every E€§?(t1,p). We shall refer to this problem as

the p-bounded problem. (It is to be understood in this section that all

problems are fixed terminal time.)

We shall show that the p-bounded problem always has a solution if u is
sufficiently large; that, in a certain sense, the solutions of the p-bounded
problem tend to a solution of the extended fixed terminal time problem when
i > ; and that the necessary conditions for the latter problem can, in a
sense, be obtained by passing to the 1limit in the necessary conditions for
the p-bounded problem.

We shall first prove the existence theorem.

Theorem 5. If p is sufficiently large, then é>(tl,u) is not empty and

there exists an element éﬁ °ng>(tl,u) such that M(tlagv > M(tl&g) for every

/Eég%(tl,p); i.e., the u-bounded problem admits a solution.
Proof. Let us show that f;«tl,u) is not empty for u sufficiently large.
According to theorems 3 and U4, there exists a functionwyi-X££?Ttl) with
essentially bounded derivative. Let STV u = o and let HQE(t)/dtH < B <« for
almost all t€[0,t:1]. Iffgf-) is now defined by means of relations (2.5) and
(2.6), it follows thatj‘( )EF(t1) and ng(t)H < (M,B) for almost all t€[0,t1].
Changing the values ofgg(t) for t in a set of measure zero if necessary, we

conclude that F(-)Ef%(tl,p) whenever p > MyB.
4
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Denoting r, by X543 and r; by x, (where i.= 1,2, or 3), and (-M) by x,,

eqs. (2.1) and (2.2) may be rewritten as follows:

;(j_(t) = Xi-B(t)’ i=1L,s5,6 ’

. T:(t

Xi(t) = Gi(X4JX5;X6;t) - Xiéti ’ i=1,2,5, (9 1)
3.(7(13) = HT(Z)” b) E/ = (Tl;TZ)TS)

In order to show the existence of an elementi?‘in.éE(tl,u) that max-
imizes M(tlig): we shall first consider a system which, in a sense, is more
general than (9.1), and which, following Warga [12], we shall refer to as
the relaxed system. DNamely, we consider the following system of equations

for the scalar variables yi,...,y7:

S}i(t) = yi_5(t); 1= 155)6 )

Y(t) = Gi(YLL)YS;.YG)t) - Ti(t) ) i=12,3, (92)
* y7(t)
3“’7(t) = M g E = (Tl)TZ;TS)

A

If F(:) is a measurable function from [0,©) to Es and F(.) is a summable
e

o
function from [0,o) to E; such that the inequality /’ [Hgﬂt)H+F(t)]dt < AM
0
holds, we shall denote by (yl(tQEJF),,,.,y7(t;F,F)) = y(t;f,F) the solution
jssd A

for t > 0 of egs. (9.2),with T(t) = F(t) and T(t) = F(t), that assumes the

b2

)) =Xy

v e

initial values (ya1(0; ;F):“‘QYS(O}/E;F)) = Vo (Y4(O%‘£‘5F):°"JYS(OSF)

y7(0;F,F) = -M,. Let j?R(tl,p) denote the class of all pairs (F(-), F(.))

L d
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such that 1. ;Eﬁ-) is a measurable function from [0,t:] to Es, 2. F(*)

oy o’

T
is a summable function from [0,t;] into [0,o), 3. Jf [IF(£)[4F(t) ]at < AM
0

b JE()[+F(t) < p for a1l t€[0,42], and 5. hy(ya(tu;F,F), ..., ¥6(ti;E,F),

yilt1;F,F), .. .,ya(t1;F,F),t1) = 0 for i = 1,...,v. Then we shall consider

e d

A
the relaxed p-bounded problem which consists in finding an element (F('),
Ap

f(-))éf?R(tl,p) such that y7(t1£§;f) < y7(tli£,§) for every EES-),
%(-))E?zR(tl,p). According to a theorem of Warga [12, Theorem %.3], such a
minimizing element always exists so long as 3?R(t1,u) is not empty, and we
shall show below that this set is not empty whenever p is sufficilently large.
Indeed, it follows at once from (9.1) and (9.2) that, if EO(-) denotes
the function which vanishes identically, then, for every measurable function

‘\tl
F(+) from [0,t1] to Eg with / [F(t)]lat < AM,

i ]
(yl(t;};,%o), ,ys(t;”,ﬁo)) = r(t;F)
(va(t3E,F0), - ove(83F,F,)) = r(63F),
yr(t5F,F,) = - M(5F)

for every t€[0,t1]. It then follows at once that;ﬂ(-)sé>(tl,u) if and only
if @E('), %O(’)}Z§7R(tl,u). Inasmuch as we have shown that 59(t1,p) is not
empty for p sufficiently large, we conclude that EZR(tl,u) is not empty for
f large enough.

