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ABSTRACT

This thesis presents some aspects of the energy-dependent, static neutron
transport equation, using a continuous energy formulation (rather than a
multigroup scheme). Emphasis is placed on conditions of interest for the high-
energy (fast) domain: both fission, inelastic, and elastic slowing-down ker-
nels are included in the analysis.

As a first step, focusing on inelastic slowing-down problems, a synthetic
inelastic scattering kernel is studied: such a synthetic operator is separable,
but not degenerate. A new energy-transformation is introduced, the applica-
tion of which yields a particularly simple expression for the Boltzmann equa-
tion with inelastic slowing-down and without regeneration. Exact solutions of
the latter equation are found for various boundary conditions, using Case's
method of singular normal modes and inversion formulae for the new energy-
transformation. Asymptotic expressions are derived.

The main part of this work is centered on the properties of the trans-
port equation with simultaneous fission regeneration and slowing-down, under
the assumption of plane symmetry and simple cross-sections laws permissible
in the fast domain. One draws the following conclusion: in order to achieve
completeness for the normal modes, solutions of the Boltzmann equation with
fission and slowing-down, cne must consider fundamental space-energy separable
modes reflecting the multiplicative process together with "slowing-down tran-
sients"; the "slowing-down transients" are solutions of a plain slowing-down
equation with no regeneration; they characterize the spatial adjustment of the
neutron distribution from the initial high-energy source to the final degraded
asymptotic energy spectrum.,

The final part of this work is devoted to the confrontation of these
theoretical predictions with experimental observations and measurements on
fast multiplying media. In many situations (typically, the fast exponential
experiment ), workers have tried to measure a well-defined space-energy separable
asymptotic neutron distribution; however, it has been suspected that an actual
equilibrium was not reached. The present work sheds some light on this ques-
tion, by making a semi-quantitative evaluation of the physical importance of
"slowing-down transients" in the approach to equilibrium in fast exponential
experiments. The theoretical model is adjusted to experimental conditions and
data in ZPR-IV systems (moderately enriched fast exponential assemblies).
From the numerical results, one sees the limitations of the validity of asympto-
tic transport theory (including most multigroup schemes) for insufficiently
large and too subcritical experimental systems related to integral experiments
on fast dilute multiplying media.

ix






CHAPTER I

INTRODUCTION

We deal in this thesis with some aspects of the energy-dependent neutron
transport equation, using a continuous energy formulation. Of special inter-
est to us will be the phenomena of inelastic scattering and fission. Now, it
is a fact that the energy dependent Boltzmann equation has won a well deserved
reputation of difficulty. One can quickly go through a complete review of
former works dealing with exact solutions. The mathematical "barrage" will
lie in the nonseparability of solutions: usually space, angle, and energy
variables are deeply mingled in the exact solutions. To the usual transport
effects found in the monokinetic equation will be added in the energy-
dependent case the autonomous properties of the energy-transfer operators.

Any type of exact solution, however, is welcome, since usual multigroup dif-
fusion codes and multigroup SN codes are reasonable for criticality calcula-
tions, but miss many spatial-transport and energy-transfer effects influenc-
ing the neutron flux shape, which are important for more refined calcula-
tions, e.g., temperature coefficients, plutonium buildup, etc.

As a review of previous work, let us first recall that there are two
basic methods of solving exactly the monokinetic equation: the spatial
Fourier transform (with Wiener-Hopf factorization in half-space problems)Bo_Bl
and Case's method of singular modes (these eigenfunctions being complete for

both full- and half-space problems).55 These two methods can be simultaneous-

1ly used in energy-dependent extrapolations.



For a long time, solution of the "energy dependent Boltzmann equation"
was synonymous with finding exact solutions to the elastic scattering spa-
tial slowing down problem without fission. Very early worksl-5 treated this
problem extensively. Noticing that exponentials of the lethargy are just
eigenfunctions of the elastic scattering operator, one can make an expansion
in terms of these eigenfunctions (in plain words, a Laplace transformation of
the lethargy variable) and obtain a set of uncoupled one-speed transport equa-
tions-—the lethargy transformed variable being no more than a plain param-
eter. FEarlier works =2 then used a further spatial Fourier transform.

Double inversion usually yielded the age-diffusion approximation or solutions
of the deep penetration problem. Many more recent works claiming to deal
with the "energy dependent transport equation" systematically rediscovered
the results of Marshak (19u7).6'9 Very recently,lo-ll using Case's method
of expansion instead of a spatial Fourier transform, Papmehl and MacInerney
solved the constant cross-section, elastic slowing-down problem. MacInerney
made a very valuable contribution by solving, for the first time, half-space
problems in this domain. In general, elastic slowing-down problems (with
constant cross-sections) are well understood now.

Much more recently tentative efforts have been made to solve the spa-

-21 -
12-21,26-27 A ther-

tial Boltzmann equation with a thermalization operator.

malization energy-transfer kernel can be considered as being isotropic 3

upscattering and detailed balance laws allow it to be symmetrized (self-
. . 52

adjoint). However, as opposed to pulsed experiments theory” where crude

spatial approximations are connected with refined energy representations, so-

lutions of the complete static transport equation have generallyused a syn-



thetic thermalization kernel. ©Such a synthetic kernel introduced by Corngold
et al., 1s, in fact, a degenerate projection kernel: the energy distribu-
tion of neutrons after scattering is supposed to be completely independent

of the energy before scattering. The kernel being very simple (degenerate)
one can solve a tremendous variety of problems: half-space (Milne) problems,
and practically for the first time, arbitrary variable cross-sections. Mathe-
matically, with such a degenerate kernel, all approaches are possible: Case's

13-14

method (Mika and Bednarz,”” = Stewart et g;.l5) and classical Fourier-

: s 16-18 AT :
Wiener-Hopf methods (Wllllams, Arkuszewski” '). The same problems with
a sum of degenerate kernels are not "exactly" solvable: at best, one can re-
duce a set of coupled singular integral equations to a single regular Freed-

18,26,27

holm integral equation. Also in the thermalization field, but stand-

19,20,26,2
ing somewhat apart, is the work of Ferziger and Leonard. 9520,26,21

They
noticed the symmetrized self-adjoint thermalization operator is, in general,
compact, and thus generates a countable and usually complete set of eigen-
functions. Using this set, they make an expansion of the solution and obtain
a set of uncoupled monokinetic transport equations, in the case of constant
cross-sections. For variable cross-sections things are much more hermetic.
Moreover, the exact shape of the eigenfunctions is rarely known.

A third category of "energy dependent transport equations"” concerns the

multigroup approach.Jj"22-25

Then the greatest problem is to solve half-
space questions because of the impossibility of finding the Wiener-Hopf fac-
torization of a matrix singular integral operator. Moreover, unpleasant arti-

ficial features are introduced in a multigroup formulation: the spectrum of

the energy transfer operator, usually including a continuum and a discrete



part, is dislocated into N arbitrary points. Such methods are perhaps ade-
quate for criticality calculations, but are dangerous for the interpretation
of integral experiments: 1in the latter case, a continuous energy formulation,
even if quantitatively clumsier, gives a better physical insight. More work
is being done presently on the multigroup formulation, using Case's method,

at The University of Michigan.

A major limitation of most work done up to now on the energy dependent
transport equation lies in the use of constant cross-sections.¥ The formi-
dable mathematical difficulty lies in that the spectral properties of the
sole energy transfer operator are overshadowed by the variation of the total
cross-section. Hence, all attempts to go further yielded sets of coupled

Boltzmann equations. Hb‘lteu’5

solved the elastic-scattering, spatial slowing-
down problem, using variable cross-sections and Fourier-Laplace transform
methods, and obtained an infinite set of coupled difference equations. Hurwitz
and Zweifel obtained numerical solutions of the same problem. Ferziger and
Leonard, in the thermalization field26-27 used an expansion with a set of
rather arbitrary energy functions and obtained a set of coupled Boltzmann
equations arbitrarily truncated. No decisive results were found in the half-
space problems.

So, for some time again, the energy-dependent transport equation with
arbitrarily varying cross-sections and realistic energy-transfer kernels, will

. . . . . . 1
remain within mathematical "terra incognita.

*Objectively, only the degenerate synthetic kernel allows arbitrary cross-
sections.



The present work will deal with conditions of interest for the high-
energy (fast) domain. This requires, indeed, that the energy transfer ker-
nels of the equation must be simultaneously the sum of these three operators:
inelastic scattering, heavy elastic scattering, and fission. A continuous
energy formulation will be systematically used.

It must be emphasized, above all, that each kernel requires separately
a special mathematical approach. There is no general method of treating an
energy-dependent Boltzmann equation with some a priori arbitrary energy trans-
fer kernel (or a set of arbitrary ones ). For, using Case's method of singu-
lar normal modes, Bednarz and Mika claimed that they have found a general
procedure of solving the energy-dependent transport Eq. (13). But apart from
the fact that nothing is proved in the case of half-space, even their full
range completeness theorem fails: basically because some energy-transfer
scattering kernels are totally unable to generate any regular discrete modes
of the transport equation. Yet, one always needs such modes, because of a
phenomenon of "scattering of singularities" (as we will prove in detail in
Appendix F).

Thus, in our efforts to deal with specific kernels going beyond the
classical ones (elastic collision slowing-down and degenerate synthetic ther-
malization operators), we shall first study extensively the transport equa-
tion with a separable slowing-down kernel; for, it can be used as a synthetic

28-29,31

kernel to represent inelastic, isotropic slowing-down. It is of the

shape:

K(E > E'")

g(E) £(E") if E> E'

= 0 if E < E' (slowing-down)



Such a kernel has, in fact, been known for a very long time in neutron phys-
ics, since it was introduced by Weisskopf through purely nuclear theoretical
considerations, in his evaporation-statistical model. It was fitted for ex-

28,51 It is

tensive computational purposes, in some cases, by Okrent et al.
now being systematically developed as a synthetic kernel for inelastic scat-
tering on various nuclei by Cadilhac et g;.EQ using as well multigroup data
and basical nuclear considerations. The primary underlying motivation is

that the multigroup inelastic matrices often disguise physical features under
a huge amount of numerical data.

Mathematically the energy transfer scattering operator using such a
kernel is not a degenerate one, rather it is associated with a first-order
differential equation. It is neither a self-adjoint nor a normal operator.
Although it is compact, it has indeed a point spectrum reduced to one point
at infinity. Hence, there is no hope of making any kind of expansion in terms
of a complete set of energy eigenfunctions of the scattering operator.

The second fundamental extension we have made was that of adding a fis-
sion operator to the slowing-down one. This is of course basic to a study of
neutron balance in a nuclear reactor, especially in a fast reactor. Apart
from multigroup cases, it seems, however, that no one has dealt extensively
with simultaneous slowing-down and fission in a spatial Boltzmann equation,
even though some acknowledged that adding a fission projection operator would
destroy the nice spectral properties of the single slowing-down (or thermali-
zation kernel.32 And yet, from this very fact arises the famous energy-space

In
separability well known in asymptotic diffusion reactor theory.3 In trans-

port theory too, we have under some conditions, the co-existence of energy-



space separable modes and nonseparable slowing-down transient modes. Physi-
cally, this separability comes naturally from the neutron fission regenera-
tion.,

The practical underlying motivation for all of these tentative theoret-
ical extensions lies in the desire for a better understanding of neutron inte-
gral experiments. We have enough sufficiently sophisticated codes for criti-
cal calculations, but in neutron integral experiments, spatial-transport
effects and energy-transfer continuous transients often take an overwhelming
importance beyond the reach of classical "critical" computational devices.
Apart from pulsed experiments, let us recall the tentative measurements of a
diffusion length in uranium assemblies. There, experimentalists could meas-
ure a well-defined asymptotic, space-energy separable, distribution, only
unusually far away from the source, B and many acknowledged honestly that
they were not sure whether or not they had actually reached an asymptotic
distribution.

Facing these experimental problems in the fast domain, it is understand-
able that the constant cross-sections approximation, found throughout our
work, is permissible in the fast domain (above 0.1 MeV). In the fast domain,
cross-sections vary smoothly, and in the ratio of 2:1. Physically it is ob-
vious that in these experimental conditions, the most salient features are due
to spatial and energy transfer phenomena, and not to smoothly varying proba-
bilities of interactiocn.

A1l of these mathematical, physical, and practical considerations explain
the trend of our thesis. Chapter II will deal with the transport equation

with separable inelastic slowing-down kernel and no fission. We will use an



unexpected energy transformation to reduce the Boltzmann equation to a plain,
pseudo-monokinetic one. This energy transformation is basically different
from previous Laplace and Mellin transforms of the classical elastic scatter-
ing fo]_kjLore.l_ll Then we solve this associated transport equation using
Case's classical method of singular normal modes, covering the whole range of
full-space and half-space problems.

Chapter III will cover the transport equation with, simultaneously, a
separable inelastic slowing-down kernel, heavy elastic (isotropic) scatter-
ing, and fission. The key method is decomposition into two associated trans-
port equations, the first with complete space-energy separability, the second
with slowing-down transients. Again Case's method of singular eigenfunc-
tions allows solution of full- and half-space problems. It is of interest to
note that slowing-down transients vanish in the criticality problem and the
Milne problem, but are present in the full- and half-space Creen's functions.

In Chapter IV, we show that most of these results hold if we consider
fission simultaneously with anisotropic scattering and slowing-down. We will
treat the transport equation with fission and elastic scattering slowing-
down, the anisotropic components of which will be represented by synthetic
Greuling-Goertzel kernels. We will no longer find a plain decomposition
into two associated transport equations; but the complete solution will again
be the sum of two components: one including space-energy separable regular
modes, the other being a combination of nonseparable plain slowing-down tran-

sients. However, no further detailed calculations have been pursued on this

case, since we are basically interested in fast media above 0.1 MeV.



Chapter V will deal with a question very important for practical pur-
poses, yet remarkably difficult mathematically. We found previously the
Green's function for (separable) inelastic slowing-down, plus heavy elastic
scattering. We will have to use this Green's function to study closely the
energy transients of exponential experiments in uranium assemblies. This
Green's function has been obtained through an energy transformation. As usu-
al the analytical expression for the inverse transform is intractable and
one has to find an asymptotic expression. The classical asymptotic methods
(residue at the first pole, saddle-point methods) turn out to be useless.

In Chapter V we succeeded in finding out an asymptotic expression valid for

large distances.

Chapter VI deals with qualitative and partially quantitative interpre-
tation of the exponential experiment in uranium assemblies (tentative measure-
ments of an asymptotic diffusion length). There has been a tremendous amount

35-L2

of experimental work done on this with very little sound theoretical

55

interpretation (this one being a multigroup approach with all of the arti-

ficial features introduced by a discontinuous energy formulation). It seemed
to us that such an integral experiment was best fitted to point out the phys-
ical interest of the few mathematical solutions we found. Experimentally,
workers have tried to measure a diffusion length associated with an hypothet-
ical space-energy separable asymptotic mode. This mode was found to dominate
only at distances unusually far from the source. It was also firmly estab-

lished that, in very subcritical systems, at distances of roughly ten mean



10

free paths, nonseparable modes were dominating, hence the physical introduc-
tion of slowing-down transients. Let us recall that all multigroup formula-
tions with N groups yield N diffusion lengths (or N discrete modes), while
physically there will be conservation of only one energy-space separable dis-
crete mode with coalescence of the N-1 further artificial multigroup modes
into a group of continuous slowing-down transients,

So we have tried to make a partially quantitative study of the relative
importance of the equilibrium asymptotic spectrum and the slowing-down tran-
sients in the exponential experiment in uranium assemblies. Of course, many
other applications in the fast domain are possible.

It is hoped that all of this work can be extended to smoothly varying
cross-sections. But then, one has to give up the hope of finding "exact" so-
lutions and rather finish with Fredholm regular integral equations easily
amenable to computzaﬁcion.l8’26“27

However, the purpose of this work is not to find a universal "panacea'
for the energy dependent Boltzmann equation, but to point out a few specific
transport effects whicﬂ appear physically in neutron energy transfer phenom-

ena. The most interesting conclusion concerns the validity of space-energy

separability which too often is the starting point of too many theories.



CHAPTER IT
NEUTRON TRANSPORT EQUATION WITH INETASTIC SCATTERING
AND WITHOUT REGENERATION

2.1. INTRODUCTION

As we saw in the review of previous works, very extensive solutions have
been proposed to the problem of spatial neutron slowing-down with elastic
scattering.l_ll

Yet, little attention has been paid to the fast domain where inelastic
scattering is overwhelmingly dominant, especially for heavy nuclei. Up to
now, any calculations involving inelastic scattering have used the multigroup
formulation; strictly no attempts have been made to introduce a continuous
energy variable formulation in solving exactly inelastic slowing-down trans-
port problems. Yet, the necessity for a continuous energy variable has been
widely recognized in the thermalization and elastic slowing-down fields.
Though multigroup schemes can be appropriate for criticality calculations, a
continuous energy formulation is still badly needed for the interpretation
of any kind of integral experiments (pulsed, exponential, modulated).

Recent research on neutron pulsed, and wave experiments have proved the
primary physical importance of the continuous spectrum of an energy transfer

1,32

operator.5 Previously, the starting point of too many theories was the
existence of some complete set of discrete (regular) eigenfunctions. Corn-
52 . s . s
gold”~ was the first to prove that, under some conditions, discrete time
eigenvalues (for a pulsed experiment) and discrete space eigenvalues (for an

exponential experiment) could all disappear into the continuous spectrum.

11
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It is obvious that any multigroup formulation blurs these physical effects by
introducing too many artificial features: for instance, the spectrum of an
energy operator which usually includes a continuum and a discrete part, is
systematically dislocated into N-discrete eigenvalues in any N-group formu-
lation.

S50, a continuous energy formulation is likely to give a much better in-
sight into the physics of an integral experiment. Thus, we are interested
in the solutions of the following equation:

a 1 +1 . o0
" gﬁ(x,u,E) + ZT(E) V(x,u,E) = 5] dp' fE Zin(E') Kin(E'+E) V(x,u' ,E')AE"

+ S(x,u,E) (2.1a)

where ZT(E) is the total cross-section; Zin(E> the total inelastic scattering
cross-section; Kin(E'eE) is the energy-transfer operator for inelastic
slowing-down; S(x,u,E) the source terms. Inelastic scattering is of course,
assumed to be isotropic in the laboratory system—which is very close to
physical reality.

A closely associated equation to (2.la) is:

+1 00
d 1
b -a%(x,.u,E) + 20 (B) vlx,p,E) = —g-f_l dp fE r, (B K. (E'-E) v(x,p'B" )aE"

+1
1
+ 2 (E) \U(X;H' ;E)du' + S(X;HJE) (2'1b>
2 e
-1
Where 7, (E) is the total elastic cross-section; in this latter equation,
e

elastic scattering is supposed to be isotropic and with a negligible energy

transfer, both conditions being verified in the fast domain for a heavy element.
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In Section 2.2 we will introduce a synthetic kernel to represent the
exact Kin(E’+E)—-that is, a separable slowing-down kernel inspired from
Weisskopf's statistical evaporation model. Since, mathematically, this syn-
thetic operator will be neither a projection nor a degenerate one, Section
2.5 will thoroughly investigate its spectral properties.

Though no actual discrete eigenfunctions will be found, these results
will inspire an energy transformation applied to Eq. (2.1a) and (2.1b);
this energy transformation will yield an assoclated monokinetic Boltzmann
Equation in terms of the transformed energy variable (Section 2.4). Then,

provided an inversion formula is found, all classical full-space and half-

space transport problems are solved (Section 2.5).

2.2. INTRODUCTION OF A SYNTHETIC INELASTIC SCATTERING KERNEL

The exact shape of Kin(E'+E) is poorly known, and as in thermalization
theory, one should resort to approximate expressions. In contrast to ther-
malization, Kin(E+E') is neither a self-adjoint, nor a normal operator, nor

can it be symmetrized. The reason is of course that:

K. (B'>E) +# 0 if E' > E
in -

K (E'-E) = 0 if E' < E (2.2)
in

that is, there is no upscattering whatsoever. Rigorously, it is not even a
compact operator in any Banach Lp[O,m] energy-space, because of the individual

quantum excited levels of the compound nucleus; for such an isolated level:

Kin(E*»E) = 6<E' - (E+€» (2.3)



1h

where € is the energy of the excited level. The Dirac distribution prevents

compactness.

So, the simplest approximation is to write:

Kin(E'—>E) f(E') g(E); E'>E

= 0 ; E'<E (2.4)

where f(E) and g(E) are a priori arbitrary functions. The synthetic kernel
. . 28,31 . . . '
(2.4) was first introduced by Okrent et al. in connection with Weisskopf's
statistical evaporation model; recently, it was proposed as a synthetic ker-
nel per se, by Cadilhac et al. that is, a kernel adaptable to experimental
data or more involved nuclear theory.
Kernel (2.4) has, in fact, only one arbitrary function, namely g(E);

this stems from the requirement of the conservation of the total inelastic

cross-gsection:

Ef
/ K (E'-E)dE = 1 (2.5a)
0 in
E'
£(E") g(E')aE' = 1 (2.5Dp)
J,
and defining
n(E) = L(8) (2.6)
we get:
E
nE) - | ez (2.72)
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equivalently

g(E) = —(E) (2.70)

28,31

Okrent determined g(E) from Weisskopf's statistical evaporation model.
In this model the states of the compound nucleus which are obtained by the ab-
sorption of the incident neutron are treated as a statistical assembly and
the compound nucleus is assimilated to a Fermi gas. This yields for the micro-

scopic inelastic transfer cross-section o(E'-E):

o(E'-E) = Oin(E') 2 e (2.8a)

where oin(E') is the total inelastic cross-section and T is the nuclear tem-
perature, measure of the excitation of the product nucleus after the emission
of the inelastically scattered neutron. T is dependent upon the excitation
energy E' - E of the residual nucleus. But in most cases, T << E' and the

major part of the spectrum of inelastically scattered neutrons is in the

range E << E', This enables us to make the approximation:
T ~ constant (2.8b)

and yields immediately an expression for the synthetic kernel (2.4), using
(2.5) - (2.7):

-E/T
E e E/

El
u/ E e_E/TdE

0

K. (E'-E) for E' > E
in -

= 0 for E' < E (2.9a)
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that is:

g) = BT

E ,
n(E) = /’ gt e P /TdE'

0
. . . 28,31
Okrent improved this kernel for computational purposes :
-E/T
E c(E
K (E'-E) = c(E) e for B! > E
in E! B/T -
J[‘ E c(E) e aE
0
= 0 for E' < E
with
c(E) = 1 3 E> 0.5 MeV
1
= Ez 5 E < 0.5 MeV
T = 1 MeV

(2.9v)

(2.9¢)

(2.10a)

(2.10b)

(2.10c)

Form (2.10) has been used by M. M. R. Williams in establishing an existence

theorem concerning the time-dependent transport equation.

Cadilhac's approaclrlg9 is more general; it consists in keeping g(E) in

Eq. (2.4) an a priori arbitrary (no special mathematical shape), and fitting

it so that the approximate operator has the same action as the exact one on

a particular reference spectrum @O(E):

E') @O(E')dE'

% o 2. (
k/% Zan<E') Kin(E'aE) ®O(E')dE' = p(E) = g(E)k/; L

h(E*)

(2.11a)
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Then h(E) and g(E) can be numerically obtained from the solution of':

(2.11b)

ooZ (E ) & (E')dE!
o(5) = dhm/

0
h(E")
o(E) can be computed exactly, either through experimental data, or detailed
nuclear theory (work now in progress).

A primary interest of this approach is that static and kinetic param-
eters of the fast medium are very little sensitive to the choice of a partic-
ular reference spectrum @O(E).

This approach will enable us to keep an arbitrary shape for kernel

(2.4), and solve Eq. (2.1b) modified as:

o 2. (E') ¥(x,u',E')dE
5 - g(B) = . in e
SN a X,u,E ZT(E )U-;E) = 5 L[l dp /E h(E')

+1
1
P2 e T () veow Blaw + s0ow,E)
-1

(2.122)

It must be stressed that in Eq. (2.12a), the synthetic "separable" in-
elastic slowing-down kernel is completely different from the degenerate
(projection) synthetic kernels used to represent a thermalization opera-

12-18 . , 5

tor ; in the latter case, th(E'»E), the thermalization energy-transfer

cross-section, is approximated by:

T (B1E) = Z o, YHE) T(E') M(B) (2.1%a)

where M(E) is a Maxwellian distribution; and the transport thermalization

equation
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oV
S0 HE) + L (B) v(x,u,E)

+1 0
1
= Eb/‘ dp'k/k Z%h(E'+E) v(x,pt ,E')dE' + S(x,u,E) (2.13Db)
-1 0

becomes:

1t

b S 0G0,E) + X (E) v, u,E) M(E) dp! L(E) | X7(E") v(x,u,B")dE"

1,3
+ 8(x,p,E) (2.13¢c)

Equation (2.13c) is very different from Eq. (2.12a): in the latter, kernels
are not degenerate.

A further step is to assimilate cross-sections to constants in Eq. (2.12a).
This is valid for fast media and heavy (fissionable) nuclei, where most cross-
sections are slowly varying above the inelastic scattering threshold energy

(=~ 30 keV). Then:

o ° T e ,E )aE"
u g;(x,u,E) + ¥ (x,u,E) = > 8 E) dp' h(E')
ce +1
+ E—h/\ du' ¥(x,u'E) + S(x,u,E) (2.12p)
-1

where c, and ¢ are the number of secondaries associated respectively with
i e

the inelastic and elastic scattering.

2.5. SPECTRAL STUDY OF THE SYNTHETIC INELASTIC SLOWING-DOWN OPERATOR
In order to solve equations of the kind:
+1
oy 1
" g;(X,u,E) + ¥(x,u,E) = = dp! C7 & y(x,u,B') + 8(x,p,E)

2y
(2.14a)
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where@}E is an isotropic energy-transfer kernel (thermalization or slowing-
down), a general method consists in studying the spectrum and eigenfunctions

oijE: in many cases, one finds a set of eigenfunctions such that:
¢ (E) = k) ¢ (E .
Gz o (F) c(k) ¢ (E) (2.15)

c(k) being the eigenvalue associated with ¢K(E). The set (¢K(E)} may be
associated with a continuous as well as a discrete spectrum.
Then the next step is to prove the eventual completeness of [¢K(E)},

i.e., that functions of physical interest can be expanded as:

V0,u,E) = b/é.A(X,u,k) 0, (E)ak (2.162)
S(,1,E) = k/;gg(x,u,k) o (B)ak (2.160)

D being the domain of integration (or discrete summation) for the continuous
(or discrete) parameter K. Then inserting (2.16a) and (2.16b) into Eq. (2.1ka)

and using (2.15) yields an associated equation for A(x,u,k):

. +_']_
0 S a0 ¢ A = 2L [ e w0 + S0
1

(2.14D)

The crux of the method lies in that, Eq. (2.13b) is, in fact, a plain mono-

kinetic Boltzmann equation: K is simply a parameter, and the solutions of

(2.1kb) are well known.55 So finally

Voew®) = [ Aleux) o (B (2.162)
D
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This method of solving equations of the kind (2.1lka) is, of course, very

powerful but, the delicate points are the existence and the completeness of

{¢K(E)] defined by (2.15).
Two classical examples of successful applications of this general
method are:
(I) Isotropic elastic slowing down, where, in terms of the lethargy
u-variable,(ju is a convolution operator:
+u
Omvmn) = [ alaan) vt (2.17)

-0

The eigenfunctions ¢K(u) form a continuum:
A

¢K(u) = e (2.18a)
such that
— iku
Oro(u) = gk)e (2.18b)
u K
where the eigenvalue g(k) is the Fourier transform of g(u):
+o0 e
-iku
g(k) = \/ﬁ g(u) e g (2.18¢c)
0
{¢K(u)} is complete, since
" +00
1 iku
V(x,p,un) = Eﬁi/ﬁ A(x,p,k) e dk
Fourier-Laplace —0
inversion formulae +o0 -
-iku
LA(x,u,k) = \/F V(x,p,u) e du (2.184)

This explains the success of the Laplace-Fourier transformation of the leth-

1-1
argy variable widely applied to elastic slowing-down problems. =
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(II) Isotropic thermalization, where the kernel can be symmetrized;
then if the kernel can be proved to be compact, a classical property is the
existence and completeness of a countable set of discrete (regular) eigen-
functions, the completeness holding for functions belonging to the range of
the thermalization operator. This has been used extensively in recent works

s e 51
on thermalization, see the monograph by M.M.R. Williams, and the work of

20,26,27

Ferziger (Static Boltzmann Equation).

So it is quite useful to study the spectral properties of 6?£ defined by:

E
EI
G’Em V(x,u,E) = g(E)f 0 ¥(x,u,E') dg* for E > ET
E

n(E") (2.19)
where g(E), h(E) are defined by (2.5)-(2.7).
E
In general g(E) is everywhere positive, and so is h(E) = L/‘ g(E')aE"'.
0
Typical shapes can be found in Ref. 29 (Fig. 1).
‘ =
| >
A |
|
T | ot
0 ET E Me V

Fig. 1. Typical shapes for (a) g(E) and (b) h(E).
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From now on, we restrict ourselves to g(E) positive everywhere in ]O, +ec[.
Eo is an upper-energy bound, Ep is the inelastic threshold energy (ET ~ 30 keV).
It is important to notice that
g(Ep) + O
h(Ep) + 0

and

h(w) = u/‘ g(E') dE' <

0
We use the functional energy-space C[ET,EO], i.e., the Banach space of

functions continuous on [ET,EO]. In this space, the norm is defined by:

ol = sup (|o(E)|, Ee [E,E.1) (2.20)

Theorem 2.3.1. As an operator acting in this space,laﬁ is linear and
continuous.

Proof: If

B . .
o) = Om o(E) = g(E)f o o(E') dE'

. h(E")

then, obviously
( ) € [ T, ]

and

ol < = 1ate !f A oo

(E)
en)

IN

o]

sup ng}
”®” inf lg(E)l lOg

]

IA

M ||¢]| (since inf |g(E)| + O for E ¢ [ET,EO])
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where M is some constant, Q.E.D.

Theorem 2.3.2. In C[ET,EO],@'E is a compact operator.
Proof: Defining K,n(E'+E) through Eq. (2.4), we have
- 1

[[ aE aE' |Kin(E'->E)|2 < w

A

in the domain A defined in Fig. 2:

§ V;//////

IET‘ o}

Fig. 2. The domain A.

: h
From Taylor (p. 276), > this is enough to assure the compactness of@E in

C[ET,E ]. These theorems lead to:
)

Theorem 2.3.35., The point-spectrum off%}contains, at most, a countable

set of points, and these have no accumulation point, except possibly at «.

I
Proof: Taylor (p. 281).% > The spectrum being defined as the comple-

*"Suppose T ¢ [X] and T compact. Then P4(T) contains at most a countable

set of points, and these have no accumulation point, except possibly at
AN = 00‘"
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ment of the set (A} such that: (I - MS%)—I exists as an operator and is con-

tinuous.

Theorem 2.3.3 does not imply that the point spectrum is not empty. Let

us look specifically for eigenfunctions of(jé; if N belongs to the point

spectrum:

(1 - MSE) B ¢x(E) = 0

The ¢X(E) being the associated eigenfunction—Eq. (2.21a) can be

E ¢ (E') dE'
o A
¢x(E) - Kg(E)k/; nEn T 0,
Put
o (E)
WE) = g?E)

And Eq. (2.21b) becomes

E 1
y(E) - xk/; © %%%7% ¥(E') 4B

We differentiate (2.2lc) and obtain:

A
dE h(E

for E > E
- T

(2.21a)

rewritten

(2.21b)

(2.22)

(2.21c)

(2.23a)

Keeping in mind Eq. (2.7b), the solution of Eq. (2.23a) is straightforward

v(E) = Kmn(E)]™

where K is arbitrary, and, from (2.22)

(2.23b)
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A

¢ (E) = K g(E) [(h(E)]" (2.2%¢c)

But Eq. (2.2%a) is not equivalent to the initial Eq. (2.21b), and we

must verify that ¢K(E) = g(E) h(E) =~ is indeed a solution of the initial

equation.
E ¢ (E') dE' =
o (B) - ng(®) | ©B——r— = g(®) n(®)” - re®) | °eE) nE) 7 lar
A u[% h(E") k/;
E
a0 ©
= g(E) n(E) = + g(E) |h(E)
E
- &(5) n(e )"
t 0 (2.24)

-\
Since h(Eo) + 0 even for E >, Eq. (2.24) expresses that g(E) h(E)

is not a solution of Eq. (2.21). This means that the point spectrum is emp-

ty—indeed, the result is stronger.

Theorem 2.3.4. The whole spectrum (continuous, point, residual) of@%C
is empty, except for the point at .

Proof: Let us show that the operator (I - MS%)—l exists forVia, N # .

Given S(E) arbitrary, S(E) e C[E,,E ], the existence of (I - MS%)'l
o]

is equivalent to the existence of a solution ¢(E) e C[ET,EO] to the equation:

(1 - xé%) m o(E) = S(E) (2.252)
i.e.,
‘Eo *(E")
6(E) - xg(E)J[ E?ETT de' = S(E) (2.25b)

E
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From result (2.24), we find easily that the solution of the more specialized

equation
B '
o(E) - Ag(E)L/A © %%%T% dB' = B(E - E ) (2.25¢)
E
is
Y
o(E) = 5(E-E)+Y E) ra(E) §E>3 (2.262)

n(E)

‘fj (E - EO) being the Heaviside distribution. From Egs. (2.25c) and (2.26a),

we find the final solution of Eq. (2.25):
o(E) = S(E) + ng(E) h(E f Oﬂ——dE—' (2.260)
E h(E")
This means that the operator (I - Mﬁ%)'l exists. Then, since Cg}is compact
(Theorem 2.3.2), (I - NS%)_I is continuous (as proved in Taylor*, p. 281).
So, A + o« belongs to the resolvent set offjé. Since the spectrum of any
linear continuous operator is not empty (Taylor**, p. 261), it means that,
the spectrum of‘GE}is reduced to A = », Q.E.D.
Theorem 2.3.4 is also valid if we extend EO to «»; but then we must use

another functional Banach-space, namely L’[ET,w] where the norm is defined

by :

Jof| = f |o(E")| aB’ (2.27)

* "Suppose T e [X], T compact, and A ¢+ 0. Then (A - T) % is continuous if
it exists.”
**"If T ¢ [X] and X is a complex Banach space, o(T) is not empty."
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detailed proofs will be found in Appendix A.

In conclusion, we find a rather surprising fact—that is, the spectrum
of our synthetic, inelastic kernel is reduced to one single point at «o—in
plain words, the kernel is too regular though not degenerate. However, it
can be easily seen that the nonexistence of discrete eigenfunctions for the
synthetic kernel has a precise origin: namely, that h(E) is bounded for
E +® (or equivalently, that g(E) is integrable). For, if h(E) were not
bounded, then g(E)-h(E)_K would be an actual eigenfunction (see Eq. (2.24)).
But physical evidence seems to point out that h(E) is bounded indeed. This,
of course, limits somewhat the validity of the general method we outlined at
the beginning of this Section 2.3.

However, let us keep in mind that we have found pseudo-eigenfunctions*
offfg'namely:

t, (B) = g(E) h(E)
This will be the starting point of a new energy transformation different from
the classical Fourier-Laplace-Mellin Transforms, in order to reduce Eq.

(2.12b) to a monokinetic one.

2.4, INTRODUCTION AND PROPERTIES OF A NEW ENERGY TRANSFORMATION

The equation of interest is

1l

2 III(X,M; ) + \If( X,M, ) - g(E f dp' f ar! _._.}_(_Z.E.ri.E_—)

+ % 5(x - xo) S(E) (2.28)

*In fact, it can be quite easily seen that the operator adjoint toGEE hag the
set of eigenfunctions {h(E)M-1}; this adjoint is a Volterra operator with an
unbounded kernel.,
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(Heavy elastic scattering has been omitted for brevity, since it does not
involve an energy change.)
A-1

Keeping in mind the existence of pseudo-eigenfunctions g(E)-h(E)

[see (2.23¢) and (2.24)], divide both sides of Eq. (2.28) by g(E):

O wGewm) |, wxwm) _ ST Te(E) | v )
H T e(E) 2(E) “2[1 d“fE n(E) )

+

n -

S(E) .
5(x - XO> ~(5) (2.29a)

Let us introduce the modified functions:

v(x,u,E)
v,uE) = g(E)
xg(E) = 2%%% (2.30)

Then Eq. (2.29a) becomes:

¥(x,u,E) + ¥(x,u,E)

It

c +1 , 00
i ' ' 1@ ' (x - x )
2—[1 d“fE By o) a2 ) ; Lol

M
(2.29b)
At this stage, recall that, from Egs. (2.5) - (2.7):
g(E) = 0 forE=0

g(E) >0 for E » +w

B
ne = [ ) e

0

=
—
=
~
It

O forE=20



Let us introduce the following

V(x,m,N)

d0) =

or equivalently, from (2.30):

V(x,m,N)

S0

or in a condensed notation:

29

h(E) > M for E » +ew

fundamental energy transformation:

fwwx,u,E) g(5) n(z)"" ax
0

f $(x) () n(e)™" oz (2.31a)
0

fmwx,u,E) n(e)* ™t 4z
0

foos(E) h(E)x_l aE (2.31Dp)
0

V(X;HQ\') =m \Y(X,LL,E)

& Ge,un) =TS (2.31c)

from (2.31b), the transformationlﬁ always exists provided

f |V (x,u,E)|dE <

0

f |S(E)|dE < o (2.32)

0

which is always verified in practice.
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Apply transformatioanrto Eq. (2.29b), multiplying both sides of this

equation by g(E)-h(E) and integrating over the whole range of energy we

obtain

] st i A1 % g(E')
pg};(x,p,}\.) + Y(x,u,N) = 2—/ du'f dE g(E) h(E) f & ¥(x,u,E') AE!

8(x - XO) —
+ =40 (2.33)

In Eq. (2.33a), let us examine the factor:

f g(E) h(E)x—l dEf h(g;) ¥(x,u',E') dE' = f aE’ 5%& ¥(x,u' ,E")

0 E 0)

E'
f g(2) n(z)"" az (2.34)
0

(by inverting the order of integration over E and E' (Fig. 3) .)

Fig. 3. Domain of integration for the Eq. (2.33).

But,

E' 0
f 2(8) n(g)* "t ax = {% h(E)%’J DA
0



51
(provided » > 0). And (2.3L4) becomes:

" g®) N Y S,
. h(E')Y(x,u ') = h(E')" aE

[ e nE™ v w) an
0]

!
L=

]

> =

V(x,p' ) (2.34)

Inserting this result into Eq. (2.33) yields:

5 c. ~+1 5(x - xo) -
2 ST+ Tleun) - —;[l W T p) + ———=40)  (2.39)

So,

the transformationITfapplied to the initial transport Eq. (2.29)
yields a "monokinetic" transport equation in terms of the transformed dis-

tribution:

W(X)“ﬂ\) = ME Y(X)“’E) = ME (Eé?iﬁ%él) ’

where A\ stands as a plain parameter, and the average number of secondaries
becomes ci/K. Notice objectively, that we obtain a "monokinetic" transformed
equation only because we integrated the initial neutron distribution from
the energy E = O to E = » (see Eq. (2.34)); this implies that the inelastic
cross-section is considered constant starting at E =0, Physically, it means
that we are setting the threshold energy ET to zero and neglecting neutrons
below the inelastic threshold.

The "monokinetic" equation (2.35) is easily solvable by the classical

method of Case,55 and typical problems will be dealt with in Section 2.5.
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However, an important problem is to find an expression for the inverse

transfoz'm]n:l. From (2.30) and (2.31), recall that:
¥(x,u,E) =
W(X;HQ\) =IT(E \Y(X)“)E)
* A-1
= f g(E) h(E) ¥(x,u,E) dE
0
First, let us normalize h(E) according to the source term S(E):
h(e) = 1 if S(E) = 0 for B> E_

h(o) = 1 if S(E) covers the whole energy-range. (2.36)

Normalization (2.36) simply takes into account the fact that the transport
equation (2.28) is a down-scattering one, and no neutrons are found above
the maximum energy of the source S(E).

Then, let us define the following change of variable:
v = h(E) (2.37a)
Equation (2.37) defines a one-to-one mapping of
E e [O,Eo] onto v e [0,1] ,

i.e., to one E corresponds a unigue v, and to one v e [0,1], corresponds a
unique E, (Fig. L), since the Jacobian of the transformation (2.37) is al-

ways $ O:
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dh/dE = g(E)
+ 0 for E e ]0,E,] (2.37p)

Since we consider g(E) # O for E ¢ ]O,+w].

A

V=h(E)

Fig. 4. The graph of v = h(E).

Then in terms of the new variable v, transformationMcan be rewritten

as

Toour) = [ 8@ n@ 7 w5 a
0

It

E
\jp ° g(®) n@™ v(x,u,E) a8
0

1
f Y(x,u,v) VK”l av (2.38a)
0

(where we used dv = g(E) dE) and (2.38a) is nothing but a classical Mellin

transform in terms of the new variable v.

Ly

Then the inverse transformation is well-known ; if

1

- A=-1

V(x,pu,N) = f Y(x,u,v) v av (2.38b)
0]
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then

Cct+ie

1 — oy
Y(x,u,v) = Py V(x,un) v AN (2.39)
C

The symmetry of the formulas (2.38) and (2.39) stems from the fact that a

Ly
Mellin transform is closely related to Fourier and Laplace transforms :
” -1
Weet)s vy = f £(v) v av
0
v .
= F(s(e); in)
v -V
= ;ijf(e )y A} +Z{f(e )5 ) (2.40)

In (2.39), the integration path in the complex A-plane must be to the

right of all A-singularities of V(x,u,\); this is realized if

i.e.,

c>1 (2.41a)

(This is easily seen from (2.31), (2.32), and (2.38).

Checking (2.38), the fact that:

V(x,p,v) = 0 forv>1 (from (2.36)),

yields the following strong result:

Theorem 2.4.1. ¥(x,u,\) is uniformly bounded for Re A =~ 1
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Proof':

but

SO

1
Tl <) TeGeum)] av
o)

<M Q.E.D.

In the inversion formula (2.59), the integration path can be shifted
along a Bromwich contour; two possibilities occur, according to v > 1 or
v < 1:

Theorem 2.4.2. The inversion formula (2.39) yields an identically null

function if v > 1.
Proof: The integration path defined in Fig. 5 can be extended by a
curve ¢ so as to surround a domain D where V(x,u,\) has no singularities in

A (Fig. 6). Then
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Fig. 5. The integration path in Eq. (2.39).

A
A C
| °
—7
I
A
A
!
|

Fig. 6. Domain D and curve C in the A-complex plane.
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But, along C:
dn

R B ]

Using Theorem 2.4.1: |V(x,p,N)| < M in the domain D, we get:

‘fﬂx,g,x)dx < Mj[

&

_}\'
v dA
However, on C;

lv| > 1 N
=€>lV | >0 if |X|-+w
Ren > 1

Hence

_ N
|k¢\w(x,p,x) v | >0 if the curve C is extended to infinity.

So
C+ico
Jf V(x,u,N) v = 2im ¥(x,u,v)
c=J
= 0 Q.E.D.
Theorem 2.4.2 implies that transformation “!is coherent with the fact
that:

¥(x,u,v) = O forv>1 (from (2.36))

If v <1, the integration path of the inversion formula (2.39) can be
shifted along a Bromwich contour defined by Fig. 7, the first singularity on

the real axis being A = 0, as it can be easily deduced from an inspection of
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Fig. 7. The Bromwich contour for v < 1.

Eq. (2.35). This fact can also be verified by careful inspection of the
Green's function, solution of Eq. (2.28), Eq. (2.35) being the transformed
of Eq. (2.28).*

To summarize, if the transformation]}(is defined by:

Teoun) = [ vowe) am™ ™ as (2.12)
0
(where h(E) = v) then
W(x,p,E) = SEL Vix,un) B(E)™ o (2.43)

2irn

*See Section 2.5.L, "Green's function and other applications.”



59

2.5. SOLUTICON OF FULL-SPACE AND HALF-SPACE PROBLEMS

The introduction of the energy transformatioﬁj}TKEq. (2.31)) reduced the

initial transport Eq. (2.28) to:
5T c, 1 g(x - XO{@X
M S;(X)H,J\) + \V(X)“J}\‘) = E{fl W(X;H')%') du' + ——_—2_—- ) (2°55)

This monokinetic equation can be solved by the classical Case technique,
keeping in mind that the actual neutron distribution is given by the inver-

sion formula (2.43).

2.5.1. Eigenfunctions and Eigenvalues

Consider the ansatz:

“x/v

'\F(X,M,K> = d>(v,p,)\.) € (2.&&)
Substitution into Eq. (2.35) yields:
Co
1
(v - olv,un) = v (2.45)
With the normalization
+1
u/\ o(v,u,h) du = 1 (2.46)
-1
for v ¢ [-1,+1], Eq. (2.45) has the solution:
s
\Z
o(v,u,N) >y (2.45Dp)

The normalization specified by Eq. (2.46) will be verified for a set {vi}

of discrete eigenvalues such that:
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My ,N) = 0 (2.47)

where:

AMzpa) = 1+ =2 dp (2.48)

The solution of Eq. (2.45) for v [-1,+1] is given by:
€

C
G
o "ty -

o(v, ) = + e(v,n) 8(v - w) (2.49)

Again the requirement of normalization (Eq. (2.46)) yields the expression of

e(v,n):
c +1 g
E(vn) = 1L+ —2% PL/\ —£ (2.502)
A2 po=- v
-1
or, checking (Eq. (2.48)):
E(v,N) = %(kf(v,x> + A—(vﬂxb (2.50b)

2.5.2. The Set {vi(x)}
The discrete eigenvalues are given by the roots of Eq. (2.48). They
appear in pairs; if we call J(\) the number of pairs, depending upon the

value of the complex number \, J(A) is given by the argument theorem:
2x(23(h) = 4 arg Alv) (2.51a)

where A, arg A(v,\) is the change in the argument of A(z,\) as z encircles

the cut [-1,+1]. It is readily seen that:
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M; (2.51b)

Jn) = L arctan |
2n A (+1,N)

Now, the values of interest for A are on the real axis, since the inversion
formula (2.39) will, in general, imply a Bromwich contour along the cut real

axis (see Theorem 2.4.1 and following). Then:

J(N)

I

% arctan \A%(+l,x)[

nCe, v
1
= 1lim arctan » 28 (2.51c)
+1 i
v 1 - 5% v argth v
And:
JN) = 0 ifA<oO0
JN) = 1 ifN>0 (2.52)

So, for values of A of interest we have, at most, one pair of eigenvalues

Ty o,
o)

2.5.5. Completeness Theorems

The full range completeness theorem can be stated as:

o(u,N) = L Ao(ivo,x) ¢(ivo,p,x)
+1
+k/ﬁ A(v,N) o(v,u,N) dv (2.53a)
-1

where ¢(p,\) is arbitrary and satisfies a Holder condition in p. The com-

pleteness proof is entirely similar to the procedure of the monokinetic
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case,55 involving the function A(z,\) analytic in the cut z-plane.

The half-range completeness theorem is also true:

o(uh) = a (rv ) e(vv ,un)
+1
+f A(v,h) o(v,pn) dv (2.53Db)
0

There, one must use the function X(z,\) analytic in the z-plane, with the ex-

ception of the cut [0,+1] and defined by:

1 +
JE— 1 A (pN) _dp
X(z,\) = 1. exp{;nik/; log A (un) .- %} (2.5L4)

2.5.4. Green's Function and Other Applications
The expansion coefficients defined in Egs. (2.53a) and (2.53b) are ob-
tained through boundary conditions and orthogonality relations strictly
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similar to the one speed case.

In the full-space Green's function, the source term lx) S(E) (from

2
Eq. (2.28)) becomes 6éx) 5(E - E ). Then
9 * A-1
Xg(k) = n(E) 85(E - E )3E
J :
= n(E ) = 1 (2.55)

(from the normalization defined in (2.36)). And the Green's function

+1
G(x,EO,E) = f\’, (x,u,E)dp

is easily obtained:



X
c+ie v (A
G(x,E ,E) = %&%l B e © v a
5&51 c+ico >\.k/q+]_ _l%l
+ - v A(v,%) e dv
2ni _1 o
(v = h(E)) with
2 No(x) 2N (N)
;gé(x) _ 1
A(Vﬂ\-) = o N(V,)\) = 2N(V,7\.)
VO(K) being the yoot of
1 = Zi vo(x) argth y tk)

NO(K) is the associated discrete mode normalization constant

similar quantity for v [-1,+1]:
€

C. 2 Ci 2 o
- _ -+ 2 L) Yo
N(V,k) = V{K; N vy argth v) + <K > L

A typical half-space problem is the Albedo problem; its solution

Wa(X,p,E) satisfies:

v (x,u,E) > 0 as x ~» 4w
a

wa(O,p,E) &5(p - uo) 5(E - EO) for all p> 0
then, defining:
Ciop X))
1L BA \HAN)
N) = —
7(“; ) n 2 A_(HQ\)

(2.56a)

(2.56b)

(2.56¢)

(2.564)

and N(v,\) is a

(2.56c)

(2.57a)
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1
w00 = [ ) el e (2.570)
0

33

We obtain, following the one-speed case pattern

c+ieo
— ggE) —X/Vo(%') -A
I'Ja(x"“’E) T 2nd oni ao+(x) q)(+Vo’“’>\) © v
-jeo

C+ico 1
E 2 -
4 %&El v dxk/ﬁ A(v,N) o(v,un) e x/v g,

c=-ioe 0

(2.58a)

with

7(uo,k)

M, (n)

ao+(x) (2.58b)

Since we are considering a plain slowing-down situation, there is no
Milne problem.
Introducing heavy elastic scattering in Egqs. (2.28) and (2.35), as de-
fined in (2.12b), does not involve any special difficulty: one must replace
c, (<
everywhere Xi by -+ 4+ c ). Again, for values of A of interest we have at
e

A

most, one pair of discrete eigenvalues:

J(N) 0O if A< O

I

JOA) = 1 if x>0 (2.59)

The next problem is to find asymptotic expressions simplifying the rather

complex formulae for the Green's function. This will be studied in Chapter V.



CHAPTER III
NEUTRON TRANSPORT EQUATION WITH FISSION AND ISOTROPIC SLOWING-DOWN:
A METHOD OF SOLUTION

3.1. INTRODUCTION

The addition of a fission kernel to the transport equation is naturally
of prime importance when it comes to studying fast systems. In thernal sys-
tems, one is used to considering fission neutrons as high energy sources, the
degradation of which feeds the bulk of thermalized neutrons. Fast systems
offer a sharp contrast: their asymptotic energy distribution overlaps the
fission spectrum; the rate of fission reactions is comparable to the rate of
slowing down reactions throughout the whole energy range.