We shall prove below that if CE('), F(+)) is a solution of the relaxed
p-bounded problem (and we have shown that such a solution exists if u is
sufficiently large), then F(t) = §O(t) = O for almost all t€[0,t1]. By what

was said above, this will imply that'ﬁi')fég(tl,u) and that M(t;F) =

F
e
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~

= -w(h{f,?o) 2 -y7(t13F,F,) = M(t1;F) for every F( DEZ (t1,1); i-e-,ﬁ( ‘)
is a solution of the p-bounded problem.

It easily follows from the Pontryagin maximum principle [8, Chapter 1]
that if C§(°), F(+)) is a solution of the relaxed p-bounded problem, then
there exists a twice differentiable functionyig') from [O,tl} to Ez, and an

absolutely continuous function ¥(+) from [0,t1] to Ei, with [W(+)[|+¥(-) not
M

vanishing identically, such that

2.}.1‘ /0 5/\— ce 3/\)- 2 :
ddt(gt) _ < ,G‘(M(EEJF); a}:YS(tEF) t)) ’jf/(‘t) ’ 0<t <ty (9°5)
diit) = - [y7(t£§}§)J'2Lv(t)gg,t)] for almost all t , O<+t <%t ;
(9.4)
¥(t1) <0 ; (9.5)
6] 16D y,(t);F,}y . WO
A y7( £, F) EE; A y7(tg§DF)
V>0
Ivil+v<p

for almost all t, 0 <t <ty . (9.6)

It follows from (9.6) that, for almost all t€[0,t,], either F(t) = O or
qut)ﬂ = 0. UHence, if the zeros of HXS’)H are isolated, then F(t) = O for
almost all t. If the zeros of HE}*)H in [0,t1] are not isolated, then
Xﬁt) . For, if tz is an accumulation point of zeros of”ud')H, then
V(ta) = W(tg) = 0, which, because of the uniqueness of solutions of egs.

~

9.3), implies that ¥(t) = 0. If ¥(t) =0, it follows from (9.L) and (9.5)

e 24
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and the fact that/g/and ¥ cannot both vanish identically, that V(t) = const .<0,
and (9.6) then implies that ”E?t)“ = F(t) = 0 almost everywhere in [0,t1].
Q.E.D.

According to the Pontryagin maximum principle as applied to egs. (901),
ifi@(') is any solution of the u-bounded problem, there exists a twice dif-
ferentiable function V() from [0,t1] to E5 and an absolutely continuous

e ’d

function V() from [0,t1] to By, with [¥(-)#(+) not vanishing identically,
74

such that
Wt) = (ag@(t@’t)) W) , 0<t <t ; (9.7)
~ a;? e - -
(t) = - [M(t;F ]’Q[qx(t)f}tﬂ for almost all t , O<+t <ty 3 (9.8)
¥(t1) <03 (9.9)

W(t)Hth)“ + X&EleLEl = max [?(t)HX“ + Mﬁt)f&{}; for almost all t, O<t<tis

A M(t55) TeE A M( ;%) (9.10)
7]l<p
B(62) Lxr(eafD)] = ¥(t) [y-2(2as)] for a1l (3T, (9.11)

A .
where T is the hyperplane tangent to H(t:) at (r(tliﬁv, T(tléﬂ))» We shall

say that such a pair (V(+), ¥(°)) is an adjoint function which corresponds
M

to T +).

e

It follows from (9.10) that, for almost all t€[0,t:1],
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0 if [y(e)ll < ¥(t)
Be) = qau(t), where 0 <a < u/¥()l, 1 [y(e)] = ¥(s) # 0 (o109
up(e) /ly ()l i£ 0 # [u(e)l > ¥W(s) ,
O] 20 = (o) >We)
where
W) = - m(esPu(e)/a (9.13)

fasd

It is easily verified that $(-) is differentiable on [0,t;] and that (see

(9.8) and (2.2))

0 1f [y(e)]-v(t) <0
(9.14)

ey Ul-re] a2l z 0.

AM(+5F

Hence, a¥(t)/dt > O for all t, 0 < t < t1.