Physically, the classical slowing-down problem of thermal reactor theory,
is changed to a situation with simultaneous neutron degradation and regenera-

tion; this may allow self-sustaining modes.

Mathematically, this implies that the sum of fission and slowing-down
operators is likely to have a discrete, regular eigenfunction, which is not
true for the plain slowing-down kernel. Discrete modes also appear in the
thermalization case (upscattering); however, the present case is basically
different, since we have the sum of two energy-transfer operators instead of
a single one. There indeed lies the whole difficulty: mathematics do not
yvield any plain relationship between the respective spectra of two distinct
operators and the spectrum of their sum. We may have investigated the spec-

tral properties of the slowing-down kernel; we know that a fission operator

L5
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is a compact projector; yet we are not allowed to make any general extrapo-
lations as to the properties of their sum.

Nevertheless, little work has been done up to now to study simultaneous
fission and slowing-down in the Boltzmann transport equation: apart from
multigroup schemes, the only method has been that of 'successive collisions"35
where the fission term is considered as an extraneous source; but it is
limited to infinite-space solutions, and its only natural extensions are
asymptotic transport and diffusion theories. The following sections propose
a difféfent approach based on the spectral properties of the global energy-
transfer operator.

3.2. ISOTROPIC ELASTIC SCATTERING WITH FISSION: SPECTRAL STUDY OF THE COR-

RESPONDING ENERGY TRANSFER OPERATOR

We consider the equation:

/}ux,%(x/ AL L\) L q/(x ) = Zf dr&XLLLW[y( ]w)u)
+ 2 c[lwf O/U-—U)\lf()(“ ;u,‘du

+ 1 5(x—>«o> S(u,)
2 (3.1)
Here CF represents the average number of fission secondaries per colli-

sion, while cq is a similar quantity for elastic scattering. Also x(u) is

the fission spectrum and g(u) the elastic scattering kernel, u being the

lethargy-variable; S represents the extraneous source.
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Define an operator T by:

‘ t+oo UL ' | |
Té = o Y(w)] du)du pe( g(u-w)du)d ;.o

- 00

We are considering functions in the Banach space L'[-w,+o], such that:
1
qD(LL) € L [-—ca) + 00]

ief ]| = f)r“)jcp(u))du is < (3.3)

-0

Such functions always possess a Fourier-transform:

$(k> = /+w¢(LL> .Q,-Lku‘d.u, (3.4)

So we can, in fact, consider a broader class: namely "tempered distribu-
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1

tions,” which, according to L. Schwartz,”” possess a Fourier-transform. Now,

let us look for eigenfunctions of T:

Tow) = xe(w (5.52)

Fourier-transforming Eq. (3.5a), we get:

N Eﬁ(k) = CF_>~<(k> [iooq)(ua)du. + Csé,(k)zg(k) (3.5b)

where

X(k): j X(lb) Q_Lkwc\.u/ (3.6a)
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5(%)

with the normalizations:

]
(\“3
+
o
&
S
\
9._
¢

s

Y (0= g0@= | (5.6¢)

Let us note that:

/+o<017(u)d,w= $ (0 (5.7)

Using Eq. (7), Eq. (5b) becomes:

AF) = . X (K FO + ¢ T)F (K

(3.50)
This is our eigenfunction equation. Two cases occur:
(I) Eigenfunctions ¢(u) such that $(0) # 0, or
+ o0
v[‘ q)(u;)ciuu F O
- o0
Then, the solution of (3.5b) is:
¢(k) - ,CFX(H,‘E(O}
XM= ¢k (5.8a)

But Eq. (3.8a) must be true for all values of k; thus for k = O, it must

yield an identity; using Eq. (6c):
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¢ = _C=_ d(0) (3.80)

Hence

A = (:F + CS’ (3.9)

So we have an unique eigenvalue A = q + Cqs to which corresponds an unique

eigenfunction){:

Hk) = ¢ H(K)
Ce+ ¢ (1-G (k) (5.10)

— +e0
where we normalized H(0) =L/\ H(uw)du = 1.
—00

(II) Eigenfunctions ¢(u) such that ¢(0) = O or

‘l{:;fa“fi de = C

Then Eq. (5b) reduces to:

!

AP = e g (k) (k) (3.5¢)

This is the plain slowing-down eigenvalue problem. The solutions form a con-

tinuum of eigenfunctions such that:

<P>L(k) = §(k-k) with k. # 0
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A = CSC—}_(kO)

x

¢7L(u—> = ptkew | j+o°_|_ S(k—ko) eLkuc{k

25¢ Lo 2T (3.11)
Indeed, we verify that:
+eo 02
SLowdn = L (MTatkhd
— 00 7\ Ei?t - ol
= g(k-kQ for k = O
-0 in the distribution sense (3.12a)

In summary, the eigenfunctions of T split into two groups:
On the one hand, the discrete regular eigenfunction)((u), with the as-

sociated eigenvalue A\ = ¢y + Cq- This eigenfunction is characteristic of the

neutron regeneration.

On the other hand, eigenfunctions of the plain slowing-down operator,

¢ (u) = L elKou

N o , with \ = cS E(ko)-—provided Ko + 0. These eigenfunctions

form a continuum, and have a null "measure" (in the space of distributions).
Let us now prove a completeness theorem:

Theorem 3.2.1. The eigenfunctions defined by Eq. (10) and (11) form a

complete set for functions belonging to Ll[ﬂw,+m].

Proof: Let o(u) e Ll[-w,+w], The completeness theorem which we wish

to prove can be stated as:
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P = YHW 4 L TAd) 2t dk,

where 4] and A(ko) are the unknown expansion coefficients associated respec-
tively with the discrete eigenfunction)((u) and the continuum eigenfunctions

iK
e We must have A(0) = 0.

400
Remembering thatJ/\ }{Ol)du = 1, we have obviously:

-0
t OO

J :J; P duw

Now, we have to find.A(ko). Defining [ (u) = o(u) -fyj{(u), we verify that:

[T
Lwdw = O
So0 (. )
Now, we must prove thatjj(u) can be written as follows:

t oo . k’

(9 (0
W = l_f A (k) 2 “e dk,
277 oo

This is immediate, sincej?(u) is Fourier-transformable, and inverse Fourier-

transformation yields:

A k)= fwf’(u,) PRALTIF

So our expansion coefficients are known. We have only to verify that

A(0) = 0, which is true since:

A(O) = e FLU«) du = O
- Q.E.D.

The completeness of the eigenfunctions of our energy-transfer operator

will be used to decompose the transport equation (3.1) into two associated

equations corresponding to the two groups of eigenfunctions.
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5.5. ISOTROPIC INELASTIC SCATTERING WITH FISSION: SPECTRAL STUDY OF THE
CORRESPONDING ENERGY TRANSFER OPERATOR
The results of Section 3.2 hold if we consider the synthetic inelastic

slowing-down kernel studied in Chapter II. We consider the equation:

+) + oo
al )P”/E) + ¥ (xpE) = % A,ﬂ)((@fwx),u'ﬁ dE'

s o(e) 4B (M SE
4 == @) (z: : { X o) oo
2N lmE) ' "

+——5(X \\ E) (5.15)

Notations are similar to those of Eg. (3.11), except that the energy-variable
E is used in connection with the synthetic inelastic scattering kernel de-
fined in Section 2.2.

Define the operator T by:

+oo

To® = c, X(E)l SEYAE 4 csg(E)E $ELIE o

"We again consider functions ¢(E) e L'[0,+~]. Such functions always possess

thenrmtransform defined in Section 2.k:

— e - |
POY = | PR (239
,\CiJ.oo .
d(E) - 3B r:\ (2.39)
() 250 Jeoie () h(

Now, looking for eigenfunctions of T:
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TP(E) = v PE)
Weln;transform Eq. (3.15a), use Eq. (2.35) and get:

(%) = . (N[ dcerae o %3(7»)

o}

Ay

v

where

X = f e byt e

| #/5)dE = @ (1)

Using Eq. (3.17), Eq. (3.15b) becomes:

1%}

vEM) = e Y ) d0) v S0y

Solutions of (3.15b) belong to two categories:

(I) Eigenfunctions ¢(E) such that ¥(1) # O, or

f?(/s)cu; + 0

Then, the solution of (3.15b) is:

.15a)

.15b)

.16a)

.16b)

.17)

.15Db)



b)) - Ce XD $in
*-\{) _- _f_\f_ (5.188,)
/

But Eq. (3.18a) must be verified for all values of \; hence, for A = 1, it

must yield an identity (using Eq. (3.16b)):

©
—~
N,
i
o
-

d (N (3.18b)

V-
Hence
V-CS - CF
AV oo+ C (3.19)

So we have a unique eigenvalue v = cF + CS’ to which corresponds a unigue

eigenfunction){:

HO) = e X

&ngﬂué) (3.20a)

In fact, we have already implicitly solved the direct Eq. (3.15a) in Section

2.3; using the solution (2.26b) we obtain the direct expression for){ﬁE):

}{<E> = _Cr (E)

CF+C5
+o°
T
¢ C e hE® f ce X(E)dE
CprCs +C'5 Y "\(E)cwcs

(3.20b)
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(II) Eigenfunctions ¢(E) such that %(1) = O orf ¢(E)AE = 0. Then
0
Eq. (3.15b) reduces to:

vy = & () (5.15¢)

This is the plain slowing-down eigenvalue problem. As we know from

Section 2.3, solutions form a continuum of "pseudo-eigenfunctions” such that:

"

F, (%)

S (7&-—7\0 with A7 1

Cs

-V = (3.21)
b () = f F (e - G@h(
Y - iZ L?T’ e —C oo 27T

We know from Section 2.3 (Eq. (2.24)) that the {¢V(E)} are only "pseudo-
eigenfunctions'" of the synthetic inelastic scattering kernel.
This does not prevent a completeness theorem from being valid:

Theorem 3,5.1. The discrete eigenfunction){(E) defined by Eq. (3.20b)

and the "pseudo-eigenfunctions" defined by Eq. (3.21) form a complete set

for functions e L'[O,+o].

Proof: Let ¢(E) ¢ L'[0,+0]., The completeness theorem can be stated as:

S(E) = UH (@) . MJ“XZ\)WF)

with A(1) = O;‘fjand.A(ko) being the unknown expansion coefficients asso-

ciated respectively with the discrete eigenfunction}{(E) and the continuum
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eigenfunctions h(E)_xO° Then we have obviously”f7=k/q ¢(E)dE. Defining
-0
J(E) = o(E) -fj-}-((E), we have:
[ T(E)dE = O

y OO ©
(Sinceu/‘ }{(E)dE = 1). Then, we must prove that we can write
0

_ ® % L/ Ey~
[(E)- %_% ld&A(%QL\(E) A,

But, applying an inverseln;transformation (see Egs. (2.38) and (2.39)), we

get, since [(E) isIn;transformable:

A Ty h(e)! da
)= (E) h(E) .
(@]
Our expansion coefficients are therefore known. We have only to verify that
A(1l) = 0, which is true since:

A) = j’”“’mmE e

Q.E.D.

Hence, it seems that, quite generally, the eigenfunctions of the fission-
slowing-down energy transfer operator form a complete set, and that they can
be classified into two groups: (i) one discrete regular eigenfunction cor-

responding to fission regeneration; (ii) a continuous set of slowing-down

(pseudo) eigenfunctions of null measure,

3.4, SOLUTION OF THE COMPLETE TRANSPORT EQUATION: DECOMPOSITION INTO TWO
ASSOCIATED EQUATIONS

Let us now consider Egs. (3.1) and (3.13%):



o1

'u«,__(x)Iw, )p{’(x,%u)-: %Ldy‘){(u)f\y(x)p'}w)dd

+1
LS ) d rx“/‘u’g, (LL-lL') \P (X) ’A') LL,') du! +_;._ S(X‘Xo)g(u)

(3.1)

/\A%- X}M)E)+\V(X)]\A. fZ),w>((E)/\V wE}dE

+)
G [ (E Vi mE) B 4 L Sx-x,)S (E
f P9 )f h (E") T2 1>)

(3.13)

If the source term [Eq. (3.1) and (3.13)] were of the form:

L 8x-x) S@) = H(u) S=xo)
2 2

or

1 g(x—xc,)S(E) = X (E) &—;_'X_O)_ (3.22)

2

That is, if the initial source distribution were proportional to the discrete
regular mode of the energy-transfer kernel, then Egs. (3.1) and (3.13) would
reduce to a one-speed equation; the solution is then separable into a func-

tion of space and angle times}((E) (or){(u))o More precisely:

Vix,wE) = CPE (X)l"“)'H“E) (3.23a)

Where ¢E(x,u) obeys:
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+\
fJ\, % ¢E (X”U .,.CPE()(/}L\') = £E£_C\S‘[APAI (PE (xjrx‘/i+ 5_%:)_%) (3.23Db)

However, in general, the source-term is not proportional to)T(E). The idea

is then to decompose the actual source through an expansion using the complete

set of energy-eigenfunctions, defined in Sections 3.2 and 3.3; for inelastic

scattering:

S(E) = JM(E) 4+ [(E) (5.20a)
where
Il J/‘ S(E)JdE (3.2kp)

clearly

Jp lj(E)cﬂE - O (3.2k4e)

Then, from the completeness theorem 3.5.1:

- €) [(T= L
reey = 99 (TTnE T L
2LTT.' YeaLon
with
Col- | rane™ d oo
E;:‘,Ci\) - 0 (3.241)



59

A similar decomposition holds for the source-term of Eq. (3.1), using a
lethargy variable and a lethargy integration range [-w,+w]; then completeness

Theorem 3.2.1 yields:

+o0

T PELLHD (3.242)
27

-

f(k) = /foof(u) L'Lkudw (3.2ke)

f(o) = 0 (3.245)

Since there is a close parallel between elastic (Eq. (3.1)) and inelas-
tic scattering (Eq. (3.13)), we will, from now on, focus our attention on the
latter case.

The transport equation (3.13) is linear; so its solution can be expressed
as the one speed solution due to the componentfi}«E) plus the solution due

to a source] (E) of zero measure. Call the former solution){(E) o_(x,u),

E

and the latter ¢tr(x,p,E):

V(X)M,E) = H(E) CPE(X)]W) n CPtr (x)]\m,E) (3.25)

¢E(x,u) obeys:

+1 ! ' \ .
2000 e R ) = Gr [ G (o) dp Lol
- (3.26)
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As to ¢tr(x,p,E), let us show that it obeys:

P”%(-q)tr(x)M)E)‘rcptr YWE) = fdf” 3 () Cp“(X(E.)E)‘JE

4 P(E)g%_—ioj (3.27a)

Equation (3%.27a) is a plain slowing-down equation, without any fission-

term. Equivalently, its solution has null measure, due to the fact that the

source term['(E) has itself null measure. To verify this point, let us }TI:

-transform equation (3.27a):

B ‘P (x, ]\/\}7\:) + T, (X,]\A)\-): % | q—;tr<*/l‘”'/7‘)al‘“|

_,_F(),) & (X-%e) (3.270)
2

Call G(x, » x,u,\) the corresponding Green's function, solution of:

_ _ Fl

M %% + Q(xo—ﬂ);w,?\) = 2_/\ G(xo_e ]\A‘Jl) dp' 4 _Z'_ g(x-xo)
(3.27¢)

Then, we obtain:

qr(x,p&,l) = F(?\).—G(xo%x)]wp\)

C+loo
P.. (xpE) = 29,(&) TN G (Rt N ME) I
LTV Je_ioo

(3.274)
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Keeping in mind that ['(E) has zero-measure, we see from Eq. (3.274)
that this is also true for ¢tr(x,p,E) [see the definition of [(E) in the set
of Eq. (3.24)].

So, we have successfully decomposed the initial transport equation (3.13)
into two associated equations (3.26) and (3.27a). Since Eq. (3.26) is a
monokinetic one, its solutions are well known for a wide range of boundary
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conditions. As to Eq. (5,27a), this is a plain slowing-down problem with-
out regeneration: Section 2.5 obtained analytical expressions for the full-
and half-space Green's functions corresponding to inelastic slowing-down
without regeneration.

As we have already noticed, very close results hold for the transport
equation (3.1), which also splits into two parts: a monokinetic equation,
and a plain elastic slowing-down problem without regeneration. The latter
one has been extensively solved by Jacobs and MacInerney19 who treated both
half- and full-space problems, using the Fourier-Laplace transformation of
the lethargy variable.

The decomposition we introduced is not a mere mathematical trick; we
have gained more than reducing a complex problem to the well-known solution

of two closely related equations. In fact, the underlying physical implica-

tion lies in the complete partition of the space-energy separable components

from the nonseparable transients of the global solution.

On the one hand, the space-energy separable components are all propor-

tional to the characteristic energy mode){pE); they are representative of
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self-sustaining modes in the fast multiplying medium; they are likely to be
the asymptotic dominant modes in any integral experiments.

On the other hand, one could have, a priori, considered space-energy
separable solutions and injected them into the original transport equation.
The limits of such an asymptotic transport theory are hinted by the second
part of our decomposition: we must also take into account nonseparable
slowing-down transients, solution of a plain slowing-down equation.

This states a clear goal for further investigation. One must study the
relative importance of asymptotic separable modes and slowing-down transients
in integral experiments. It must be emphasized that such transients are not
mere classical spatial transport transients; they also reflect the adjust-

ment of the neutron field from the initial source-energy distribution to the

final asymptotic spectral mode. As we will show it later on, part of these
slowing-down transients are decaying into space more slowly than e_Zrt min|x"
where Z% nin is the minimal total cross-section. So there will be spatial
competition between these slowing-down transients and asymptotic modes; it

is quite likely that this is very sensitive to the degree of criticality of

the fast multiplying system.

3.5, ANALYTICAL EXPRESSIONS OF SOLUTICNS FOR VARIOUS BOUNDARY CONDITICNS
Using results of the preceeding section, we are now able to give explic-

it solutions to the equation:
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| - Ho e u
P%”X‘WX)M/E> +T/(x,]w}t) — %X(E)Ldpf“!/(x)rd)p)dlf

X Cafﬂc\ ' (p)fwl/(x,}i'»l‘i‘) JE' | Ce H\V{x LE)d
2 ¥ M Q} ) . L\(E') t+ 2 \It ' M ) m

' S_éxﬁ S(E) (5.28)

Equation (3.28) isalsosimilar to Eq. (3.13) except that we are adding a
"heavy" elastic scattering term to the inelastic one; c, is the average num-
ber of secondaries after an inelastic collision, c» the corresponding one
after an elastic collision.

Since "heavy'elastic scattering does not involve any energy change (or
physically, a negligible one compared to inelastic slowing-down), there are
no modifications to the results of the preceding sections. In particular,
the discrete energy-eigenfunction){(E) (see Section 3.3) is not influenced

by heavy elastic scattering; from Eq. (3.200):

QL e ‘
K <E) = CFC:C. )(CE) T CPC:C(é(E)L\(E) CrrCa | Ce )((E) dE

\ Cg
GeeQh "\ (EI) Cr+CL
(3.29)

However, the associated eigenvalue is v = c + c, + c_. Following Eq. (3.25),

we decompose V(x,u,E):

'\P(X,M;E) = H(E)CPE(X”\N) Ny CP (X)MIE) (3.25)

tr
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Following the set of Eq. (3.24) we decompose S(E):

S(E) = JH(E): I'(R) (5.208)

7 = //{ SCE')dE (3.2Lb)

Yo

Then ¢E(x,p) and ¢tr(x,p,E) obey slightly modified Eq. (3.26) and (3.27a):

f 2 0]+ () = Eerlts (400 o)+ L T30,
,. (3.30)

M ._CP (X ME) + P (x M E) fdf” Q(E)f 4""(’(‘5'?)' ) dE'

L f B, (o B+ L D(B) S (xox))

(3.31)

The monokinetic Eg. (3.30) has been solved for a wide range of boundary con-
ditions,55 Solutions of Eq. (3.31) for full- and half-space problems have
been described in Section 2.5. So, we can immediately write down the analyt-

ical expression of solutions of Eq. (3.28) for a wide range of cases.

3.5.1. Full-Space Green's Function

The source term in Eq. (3.28) is 8(x)/2-S(E). Call G(|x|,E) the Green's

function:
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GC’X‘)E> :I ;Y/“XI)I‘A’)E)CL

(3.32)

Using results of Section 2.5 (where we normalized h(E) so that h(e) = +1),

we have:

SIx

G (Ixi )E) = ﬂmz){_éf_
||

2 L3t N, (n)

Ctieo l _r- Y ’
L fé_@_f h(r;)-“ax/*z_l IO,
20T Je (e A

N(v,2)

with vy being the root of:

| = (CF+ Co + CO v argUx_'_

(]

v (\) being the root of:
o

<cb+c)v(x)m3t\a__%

N :(CFfCuca) V3 [ GiterCi
° V- V&

+—’f’ eV dv
2 Jo N@v)

_%(_E_f m e~ %M hg)”

N
dx

d-v
(3.33a)

(3.33b)

(3.33c)

(3.334)
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- | 0 3 = .
A ——

(3.3%e)

f 2
N(v) =~ {(l — (Gt Cﬁ%)"wgth@ N %1(C€+CF+CL)2.PQ.}

(3.33fF)
N = {(l (EL_'_C)Vcwﬂ)CLVV) 7r<c . 2\ 2}
(3.33¢g)
. A=l
) f PUE) L\(E) (3.33h)

%5.5.2. Albedo Problem

Its solution WA(x,p,E) satisfies:
(\YA ()()I\A)E)% O as x —> too

(\PA (O)V/E) = S(M‘]‘NDSCE) for all p > 0

33

Then, defining the discrete regular modes of Case's method ™ :

‘Po (Vo)[w) = L *ét*c‘* ‘Uviyv (3.34a)
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@, (P N, ) = c L > Vs (7\)

n\.7\
(3.3Lb)

where vy and vo(x) are the roots of Egs. (3.33b) and (3.33c); we introduce:

= M A) (3.35a)
() = (o p &) XT(WA)
ViR R)E g
(3.35Db)

where X(z) and A(z) are well-known functions in Case's theory,53 providing

we use the average number of secondaries c_ + ¢ + c,. A(z,\) has been de-
e

e,
fined in Eq. (2.48) and X(z,\) in Eq. (2.54), providing we replace <{£> by

c .
<Zl + c >. Furthermore, define:
e

-/ Y () &%) e o

Mo+ (7‘ /7 ¢ (-V ™), /V‘) L"/"“

(3.36b)

s S—

a + = 7/ (nwfl-
° Mo+

(3.37a)
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ar () = LN
rvkj* (7() (3.37b)

We finally obtain:

'Y (X)P')E) j)((E) G,+‘P( o) )e 'P lA(V)‘P(‘Vn&)Q‘Pd?

+“29L(—Efc a1 Ty & (2 (0)) € = b o

+ gﬁ) &a; h(Ey ffa)A(n) J )z"%'dv

(3.38)

where ¢(v,u) are Case's singular modes35 for the monokinetic transport equa-
tion and ¢(v,u,\) are similar singular modes defined in Eq. (2.49); A(v) and
A(v,x) are the respective expansion coefficients corresponding to these con-

tinuums of singular modes.

3.5.5. Milne Problem
Given a half-space with no incident neutrons, we want to find v(x,p,E),
the distribution of neutrons within the medium. Then, the asymptotic expres-

sion of y(x,u,E) for x > +w, must be an infinitely increasing self-sustaining

mode of the transport equation (3.28); but there is only one such mode, (from

Section 3.3), namely:
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w2 =X
B (g )e k) = e v o' T ()

2 Vot p
(3.39)
where vy is the root of Eq. (3.33b).
So keeping in mind this asymptotic condition, and considering the decom-

position introduced in Section 3.4, we realize that we have to keep the

space-energy separable Eq. (3.30) only, and that there are no slowing-down

transients. Throughout the whole space, we have:

Y(x,mE) = ¢E(x,rx)\){(E) (5.10)

Hence, the solution is that of a one-speed problem, times){KE). In particu-
lar, the extrapolation distance given by the one-gpeed extrapolation dis-
tance (providing one uses CF + ce + ci as the multiplication coefficient).

Of course, one might object to the fact that, physically, the Milne problem
corresponds to an infinite-strength source at infinity, but that the spectrum
of this source need not be){KE). However, the corresponding slowing-down
transients would be damped at infinity, and the spectrum of the source

would be shifted to){ﬂE) at infinity; so there is no contradiction with the

asymptotic condition (3.39).

3.5.4, Slab Criticality Problem
A classical theorema5 states that the solution to the criticality prob-
lem is unique, providing it exists. But an obvious solution is given by the

monokinetic Eq. (3.30): +the neutron distribution is space-energy separable
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throughout the whole space, proportional to the fundamental energy-mode}{(E),
and the criticality conditions are those given by a one-speed equation with

33

the multiplication coefficient cF + ci + ce. Since such a solution is unique,
the criticality problem involves only self-sustaining energy-modes, which is
quite reasonable physically.

In conclusion, though the Milne and criticality problems involve only
space-energy separable modes, we have in most cases competition between these
asymptotic modes and slowing-down transients.

For, checking again the infinite-medium Green's function (Eq. (3.33a))

and the solution of the Albedo problem (Eq. (3.38)), we see that both con-

sist of three components.

The first one corresponds to space-energy separable modes, asymptotically
dominant; the third one is negligible, being simultaneously an energy-transient
(slowing-down transients) and a transport transient (decaying faster than
e-|X|). The second one is a slowing-down transient, but not a transport
transient: it is a combination of Case's regular modes. This is fhdeed

the component on which we must focus our attention. Clearly, a necessary step

is to simplify the]n;transform inversion-formula involved in this component.