Thus, let T +) be a solution of the p-bounded problem, let (¥(-),¥(-))

be a corresponding adjoint function, and let V(-) be defined by (9.13). It

follows as before that if_gﬁt) # 0 on [0,%t1], then the zeros of’Hﬂfﬂ)H are

isolated. Further, if ¥(t)

il

0 on [0,t1], then (see (9.8), (9.9), (9.13)

and (9.12)) ¥(t) = const. < 0, ¥(t) >0 for all t£[0,t,], and F(t) = O almost

everywhere in [0,t1].

Note that (aw(-),o¥(+)) is an adjoint function cor-
%

. A .
responding to ®(+) for every @ > 0. Thus, if (t: 31t> #0, 0<t<t1) is

w

of positive measure, then/i(t) # 0 for some t€[0,t1], and, multiplying

(W(+),¥(+)) by a suitable positive constant if necessary, we may assume that

~s
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max [ly(e)] = 1. (9.15)
Oststl
Adjoint functions (l’( *),¥(+)) that satisfy (9.15) will be said to be nor-

malized.

Iet Fo(+) denote the function from [0,t;] to Es defined by\go(t) = 0 for

%4

all t, 0 <t < t;.
We now prove the following limit theorem.

Theorem 6. Let i, Tla,--- be a sequence of positive numbers such that

~e

h; *® as i »o. Then, j{;fb(')¢f7(t1), there exists a subseguence pi,Ho,...

of the ﬁ;, solutions Fi(-) of the p;-bounded problems, normalized adjoint

functions ($i('),$;(')) corresponding to the F., and functions () and ¥( )

from [0,t1] to Eg such that ¥(+) is twice differentiable and

1. fﬁ') is a solution of the extended fixed terminal time problem,

2. El(t) > ¥(t), (9.16)
i-00
5. -Me;E; )b (t) /A + 1, (9.17)
i-00
P
4 / ﬂiﬁf—)-—de +(t), (9.18)
0 fed 1-00
5. r(t;F;) > o(t:%), (9.19)
i -0
6. () » z(6:2)4(t), (9.20)
Ay fad i—)oo
To M358, ) > My expl-A7STV 4], (9.21)
100 -
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where 2, 3, and 5 hold for every t€[0,t1] and the convergence is uniform with

respect to t€[0,t1]; and 4 and 6 hold for almost all t€[0,t:1] including O,

t, and the points of continuity of D *). Also, O(:) and ¥(+) satisfy egs.
~ig-

u
- g

(5.1)-(5.4), where/ﬁ(t) = (t;ﬁ), and T, ¥, and T are defined as in the state-

A

ment of theorem 1.

Proof. According to theorem 5, solutions of the p-bounded problem exist
when p > u¥*, where p* <o is a sufficiently large positive constant. Yor
every W > p¥, let ?“( :)€Z(t1) be a solution of the p-bounded problem. Since
Fol)EF(t1), (t: :E:\u(t) #0, 0<t < t1) is of positive measure for every
B > p¥, and, by virtue of the immediately preceding discussion, there exists
a normalized adjoint function, which we shall denote by (\lf“( .)’WH( *)), cor-

“r

AN
responding to each FLL with u > p*.

At

let u(+) = o, () teen,

t
,Bp(t> =[ %%ds, 0<t<ty . (9.22)

It follows from the discussion in section 2 that, for each p > p*, ,,}ﬂl( EH(t1)

and (see (2.6), (2.10), and (2.14))

STV u (+) = Aln[—M-°§7], (9.23)

M(tlinu

Sincej\p*( ')c”‘?(tl,p) when p > p*,

AN AN
M(tl;;fp) > M(tl::f,p*> for p > p¥ . (9.24)

By virtue of (9.23) and (9.24), we can conclude that STV w, < STV ux for all

25



B> WX,
The functions WM(-) are uniformly bounded by definition, and satisfy
-~

eq. (9.7) with T replaced by £ .

" Since G(-,+) has bounded first partial
ke e

derivatives the functions Vu(-) are also gniformly bounded. But if the Yy
2 3

and thei{u are uniformly bounded, then the functions’i“(-) must also possess
this property. Consequently, the functions_}{fM and.\l}H for p > p* are equi-
continuous as well as uniformly bounded.