CHAPTER IV

NEUTRON TRANSPORT EQUATION WITH FISSION AND ANISOTROPIC SCATTERING

L4.1. ISOTROPY VERSUS ANISOTROPY

This chapter stands somewhat apart, since most of the further applica-
tions will be dealing with fast-systems where isotropic scattering is dom-
inant (inelastic slowing-down).

Yet oné must question to what extent the fundamental results obtained
are bound to the isotropic character of collisions: the coexistence of space-
energy separable modes with slowing-down transients of null measure could be
a mere consequence of the (relative) simplicity of isotropic scattering, or
it could have a much more general existence and meaning. It is, indeed, the
purpose of this chapter to show that similar results hold for fission and
general anisotropic elastic scattering slowing-down. We will show that the
solution still includes asymptotic space-energy separable components, and
slowing-down transients, solution of a plain slowing-dowﬁ equation. However,
the technique of solution is much more complicated since we have not been
able to obtain a decomposition analogous to the one outlined in Section 3..4.
The reason is that energy-transfer between different angular harmonics takes
place. Nevertheless, we keep as a guideline the idea of using slowing-down

transient modes, whose total measure is zero.

4L.2. A METHOD OF SOLUTION USING SINGULAR NORMAL MCDES

We will treat the case of a light elastic scatterer, using a sequence of

T1
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Greuling-Goertzel kernels to approximate the different angular harmonics.

The general equation is:
b +I
M %—\){(X}Mu)+\"(x)p)w) = %&f G(‘,(“-‘U") duf V(x)r\')u.') d{u'
+ o0 +1
+ %Xcu)[maw‘[\;,(wgw) op!
o0 w
b Gl T @) R [ Gl
+1
(’Qf B () ¥ (5, F’“.)“‘“‘>0Lf’”'

§ 0% p,u) (1.1)

The Pn(p) are Legendre polynomials and Gn(u) the Greuling-Goertzel kernels
representing energy-transfer in the nth angular harmonic.Bh One could as
well use the exact energy-transfer kernels of elastic scattering, since they
are convolution kernels, too. However, if one uses Laplace or Fourier trans-
forms of the lethargy variable, the inversion is made much eagier with
Greuling-Goertzel kernels.

If one now integrates Eq. (L.1l) over the whole lethargy range, one ob-
tains the one-speed anisotropic problem solved extensively by Mika.5o By sup-
pressing the fission kernel in Egq. (M.l), one finds the elastic slowing-

11
down problem solved by Jacobs and MacInerney. Though none of these works
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can be straightforwardly extended to solve Eq. (h.l), we will refer to them
for many techniques of calculation.
For the sake of brevity, we will deal with linear anisotropy. Extension

to general anisotropy 1s readily made. The equations are:

1

IVL %\f(x)b‘*:“}%—y@ﬂ“/m) = _g_S_f G fu u)duj“lf(x),\/\ u.) rA,

- ~1

i %—E.X(u)\foo du‘f— '\V(X)I\A')L,J) dw!
W +1
N A N e
— a0 =1
(L.2a)

We transform Eq. (L.2a) by using a Fourier transform of the lethargy:

_tkw

\‘7<X)M)|<) - f‘:;f(x,rx)m')e | duw!

Mai k) VO k) = %;_.Eo(k) f‘l;—h’x)ygk)dw
&,i(k)fi-if(x)’w')())c\ru

¢ G, (@f”*’(x,m P dp + SGypw k)

(4.2p)
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By setting k = O

V(xp,0) = [ ¥ (upu)du

—o

we find Mika's one-speed equation:
— . H_
P%’i’ (%,M,0)3 ¥ (3 p0) = C“?C; f V(% Mm,0) Ckr’”‘

+—'32‘“/“CSB' ffﬂ W(")f*")o)df‘“‘*s(xir’O) (4.2c)

h B, = G, (0)).
(where 1 l( ))
Let us look for normal modes solutions of the homogeneous Eq. (4.2b),

that is, solutions of the shape:

S (k) e (.32)

put

@O<E)k> = J @(tﬂwk)dr_ (4.3b)

D (tk)- j WRE K e

33,50

Then, following a classical approach””’
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¢(t)l‘*)k) = ’E‘ P “E,__F {cs E,;(k) @o(t)k)
+ CFY(k) @o(t)O) +3/"‘“C5 Z’T.@) éu (t) k)}
+ 8(1:-/\») %(t)k) (b.4)

with

A(EK)= B (kk) —te,d (t,k) Go(k) Qu(E)

~Le 2,(50)X((K) Q, ()= 3t (WG (NQE) w5

QO(Z), Ql(z) are Legendre functions of the second kind

\

Q. (2) = ‘ dt’;ﬂ Q. (z)=1 f’* (4.5b)
=i

If ®O(t,k) is arbitrary, then © ( k) is readily obtained (see Ref. 11 and 50):

Q(E)k)= t{@o (t,k).Q~CSGO(k)>~c§(<k).§O(t,o)} (4.6)

Let us look now for discrete regular modes. In general, there are only

two such modes, corresponding to eigenvalues *L_, such that (see Egqs. (L.k)

and (4.5a)):

f>L<LO) k> =0 (L.7a)
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One sees at once that iLO are also the discrete eigenvalues of the one-speed
equation (L4.2c). For critical review of these eigenvalues, we refer to

0
Mikau5

The discrete modes will be:

¢ (2L, p)k) e (%/Lo) (1.70)

with

B(Lypk) = b RXACE XIS (O

$3RMp ALY, e

Here, we normalized

$.(1,,0) = | (4.74)

And @O(Lo,k) is solution of Egq. (4.7a), that is:

N %, (LO)k) = C’.S_Go(k> Qo <L'<D @OCLOIk)

+36G,(k) @, (T2, (Lo)k) + () QL) -0

Using Eq. (4.6), which yields CDl(LO,k) in terms of <I>O(Lo,k), Eq. (4.8) is
very easily soluble. Then one can easily find the inverse Fourier transform

of ®O(L0,k)3 provided one has been using Greuling-Goertzel kernels.
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Anticipating future developments, we can stress that the discrete regular

ix/L
e x/ o will be the only space-energy separable components

modes ®(iLo,p,u)
of the complete solution. In an exponential experiment, one tries usually

to measure these asymptotic separable modes, and an isotropic detector will

be therefore sensitive to the "equilibrium" spectrum ®o(iLo,u).

4.3, INCOMPLETENESS AND COMPLETENESS OF THE NORMAL MODES
Now let us turn to the completeness of our set of normal modes, as de-

fined by Eq. (4.L4) and Eq. (4.7). As we shall see, these modes are not com-

plete by themselves, and we shall have to add "slowing-down transients” of
measure zero, for both full- and half-range completeness. First, the full-

range hypothetical completeness theorem can be stated as:

V(pk) = LA ® (T k) o f Bltpk)db (o)

where w(p,k) is an arbitrary function of p and of the lethargy-transformed
variable K.

Checking Eq. (L4.3b) and Eq. (4.L4), where we define ®(t,p,k), one sees
immediately that we are taking ®o(t,k) as the unknown expansion coefficient
of our continuum of singular modes, similar to the coefficient used by Mika

1,50
and Jacobs-MacInerney in their respective completeness proofs. »2

Hence, for
many intermediate steps in the following proof, the reader is referred to

Mika's work.

So, applying Mika's procedure, we define, omitting many calculations:
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\y“(,‘*» l‘) = \V(/‘Mk) - 2 Aoir @(t‘[_;o),\kk)
_.é_ {csao(kyjf \@O(t)k)dt n c§(<k)/+§o(t)o)&tl
_2 csa,(k),&{ @csg“o(k))ﬂ &, (t k)dt— cg«k) t@ (t-o)cll-}

- 2Re G0 (T w e[ % @oﬂ

Then define:

+)
F/ )\< - L_ ’\V“ /k e (4.11)

also (Z 5 2"% J—-‘ (/\A > /\/L_JZ‘
S 7 k) = '—z{ ¢, Go (k) Q, () +3c5_‘G_.(l<)Q-cﬁ(k)> Q.@}

(k.12)

", (z,k)- -2{ ) Q) -3¢, (4 X Quea) |

(4.13)

Nz k)= L " B (EK) 4

LU E-z (4.14)

(let us recall that @O(t,k) is the unknown expansion coefficient). The

functions N(z,k) and F(z,k) are analytic in the z-complex plane cut from
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[-1,+1]. Qs(z,k) and QF(z,k) are analytic in the z-complex plane cut from
[-1,+1], with the exception of possible poles.

Moreover,

§2,(2,0) + 2, (2,0) = N\ (=) (4.15)

0
A(z) is the function used by Case and Mikaﬁ’5 in the monokinetic case.

This function is associated with the well-known solution of Eq. (L4.2c).
Then, one can prove the following fact: Eq. (4.9) is . strictly equiva-"

lent to:

oK) E (k)= { 82500 Nk = SN )}
LR (k) W 0) = SE(RRINGeo))

4.16)

(where * means the value taken by an analytic function of z above and below

the cut [-1,+1]. Thus:

F(z,k) = fQVS(z)k:} N(z, k) + QF(Z)k> N<Z)O) (4.17)

Setting k = O in Eq. (4.17) and using Eq. (L4.15), one finds at once N(z,0):

N <z)O>_—_ F/(\?:)m (1.18)
&

And we get:
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N(Z)k> = ————ﬂ|(z y F(z k) - QF(Zj/kL)fZgZ'O)

(4.19)

Thus, the problem of finding N(z,k) (that is the unknown expansion coef-
ficient, see Eq. (4.1k4)), seems to be solved. However N(z,k) must not have
any singularities in z outside the cut [-1,+1]. Checking Eq. (4.19), we see
that the delicate points are the zeros of A(z) and Qs(z,k). First:

A(iLO) = 0; hence we must have

F (i LO)O> - 0O (4.20)

Condition (4.20) is fulfilled through the discrete modes (4.7) introduced in

Eqs. (4.9) and (4.10). One verifies easily that the discrete expansion coef-
ficients Aoi (Egs. (4.9), (L4.10), (4.11)) are exactly the same as those given
by the well-known solutions of the monokinetic equation (M.Ec).55’5o

A more difficult problem lies in the zeros of Qs(z,k)o For a fixed k,

Qs(z,k) has zeros z = J(k) such that:

Q. [T,k = O (v.21)

z = J(k) is of course a function of k (possibly multivalued). However, we
have exhausted our supply of discrete regular modes solution of Eq. (k.2c),

in order to cope with the further singularities introduced by Qs(z,k). We
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should therefore conclude that the set of normal modes defined by Egs. (4.3),
(b.4), (4.5), (4.7), is incomplete.
But we can notice that Qs(z,k) is a function associated with the plain
slowing-down problem (Eq. (L.2b) without fission) as solved extensively by
11 . . .
Jacobs and MacInerney. One can think of using the discrete regular normal

modes of the plain slowing-down problem:

! *
NN \ -« /T (k)
U (J(ky, k) e (1.22)

with J(k) given by (L4.21), as introduced by these former authors. Instead

of expanding

Vi (pk) = LA B (L 1K)

as in Eq. (4.9), one can try to expand:

V(poky = LA Rl p ) BRL0 pK) o

or, equivalently, instead of F(z,k), use:

" (J(K), m,
PeK) - 30 [ RACUTLER
—I (4.23b)

In order that the expressions (L4.2%a) and (L.23b) correspond to a solu-

tion of the complete transport equation with a fission kernel, one must have:
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for

B(k) =0 Foe k=0 (4.28)

That is, one is introducing discrete normal modes of the plain slowing-down

equation, whose integral over the whole lethargy range (measure) is zero

("slowing down transients"). One verifies indeed that this scheme works

fully. For, if

S?,S [.T(k))k] - 0O (4.21)

we get immediately B(k) from Eq. (4.19):

B(k) = - e GuFEW,0
) {F(m@ ) N (T 1}

+l *@(Jckm ) d
(x){ 2 i 30K P}

(4.25)

The crucial point is the verification of (L4.24). Indeed, B(O) is pro-

portional to:

F(Jo),0) - S, [J(0),0) Fﬁ(‘;z;%)

= F(J)0) {MJ@\ - N:130),0]
./\(J(o))
= F 3(0)0 »JLS[JCO))O] 2
oo N (Jco) (1-26)
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(if we remember Eq. (L.15)). But, in Eq. (4.26), QS(J(O),O) = 0, because of

Eq. (4.21). While A(J(0)) # 0. Hence

B (O) - O (Lk.2L4)

To summarize, we have proved that the full-range completeness theorem

must be stated as:

Vipwk) = LA 8 (el k) + BONE (300 mk)

+i\
+ &) (t]rA) \<) dt (4.27)

where ®(iLO,p,k) are the discrete regular modes of Eq. (4.2b), as defined in
Eq. (4.7), and ¥(J(k),u,k) are the discrete regular modes of the plain slowing-
down problem, as introduced by Jacobs and MacInerney. The superposition of
the latter modes has indeed a null measure, hence the name of "slowing down
transients."

The very same completeness theorem holds for the half-range domain, as

it will be shown in the Appendix, although calculations are more involved.

Y(p, k) = a, B(+L,, k) 4 BOCE(3(k) ) qu £ k)t (i)

And the solution of Milne's problem will be:



8l

Vi) = O (L pu) e

a2 (4L p)e e L J BIQT[I(K), e F& PR,

29¢

— o

teo | |
L1 (Tetke gy f B(t, k)t (1.29)

a and LO will be identical to the equivalent parameters found in solving
the one-speed equation (L.2c). The great difference lies in the presence of

slowing-down transients.

4b.4, CONCLUSION

The present work has shown that the solution of the energy-dependent
Boltzmann equation with anisotropic elastic slowing-down and fission, is far
from being straightforward. Neither prior works dealing with a monokinetic
equation (Mika), nor works solving the plain slowing-down problemll could
foretell the following basic features due to fission regeneration, that is:
the coexistence, in the solution of any transport problem (half-space, full-
space) of space-energy separable regular discrete modes, with nonseparable
(but regular) "slowing-down transient” modes.

Tt has to be stressed that the "slowing-down transients", though decay-
ing spatially faster than the separable modes, still decay more slowly than

the classical continuum transport transients. Hence, these effects will be

dK
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important in the interpretation of integral experiments in the fast-energy
range; for instance, in an exponential experiment, one usually wishes to
measure a well-defined, space-energy separable asymptotic (equilibrium) mode.
However, experimentalists often acknowledged that they were not sure whether
or not they had reached such an equilibrium distribution.36—u2 As far as we
can know, the present work gives the first theoretical explanation of this
experimental difficulty: there is competition between space-energy separable
modes and slowing-down transients, the latter decaying sometimes rather slowly

into space. In the next chapters, we will do a detailed study and calcula-

tion on this transport-interpretation of exponential experiments.

4.5. APPENDIX B. HALF-RANGE COMPLETENESS THEOREM IN THE ANISOTROPIC CASE
In this concise appendix complete familiarity will be assumed with the
11 . .
completeness theorem of Jacobs and MacInerney,  though by no means will it
be a straightforward extension.

We wish to prove half-range completeness. The starting point will be

Eq. (L4.16):

+

V)= 4 8 o) = S (k)N

b R kN RO~ S (k) N (O

g (4.16)

With, this time:
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N(z,k)= _I ‘ JIM} dt (4.30)

2L
If we set k = O in Eq. (L4.16), we find the solution of the associated

one-speed equation (4.2c); hence N(z,0) is perfectly well known from previous

53,50

half-space one-speed solutions. So, we are permitted to consider

+ -
N(z,0), N (p,0), N (p,0) as perfectly well known functions. Hence, set

W (k) = W) = 0 I ) S (NG o

and Eq. (L4.16) becomes:

k) = O (N R = S kINGu k) e

Define

A (zk) = —exp Ji ('103m*2w>_1 dir }
(k.52)

L2 g (ph) ) P2

we have

(k) QZ(N@
Ks (k) s (k) (1.33)

Then Eq. (L.31b) can be rewritten as:
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X{(N,«K) \V(f“ k) = )( }A)k)N+/ L k) — X—(n ;\) N7 (/«t,k)
”Qs Q’“)‘“) (k.3L4)

Define

b - m
Stz k)= 1 Xs (Ml() v (M'k)_ d
(2% Z‘L‘N{o 0 (k) Pz

(4.35)

S(z,k), Xs(z,k), N(z,k) are all functions analytic in z outside the cut

[0,+1]. Thus from Eq. (L4.34):

N(Zik> — S(Z,‘()
X, (z,k) (4.36)

N(z,k) must behave as 1/z at infinity. This requires classically55 that,

instead of expanding V"*(u,k), we expand:

W'"(Mk) = B(k) ¥ (3(x), 14 k) (1.57)

¥(J(k),u,k) being defined in (L4.22). Classically, B(k) will be given by:

B(x) ____Q_‘L’\YJ K)d J (k)
Ci =0 (JCK) k) A Vi(pk)dp

(4.38)
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Again we must have condition (L4.24): B(0) = 0 (slowing-down transients).

Equation (4.24) is equivalent to:

X (100) o) 4 =0
ﬂ;(M,O) (/ ) ) }A

(4.39a)
Using Bq. (L4.34), Eq. (4.39a) becomes:

L PXUmo N G0 = X (1OIN T 0)) dpe = ©

(4.39b)

This is indeed the crucial step; for XS(Z,O) and N(z,0) are perfectly
well-known functions, analytic in the z-plane cut from O,+1 and both be-

having as 1/z at infinity. So:

-

OO0 N0 = X (s )N(WMCW

A § AR
- ?f Xs(z,0) N (z,0)d7, (h0e)
C

where ¢ is a contour in the complex z-plane (see Fig. 8). Then from Cauchy's

theorem (no singularities within c):

)|

§ K. (z,0) N (z,0)dz =0

C (4.394)

and, indeed
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The contour C in the z-complex plane.

Fig. 8.
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for

B(k) =0 For J< =0 (b.2k)

So, we proved the following half-range completeness theorem, similar to the:

full-range one:

Vpk) = dq @O'oﬁ")k) T B(k)i’(ﬂk)m; k)

|
+ j ¢ (t)[w,.k) dk (1.28)

The coefficient ao is readily given by the solution of the associated one-

speed equation (M.Ec).53’5o



CHAPTER V

ASYMPTOTIC BEHAVIOR OF THE SLOWING-DOWN TRANSIENTS

5.1. INTRODUCTION
The preceding chapters emphasized the importance and generality of the
coexistence of space-energy separable modes, asymptotically dominant, with
slowing-down transients. A goal for further investigation is to make a nu-
merical evaluation of the extent to which these slowing-down transient modes
delay the approach to equilibrium in integral experiments on fast multiplying
media. Of prime importance would be those slowing-down transients which de-
-T minx]|

where 3 . is the minimum of the total

cay more slowly than e s T min
—_— 1

cross-section; such terms are energy-spectral transients, but not transport
spatial transients; they have been already considered explicitly at the end
of Section 3.5 (Egs. (3.33a) and (3.38)); however, their analytical expres-
sions are not immediately amenable to numerical evaluation, since they involve
a contour-integral in a complex plane (see Sections 2.5 and 3.5). The pur-
pose of this chapter is to develop improved asymptotic formulae for the so-
lutions of the plain slowing-down problem we introduced in Section 2.5 and

used in problems on multiplying media (Section 3.5).

5.2. INTRODUCTION OF AN ENERGY~GREEN'S FUNCTICN

Consider the slowing-down Eq. (2.12b)

91
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Y (x w,E) s ¥(xMmE) = d Wx:wEJ
S (o B) 4 V(upE) f M%“) g dE
+ Z[W(X)FME)OLP’” oy E(XX)SCE)
(2.12p)

Applying anln;transformation to Eq. (2.12b), we obtained:
+
Ve B : ¥ ! l
P8 () Vo) = L (Cer &) f Vi)
/ - S /
e §(x XO)S(\.>

(2.35)

At this point, let us recall from Section 2.4 that:

Yeopn) = T e ¥(xp E)

= f ‘V(x)p,E) hee)™

- f ‘\If<x),u ) v A A v
G\?(X)I\&)E> = %(E\ W(X)]-ME)

v = h(E)
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with the normalization h(e) = 1. Let us also recall the inversion formula

(2.4%):

VxmE) = ?m 9@)[ Vit ) v

(2.43)

Considering the transformed equation (2.55), we note that it is homogeneous
in the A-variable; this leads us to introduce an energy-Green's function

G(x,u,E) such that:

G (x }*Q‘> m G (X)N) ) (5.1a)

where G(x,u,\) obeys the transformed equation:

4
J\, BG (X)I\A)'X\-}-G )}wpx - 2 (Ce+ {)/E(X,ﬁ?\)drhl

+

2

(5.1p)
The energy-Green's function G(x,u,E) corresponds to a Dirac distribution
source at infinite energy. Then, we have the obvious relation between

G(x,u,N) and the general solution of Eq. (2.35) corresponding to an arbitrary

source spectrum:

V(x)p SN = 5(7\3 G\(X MR (5.2)



Ok

The next problem is to invert the relation (5.2), that is, to find a

"convolution"” theorem for theIn;transformation:

Theorem 5.2.1. If F(A) and G(\) are the -transforms of F(E) and G(E),

then the inverse-transform of the product F(A)-G(\) is:

!

mAQ [F(%)-G(/\] = g(F) Fl(‘\\/%’) G}u(%) %JV_V_

where

FI(E) = F(B)/g(E)  6'(8)= GE)/4(E)

v = h(E) w = h(E"

Proof: Defining F'(E) = F(E)/g(E), G'(E) = G(E)/g(E), we can rewrite

the transformationl?[as:
{
Il l, -1
F(n) = fof—'(v)v dv

/

G - J(l G'(v) v dv

o

where we used the transformation defined in (2.37):

V = \(\ CF) (2.37)

As we know from (2.38), this is nothing but a classical Mellin-transform.

Ll
Then, a classical "convolution theorem” for the Mellin transform* states that:

*Bateman tables, Vol. I, p. 245, relation 35.
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C4Lee

| _Fse)pvraf F(2) 669 &

ZﬂL J

€ ~Led

In fact, this can be proved very easily:

CHLe®

1 wéh)g(k) v A - F(a)v v G,'(w)w%'ctw
27l ) i Z’r[L ‘
C-Le2 o
| | c+L‘i
= (wydw 1_ /[
[ 84 chm) (4)
<
- | F'(H G' (w) 4w
e
We notice that:
F‘C‘/) = G“<V) = O for v > 1
So:
\ /' |
fo F(Vvv_)c: (w) dvy :J F <_\>/_4_>C,'(w)g\v_;_‘/
V

And finally, taking into account the factor g(E):

NI« | F G0

fF‘ ) G () &

L/

Q.E.D.
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We can clarify further this result by making another change of variable

and introducing a new "lethargy' variable related to the inelastic slowing-

down:

v = h(F)

W :—103 Vv

= -Tog {h(E)}

The change of variable E& u is a one-to-one mapping of E ¢ [O,+0] onto

(5.3)

or

The Jacobian of the transformation is:

u e [40,0].
du =_4dv _  _ g® (r
\ h (E) -
5.

Then our "convolution theorem” can be rewritten as:

o~

-l . | N y
m fx[ FOY G ] = (U/ F ) 6 () e
 peleyihE) |
=g/ IE (w6 )

(

O
5.5a)
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where

L = -Io?} L\(E) = —-loz\/ (5.5b)
LU :~‘-102,W/ (5.5¢)

This similarity with the classical convolution theorem for Fourier-ILaplace
transforms, stems from the close relationship between Mellin and Laplace
transforms (see (2.40)).

Finally, returning to Eq. (2.12b), (5.1), and (5.2), we obtain the re-
lation between the energy-Green's function G(x,p,E), the source S(E) and the

distribution v(x,u,E):

—log@ﬂ(lﬂ}
Vix,mE) = G(E) Eg_(mu') ,%(xm)w')c\u'

(5.6a)

where

WL = ‘loa \'\(E) (5.6D)

This convolution relation enables us to focus our attention on the solution

of Eq. (5.1).

5.3. FAILURE OF CIASSICAL METHODS OF ASYMPTOTIC EVALUATION

The very nature of the mathematical asymptotic expression desired for
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G([xl,E)*is closely bound to the requirement of the experimental situations

we wish to interpret. In most integral experiments, the source will have

a fission-energy spectrum, and we will have to consider solutions of:
o oV /x ) +\4’(x,p,E)- £l df“‘ g(E)fﬂi&zlfé%) dE’
+ Qﬁ(mw M+ f 4 Y& f‘V(x,r‘,E') de

S(X-XO)X(E)

(5.7)

From Eq. (3-55), we know the full-space solution of this problem; call it

A(lX\)E> (5.8)

As we know from Section 3..L, part of A(|x|,E) is solution of a plain

slowing-down equation, the source-term of which is (see Eq. (3.24)):

S(x %) I'CE) __.é‘{x-x {)Q(E) H(E)}
(5.9)

This source term is guite unusual, to the extent that it has a broad energy-

spread: x(E) has a maximum around 0.8 MeV, and H(E) peaks typically around
0.1 MeV. This situation is very different from the slowing-down problem in

thermal-reactors, where one is chiefly interested in thermalized neutrons:

*G(|x|,E) is the angle-integrated distribution G(x,u,E).
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since the energy of the latter is very far from the fission-source energy,
one can usually consider source neutrons and slowed-down neutrons as two
sharply distinct groups.Bu

On the contrary, in a fast multiplying medium, the average energy-
spectrum of the neutron field is deeply imbedded into the energy-range of the
"slowing-down transients" source (X(E) -}{(E)).

Another experimental requirement stems from the generalized use of

238 N§57)

threshold detectors (such as U and in fast multiplying media: such

detectors are commonly used as indicators of spectral equilibrium; for in-

258/U255

figsion chambers measurements is a classical

36-L2

spectral index for fast neutron fluxes. This means that our mathematical

stance, the ratio of U

formulae must give us practical information about very high-energy neutrons
as well as medium~- and low-energy neutrons; otherwise, these mathematics

. -\ 7 . .
will be mere "pieces de Musée". 1In plain words, one needs an asymptotic ex-

pression valid for absolutely all energies.

This unusually stringent requirement makes useless the classical
asymptotic methods used in classical spatial elastic slowing-down prob-

lems.l_ll’Bo’Bl

In such problems, interest was chiefly concentrated on the
spatial distribution of very low energy-neutrons (improved "age-diffusion"
theories) or the distribution of very far-away neutrons ("deep/penetration
problem"). Then, the most efficient tool was the "saddle-point” method for

1-5,11,50
5,11,50,51 Referring to these previous

evaluation of contour integrals.
works, we can quickly show how this classical approach fails in our case.

Congider the inelastic slowing-down Green's function, solution of Eq. (5.1):
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C+L00 ',/
G(IXI,E)z—%ElJ Na 1)"01«() Y

2l 2
(E) CtuLeo ——IX‘/v
v 4% f HE) dn il e dv
2N C—Con N (‘P?\) 2
(2.56)
Classically, one keeps only terms decaying more slowly than e_lxj; namely:
°"“’° XA 0
G (1,52 99 [ hip™ ) e g
oo No ) 2
(5.10)
where NO(%.) is defined in Eq. (3.33e), and vo(%.) is the root of:
= (¢ +£u_>.v A am{l
( e A/ ° () "\ vty
(3.33c)

Introducing the "lethargy" variable u (see Eq. (5.3)):

C"rC@C
'lxl/'%(m—‘l—?u} ,
E) = 9¢® el I
v

(5.11)
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The next classical step is to apply a saddle-point formula. Defining
l/vo(k) = KO(X), the position of the saddle-point xo is given for fixed u and

]xf, by the equation:

d K, _ W

d"x 7‘-:70 ' Xl (5.12)

And G, |x| ,E) becomes classically: 1-5,30,31

X

. { Aagziw = K00 Ixl}

GA3<|XI:E> = g(E)
2N, (%) \/{-mm (g;%ﬁk_l}

(5.13)

However, such a formula is still a dead-end, since it involves the solution
of a set of two complex implicit equations (3.33c) and (5.12). These im-
plicit equations can themselves be solved asymptotically in two limiting-
cases:

(I) w>> 1; this yields an "age-diffusion" approximation

I
(11) TiT << 1; this is the "deep-penetration” problem

However, applying Wick's*method of error-calculation, we find that the cor-
responding approximate expressions for GAS(|X[,E) are valid only if':
(1) ~Nu>> 1 for the "age-diffusion” approximation

1
(11) (uz) /4 >> 1 for the "deep-penetration” problem

*See Ref. 3.
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In our experimental situations, it will turn out that "lethargies" of
interest are all < 2, and the spatial dimensions of experimental systems are
all < 20 m.f.p. This is in sharp contrast to conditions (I) and (II); the
classical saddle-point method does not lead to any practical results for spa-
tial slowing-down problems in fast media. All these considerations justify
the highly unconventional mathematical method of asymptotical evaluation in-

troduced in the next section.

5.k, EXACTjﬂ:INVERSION OF THE ENERGY-GREEN'S FUNCTION

Consider again Eq. (5.1):

- 38 ()t G o) = %f GO o

t

+ éth q (X)}\,L'/')\)dr«' <+ 5’-— g(x)

-

(5.1)
where G(x,p,\) is the full-space Green's function. Define:
. 4]
- I }
G = [ Glont de
=1
(5.14)

In Eq. (5.1), the scattering term involves two components, the first one

without energy-transfer, the second with energy-transfer. The idea 1is to
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consider the inelastic scattering-term as an extraneous source:

H BA_/)( lw?\) G,(X }z\’.)\.) _%@.[l G()(”v\b?\)(\/ru

+ ,ll_{S(x) + %_G <X}%>}

(5.15)

Then call Ge(|x|) the Green's function corresponding to the monokinetic

transport equation with plain elastic-scattering:

\g—xge@ ) GI (\X!)M\~ f(;, |x)/u c\!\A + 82(‘)0

(5.16a)

where

G, ) - {Geww—w

(5.16b)

50,

The exact expression of Ge([x|) is well known

, i
dke’ e'Ki\"]Jr%fe']f‘f_v__ dv

Ge(\xw = dc. K. _\)9@@_\))

N —

(5.17a)

where Ke is the root of:



0L

‘ = %‘?— (.\rﬂ)[% Ke

(5.17b)

And

2

ey s

/ 2 2 .2
%(C P) = ’\3 "Ce‘l—’orgflm'u/i + N ZC: g (5.17¢)

Then, using a spatial-convolution theorem, the solution of Eq. (5.15) can be

rewritten as:

EOX!;/\) = C‘e(‘xD +f Ge(‘X_YD%.q_(‘y\p‘ d}’

(5.18)

Now, apply a Fourier spatial transformation to Eq. (5.18):

— rtee \
G (%3N = [ G () e
“}-oo (5.192)
5 e LXX
G, () :J G () e dx

(5.19b)
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We get:

G - Ge O+ G GO,

(5.19¢)
From (5.19¢c), we obtain the desired expression for G(Ke,.)\):
E—(le) - C,esz) :
, - g\i GC (X) (5.20)

We could have obtained Eq. (5.20) by immediately Fourier-transforming Eq. (5.15)

and (5.16a):

|
(ixp ) GO P = §e§ GO 1 dp

TS f/\ Q(xf?\ﬂ

2
(5.21a)
el
/s 2 {
(ixpe+1) G (1) = &) GO +L
(5.21b)

Since Egs. (5.21a) and (5.21b) are homogeneous in both k and A, this yields:
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G = G (xY(1+ &G @)

(5.21c)

From this, we deduce again the fundamental relation (5.20). Let us recall

from Eq. (5.17),50 that:

2y _ dKe |
q@. (X) dc‘e KZ_'_XZ \(('1‘)( _P’Z)%Cce,‘pl)

(5.22)

2
Then, let us try to isolate Ge(K ) in the relation (5.20):

(2 1 Ge ) — 2 2
q (X )7\? - { I _ % G):()(Q) QQ<X)} T qe(x)

X2 C; {Ge@z)\}z
Ge( ) + }L_CLQE(X?.)

(5.23)

At this stage, inverseTﬂ—transformation of Eq. (5.23) is immediate:

—G.GeX*?
GO E) = G () 3(w) +¢. %(E){C} (x)} \'\(E)CC\ )

(5.24)

where 8(u) is the Dirac distribution, u the "lethargy" defined in (5.3),

and where we used the elementary pair offn;transforms:
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¢

(g9 he) "} = [quiher”™ e

’7\ —
] (5.25)
(set p = ¢, Ge(n2) and remember that h(ew) = 1).

Relation (5.24) is quite interesting; we have succeeded in performing
the gzggz-inversejﬂ}transformation for the energy-Green's function of the in-
finite medium.* We obtain an expression which is exact for all energies:
this is quite unusual in the field of spatial slowing-down problems; for
similar elastic slowing-down spatial problems, one is always stuck with an
energy-inversion contour integral, which all authors without exception (even
Ref. 11) approximate by an implicit saddle-point formula (see Chapter X, in
Ref. 31).

The first term in Eq. (5.24) corresponds to the elastic-scattering of

the source: the very success of our method lies in its isolation.

5.5. SPATIAL ASYMPTOTICFCOMPONENT OF THE ENERGY-GREEN'S FUNCTICN

Having relation (5.24) valid for all energies without exception, we may

now focus our attention on the purely spatial behavior of the energy-Green's

function and look for an expression valid for large distances and all energies,

Let us apply an inverse, spatial Fourier-transformation to Eq. (5.2h4):

*A similar procedure could be extended to half-space problems, using a
Wiener-Hopf-Fourier method.
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GUXLE) = Go(Ixl)-8(w
re; QCE) E;’E,/TC\ e (Xz)}ze{u (el bxi\}x

(5.26)

(remember that u = - Log {h(E)}).
In Eq. (5.26), the first term,Ge(|x|) 5(u) is perfectly well known (see
Eq. (5.17)). We notice that we even know in detail the spatial-transport
transients in Ge(‘xl); this will turn out to be useful for an improved ex-
pression of the Green's function close to the source (see Chapter VI).
Let us now turn our attention to the second term of Eq. (5.26) which in-

cludes all the spatial inelastic slowing-down effects:

00 %) )
o e Gelx? +1xx]
F(’Xl,£> = CL (E\Z_l‘c {GQ(XQ)} e C\X
(5.27)

Make the following change of variable:

r‘
T—
il

K (5.28)

Eq. (5.27) becomes:
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¢ u..,Gek kx]
Rlxla)—c‘%@)f q(k)}z bt a

oo 0 [uc Ge(k?)- kx]

96 f (6K e

(5.29)

Where

5. dke
(;lQ(k) - dCQ kz kz f(l k?. l)@(@,_u)

— dke k>
Cj(fe '<E."Lf2' ( )

(5.30)

(ke being the root of Eq. (5.17b)).

Equation (5.29) involves a contour integral along the imaginary axis for
a function of the complex variable k; this function is analytic everywhere,
except for:

(A) The cuts [+l,+%] and,[—w,-l] on the real axis, since these are cuts
for Q(kg) in Eq. (5.30).

(B) The isolated singularities k = ike on the real axis, since these
are poles for Ge(kz) in Eq. (5.30). However, ike are essential singularities
for the function involved in the contour-integral; this is due to the expo-

nential blow-up of the term

w G Ge(k?®)
e
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1/k+ke

which behaves as e in the neighborhood of the essential singularities

tk .
e

‘x+ix

Fig. 9. Domain of analyticity for the Fourier-transform of F(|x|,E)
in the k-complex plane.
Let us now shift the integration contour in Eq. (5.29) from the imag-
inary axis to the real axis. If we consider x > O, the corresponding
Bromwich contour will lie in the positive half-plane, since for Re(k) > 0
-kx . .

and x > O we have |e | > 0. The Bromwich contour includes a contour D
along the cut [+1,+~] and a circle C centered on k = +ke. Things are of course
symmetrical for x < O.

Then, for x > O:
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A +ix

C D
76%'—_———& o O ({ ,/,[,//r/:/'l fot 7 ;A'/rl A ~—P
- 1 -ke +1
+ke
-ix

Fig. 10. The Bromwich contour for F(x,E) (Case x > O)
in the K-complex plane.

> [UeGe(KY - kx]
~—— Y (E)
FOGE) = @ 23__& {b+§{a(k) e

(5.31)

From Eq. (5.31), it is clear that the contribution of the contour D involves

modes all decaying faster than e_X; these are all transport-spatial transients.

-[x|

Any spatial mode decaying slower than e will be yielded by the con-
tour integral C: this is indeed the spatial asymptotic-transport component
we are looking for.

However, the circle-contour C surrounds an essential singularity:

classical residue-calculations do not hold. This is typical of a slowing-

down problem, where we do not have discrete spatial relaxation lengths. The
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contour C around the essential singularity ke includes, in fact, the continuum

of discrete regular Case's modes introduced in Section 2.5, Eq. (2.45p), and

used in completeness theorems (Eq. (2.53a) and (2.53b)).
So define:

<x E> CL CJCE) ﬂé{f (k) u,c

All)=od g,

(5.32)
From Eq. (5.30), (Ge(kg)}g
22 Ke
= (49 gt
k2 zm@ {_Q Wz
T dee k2 - (5.33)

2
Q(k”) is an analytic function on the contour C and within the domain surrounded
by C.
. 2,42 , .
Using the three components of {Ge(k )}” in Eq. (5.33), we can split

Fas(X’E) into three parts:

Fo(WE) = Foo (XE) « FV(1E)x FCOGE) o

Where:

Y.U.CLGQ( kﬁ)-— kx ]
dk

(5.35a)

i (4E) = ’C"z‘%w(aﬁé(ixiz) (ke. ma



113

2yl | dee  KT-K*
C

Fo (0 E)= agcaﬂg d |C<Z 20(¢) luebe(KI-lx]

(5.35p)

F o -k,

F%E) —ﬁ@_fﬁ{ﬂ(k I olives el

(5.35¢)

Since the procedure is quite similar for Egs. (5.35b) and (5.35c¢c), we concen-
trate our attention on Eq. (5.35a).

More precisely:

W Co

_k
E\i”(xf §L(k I mﬁw g dk
(Ke-k)®

(5.36)

where we define

. .
“ (ues dk& | NCLQ(k?)}

| /b o) —/dKE® [ 2Ke dCe Ketk

Lk ) = k} e

(5.37)
L(k ,u) is an analytic function of the complex-variable k on the contour

C and within the domain surrounded by C. Then the asymptotic behavior (for
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large x) of the inverse Laplace transform is obtained by replacing L(k) by

its value at k = k., in the contour integral (5.36):

‘ l\as& (2
L(Ke)u).__{dkflz Gl 9 - L)

C‘C(:J lez?
(5.38)
Then Eq. (5.36) becomes:
() [%% C(\Jg} K‘ K i
- E € e e-
FO (4,E) - ch<>§1_(1< N -
27U <ke-k)
(5.39)

The idea is then to reduce the contour integral (5.39) to a classical inverse-

Laplace transform in x; for this purpose, put:

Ke "'k = P (5.40)

Then Eq. (5.39) reduces to:

FO - cgE)Lke,u)e

Ci X
Q() _Z‘W_L\égzm F} &P ?

2z
C TD (5.41)

- K X

(with counter-clockwise integration,. this time).
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Equation (5.41) is nothing but the Bromwich contour for the inverse-
a/P

Laplace transform of , Where:

2 Ke, a Ce (5.42)

Fig. 11. The Bromwich contour C in the complex P-plane.

We have indeed:

Ly
But, from Bateman's table of integral transforms (p. 2L5):
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* p- P_ Y +
| T ePap s o T T ] (20 )
(5.14)

where Re(v) > 1, and I is the hyperbolic Bessel function of order v. In
v

Eq. (5.33), we have v = 1. Then, for positive x, Eq. (5.41) reduces to:

A?ix;E): c; 9 (E) Lk ,u) {K&X‘\/&X_ 1 (y;za
(5.15)

1)

So, we successfully have evaluated the contour-integral for F;S (X,E). A
- : (2) (3)

similar procedure can be applied to Fas (x,E) and F (x,E) (Egs. (5.35Db)

and (5.35c)): namely, the isolation of a term L(k ,u) analytic within the

contour C; its replacement by L(ke,u) in the contour integral; the reduction

of the remaining contour integral to an inverse Laplace-transform formula,

using the change of variable p = ke - k3 the evaluation of this inverse

Laplace transform with the help of the following formulae:

“w Al pX -t
%ﬁ c«CoO-‘F ) - C\P ) Io <21\0M> (5.L6a)
Ctiee
| d/f PX
o M I A SIC D)

(5.L46p)
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Formula (5.46a) is used in the evaluation of F;i)(X’E) and formula (5.L46Db)

(5)(

in the evaluation of F x,E) (from page 244, Bateman's project).uu
So, skipping over the detailed calculations, we write the final expres-

sion for GaS(IXI,E), the spatial asymptotic part of the infinite-space,

energy~-Green's function:

~Ke
GAS“x])E): _2'-3%2 e % \g(u,)

+ ¢ Q(E) @ ‘o)z T
0 £ (f 46 JH % (24T)
+ 1 dk& Q (k€) To (29 Ix)
(k) & L<2x/ﬂ><—]>}
J

5.47)

Where u = - Log h(E), and Io’ Il are the hyperbolic Bessel functions of

order zero and one.uu Q(kg) is defined in Eq. (5.30) and o in Eq. (5.42):

A = UWC d Ke
2Ke dc. (5.42)

k is the root of Eq. (5.17b): it is the inverse of the discrete relaxation
e

length ‘for the monokinetic elastic-scattering equation (5.16a).
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It is readily seen that Gas(|x|,E) is split into two parts: one which

'kelxl

decays exactly as e and corresponds to pure elastic-scattering of the

source term; the second one, namely Fas(|x|,E),includes all inelastic slowing-

down effects; recalling that:

IO(O) = 1

1]
o

1, (0)

and that hyperbolic Bessel functions are monotonically increasing, we see

that Fas(lx|,E) decays more slowly than e—kelxl.

We can make this point
more precise by making an asymptotic expansion of the hyperbolic Bessel func-

tions:

2«’0(\)(\
Ll
I, ‘X>lx—m (o<|x|)l e

(5.48)

Then an asymptotic expression for FaS(IXI,E) follows:

we, zdkc Q (k&)
F’-‘*OM’E)\)&g&a%(E) e {" dee T }

—_ Kz\x\ <+ 2‘JO< x|

| e
X

) 2
O]+ 4+ Ldis (i) 0.

(5.49)
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Equation (5.59), valid of course for very large |x|, shows clearly to
-k
what extent the decay of Fas(|x|,E) is slower than e eIXI; the leading term
is:

o= Ke x| + 2+t |x]

(5.50)

Since o is linearly increasing with the "lethargy" u (see Eq. (5.42)),
Fas(|x|,E) will decay into space more slowly for low energies than for high
energies: this reflects the physical fact of accumulation of slowed-down

neutrons with increasing distances.

Anyway, Eq. (5.47) for Gas(]x|,E) is valid for all energies (and
"lethargies"), and is spatially "asymptotic" only to the extent that we re-

x|

jected all transport-transients decaying faster than e This enables us
to make unrestricted use of the convolution Theorem 5.2.1 (see Eq. (5.6a))
to obtain an asymptotic expression for the slowing-down transients, valid for
all energies.
5.6. ASYMPTOTIC EXPRESSION FOR THE GREEN'S FUNCTION OF THE INFINITE MUL-
TIPLYING MEDIUM
Turning-back to the transport equation with fission, heavy elastic scat-
tering, and inelastic slowing-down, we can now write the asymptotic expres-
sion Aés(|x|,E) for the infinite-space Green's function A(|x|,E) solution of
Eq. (5.7). The exact expression for A(|x|,E) has been given in Eq. (3.33a),

providing one uses a source term 1/2 &(x):X(E) with a fission energy-spectrum.

We have, referring to Egs. (3.33), (5.6), and (5.47):
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_Ixl

Ape (IXLE) = H(E).; e ¥

No
2 4—‘(el)<'
- | dke €
+ [ Xee He) L dke e
gL h(E)] w dKE | Q.(K3
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o 48 T
7 2
+ LKe—, %\% (ke) Io(z‘/‘:';D + (Q(ke))ﬁ‘la(umb-ﬂéu'
(5.51a)
o =  (u-u) dKe (5.51b)
ZKc dce
L = “Loa{b\(E)} (5.51c)

W(E) - HED
g(E")

And that (X-)-{/g)(u’) is the value of for E' such that:

h(E) - e~ % (5522
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Let us consider Aés(lxl’E) more closely; Eq. (5.51) is the sum of three
components, each of them having a major physical significance. The first one
is space-energy separable, characteristic of neutron regeneration; the second
merely represents the elastic scattering of the "slowing-down transients'—
source without any energy change; the third truly represents slowing-down
transients characterizing the adjustment of the neutron field by inelastic
slowing-down from the initial high-energy source X(E) to the final asymptotic
energy—sPectTUﬂl}«E).

The spatial decay of these three components is representative of their
%] /vg

relative importance: +the first one decays as e , where vy is the funda-

-k
mental mode of the multiplying medium; the second, as e e|X], with ke >> l/vo,*

'kelxl

and the third corresponds to a continuum decaying more slowly than e s

though faster than the fundamental mode. Let us also point that the slowing-
down transients correspond to a source term X(E)'—}{CE) which is positive at
high energies and negative at low energies characteristic of the asymptotic
spectrum; this is physically natural, since it reflects an excess of high-
energy neutrons (positive source) and a deficit of low-energy neutrons (sink-
source) at distances close to the origin. The overall neutron density is,
of course, positive everywhere.

For further numerical purpose, we can improve the validity of Eg. (5.51)

for small values of le by adding two spatial-transport transients:

*¥As it may be easily seen from Egs. (3.33b) and (5.17).
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2 Jo N

+ KE-K®B [ "5 dv
2 Y Glew)

(5.52)

The numerical evaluation of these two transport-transients (defined in
Eq. (5.17) and (3.33)) is well known from previous works on monokinetic
transport theory.55 This way, the only approximation in the improved formu-
la (5.52) consists in omitting terms which are simultaneously inelastic
slowing-down transients and spatial transport-transients (namely, modes coming
from the contour integral D in Eq. (5.31). From further numerical calcula~-
tions, it will turn out that the improved formula (5.52) for the Green's
function A(IXI,E) is rigorous for distances equal and greater than two mean
free paths from the source.

At this stage, the energy-dependent transport theory, presented in this
work, has been developed to a point where one can do more than merely inter-
pret analytical formulae. We are now in a position to obtain numerical re-
sults and to try to adjust our model to experimental situations. Since our

foremost theoretical predictions concern possible competition of slowing-down

transients with space-energy separable modes, we may try to investigate
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experimental situations where such a phenomenon has been pointed out by in-
vestigators. This is indeed the case with fast exponential experiments in
both natural and enriched 111'3;1'1:'Lum.56-”2’%_M7
These experimentalists have been trying to measure a well-defined relaxa-
tion length associated with an asymptotic energy distribution. However, be-
cause of the systematical discrepancies between the results yielded by a
wide range of experimental and analytical devices, it has been suggested by
the investigators themselves that a true equilibrium spectrum might not have
been attained in these exponential experiments.

So, we will try to make a semi-quantitative study of the approach to

equilibrium in such experiments.



CHAPTER VI
THE APPROACH TO EQUILIBRIUM IN THE FAST EXPONENTIAL EXPERIMENT.
APPLICATION TO THE ZPR-IV SYSTEMS
6.1. AN EXPERIMENTAL CHALLENGE: IS COMPLETE SPECTRAL EQUILIBRIUM ATTAINED
IN THE FAST EXPONENTIAL EXPERIMENT?

The purpose of the fast exponential experiment is to study the propaga-
tion of neutrons in a natural or enriched uranium assembly, using a plane
source. It is designed to obtain fundamental information about the physics
of dilute fast-reactors—such as bucklings, diffusion lengths, and asymptotic
energy spectra. Such an integral experiment is particularly attractive since
it combines a low investment of fuel, with a high-degree of safety. Related
interests are the design of improved devices measuring differential fast neu-
tron spectra in the energy-range 1 keV - 3 MeV and the check of multigroup
calculation methods and multigroup cross-sections.

Measurements have been performed on natural uranium by many experimental
team836_u2; they have yielded a wide range of information on the diffusion
length and the behavior of equilibrium neutrons in natural uranium.

36,537,445

In Argonne National Laboratory, measurements have been performed

on systems with various mixtures of enriched fuel and diluent materials and

e s : . 238 235
with isotopic ratios of U and U in the range 3:1 to 7:1. As opposed
to natural uranium (for which the infinite medium is subcritical), such sys-
tems could achieve criticality and were representative of dilute fast-reactor

media. Measurements on these "ZPR-IV" systems have given values for the buck-

lings and indications of the asymptotic spectra.

124
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Typically, an exponential assembly consists of a cube of natural uranium
in sizes varying from 24 in. to 80 cm, or, for ZPR-IV, a rectangular stack of
cans filled with the appropriate mixture of fuel and diluent materials:
typical sizes were 24 x 24 x 18 in. (see Fig. 12).

The source of neutrons for the fast exponential experiment is usually
the thermal column of thermal reactor. The whole system is carefully shielded
in order to prevent undesirable leakage of internal neutrons or parasitic
scattering of external neutrons. The leakage spectrum of the thermal source
reactor gives birth to a fast-fission spectrum on the front-face of the ex-
ponential assembly.

Within the assembly, in a region where only the fundamental mode is
present, the spatial and energy variations of the flux are separable. This
has been justified theoretically in Section 3.4 of the present work, and cor-
responds to the damping of energy and spatial transients. The fundamental

mode is characteristic of the fast multiplying medium; call it:

b, (_r_)){(e) (6.1)

where H(E) is the asymptotic energy-spectrum (see Chapter III) and ¢E(r)

obeys the asymptotic source-free transport equation:

v* CbE(r) t BZC\)E(Q = O

(6.2)

(for a subcritical medium such as ZPR-IV). And:
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Vi (g) —XZ@E(E):O (6.32)

2
(for a subcritical medium such as natural uranium). B~ is the buckling of

the multiplying medium; L2 defined by:

2
[.. - ?‘(ﬁz (6.3b)

is the diffusion length of the subcritical medium. ¢E(£) corresponds to dis-
crete fundamental modes of the transport equation, and therefore, obeys the
diffusion-like equations (6.2) and (6.3). For the boundary conditions of the

experiment, the spatial distribution of the fundamental mode is expressed as:

Y () = X(x) \/(7)2(2.3 (6.4)

The convention is to label the exponential direction as x, the vertical
direction as z, and the remaining direction as y (see Fig. 12).

Then:

Yiv)= A, cos B, (y-1) (6.6)

2 (2)- ./L\3 € OS Bz QZ‘@ (6.7)
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Where we have the fundamental relations:

2 2 2 2
B, +B, - x =B (6.8)

(for a multiplying medium such as ZPR-IV). Or:

x? -RZ -B* - |
, — = (6.9)
X Y Z Lz
(for a subcritical medium such as natural uranium).