Just as was done in the proof of theorem 3, we can now show with the aid
of relation (2.9) that there exist functions‘gg-), ig-) and a subsequence
M1 M, ... Of the py such that QEX(%1), and, denoting ¥, by ¥; and_f\“i by
Fy, such that: (a) (9.16) and (9.19) are satisfied uniformly in [0,t1], (D)
(9.18) and (9.20) hold for almost all t€£[0,t;] including O, t; and the points
of continuity of:ﬁf'), (¢) (5.1), (5.2), and (5.4) are satisfied, and (d)

limi»wSTV Bpi exists and

STV @ < lim STV . - (9.25)
e 100 - 1

We now shall verify (9.21). let‘ﬁﬂ-)67¥(tl) be a solution of the extended
fixed terminal time problem. Then (see theorem 4) there exist functions
‘Ei(')éﬁg(tl), i=1,2,...,and positive constants Mj,Mp, ... such that
lim STV i = STV U, and Hdﬁi(t)/dtfl < M, < for almost all t[0,t:] and
every 1 = 1,2,... . Settingfgn =‘f§§n), we conclude on the basis of (2.5) and

(2.6) that Hgn(t)” < MM, almost everywhere in [O,tl], i.e., (modifying the
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values OfAEn(t) for t in a set of measure zero, if necessary)ﬁfﬁ§é>(tl,p)
for every p > MM, . Consequently, for each n = 1,2,..., there is an integer

~

I, depending on n, such that M(tlizi) > M(tlaEn) for every i > I(n), or (see

(9.23)), STVQEHi < STVJﬁn for every i > I(n). Therefore (see (9.25)),

STVAY < 1im STV u_ < lim STV u, = STV u .

i-00
Butj?{%(tl) and U is a solution of the extended fixed terminal time problem,
so that STV u < STV Q. Therefore, SIV 4 = STV U, and {0 is a solution of this
problem also. Consequently, (9.25) is actually an equality, and (9.21) now

follows at once from (9.23%).

We now verify (9.17). Denote w“.(') by ¥,(+), and let
i
V,(t) = -MuF) v (E)/A, 0<t<ty, 1=1,2....  (9.26)

We shall show that Ji(O) > 1 as i > o, and that ;i(t) < 1 for every i = 1,2,...
and t€[0,t1]. Since each ¥; is differentiable, and d¥,;(t)/dt > O for each i
and t, this will imply that ?fi(t) + 1 uniformly in [0,ty] as i +w, il.e.,
that (9.17) holds uniformly in [O,t1].

Let By = (t: mgi(t)“ > ﬁi(t), 0<t<t1}, and let ]Ei[ denote the

Lebesgue measure of E,. According to (9.12), ”Ei(t)ﬂ = yu; when t€E;, so that

(see (2.2)) 0 < M(t1;F;) < My

i “ilEi]/A° Consequently,

HilEj_‘ SAMO ) i=1,2,..0, (9027)
and, since limi_mu:.L = o, IE1| +~0as i » >,

5T



Now suppose that Wiff) > 1 for some T€[0,t,] and some i = 1,2,.
Since Wi(-) satisfies eq. (9.1k4) with F replaced by F;, u by by, andjt'byjyi,
and{@i(t)“ < 1 for every t€[0,t1], it follows that ¥(t) = ¥;(E) > 1 for

O for almost all

for every t€[0,t:], and, by virtue of (9.12), that;{i(t)
t€[0,t1]. This implies that;gofﬁz(tl), which is a contradiction, so that
T;(t) <1 for every i and t.

Because M(tigi) > M(tligi) > M(tlifh*) = M*(see (9.24)), and ﬂgi(tﬂlg 1

for each i and t€[0,t1], it follows from (9.1k) that, for every i and t,

aVi(t) _ g Yy
;t <AI\14* [1 wi(t)JcEi(t) )

where cg (t) is the characteristic function of E;. Thus,
i

(wiit) - g (9) - B0, ot  (9.08)

~

where ¢.(t) > O for all t€[0,t1]. But the solution of (9.28) is given by
i pailt b4

G,(t) = l-yexp|- / s )exp U/\ c T)drt|ds
i P AM* “Eg AM* i ’

so that

ﬁi(t) <1- [l"’i"i(o)}eXP{‘ "u—l;' IE]_!] <1 - [l-llfi(O)]A* p) 0<t<t1,

where A* = exp [-M,/M¥] > 0 (see (9.27)). We shall show that (9.29) implies

that %i(o) >1 as i > o,
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For each i, let 7, be any value in[0,t1] such that Hﬁ.(Ti)H =1. (Such

ol

~

values exist by definition of the‘EE =V If Wi(Ti) = 1, it follows from

"V“j_) :

(9.29) and the fact that ¥,(0) < 1 that ¥;(0) = 1. Now suppose that V;(r;) < 1.
Then T4€E;, and let (Ti,T;) be the largest open interval contained in E, which
contains Ty in its closure. We shall suppose that i is sufficiently large

that Tl,T ) # (0,%1) . Then, Egi(Ti)H = ﬁ.(Ti) and /or wii(Tg)H = %i(Tg)o

1

Without loss of generality, we shall assume that “Wi(Ti)H = Ei(Ti). Since

0< Ti‘Ti < ’Ei], and there is a constant K > O such that Héﬁi(t)/dtu < K for

each i = 1,2,... and t€[0,t1], we have that

0 <1 - oDl = Fael-IT Dl = [T Wytles < [ 1S Tt lasads

~

1-¥;(7}) will be non-negative and

1

But IEiI +0as i »w®, so that 1 - llfi(T'i)H
arbitrarily small if i is sufficiently large. Consequently, we can conclude,
by virtue of (9.29), that lim;,,[1-¥;(0)]A* = 0, i.e., that lim; . ¥;(0) = 1.
This completes the verification of (9.17).

It only remains to prove that (5.%) holds.

Tet Gy = (t: [¥3(¢)ll 2 Vi(t), 0<t < ti}. It follows from (9.22) and
(9.12) that dﬁpi(s)/dt = O when s¢G;, 0 <s <1, and that, for almost all

V;(s) or ¥i(s) = 0.

s€Gy, either qEHi(S)/dt is a non-negative scalar multiple of‘&

Hence,

— T du du,: ()
Wp ol .
Z GAGI=T [u (ol (2 s (o50)
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I t€Gy, 1> ﬂii(t)” >¥,(t) 2 ¥;(0), so that, by virtue of (9.30),

dt

t1
%,(o)‘lf E%ELSEZ dt <k/ﬁ {W.(t)JT E@g%ifl.dt gkéq E@ELSEZ dt.(9.21)

i i

Since (9.25) has been shown to be an equality, we have, by virtue of (2.1k),

that

au,, (+) o [lay, (4)
i RIS | AV PR | = a4t = STV u,. > SIVAY . (9.32)
. dt 5 ] dt ‘ul 1-00 e

Also, ¥,(0) > 1 as i »w, so that (9.31) and (9.32) yield that

t1

- T du, (t)
f [,‘l,’i(t)] —*—4—;{6——— at > STVAY . (9.33)
o) 1360

Finally, it follows from (9.16), (9.18), (9.22) and the Helly-Bray theorem

[6, p. 288] that

/ﬂtl _ T tl _ T tl T
[}El(t)] M at = f [\lfl(t)] du (t)°—> [ [ (t)] @t),
dt 5 iad 4

(@)

and (5.3) is now an immediate consequence of (9.33) and (9.34).

Corollary 1. Let 2 be a solution of the extended fixed terminal time

o

oy
problem, and suppose thatj}‘%lﬁoe Then, ii.Eu is any sclution of the p-

bounded problem (for every p sufficiently large), we have that

AN
1. Mtﬁg

) W M exp[-A"1sTV Q] .

00
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Further, gg;ﬂﬁ -) is the unique solution of the extended fixed terminal time

problem, and u, is given by (9.22), then

I
50 HeE) e 26D + A,

AN
L. ,l:(t’,.}‘ju)

e £0650),

where 4 holds uniformly in [O,t:], and 2 and 3 hold for almost all t€[0,t;]

including O,t;, and the points of continuity of‘ﬁﬁ°); If, in addition, the

functionfi(-) that satisfies relations (5.1)-(5.4) is unique, and QX“,W“) is

A\
any normalized adjoint function corresponding tolgp, then the following

limits exist uniformly in [0,t;]:

./\ >
6. M) v (6)/h 2, 1.

The proof of the corollary is straightforward and is therefore omitted.
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1. By a solution of eq. (2.2) we here mean an absolutely continuous
function M(+) that satisfies (2.2) for almost all t > O. The inequality
f oolLEHdt < AM_ implies that M(t) > M, for some positive constant M, and all
2 > 0. Physicall&, the first inequality signifies that the rocket can not
provide thrust once the fuel has been consumed. By a solution of eg. (2.1)

Wwe mean a function‘£ﬂ~), whose time derivative4f(°) exists (for all t > 0)
with -;r;( -) absolutely continuous, that satisfies eq. (2.1) for almost all t > O,

2. If w(-)}@B(%), v has at most a denumerable number of points of dis-
continuity, and the discontinuities of y are of the first kind. By a solu-
tion of egs. (2.3), with u(t) = w(t), we here mean a continuously differenti-

Ay s

able function z(+) that satisfies the first equation everywhere, and an
A

absolutely continuous function o(+) that satisfies the second equation at all

e

points of continuity of w(-).

n