Measurement of the flux direction along the three axes of the assembly
in a region where the fundamental mode is asymptotically dominant, enables a
determination of ks By’ BZ: through Egs. (6.8) and (6.9), it gives experi-
mental values for the buckling B (or the diffusion length L). A wide range

2 2
35,Pu 59),

of detectors has been used in practice: fission chambers (U

238

fission chambers with an isotope having a high-energy fission threshold (U s

PuEMO’ Np257, Th252), activation detectors with a high energy threshold
(P(n,p), S(n,p) with threshold =~ 3.5 MeV), activation chambers sensitive to
a continuous energy range (Mn, Au, Cu, In).

For each experimental flux plot obtained, a least squares method fits a
cosine (for y- and z-directions) or an exponential curve (for the x-direction)
to the experimental curves. The statistical weight of each curve is considered
to be the reciprocal mean square of the residuals. The weighted mean value
of K (or By’ or BZ) from all curves in each direction for a given assembly

is then found; finally the buckling B (from Eg. (6.8)) or the diffusion length

L (from Eq. (6.9)) is deduced from these weighted means.
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This seems to be a straightforward procedure; however, it must be heavily
emphasized that such fittings have to be made only over those regions where
the energy spectrum has reached an actual equilibrium: this requires some
information about the differential energy spectrum, which is far from being
immediate, since most detectors yield an information integrated over the
whole energy spectrum. The classical method to check the equilibrium is to
plot the ratio of counts of a detector sensitive to all energies and a thresh-
old detector; for instance, classical equilibrium indexes are the fission

235 238 255 57(

ratios of U 77 : U7, and U ~7:Np see Fig. 13).

Typical asymptotic energy spectra in fast dilute media are sharply
peaking from 0.1 MeV to 0.15 MeV (see Figs. 1k and 20): this way a U255
fission chamber is most sensitive to this equilibrium distribution; while a
fission threshold detector such as U258 is sensitive only to high energy neu-
trons above 0.8 MeV; thus, a threshold detector is most affected by slowing-
down transient modes above 0.8 MeV (as introduced in Chapter IV). Typical
asymptotic spectra, which witness the strong inelastic degradation of the
fission source, have practically no neutrons above 0.8 MeV (see Fig. 20).

So, the most commonly accepted index of equilibrium is the constancy—

255:U238

say within one percent—of the U fission ratios. Figure 1% gives a
good example of such an experimental plot. However, this is far from being
an absolutely reliable criterion since it is insensitive to those slowing-

down transients below 0.8 MeV. More evolved techniques have been used, such

as proton-recoil spectrometry and nuclear emulsions which give information
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59

about the differential energy spectrum down to 350 keV'"; but this is still

far above the bulk of neutrons in typical fast reactor spectra. The necessity
for more refined devices measuring differential fast neutron spectra has
sharply increased with the development of fast reactor studies. Recently
successful studies have been done on this subject in Argonne National Labora-
tory (see ANL Report 7320).

Together with these experimental studies, theoretical calculations have
been performed using multigroup diffusion equations. Asymptotic transport

37,45

theory was also used but the deviations from diffusion theory were un-
important in all cases. These calculations were, of course, concerned with
the space-energy separable asymptotic mode; they are likely to give reliable
“results on the buckling and the asymptotic energy spectrum, the computation
process being similar to the solution of a criticality problem (successive

guesses about the buckling, and successive source-iterations on the energy

flux). However, such calculations are unable to make any prediction about

the approach to equilibrium. They neglect spatial transport transients (use

of an asymptotic transport theory) and they eradicate any kind of slowing-
down transients, since the starting assumption of these calculations is space-
energy separability. Thus, up to now the problem of approcach to equilibrium
had to rely only upon experimental data, while theoretical calculations

could yield sound values for the asymptotic constants (buckling, equilibrium

255:U238

spectrum, asymptotic U fission ratio)—to the extent, of course, that

multigroup cross-sections were sufficiently accurate.
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However, substantial discrepancies arose between measured and calculated
values for the integral constants in the fast exponential experiments.

From the data of Tables I and II for ZPR-IV systems, it may be seen that

measured values of the buckling were more than 10% below those calculated.

o U255:U258

As t ratios, measured values were more than 20% above those cal-

culated. There are two hypotheses to explain these discrepancies:

(A) Either the multigroup data used in theoretical calculations are
exceedingly poor: too few groups above the U258 fission threshold,
eroneous fission cross-section data, purely empirical guesses for
inelastic scattering.

(B) Or true equilibrium has not been reached in the exponential experi-
ment. Detectors have been measuring a mixture of asymptotic and
slowing-down transients. This is coherent with the systematical

direction of the numerical discrepancies:

2 2
(1) experimental B~ are consistently smaller than theoretical B ;

admitting that the experimental lateral buckling B; and Bi
. . . 2 . 2
are correct, this gives: experimental k. > theoretical K
(through Eq. (6.8)):
A < o 2
X = B ¥ B - B
X b4 4 (6.8)

This means that the experimental distribution is decaying
faster along the exponential x-direction than the predicted

asymptotic mode, which is typical of the presence of slowing-



155

TABLE I

Compositions for Typical ZPR-IV Systems

System U258:U235 Vol %
Designation | Atom Ratio U Fe AL Void
1 3.13 35.11 | 10.36 | 14.76 | 39.77
2 5.00 34.59 | 10.36 0 55.05
3 6.82 34.33 | 10.36 | 14.76 | 40.55
TABLE II

Experimental Results and Comparison with a First Set of
Theoretical Predictions in ZPR-IV Systems

System 1 2 5

Designation Expt Theory Expt Theory Expt Theory

Root Buckling B
(cm-1)

U255:U258

0.0512 0.0600 0.0%83 0.0k23 0.0320 0.0%568

Fission

Ratio per Atom 20.3 16.6 24,0 20,2 34,0 26.5

down transients (see Chapter V, especially the discussion of

Eq. (5.51)).

255:U258

experimental U ratios are consistently higher than the
theoretical; this means that the experimental energy-spectrum
is softer than predicted, which is due to an excess of high-

energy neutrons leaking out of the system: namely, slowing-

down transients are in excess and have a preferential leakage

(the diffusion coefficient being an increasing function of energy).
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Hypotheses (A) and (B) are not mere "elucubrations de théoriciens"; they have
been suggested by experimentalists working on ZPR-IV; quoting5

"It is seen from data of Table I (and II) that values of the
Buckling as measured in the experiments are about 10% below those
calculated. There are indications that complete spectral equilib-
rium is not attained in the exponential experiment, which is pos-
sible because the criteria used for determining equilibrium are in-
sensitive to changes in the spectrum below about 700 keV. Hence a
more detailled study of approach to equilibrium is now being under-
taken experimemtally.

It is similarly observed that there is a systematic difference
between calculated and measured reflector savings, which may be due
to the same cause, or may be due to incorrect choices of transport
and inelastic scattering-cross sections used in the calculations."

In order to check hypothesis (A), theoretical calculations on ZPR-IV
systems were carried on again some time later, using a greatly improved set
of multigroup cross-sections: namely, the well-known "Yiftah-Okrent-Moldauer"

57

"YOM" set. Results of these improved calculations are given in Table III.

57

The comments on Table III are left to W. B. Loewenstein and D. Okrent™

TABLE TII

Experimental Results and Comparison with a Second Set of
Theoretical Predictions in ZPR-IV Systems

System Designation 1 2 3
(see Table I) Expt  Theory Expt  Theory Expt  Theory

Root Buckling B

(cm=1) 0.0512 0.0609 | 0.038% 0.0431 | 0.0%320 0.03%68
U258/ U255 0.0493 0.0529 | 0.0392 0.0431 | 0.0292 0.0322
p p 0. 0400 0.029k

"...Early analyses indicated substantial disagreement between
theory and experiment on a variety of integral parameters. The
latter included the material Buckling, UF(U235)/0F(U238) and
reflector-savings determination of materials. With the recent
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critical-experiment information on assemblies having composition
quite similar to those in the exponential colummns, it is useful to
review the latter experiments. It is evident that calculated values
for the material Buckling are consistently higher than observed.
This was also reported by previous analyses.5 Better agreement

has been obtained between measured and predicted values for OF(U238)/
OF(U255) than in the past. This can probably be attributed to the
inclusion of two energy groups above the U238 fission threshold,
where previous analyses utilized only one such group... . However
calculated OF(U258) /om(U25D) are still consistently higher than
measured... . ...indicating a softer spectrum in the assembly.

Such might be the case if there were an excessive amount of high-
energy neutrons leaking out of the system, in other words, a true
equilibrium spectrum may not have been attained in the experiment...

So, the challenge is still open for the interpretation of ZPR-IV experi-
ments.

As to the exponential experiment in natural uranium, the situation appears
even more extreme: most experimental studies concluded that equilibrium was
not achieved.56’59

From Table IV, it appears clearly that various experimental teams ob-
tained a wide spread of values for the diffusion length in natural uranium.
Discrepancies are even more striking for the spectral equilibrium index
0, (072) /o (1720,

The experimental team of Saclay59 tried to investigate more closely this
problem of approach to equilibrium in natural U. special care was given to
the acquisition of more detailed information about the differential energy-
spectrum of the flux; a fairly wide range of activation detectors and proton-
recoil spectrometry were used. Calculations comparing the answers of these

various detectors yielded an accurate experimental curve for the asymptotic

energy-spectrum (see Fig. 14). However, this did not mean that an actual
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TABLE IV

Measurements Made on Natural Uranium

Principle of the Diffusion | op(U23D)/
Experiment Reference Measures Length (cm) | op(u238)
Saclay 39 fission chambers 9.525 230 + 10
activation detectors +0.,05
proton-recoil spectr.
Pajarito L6 activation detectors 9.17 + 0.18 | +238 + 6
(Los Alamos) fission chambers 2L0o + 12
radiochemical tech- 2u% + 15
niques
Oak Ridge W7 activation detectors 9.6
fission chambers 336
Argonne 36 fission chambers 10.0 + 0.12 363 £ L0
radiochemical tech- 220
niques
Pajarito 48 activation detectors 13.18 220 + 22
ratiochemical tech- 10.%5 200 + 10
niques
fission chambers 210 = 10
4
3
a
)
N
=
S 2t
o e
@)
Z. .
> Normalization wa dE=1
1 |
0 ' 1 A L L 1
0.10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
E EN MeV
Fig. 14. Asymptotic spectrum in natural uranium: experimental curve.
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equilibrium was reached. The system was a cube of 80 cm in size, and apparent

equilibrium was obtained for values of x such that:

42C\M< XéSZCM

the x-direction being the exponential one. This turns out to be quite a nar-
row range of equilibrium (compare with ZPR-IV, Fig. 13). Adjustments of
counting data were made within this zone of apparent equilibrium. But it
appeared that, even within this restricted range, equilibrium was doubtful;

quoting59
"...If we use various detectors i, the cross-sections of which
are varying in very different ways, and if we observe that the ap-
parent relaxation lengths Lj are equal, then we can assert that the
energy-distribution of neutrons is in equilibrium, and we can write:

L = relaxation length = Li
...Results of measurements performed with various detectors are
presented in Table V. We realize that the L; are not equal, hence
the flux energy-distribution is not in equilibrium. The fastest
neutrons in the spectrum decay more quickly than the slowest ones...

1
.

Table V shows the apparent relaxation lengths for various detectors,
after careful corrections of measurements made in the restricted zone of ap-
parent equilibrium 42 cm < x < 52 cm. There remains, in spite of all cor-
rections and adjustments, an irreducible difference between values given by
threshold and "thermal"” detectors. This is a striking experimental proof of
the behavior and presence of slowing-down transient-modes. As we know from
the discussion of Eq. (5.51), these slowing-down transients correspond to a
slowing-down source x(E) -}{CE), where)((E) is the asymptotic spectrum, the

latter being particularly degraded for natural U (see Fig. 1k4); this "slowing-
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TABLE V

Apparent Relaxation Lengths for Different Detectors in Natural U
(from Ref. 39)

Effective
Detector Threshold Energy L, (cm)
(MeV) t

P(n,p) 3.0 8.6k
8(n,p) 3.0 8.69
™% 1.75 8.82
28 1.15 8.86
NP257 0.75 8.53
y>? 9.02
y>? 9.12
Py 9.17
Au(n,y) 9.05

down transients" source is positive and important at fission energies, and
the corresponding high energy slowing-down transient modes decay faster than
the asymptotic and low-energy transient modes (see Egs. (5.49) and (5.50)).
These facts are faithfully reflected by the behavior of threshold detectors
with decreasing threshold energies.

Further calculations from experimental data in Saclay59 indeed showed
that the energy-spectrum was not in equilibrium. Figure 15 gives the evolu-
tion of the energy-spectrum along the exponential axis (from experimental

data): the equilibrium is not reached even in the zone of apparent asymp-
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Measured Curves

—— Abscissas 300,400, & 5S00mm
——-- Abscissa 450 mm

—— Abscissa 600mm

a
Normalization fo Y (E)dE =1

¥ NORMAL

T T T 1 T | T
O Ol 02 03 04 05 06 07 08

E in MeV

Fig. 15. Evolution of the spectrum along the x-axis in the natural U-
exponential system.
toticity (42 cm - 52 cm). There seems to be no doubt that "slowing-down
transients” are still important at distances far from the source (roughly
20 m.f.p.) in the natural U-exponential assembly.
Another remarkable study of the slowing-down transients "per se" has
been performed by a team of Argonne National Laboratory; noticing the dis-

235 , 258

crepancies between various measured values for the U™~ /U fission ratios
in natural uranium, they admitted a priori that equilibrium was not reached;
to test experimentally this hypothesis, they measured the fission ratio for

blocks of natural uranium, the height and length of which were retained at

2k in., while the thickness was varied from 10 in. to 24 in. For each block,
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the 22 jy28

fission ratios were carefully measured and corrected in a zone
of "apparent equilibrium."lLS From our theory (Chapters III and V), we know
that the smaller the block is, the bigger the proportion of slowing-down
transients in the neutron flux; since slowing-down transients reflect the ad-
justment of the neutron spectrum from the initial high-energy fission source
to the final degraded asymptotic spectrum, their overall effect is to shift
the neutron energy spectrum towards the high-energy range. Figure 16 is a
striking experimental verification of this assertion: far from being even

235/U258

approximately constant, the U fission ratio decreases steadily with

the size of the block, indicating a higher-energy spectrum and an increasing
proportion of slowing-down transient modes: these modes are very different
from spatial transport transients, since they are still important at distances
as far as 20 m.f.p. from the source (~ 4O cm).

Figure 16, by itself, would justify the theoretical work presented in
this thesis as a necessary first step: in spite of many underlying approxi-
mations, it is not a mere academic "pitce Parnassienne sur 1'Art pour 1'Art,”
but corresponds to an attempt to shed some light upon an actual experimental

challenge.

6.2. DETAILED DATA ON THE FAST EXPONENTIAL EXPERIMENT IN ZPR-IV SYSTEMS
From this point on, we will focus our attention on the ZPR-IV systems.

We will not try to use the theoretical considerations developed in Chapters

II, III, and V to predict integral constants in ZPR-IV: on the contrary, we

will take for granted the values yielded by experimental measurements or sound
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multigroup diffusion calculations for integral parameters such as the buckling

B, the lateral bucklings By and B , the asymptotic energy spectrum)%xE). But
z

we will use ocur theory to make a semi-quantitative study of the slowing-down

transients and the approach to equilibrium—that is, for the very point where

an experimental challenge lies and which classical multigroup diffusion
theories are totally unable to explain.

We chose to interpret experimental data on ZPR-IV rather than natural
uranium; the reasons are multiple:

(i) the experimental situation is not clear in ZPR-IV; discrepancies ob-
served between calculated and measured values could ¢ome from a lack of
equilibrium as well as from the use of poor multigroup data in calculations
(see hypotheses (A) and (B), Section 6.1, p. 132). Yet, a clear answer on
this point is crucial, since ZPR-IV systems are highly representative of fast

reactor media. If indeed equilibrium were not reached, this would severely

limit the validity of asymptotic transport theory commonly used in fast-
reactor calculations. On the other hand, if it turned out that equilibrium
was practically reached in ZPR-IV systems, then the observed discrepancies

could be attributed only to the lack of accuracy of multigroup cross-sections

used in calculations, and not to any transport effects: asymptotic transport
theory "per se" would be valid.

(i1) On the other hand, the experimental situation is quite clear for
natural U: in most cases, equilibrium is undoubtedly not reached.

(iii) The equilibrium spectrum in natural U is much more degraded than in

ZPR-TV systems (see Figs. 1k and 20); in the latter, few neutrons are present
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below the inelastic scattering threshold, which is one of the hypotheses used
in our theoretical work.

(iv) We will study ZPR-IV systems with a wide range of fuel isotopic
composition (namely ratios of U258/U255 varying from 3:1 to 7:1). This way,
we can get a clear quantitative appraisal of the way slowing-down transients
evolve with the enrichment of the system: we can easily extrapolate these
effects to natural uranium, in which they will be much more significant.

The basis for further work is to adjust the parameters in our theoreti-

cal model, so that the integral constants predicted by our model will be equal

to those measured in eXBeriments (or eventually calculated through the use
of accurate multigroup codes). By integral constants, we mean the buckling
B, the lateral bucklings By’ Bz’ the exponential relaxation length l/mx, the
asymptotic energy-spectrum){(E), such as defined in Section 6.1; all these
parameters are considered as constants of the system, with which our theoret-
ical model must agree. Then, through the help of the theoretical model, we
may proceed to a consistent study of the approach to equilibrium.

So, at this point, a careful review of available data on ZPR-IV assemblies

36,45

is necessary. These assemblies consisted of a rectangular stack of iron

cans, 3 x 3 x 24 in., filled with the appropriate mixture of uranium isotopes
235 238 . . :

(U7, U™"7) and diluant materials (Al, Fe). Al was chosen to simulate Na.

The volume occupied by Al could be replaced by Na to check the validity of

the Al substitution.

The volume fraction of the various constituents of the assemblies are

listed in Tables I and VI. The source of neutrons was a light water moderated,
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enriched uranium reactor of rectangular geometry. A lead and water reflec-
tion shield reduced the leakage from the rear and sides.

From Figure 12, it can be seen that the assembly rests upon a bottom
reflector, 12 in. thick, which serves to eliminate the effect of neutrons
scattered from the floor and also allows reflector savings data to be obtained.
The whole assembly rests on a travelling cart.

In the assemblies, channels of 1-1/k x 1-1/4 in. cross section are pro-
vided through which detectors can be moved to obtain neutron flux distribu-
tions. In most cases, these flux traverses were made using miniature fission
chambers with external dimensions of 0.2 x 1 x 1 in.

Experimental flux plots were obtained along the exponential x-direction,
the vertical z-direction, and the transverse y-direction. For each such flux
plot, a least-square fit to a cosine or exponential curve was made, using a
computer program. At least one plot was obtained for each of four different
chambers (loaded, respectively, with U255, U238, Np257, and Puguo) in each of
the three directions. The fittings were made only over those regions in
which the spectrum, as measured by the chambers of varying spectral response,
was constant to within one percent in detector ratio. Figures 17 (a), (b),
and (c) show typical fitted flux plots. As to Figure 17(c), notice that a
knowledge of the position of the maximum in the neutron distribution in the
z-direction together with the z-curvature (BZ) enables a calculation of the
extrapolated end-point of the cosine function located in the reflector.

Finally the weighted mean value of 5 (or By’ BZ) from all curves in each
direction is found; from Eq. (6.8), the buckling is deduced from these weighted

means.
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Table VI shows the composition and the experimental bucklings of the

three ZPR-IV assemblies we will investigate.

235:U258

with the U

Composition and Experimental Bucklings for the Studied

enrichment ratio.

TABLE VI

Bucklings increase of course

ZPR-IV Systems

Buckling
0258:U255 Vol % B B2
Designation | Atom Ratio U Fe Al Void (em-1) (cm=2)
1 3.13 35.11 | 10.36 | 1L.76 | 39.77 0.0512 0.00263
+0.0011 | *0.00011
) 5.00 34.59 | 10.36 0 55.05 0.0383 0.001k7
+0.0007 | *0.00007
3 6.82 34,33 | 10.36 | 1h.76 | L40.55 0.0320 0.00102
+0.000% | +0.0000%

Table VIT presents the experimental values for the lateral bucklings By

and B , and the exponential relaxation length K-

zZ

The relaxations lengths

do not vary coherently with the uranium enrichment, since the sizes of the

assembly, and therefore the lateral bucklings, are not constant from one

assembly of given composition to another (see Fig. 12).

Table VIII presents the group energy fluxes for the asymptotic spectra

}«ED; these calculations were performed using a 20-group set of diffusion

equations; various multigroup cross-section sets were used, and the table

presents those results which are the closest to experimental data.

[v0]
malization used corresponds todf H(E)dE =
0

1.

The nor-
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TABLE VII

Experimental Values for the Lateral Bucklings and the
Relaxation Length in ZPR-IV Systems

K2 p° B° 82= B° + B° - °
System xg y z Z *
Designation (em ™) (em 7) (em 7) (em 7)
1 0.00308 0.00L436 0.0013%5 0.00263
+0.00008 +0.00007 +0.00003 +0.00011
2 0.00190 0.00255 0.00082 0.001L47
+0.00001 +0.00004 +0.00003 +0.00007
3 0.00179 0.00178 0.00103 0.00102
+0.00004 +0.00002 +0.00001 +0.00003%
TABLE VIII

Group Energy Fluxes for the Asymptotic Spectra of ZPR-IV Systems

Energy Interval

Group Number (MeV) System I System IT System III
1 1.k - 0.1471 0.1255 0.0956
2 1.0 - 1.k O0.717 0.0699 0.0511
3 .9 - 1.0 0.0296 0.0278 0.0221
b 8 - .9 0.0315 0.0%329 0.0238
5 T - .8 0.0L48 0.0422 0.0355
6 .6 - .9 0.0563 0.0569 0.0LE9
7 .55 - .6 0.0314 0.0319 0.0268
8 .50 - .55 0.0343 0.0355 0.0299
9 A5 - .50 0.0373 0.0384 0.0%3%

10 4o - 45 0.0395 0.0k426 0.0358
11 35 - .ho 0.0523 0.0521 0.0499
12 B30 - .55 0.0618 0.0652 0.0632
13 25 - .50 0.0677 0.0652 0.0755
14 20 - .25 0.0579 0.070L4 0.0662
15 A5 - .20 0.0679 0.0819 0.083%3
16 10 - .15 0.0787 0.0752 0.1127
17 050 - .10 0.0599 0.0567 0.0960
18 025 - .050 0.0205 0.0196 0.0%52
19 010 - .025 0.0073 0.0070 0.01%6
20 .000 - .010 0.0013 0.0019 0.0025
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The group fluxes corresponding to the group i are:

- E.
L+l
f H(E)dE
EL
where Ei is the lower energy bound for the group i and Ei + 1 the correspond-

ing one for the group i + 1.

6.3. ADJUSTMENT OF THE THEORETICAL MODEL TO EXPERIMENTAL CONDITIONS AND DATA
IN ZPR-IV SYSTEMS

6.3.1. Introduction

Our major tool for numerical investigation will be the infinite-space
Green's function, an elaborate expression of which has been given in Eq. (5.51)
and (5.52); this function is solution of the transport equation (5.7), cor-
responding to an infinite medium along the x-axis, and a fission isotropic-

source at the origin:

#
M &Y () E) + (€ = Lo Yx M, E)dp

-t N

2
+ JZ_._ §<X'XO)XCE) (5.7)
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The experimental system is, of course, a prism bounded along the z- and
y-directions; but in Section 6.3.2, we will show how a very elegant method,
introduced by M. M. R. Williams,lL9 allows us to easily take into account
lateral finite dimensions in the solution of Eq. (5.7), while still keeping
an infinite dimension along the x-axis of exponential measurements.

Boundary conditions in a fast-exponential experiment are generally poorly
defined. The source is usually a stream of thermalized neutrons (see Sec-
tions 6.1 and 6.2) but such neutrons do not belong to the energy-range of
the neutron field in the fast assembly: by hitting the front-face of the sys-
tem, they generate isotropic fission sources. As to the thermalized source-
stream, it damps out very quickly in the exponential assembly, because of the
considerable thermal absorption cross-section for the enriched uranium fuel.
So, to some extent, one could consider the following fission source-term for

the fast-neutron fileld:

..12- §CX—><0) X(E) (6.11)

where XO is the position of the front-face of the assembly. However, things
are much more complex in ZPR-IV systems: located on the front leakage face
is a converter plate, or "pedestal" of natural uranium (see Fig. 12), 8 in.
thick, which reduces the interaction between the source core and the exponen-
tial assembly; it produces an energy spectrum of neutrons which matches the
asymptotic spectrum of ZPR-IV more closely than the thermalized leakage spec-

trums of the thermal source.
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So, in regard to these poorly defined boundary conditions, since we are
above all interested in making a semi-numerical appraisal of the relative
importance of slowing-down transients and space-energy separable modes, we
will consider a prism having the composition of ZPR-IV systems, finite along
the y- and z-directions, and infinite along the x-direction. We will study
numerically the importance of the slowing-down transients generated by a
plane-isotropic fission source. The model will be adjusted so that the
lateral bucklings, the discrete fundamental relaxation length along the x-
axis, and the asymptotic energy spectrum will be those yielded by ZPR-IV
experiments.

6.3.2. Reduction of the Three-Dimensional Transport Equation to a Single-
Dimensional One
Since the system is a prism bounded in the y- and z-directions, the

actual transport equation must be reformulated as:

- G |da mmJ“ﬂ""T‘—' '>AE

G da'Y(E fV‘P??.‘ ENdE
e faax@ (Ve R E)

J@m V(¥ "’E) y S(7, _W_)\(Ct:

(6.12)

_f,_

Ce
<
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However, along the z-vertical direction, and the y-transverse direction,
the dimensions of the ZPR-IV systems are quite large compared to the mean-
free path; typically, the dimensions along the y-axis are > 9 m.f.p. and along
the z-axis, > 12 m.f.p.* Moreover, experimental flux-plots showed that the
fluse shape was very close to a cosine, over a wide spatial range in the z-
and y-directions (see Figs. 17(b) and 17(c)).

. . g s b9 |

Then, the fundamental idea, introduced by M. M. R. Williams, ~ is to

assume asymptotic transport theory along the y- and z-axis; that is, we look

for solutions of Eg. (6.12) such that:

LB,y _UB,.
V(r,Q E) :'\V(X)J\A)E>e 77/6 522

(6.13)

where By and BZ are the lateral "bucklings" (i.e., fundamental modes). This
"ansatz" reduces our tri-dimensional transport equation (6.12) to a single-
dimensional one which we can solve rigorously. It must be emphasized that
the validity of the "ansatz" (6.13) has been verified experimentally in ZPR-
IV systems (Figs. 17(b) and 17(c)), and that we have accurate experimental
values for the bucklings By and BZ (see Table VII). There is no need for any
kind of "th€orie"acrobatique” for an energy-dependent extrapolation length.
Let us proceed to the reduction of Eq. (6.12): from Sections 3.4 and

3.5, we know that Eq. (6.12) can be decomposed into two associated equations,

the first one being space-energy separable, hence "de facto" monokinetic; the

*For ZPR-IV systems, 1 m.f.p. =~ 2 in.
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second one being a plain slowing-down equation, which we can also reduce to

a "monokinetic" one, through an energyin;transformation (Section 2.4): so,
instead of tackling with the lengthy formalism of the complete equation (6.12),
it is absolutely equivalent to study the reduction of the one-speed transport

equation:

Qgrad Y@R) + V() =

ri

ZI_C_deL“\V(r )
+ S(7

Q)
/

(6.1k4)

since results can be immediately applied to the two "monokinetic" equations

associated with the general equation (6.12). Introducing the ansatz:

_(;By.y LB,z

V(rST) = V(x)e e (6.15)

And setting:

e o, By _tbz
S(F:Si> = TJ_X(X)E L 773 thy (6.16)
4’—’

Eq. (6.14) reduces to:

IUL BV (x | = 1 /(_MZ(BY cosy + %ZSN‘Y\‘VD}“V('X)[»\)

— C v &
N 5 (x) +4 (x)

(6.17a)
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where

29T ]
%(X): C\V) \V(X)r-»)drb

(6.17p)

Fig. 19. The angles © and 7.

From this point on, our calculation methods will differ from William's.

the final results, of course, will be identical.

Apply a Fourier-transformation to Egs. (5.17):

_ too .
Vikp)= | Vi) e 7 dx
O (6.18a)

And obtain:
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{‘ + LkN—LW (BYCOSV) + BZ Siw vb} "—I;(k)/w)

= | )
A)L (k\ + I (6.18b)

Define the lateral buckling BL:

2 2
- A\/By + Bz (6.19)

Also, define the angle A such that:

B = B_ cos A

y L °°
B = B_ sin A 6.20
Z L St ( )

Then Eq. (6.18b) becomes:

(6.21)

Integration of Eq. (6.21) over p and y yields:

W, (k) = cvo(kul\

4“1' ,»b( '-}-ka\-LBW cos<v] A)

(6.22)



158

It will be shown in Appendix C, after lengthy calculations, that in some

domain of the complex plane, which includes the strip - 1 < Imk < +1:

+1 2 Ci
d
a Lo d ik —CBI-p cos(y-4)

— ” | arctany I<%'Bf-_ (6.23)
\/K? + BE

Then Eq. (6.22) becomes:

—{_V;O(, = &C'\{" (k +\1 arctoanV BZ‘_*—KZ‘

l 1
K™+ by

Relations (6.23) and (6.24) are fundamental; they can be expressed in the fol-

(6.24)

lowing way.

In some domain of the complex plane, which includes the strip -1 < Imk < +1,
the Fourier-transform of the transport kernel of the tri-dimensional equation
(6.14) is obtained from the Fourier-transform of the transport kernel of the
classical single-dimensional equation, through the replacement of the Fourier

varisble K° by K2+B€, where B2 is the lateral buckling defined by:
2 o 2
B, = By + By (6.25)

(By transport kernel, we mean the kernel of the integral form of the trans-
port equation, see Ref. 30.)

It follows that the Fourier-transform of the infinite-medium Green's
function is immediately obtained from the corresponding one for the classical

one-dimensional problem, through the mere replacement of K2 by K2 + B%, in
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some domain of the complex k-plane:

ll arclan V K?’+ B&
'\K (k’lj '\/K +B._

| — € arctanVKEHBY e
JKE B -
D

Then, it is easily verified that the asymptotic part of the Green's function

is given by:

V(K — Kz | (6.27)
(k) de  (k&+BY)+K*

where K, is the root of:

| = _IC<_ nrgt% k. (6.28)

(>

provided that the corresponding pole belongs to the strip of analyticity for

which (6.24) is valid:

|K§ + Bfl <1lifec<1, K, real
(6.29)

|BS + BP| <1ife>1, K, = iB,

And, after an elementary inverse Fouriler-transformation, we find, for the

asymptotic component, and for B% such that (6.29) is verified:

—|x k2 + B}
\%(m) — ’ C}kc% . e (6.30)

v de N KELE

The Green's function (6.%0), solution of Eg. (6.14), is quite interesting:

the decay constant K, of the discrete mode of the single-dimensional equa-

tion is merely replaced by W)K§+B% for sufficiently small B%. As to the
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transient part of Eq. (6.30), an approximate expression consists in taking
the formula for the classical single-dimensional case, which is not too bad

if:
B << 1 (6.31)

this is generally verified for sufficiently large systems.
These results are of course in agreement with the classical diffusion

theory; calling ky the fundamental decay constant along the x-axis, we have:
* K%, B*. kK'+B)+B;

- + 6.32

X, = Ko+ B o T Dy 0 (6.32)

Notice that the "material buckling" is -K©:

]

2
R* - - K, (6.53)

And obtain the well-known diffusion theory relation:
2 2 2 BZ
— — + 6.L|'
B = ><x+By 7 (6.3L)

Using the modified monokinetic Green's function (6.3%0), we can now pro-
ceed to the reduction of the three-dimensional polyenergetic equation (6.12).
We can easily obtain the modified expressions for the asymptotic solution of

this equation, namely:

¢ B, 2
A' ( \XI)E> QLBV'V e F (6.35)

from the corresponding A’(|x|,E) developed in Chapter V for the single-dimen-
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sional case, tre expression of which is given in Eq. (5.52). We just have to
keep in mind that:

(A) We must replace everywhere the Fourier variable, K° by K2 + B%, in
the calculations carried in Sections 5.4 and 5.5, in order to obtain an
asymptotic expression for the slowing-down transients; this is valid if the
essential singularity involved is such that |K§ + B%l < 1.

(B) The Green's function Gg(|x|) for the monokinetic transport equa-

tion with plain elastic-scattering, as introduced in Egs. (5.16), (5.17),

and (5.22), has to be modified as follows:

Gelx) e

= &

LBT>/ N/
e

2
“‘;BV'V"LBZ'Z l'dk‘z - +B ‘X]

z dc_el » m—\ (6.%6a)

provided that |K2 + B5| < 1 where K, is the root of:

|l = ¢, %.(.QargﬂxKe (6.360)

(C) The space-energy separable component of A'(|x|,E) in Egs. (5.51) and

(5.52), which corresponds to self-sustaining modes of the fast multiplying

medium, has to be modified as follows:

CP <\xn H(E)e -iBy -iB2 H(E)
AB® e‘“ét”ga"x‘
X G s (6.572)
\B:-B

By -8, 2
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Provided that IB%-B2| < 1 wher B is the "buckling" of the system, solution of:
= C. | .
= (c.ve; +e, 5 arctan B (6.57b)

and

C = C + C_ + C
= L e (6.37c)

In experimental systems such as ZPR-IV, we have (see Table VII):
BZ 2 2 2
L= + (6.374)
b4 2z
Finally, we obtain the following asymptotic expregsion for the Green's func-
tion solution of Eg. (6.12), corresponding to a prism infinite along the x-
axis, finite along the y- and z-axes, and a fission plane source at the origin;
this expression includes cnly poles and essential singularities belonging to

the strip of analyticity where Eqs (6.23) and (6.24) are valid; it will turn

out (see Table IX) that in ZPR-IV systems, the conditions

C + B8l < 1

|B§-- 1321 < 1

are fulfilled in all cases. In fact; }Bi - B2| << 1, and -Kg—B% ~ 0.761.

This corresponds to well separated poles and essential singularities.




- 2 200
¥ 1(&)-){@[&@ @_-M .IXI}
2 C\Ce ’\/B'i -\-—K?

B+ KZ\|X]
+ < CZ}(E).Q
_log [ h(E)] ‘ ' -
9 fu-u'ye () dke b + L (RS 8Y)

(X)f[%)i}(w).e

o

(X){ ( | dK: [>< 1 (Em)

4\\KZ BE dee
AKE Q) (K2 BT, (24T
m dCe

v (L (K &3))?%%.11 <2m>}du]

(6.38a)
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with:

X = {LL;LL') CL .dkz (6.38b)

2 R B de.

Q(KEW‘BS: | d—

Ko is defined in Eq. (6.36b), B2

in Eq. (6.37b), M (E) in Eq. (3.29), g(c,v)
in Eq. (6.29), B% in Eq. (6.25), the "lethargy" u in Eq. (5.3).

Equation (6.3%8a) will be our final tool for numerical investigation;
this is an asymptotic expression for the neutron flux due to a plane fission-
source in a prism of fast-multiplying medium, which is finite along the z-

and y-directions and infinite along the x-direction; this expression is valid

for all energies, and is spatially asymptotic only to the extent that we

neglected all transport transients decaying faster than e_IXI. As a matter
of numerical check we may include some transport transients (i.e., decaying
faster than e_lxl), approximated by a one-dimensional expression for Egs.

. 2 _ . . .
(6.36a) and (6.37a), with B[, = O. The corresponding formula is likely to
be valid for points close to the plane source, provided that B% << 1, and
that we are sufficiently far away from the lateral boundary faces (x-axis,

for y =z =0).
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6.3.3. Adjustment of the Parameters in the Theoretical Formula for the Neu-
tron Distribution

The next step is to adjust the parameters in Eq. (6.38) to the experi-
mental data and results on ZPR-IV systems.
For the synthetic inelastic scattering kernel introduced in Section 2.2,
we will use the following shape:
E
T

(6.39a)

C}(F):% e

\’\(E): ‘ ‘(\‘\‘ :

>-€ T (6.390)

E
=

where T 1s the nuclear temperature, and

E
h(E) - C}(E')AE' (6.39¢)

This shape is, of course, directly inspired from Weisskopf's statistical
evaporation model (see Eq. (2.8a)). Improved synthetic kernels are being
worked on,29 but the results were not available in the literature, at the
time of the present work. We keep the nuclear temperature T as an arbitrary
parameter.

There are three basic principles to be followed in adjusting the param-
eters:

(A) Average those macroscopic cross-sections, which are varying smoothly

enough, over the "experimental" asymptotic flux H(E) tabulated in Table VIII

(see also Figs. 20). This method is justified to the extent that the bulk of
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Stepped Curve: 20-group fluxes
(from Table VIII)
("experimental'' curve)
Continuous Curve: adjusted theoretical
model

(c) U238:U‘255 = 6.81:1
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Fig. 20.
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neutrons in ZPR-IV systems is well above the inelastic-threshold energy (see
Figs. 20); in this energy range, the macroscopic total, fission* and elastic

cross-sections are varying smoothly enough to allow the following averaging

scheme:

[

ol :J ST (E). H (E)AE eion
F

'\Ti = OO'U(E)ZF(E>.H(E)&E (6.10b)

by

e

I

fmf.e( F) HCE)dE (5.3

which yields for cF and ce, average number of secondaries resulting respec-

tively from a fission and an elastic collision:

e — V2 (6.11a)

e T M=t
zT

()
v

Cﬁ (6.41Db)

The cross-sections in Eq. (6.40) were averaged using the isotopic com-
positions given in Table VI, the list of values for H(E) in Table VIII, and

the graphs of microscopic cross-sections in BNL.325.

*¥Since the fuel 1s notably enriched in U255, the fission macroscopic cross-
section varies smoothly encugh.



170

This allows us to define a new unit of length, namely the mean-free

path A defined as:

_ l
‘/\‘ - ?‘ (6.42)

T

(B) The second principle in adjusting the parameters, is to set the

2
"material" buckling B~ and the lateral buckling Bi equal to their experi-

mental values (see Tables VI and VII). They are, however, normalized to the

new unit of length defined in Eq. (6.42), so that they become dimensionless.
This implies, of course, that the exponential fundamental mode K is kept to

its experimental value, since:

x: = BL-F

(see comments on Eq. (6.34)).
The adjustment of the "material"” buckling B® immediately yields a value

for the overall multiplication coefficient c defined by

C = CF+C€+CL (6.43a)

through the formula:

(6.43D)

C - _|__ Orctcxv\ B
B

(C) The only remaining parameters to be adjusted are Cs the average

number of secondaries from an inelastic collision, and the nuclear temperature
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T. Here, an averaging process would be far too delicate, since the macro-
scopic inelastic cross-section is varying sharply with the energy, and the
nuclear temperature T is a complex function of the incident neutron energy.

The right approach is to require that the theoretical asymptotic energy spec-

trum should coincide with the "experimental" one described in Table VIII,

Figs. 20; we have to adjust c, and T in the theoretical expression:
i

-

- 3 Q@ f_g;go((ﬁ')cuz‘
M= e X e O ) heel e

(from Eq. (3.29)).

A computer program has consequently been written for the formula (5.29),
with the input parameters Ci and T. It turned out that one must slightly
modify the theoretical expression for }«E), in order to greatly improve the
adjustment of the theoretical curve to the "experimental" one; details are
presented in Appendix D.*

Results of these curve-fittings are shown in Figs. 20: emphasis has
been put on a good agreement in the higher-energy-part of the spectrum: we
are above all interested in high-energy slowing-down transients (say,
> 0.4 MeV), and the corresponding source of slowing-down transients is
x(E) - }«E), which means that we must have a particularly good accuracy on

}«E) for E > 0.4 MeV (see Eq. (6.38a)).

*In particular, relation (6.432) turns out to be only a first approximation
for cs.
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Results of all these computations are shown in Table IX, which presents
the adjusted values for all the basic parameters we need in the numerical
evaluation of the Green's function (6.38).

Let us conclude with the following remark: we assumed that elastic
scattering did not involve any energy change. This is quite valid in ZPR-

IV systems, in spite of the presence of Al and Fe, since the bulk of neutrons

in the asymptotic spectrum occurs well above the inelastic scattering thresh-

old (see Figs. 20). Therefore, most of the slowing-down in ZPR-IV takes place
in the high-energy domain, where inelastic scattering is overwhelmingly
dominant; the majority of neutron degradation is due to inelastic scattering
in the highly concentrated, enriched fuel, and we are allowed to consider
that elastic scattering does not involve any appreciable energy change. This
point has even been verified by numerical computations in Refs. 36 and A5,
where it was found that elastic energy degradation had a minor effect on the
energy-spectrum, while the latter was very sensitive to any variation in the
parameters of the inelastic scattering matrix.
6.4. SLOWING-DOWN TRANSIENTS AND THE APPROACH TO EQUILIBRIUM IN ZPR-IV

LIKE SYSTEMS: A NUMERICAL STUDY

6.4.1. The Computational Procedure

Using the theoretical model adjusted in Section 6.3, we computed the

distance and energy for the following physical situation: a prism

finite along the transverse y- and z-directions,
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TABLE IX

Adjusted Values for the Parameters of the Green's Function

System Designation

(see Table VI) L 2 5

U258:U255 ratio 3.13:1 5.0:1 6.82:1
E; averaged (cm_l) 0.208 0.176 0.219
;E; averaged (cm ~) 0.171 0.0127 0.00981
E; averaged (cm_l) 0.176 0.1k46 0.190
cp = vzf/zT 0.0823 0.0724 0.0LL48
c =53 /5 0.845 0.828 0.868

e e’ T
A = 1/55 (cm) L. 795 5.677 L.570
(new unit of length)
B "material" buckling

(experimental value, normalized to 0.245 0.217 0.146
the unit of length A)
p° 0.0605 0.0473 0.0213

(normalized experimental value)

>
buckli
B, lateral buckling 0.1313 0.1086 0.0587

(normalized experimental value)
5 (fundamental mode along the x-

0.266 0.247 0.193

axis) (normalized experimental
value)

¢ - overall multiplication coef-
ficient

(from the normalized experimental
value of B)

C.
1

(from the adjustment of the theo-
retical asymptotic spectrum to the
experimental one)

T (MeV)

(from the adjustment of the theo-
retical asymptotic spectrum to the
experimental one)

1.0198 1.0155 1.00709

0.104 0.128 0.113
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infinite along the "exponential" x-direction, having the isotopic composi-
tion of ZPR-IV systems; a fission source is located on the plane x = O,
and the neutron distribution is calculated along the axis y = z = 0.

Rather than giving a mass of flux plots, we preferred to focus on a
single parameter, namely the ratio p(x,E) of the asymptotic space-energy
separable fundamental mode to the overall neutron flux, for a given point and

energy. From Eq. (6.38a), p(x,E) is defined by¥*:

H(E)Lf4E" XX
dC Kx

A><\x')E>

i
g? (X:,E;) — 2
(6.544)

where A'(]x|,E) is the expression for the global neutron flux, established in
Section 5.6 and improved in Section 6.3.2; }«E) is the asymptotic energy spec-
trum.

o(x,E) has a foremost physical importance: it is an index of asymptotic
equilibrium and its deviations from the unity yield the proportion of trans-
port transients and slowing-down transients in the global neutron distribu-
tion for a given energy and distance from the source. Through p(x,E) we can
study, in depth, the approach to equilibrium for various energy ranges in
ZPR-IV like systems. The number of mean-free-paths necessary to obtain com-

plete equilibrium at all energies, is a good criterion for the minimum size

that an experimental system should have for an integral experiment. Spe-

*0f course, k= BL - B
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cifically, the minimum size beyond which space-energy separable modes are
sufficiently well established to allow meaningful measurements of integral
constants and (last but not least) meaningful calculations with multigroup
asymptotic transport theories.

Another outstanding interest of p(x,E) is to shed light upon slowing-
down transients: the detailed behavior of p(x,E) in the space and energy
domains where it is markedly different from its unit asymptotic value, gives
a rich information on the corresponding behavior of slowing-down transients
in the same spatial and energetic domains.

So, using the theoretical formula (6.38) and the corresponding param-
eters adjusted in Section 6.3.3, a computer program has been written for
o(x,E); numerical values have been obtained for the three ZPR-IV systems
(defined in Table VI), and for energies ranging from 0.4 MeV to 3 MeV, and
abscisses from 2 m.f.p. to 15 m.f.p. The corresponding results are tabulated
in Appendix E.

In order to make a clear cut between spatial-transport transients (i.e.,
decaying faster than e-IXI) and slowing-down transients (decaying more slowly
than e—IX!), we calculated, in fact, two values for p(x,E); specifically, we

defined paS(X,E) such as:

H(E){ﬁﬁz ;Q\XI ~}

AAS (ix), E)

g)As <X) E>

(6.45)
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where Aas([x|,E) has been defined in Eq. (5.51), and the difference between
A'(|x],E) and apg(|x|,E) is explained in Eq. (5.52): explicitly, A (]x],E)
includes an one-dimensional approximation for some spatial transport transient
modes,* while the latter are omitted in AAS(IXI,E), which includes all modes

x|

decaying more slowly than e While p(|x|,E) defined in Eg. (6.44) is the
correct physical expression, the difference between ppg(|x|,E) and o(|x|,E)

gives an excellent check of the relative importance of slowing-down transients

and spatial transport transients.

Detailed curves for p(|x|,E) are given in Figs. 21, 22 and 23. Figure 21
is a plot of p(lxl,E) as a function of energy for a fixed distance—5 m.f.p.
—from the source, in the three systems.

Figure 22(a) is a plot of p(|x|,E) as a function of the distance from
the plane source, in the three systems, for a constant high-energy E = 1.5 MeV;
Fig. 22(b) is a similar plot for the intermediate energy E = 0.8 MeV, and
Fig. 22(c), a similar one for the low energy E = 0.4 MeV.

Figure 23 is an outline of results for the most interesting system—

U238:U235

with a ratio equal to 6.81, where slowing-down transients take a

remarkable importance.
A careful study of these curves reveals many outstanding features of
the approach to equilibrium in ZPR-IV systems.
6.4.2. Relative Importance of Spatial Transport Transients and Slowing-Down
Transients

From the inspection of the tables in Appendix F, it turns out that the

*Keep in mind that in ZPR-IV systems, B% << 1.
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difference between Pas and p is quite minimal-—-less than l% for all energies
and all distances greater than 2 m.f.p. This, of course, gives a good check

on the validity of our theoretical formula: in ZPR-IV systems, the formula

is correct for all energies and distances as close as 2 m.f.p., which justifies
the lengthy mathematical developments of Chapter V. Furthermore, the physical
implication is that all spatial transport transients are damped out 2 m.f.p.
from the source, for all energies and in all systems. Since curves show that
equilibrium is far from being reached at 2 m.f.p., there lies the evidence of
the physical importance of slowing-down transients* which are the only modes
responsible for the approach to equilibrium at distances beyond 2 m.f.p. It

is indeed surprising that numerically there takes place such a fast spatial un-
coupling between genuine transport ("singular") modes and slowing-down trans-
ients: the latter having their own identity in further delaying the approach
to equilibrium. Since slowing-down transients decay more slowly than trans-
port transients, the damping of the former implies of course the damping of

the latter.

6.4.3, Is Equilibrium Reached in the Exponential ZPR-IV Systems?
From Fig. 20, there is a very strong evidence that equilibrium is reached

for all energies at distances beyond 5 m.f.p. This preceding figure shows

plots of p for all energies, at x = 5 m.f.p. If we choose the following cri-

terion of equilibrium that, for all parts of the energy spectrum, p should be

greater than 95%—then Fig. 20 proves that equilibrium is obtained in all

ZPR-IV systems for distances greater than 5 m.f.p.

*Decaying more slowly than e'lxl.
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Let us notice that this distance of 5 m.f.p. for equilibrium, corresponds
to particularly severe conditions: namely, a high-energy fission source on
the boundary plane, the spectrum of which is well above the asymptotic spec-

tra in ZPR-IV systems.

Returning our attention to the exponential ZPR-IV assemblies, where
1l m.f.p. roughly equals two inches,* the preceding considerations enable us
to assert that, the space-energy separable mode is, without a doubt, dominant
at distances beyond 10 inches from the front face in all of these exponential
assemblies—the size of which was 24 in. along the x-axis. More detailed
considerations show that:

(A) 1in system 1 (U238:U235

= 3.13:1) the distance for equilibrium is
7 in. (3.5 m.f.p.), which leaves a minimal zone of 10 inches in the central
part of the assembly** where the space-energy separable mode is dominant and
spectral equilibrium is obtained.

(B) 1in system 2 (UEBS:U235

= 5.0:1)***—the distance is 8 in. (4 m.f.p.)
which leaves a minimal equilibrium zone of 8 in. in the central part of the
assembly.

(C) in system 3 (UDOy°

= 6.81:1) the distance is 10 in. (5 m.f.p.)
which leaves a minimal equilibrium zone of L in.
In fact, in ZPR-IV systems experimental conditions are more relaxed

since the flux hitting the front face is rather degraded compared to the

fission spectrum: this is due to the presence of a natural uranium pedestal,

*See Table IX.
**This agrees quite well with the experimental plot in Fig. 13.
*¥*¥*¥Since there is no aluminum in system 2, the latter one is much closer to
system 1 than system 3.
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producing an energy spectrum of neutrons which matches more closely the
asymptotic spectrum of ZPR-IV.

So, this work gives an unambiguous answer to the doubts raised by ex-
perimentalists (see Section 6.1): the dimensions of ZPR-IV assemblies are
large enough to obtain an actual equilibrium. The harsh, but logical con-
sequence is that any kind of discrepancies observed between calculated and
measured integral constants are due only to the poor quality of the multi-
group constants used.

The use of asymptotic transport theory is completely justified in cal-
culations on ZPR-IV exponential systems. That such great discrepancies arose,
reflects pitilessly the inadequacy of the multigroup cross-sections—includ-
ing the Y.0.M. set—used for the calculations on these aussemblies.56’37’u5
It isn't a mystery that many gaps of experimental information were filled up
with educated guesses in these multigroup sets. The need for more accurate
experimental information yielding improved multigroup constants has been
widely acknowledged by teams working on fast reactor physics. We refer, for
instance, to the proceedings of the latest Argonne Conference on fast reac-
tor physics (ANL-7320). Since 1960, a considerable effort has been made to
obtain experimental data on neutron reaction cross-sections in the high-
energy domain, and this should yield greatly improved multigroup sets.

On the other hand, a major interest of our theory is to give a consistent
estimate of the minimum size that an experimental system should have in an

integral experiment in order to yield consistent measured values for integral

constants. This size should be at least twice the distance needed to obtain
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complete spectral equilibrium, this allowing the space-energy, separable,
fundamental mode to be dominant in at least some section of the assembly.
We recall that in most integral experiments, the source term is either a
fission source or a high-energy neutron beam produced by a nuclear reaction
in an accelerator: therefore, it is justifiable to take into account the
equilibrium distance corresponding to the damping of transients from a fis-
sion source.

From these considerations, the minimum size of ZPR-IV systems should be
at least around 1b4 in. for system 1, 16 in. for system 2, and 20 in. for
system 5.

We realize that in the case of the isotopic system 3, the actual experi-
mental size of 24 in. was just sufficient; so there is absolutely no doubt
that equilibrium was not obtained in the exponential experiment on a similar
assembly made of natural uranium, keeping in mind that system 3 is 15 times

255

richer in U than natural U.

Such an estimate for the minimum size of an assembly gives also infor-
mation about the domain of validity of asymptotic transport theory, which
assumes a priori space-energy separability, and which holds only for the fun-

damental asymptotic mode.

6.4.4, The Behavior of Slowing-Down Transients in the High-Energy Range
As we know from 6.4.2, slowing-down transients are the only modes respon-
sible for deviation from equilibrium at distances beyond 2 m.f.p.-—close

examination of our curves and comparison of the cases E = 1.5 MeV, 0.8 MeV,
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0.4 MeV, clearly prove that the high-energy slowing-down transients are pri-
marily accountable for the delayed establishment of equilibrium from 2 m.f.p.
to 5 m.f.p.

Clearly, the low-energy neutrons (< 0.8 MeV) reach equilibrium much

faster than the high-energy neutrons (> 1 MeV). The effect of slowing-down

transients is particularly acute for the fastest neutrons, and this en-
lightens the experimental fact that threshold detectors measure an actual
equilibrium spectrum much farther than continuous "thermal" detectors—see
Table V; for instance, by considerably affecting the measurements yielded by

238
aU > fission chamber, the high-energy slowing-down transients have a direct

238:U255

primordial effect on the accuracy of the classical U fission ratio.
In fact, a careful experimental investigation of this fission ratio can yield
data as well for the equilibrium spectrum as for the behavior of high-energy
slowing-down transients.
. C . 120D

Curves show also that the less enriched the medium is in U , the more
important are high energy slowing-down transients. 8Since a decreasing en-
richment corresponds to an increasing degradation of the asymptotic spectrum,

this clearly explains the physical importance of high-energy slowing-down

transients: there is a considerable excess of neutrons in the high-energy

domain,* at distances close to the source; these neutrons in excess must be
slowed down to the lower energies of the asymptotic spectrum; and this slowing-

down process delays, to a considerable extent, the establishment of a complete

*That is, > 1.0 MeV.
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equilibrium. This is much more an energy transfer effect than a classical

transport transient phenomenon, and it is likely to have significant impor-

tance in dilute fast reactor systems. For instance, we may reasonably con-

clude that high-energy slowing-down transient modes are primarily responsible
for the almost certain lack of equilibrium in expcnential experiments per-

formed on insufficiently large natural uranium systems.

6.4.5. The Behavior of Slowing-Down Transients in the Low-Energy Range

Let us consider the results for system 3 outlined in Fig. 23%; this
system is the least enriched of all, with a considerably degraded asymptotic
spectrum (Fig. 20(c)) and slowing-down transients take on already a signifi-
cant importance. We realize that p(x,E) behaves in a totally different way
for E = 1.5 MeV and E = 0.4 MeV. Specifically, for the low-energy 0.4 MeV,
o starts with a value very close to the unit, then decreases and has a pro-
nounced minimum, before increasing again asymptotically toward the unit value.
The least that one could say, this isn't the classical shape for well-behaved
transport transients to which we are accustomed from every day transport
theory. Yet this phenomenon—the existence of a minimum for o(x,E)—appears
in a more or less marked extent in all systems-Fig. 22(c).

The physical explanation is of utmost interest: at distances of 2 m.f.p.,
transport transients are damped out; however, the energy spectrum of the neu-

tron distribution presents a considerable deficit of low-energy neutrons

(E < 0.4 MeV). This deficit stems from the fact that, the initial source

spectrum is much higher than the final asymptotic spectrum and in this case,
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slowing-down transients act as negative transients which yield abnormally
high and unstable values for p(x,E) at distances close to the source. The
further spatial decrease of p corresponds to the spatial appearance of a wave
of slowed-down neutrons, which "feed in" the spectrum at low energies. The

effect can be of importance in very dilute systems where, by measuring the

distribution of low-energy neutrons)one could get the erroneous impression
of a pseudoequilibrium.

Such a pseudoequilibrium would only be due to the uncoupling of trans-
port spatial transients from the slowing-down transients, and it would be
destroyed by an incoming wave of slowed-down neutrons which would appear at
rather large distances from the source. We suspect that such a pseudoequi=~
librium at low energies could be also responsible for the broad spread of
values measured in natural uranium exponential systems (where equilibrium has
certainly not been reached). However, such effects have not been demonstrated
explicitly in experiments up to now, since low-energy neutrons were detected
by continuous "thermal" fission chambers sensitive in fact to the complete
energy spectrum; nevertheless, we think that more refined proton recoil
spectrometry in the low-energy range (< 0.4 MeV) could evidence such a
pseudoequilibrium.

In conclusion, the following numerical work showed the autonomy of spa-
tial slowing-down transient modes, which act as a positive source of excess
neutrons in the high-energy domain, and a negative-sink of deficit neutrons
in the low-energy range; therefore, they delay the approach to equilibrium

in dilute fast-reactor media.



CHAPTER VIT

CONCLUSIONS AND DIRECTIONS OF FURTHER WORK

The preceding work has covered some aspects of the energy-dependent
neutron transport equation, with emphasis on conditions of interest for the
high-energy domain. This included detailed consideration of both fission,
inelastic and elastic slowing-down phenomena. At this point, we may now
draw three esséntial conclusions.

First of all, we have shown the feasibility and usefulness of a continu-
ous energy formulation in dealing with inelastic, spatial, slowing-down
problems. Synthetic slowing-down kernels have been fashionable for a long
time in both thermalization (degenerate kernels) and elastic slowing-down
theories (Greuling-Goertzel). The introduction of a synthetic (separable,
but not degenerate) inelastic scattering operator enables us to get a similar
wealth of information for problems in the fast domain. The mathematical
methods involved in the solution of the corresponding spatial Boltzmann
equation are often complex and unconventional; they imply the definition of
a new functional transform, the investigation of the associated inversion
formulae, and unusual asymptotic evaluation of the corresponding solutions.
The final results, however, reach far beyond the "academism" of most analyti-
cal formulae; we have obtained an expression of the Green's function for the
spatial, inelastic slowing-down problem, which is valid for all energies

and large distances.

189
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Thus, the systematical use of a continuous energy formulation and a
synthetic inelastic scattering kernel, seems to be very promising in obtain-
ing much deeper understanding of neutron transport problems in the fast do-
main. We can gather consistent information for both transient and asymptotic
aspects of neutron inelastic slowing down. For, multigroup methods (asso-
ciated with a multigroup inelastic scattering matrix) yield coherent infor-
mation about the asymptotic behavior of neutrons; yet, they are implicitly
associated with asymptotic transport theory, and therefore completely blue
and distort the picture of the transient behavior (into both energy and
space). Thus far, we have been dealing with static (time-independent) situ-
ations. We believe that a similar wealth of information could be obtained
by introducing a continuous energy formulation and a synthetic inelastic
slowing-down operator in the solution of time dependent problems. There,
one could restrict the investigation to a spatially asymptotic behavior¥
(use of asymptotic transport theory) and concentrate on the detailed study of
time and energy transients, which multigroup methods are unable to clarify.

The second conclusion concerns the relative importance of the fission
and the slowing-down operator in the global neutron transport equation re-
presenting a fast multiplying medium. As we have realized, the fission

regeneration is responsible for those normal modes (solution of the global

*But such a restriction would allow the practical consideration of arbi-
trarily varying cross-sections.
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equation) which are separable into space and energy. Such fundamental modes
reflect the multiplicative process in the fast medium and are associated
with integral constants of the system; they are the asymptotically dominant
solutions far from sources and boundaries. We have shown, however, that such

modes do not form a complete set; in order to achieve completeness one must

also consider nonseparable normal modes, which are the solution of a plain

slowing-down equation,* and are submitted to further mathematical restric-

tions. The existence of such nonseparable "slowing-down transient"” modes
has been rigorously proved in the case of simple cross-sections for both
isotropic inelastic, and anisotropic elastic scattering. It is quite remark-
able that such "slowing-down transients" are found in the complex situation
of anisotropic elastic scattering where energy exchange occurs between dif-
ferent angular harmonics. Therefore, we believe that the solution of the
most general Boltzmann equation involving both fission regeneration and
slowing-down, requires the introduction of "slowing-down transients”, solu-
tion of a plain slowing-down equation, in order to achieve overall complete-
ness for the normal modes. Such "slowing-down transients", although non-
separable into space and energy, are not classical transport transients, to

the extent that they may be regular, and not singular normal modes.**

*i.e., the initial equation, where the fission overator has been omitted.
*¥i,e., they may decay more slowly thanefZTminIX|, where ZTyin is the min-
imum value of the total.cross-section.
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Physically, they characterize a spatial adjustment of the neutron dis-
tribution from the initial high-energy source to the final degraded asymp-
totic energy spectrum. An interesting extension would be to consider the
integral form of the most general Boltzmann equation with fission, slowing-
down, and arbitrary cross-sections, and to prove the existence of a funda-
mental, asymptotic, space-energy separable mode. Such a fundamental mode is

closely related to the positivity* of the transport operator, but it has

never been proven that it always exists; we suspect that it could disappear
in very dilute fast neutron multiplying media; in this case, one would be
very close to a pure "slowing-down" situation, since the regular normal modes
involved in the complete solution, would be only 'nonseparable slowing-down
transients" (the fission regeneration would influence only the singular
normal modes, i.e., the classical spatial transport transients). Such a
situation would correspond, in the fast domain, to Corngold's findings for
the exponential experiment on a thermal moderator: there, too much absorp-
tion could obliviate the effects of thermalization up-scattering and lead to
the disappearance of space-energy separable modes.

The third conclusion concerns the relative importance of slowing-down
transients and asymptotic separable modes in experimental situations. In-
tegral experiments on fast neutron multiplying media are devised to yield
information about integral constants, while still using a limited amount of

nuclear fuel in the overall system. Such i1s the purpose of classical expo-

*Reference 51.
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nential devices and more recent multizone experiments. In the latter case,
one tries to get integral constants for a fuel of given isotopic composi-
tion, by inserting a rather thin layer in a much larger critical fast
assembly. In both cases, the energy spectrum of the source or the incoming
neutron distribution, is quite different from the asymptotic spectrum of the
studied fuel. This raises the question of knowing whether an actual equi-
librium is reached in the system, and to what extent one can measure ac-
curately a dominating asymptotic separable mode. For "slowing-down tran-
sients" are responsible for the adjustment of the neutron distribution from
the initial incoming energy spectrum to the final asymptotic distribution.

From the results of our work, it seems that there is a remarkable spa-
tial uncoupling between the effects of slowing-down transients and classical
transport transients: while the latter damp out very quickly from system
boundaries, the former further delay the approach to equilibrium. Such ef-
fects are especially marked in dilute fast media; there, the asymptotic spec-
trum is quite degraded in energy, which increases the importance of slowing-
down transients and considerably delays the approach to equilibrium, es-
pecially if the incoming neutron distribution has a high-energy spectrum.
Computations point out that high-energy slowing-down transients act as a
positive source of excess neutrons in the upper energy domain, while low-
energy slowing-down transients act as a negative sink of deficit neutrons in
the lower energy range. The latter may also cause a metastable "pseudo-

equilibrium” for the spatial neutron distribution in dilute fast media.
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Finally, our work strongly outlines the limitations of the validity of
asymptotic transport theory for insufficiently large and too subcritical
experimental fast systems; this is especially true for integral experiments
on fast dilute multiplying media. Asymptotic transport theory involves space-
energy separability and therefore implies consideration of the sole asymp-
totic fundamental mode; this in turn, requires that the fundamental mode
should be dominant in the experimental system. This is generally fulfilled
for systems made of very enriched fuel, but in many cases, experimentalists
keep the same assembly size for a sequence of experiments on much less en-
riched media. Then, it is unavoidable that discrepancies should appear be-
tween experimentally measured values and results from calculations using
asymptotic transport theory. In other words, in order to be sure to reach
asymptotic equilibrium, and be allowed to use multigroup diffusion theories,
one must make the size of a system strongly dependent upon the enrichment of
the nuclear fuel studied in an integral experiment.

Tt is well known that multigroup methods are totally inadequate to rep-
resent pure slowing-down situations.BO Therefore, in fast neutron multiply-
ing media, the inadequacy of these methods is strictly proportional to the
spatial importance of slowing-down transients.

An interesting extension of our work would be to consider kinetic
(pulsed and modulated) experiments on fast neutron multiplying media. One
would use a continuous energy formulation together with asymptotic transport

theory, only to the extent that the experimental system would be sufficiently



195

large (and this, in turn, depends upon the enrichment of the medium). It
is suspected that fundamental time-decay constants calculated by multigroup
methods have strictly no meaning when they are related to a fast system which
is too dilute, too small, and too subcritical. It is probable that the fun-
damental time-decaying constant disappears into the continuum for such sys-
tems. The same limitations would apply to calculations using a continuous
energy formulation, together with an oversimplified spatial representation.
Quite generally, one may use diffusion and asymptotic transport theories to
describe a dominant fundamental mode, but one should be very suspicious about
using such simplifications to describe the continuum part of the spectrum.
Finally, the purpose of our work has not been to solve formally the
energy-dependent Boltzmann equation, for the sake of surmounting formidable
analytical difficulties; but rather, we tried to point out the interest of a
continuous energy formulation, to define much more precisely the domain of

validity of multigroup asymptotic transport theory applied to fast systems.



APPENDIX A - TO CHAPTER II

EXTENSIONS OF THEOREMS 2.3.1 AND 2.3.4 TO A FUNCTIONAL SPACE L'

We wish to prove that Theorems 2.3.1 and 2.3.4 concerning the spectral
properties ofC?é (synthetic inelastic transfer kernel) are still true if we

consider functions such that:

$(£) e L'[E, o]
”(P“ — J"” ICD(E'JO’E’ (A.1)

Ey

(which correspond to the extension of the upper energy bound to infinity).

Theorem 2.53.1. As an operator acting in the space L’,f:é is linear and

continuous.
Proof:
Let

$ ()= O adr) = (Ef_ME,')_o\E

) ¢ d )E h(E"

Then

[2) - fﬂ |Be)| 4 F

Ex

¢ | “o@) [ lecElde
181 < fE 9 )le e
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Then, the domain of V
1
E
integration being /
defined by the ad-
E

e 7 /

of integration. Er E

L

E‘
&(E) f
Erﬁ%@lr ET,%(E)'dE

121 ¢ f%.[%@‘)-k@]a&‘

T

(since |g(E)| = g(E), |h(E)| = h(E))

‘ sup h(E) — k(ET)
lé] < tnF hCE) ’ HCHI

flé}} é M “q)“ since inf h(E) 4 O for E ¢ [Ep, =])

Where M is some constant, Q.E.D.

Theorem 2.3.4. The whole spectrum (continuous, point, residual) of‘EE

is empty, except for the point at infinity.
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Proof':

Let us show that the operator (I - Aﬁ%)_l exists for VA, N § =.

-1
Given S(E) arbitrary, S(E) « L'[ET,w], the existence of (I - xEE)

is equivalent to the existence of a solution ¢(E) ¢ L‘[ET,m] to the equation:

(I ”XO;\/@ ‘P(E) = S<E> (A.2)

But we know that a formal solution to Eq. (A.2) is, from Eq. (2.26b):

$(E)= S(E) +’>¢3(E)%(E)‘7‘ sce) dE'

YD (1.3)

So (I - KGE)-l exists, but we have to show furthermore, that it is continuous;

that is,

o] LM IR (A.4)

This is true, since:

o0

Il sl + lx}.( c(;(E).h(F)Qide(léCE’)l 4E’

! e, ), TR
190 < NS0+ B sl | lgtey e 42

- ® -\
but inflh(E)l x| 4+ O for fixed A, E ¢ [ET,oo].f |g(E) n(E) "|dE is bounded
E

. T
for fixed N, E ¢ [ET,m]. So,
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e < M. ||SE)

Relation (A.L) shows that VA 4 « belongs to the resolvent set of

&.. Q.E.D.
Of course, all the preceding results rely heavily upon the fact
that 1/h(E) is bounded in the domain of definition of q If we were

to consider a Banach space L'[O,»], then the operatorfi% would be un-

bounded; however the point-spectrum would still be empty.

(A.L)

Q.E.D.



APPENDIX B

HALF-RANGE COMPLETENESS THEOREM IN THE ANISOTROPIC CASE

(Section 4.5 in Chapter IV)
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APPENDIX C - TO CHAPTER VI
ABOUT THE REDUCTION OF THE THREE-DIMENSIONAL TRANSPORT EQUATION
TO A SINGLE-DIMENSIONAL ONE

We wish to prove the following relation for some domain of the com-

plex variable k:

| 27
I_fa_r,\,f d v
hre ) b, l+ikp -UBV -p.cos(n-A)
_._____I « Cu’ctcmv kz-l- BE

21 B2

_ S(k?)

(c.1)

Use the following quadrature formula*:

f dy - 2 amtomimem Y]/z}

ot beosy 2-BL

(C.2a)

Comparing with the first term of (C.1), we see that:

a

' + Ll(}\JL (Cc.2b)
b = -LB VAT (0.2
o8- = e B2 4 2 ik - (KBS o

*See "Tables of Integrals, Series, Products" by Gradshteyn and Ryzhik,
Academic Press (1965).
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The quadrature formula (C.2a) is valid only if the integration path is con-

tained in a domain of analyticity of the integral. This requires:
tb tre R + O

The line of singularities is defined by
o +b o =9

That is, by the following hyperbola in the k-complex plane:

fro. K= i e (T

The domain of anlyticity is exterior to this hyperbola (domain including the

asymptotes); in particular, it includes the strip:

._/4 j/mleé t/

In particular (C.l), will be correct for those poles k of the Green's func-

tion such that:

K] < |

For such poles, one is entitled to use formula (C.1l) and obtain the correspond-

ing asymptotic solutions. Then Eq. (C.l) becomes, after integration over 7:

5(kY) = _dp o (c3)

—l—fﬂ | |
e J \/I+Bf_+ 2L\<r&‘(BE+kZ)["'




20%

Then, rewrite Eg. (C.3) as:

+)

S(k®) _ 1 BLek® dp |
) BLml' /' _{(B’i*\‘kz)[\/\’ _ ik P
v-lv BL\/’F’?CT‘;21 B+ B2k

(C.1)

Equation (C.4) can be reduced through the use of a classical quadrature

formula:

S<k2\: l {APCSM %-J“ l-.k -{-Arcg;.v\ 21.+ kl‘{‘(;k %

T BL ek B +BEK? B, [1+B2+k

(c.5)

Using the sine addition theorem, Eg. (C.5) becomes:

§<‘<2> — | Arci\vx ¢(k2> (C.68)

2’8%+k2
where ¢(k2) is:

Cb(kl) - Bll_'f"k'%—b}\ \ - ( le_+k2._[,k72—-\
Bofl-BEek? BL(1+B%+k")

. Bliktok \/\_ (B2, k2 k)

| B [I+BI-K© BE(1+B2+Kk?)

r (C.6b)
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2
Next calculations intend to simplify ¢(k ):

b (ke [(B%*k"wk)/ (1B k)= (BLk k)
+(BLkik) B (145K (B k2 )]

() |
(1+ B2 +kz) (c.7)

It can be easily* shown that:

LB = (Brek-th)® < [BLk* (11 LK)

(C.8a)

and

? |+ 2+k ‘Z+k;+d< 2l:; Bi+"2 (—fk
BBk -(BLed) < Bk (1)

2
Then ¢(k ) given in Eq. (C.7) becomes:

B(k?) = 1 NBLLT {(e}k’&&)(\ﬂ:\a+(Bf+1<2.ak)(|-;k8

'BQ' |+ B2+k?
= 1L VBL:+k® op?
B 1+B2+Kk? y (¢.9)

2
And finally, ¢(k ) becomes:

*Simply, systematically isolate (B% + kg) in the development of Eq. (C.8a).



Then, coming back to Eq. (C.6a):

S( kz) - _ ‘____.__. Arcsin CD(k?“)

We get:

S(K?) -

And, through the use of elementary trigonometric formulae, we obtain:

S (k?) =

S (k)
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2~ Bi+k?
(l+BZrk?)

2/R: + KT

)

2,\[BL+k®

—_—
—

|

v B+ k*

\

VB 1 k®

Arcs;n 2V BZL.‘!- kZ
<‘+B%_+k2)

Arcsiv\ \ 2‘:*' kz
A 1¢ BT+ kZ

Arctqn‘\/ ZLJ—kZ

(c.10)

(C.11a)

(C.11b)

(C.11c)

Q.E.D.



APPENDIX D - TO CHAPTER VI

ON AN IMPROVED THEORETICAL FORMULA FOR THE ASYMPTOTIC ENERGY SPECTRUM

In Section 6.3.5, it was pointed out that the adjustment of the theo-
retical curve for the asymptotic energy-spectrum with the "experimental"

one, required some modification of the theoretical formula (3.29):

E)h(E) ety [ Se XU
9 L\(E {,— c?:ic\(ﬂ

(3.29)

fcb

H(E} = CF+C )(CE +

Indeed, computations showed that the adjustment to the "experimental"
curves (Fig. 20) could be obtained only for highly unphysical values of c,
(namely, very small ones). This difficulty was lifted through the follow-
ing observation:

if we consider the experimental asymptotic spectra for natural uranium
(Fig. 14) and ZPR-IV (Fig. 20) we realize that the position of the peak is
independent from the concentration in U255; in all cases, the maximum of
)«E) occurs around 0.125-0.150 MeV; the fuel concentration influences only
the sharpness of the peak: the less enriched is the medium, the more numer-
ous are degraded low-energy neutrons, and the more peaked is the asymptotic
spectrum. But the position of the maximum has little correlation with the

enrichment of the medium: it must be suspected that it is in fact closely

correlated to the inelastic threshold energy. This assumption was verified
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through the introduction of an effective inelastic-threshold energy @ ,
with the prescription that @ should be equal to the energy for which the
experimental )-((E) presents a maximum.

We can, then, easily modify the theoretical expression for )-((E), taking
into account this effective inelastic threshold-energy @ .

The eigenvalue problem introduced in Section 3.5 becomes:

7\H(E) = CFX(E) +C(_C3(E)]’ H(E)dE
£ h(E)
for E >/ @ (D.1a)

and

NHR(E)= CeYX(E) +¢c. Q(E oo\-L(E‘)Ac\E'
) F)( +C (3 )@ i3
for E<® (D.1b)

with the normalization:

J HCEYAE < |

(D.1c)

The eigenfunction solution of Eq. (D.1) is closely related* to the pre-

vious one defined in (3.29); it can be easily verified that:

___C“_C &0 | '
E)= C& - C¢ » g\£><O‘E)C\E
H(E)= )(u.:_) + Tgczwaz) —%(E‘){lgg}
[~ N
for E >/ @ (D.2a)

*There is no difference between H(E) defined in Eq. (D.2) and the previous
K(E) defined in Eq. (3.29), for all energies > ®
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And:

o~
<0

K(E) = CeY((® + & qph(@) ~ | % XEE
R N

for EE <: (:) (D.2b)

However, the eigenvalue A is not any more equal to cF + ¢, integrating the
— i
eigenfunction given in Eq. (D.2) over the whole energy range, and using the

normalization (D.lc), we find the following eigenvalue equation:

oo
|- Gy C= J | =& + Ce M dE!
(-%)=% x xfgx(E)

A2 b S [ @) ar!
LORCC

Equation (D.3) is a relation between the new eigenvalue N, c_ and c:s

F
we verify that if we shift the effective inelastic threshold energy (:)

to zero, we find back the classical eigenvalue A\ = Cn + c,. But in the

i
present case, N is different from cp *oc..
1
So, in our further calculations, we consider the modified eigenfunction
H(E),* defined in Eq. (D.2), and the eigenvalue equation (D.3).

The problem is now to determine the parameters A, c,, and T.
i

The eigenvalue N is in fact already known, since:

*¥Which is in fact strictly equal to the classical one for values of E > C).
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C = j>\. ¥+ Ce

Relation (D.k4) replaces the classical relation c = Cp + ¢, + ¢ from

the previously adjusted values of c, c, and c_ (see Section 6.3.3,

F’
Egs. (6.40), (6.41), and (6.43b)), we immediately deduce the corresponding
values of N (through Eq. (D.4)) and cF/h.

A computer program was written, for the calculation of H(E) through
Eq. (D.2), and for the evaluation of the eigenvalue Eq. (D.3). The input
parameters were ci/k and T (all other parameters,* that is, Cpy N, and ®
being known data). The optimal values for ci/x and T were determined the
following ways:

the value of cF/x yielded by the eigenvalue equation (D.3), in which
ci/k and T are input parameters, should coincide with the previously known
value of cF/x.

the theoretical curve for W(E) (from Eq. (D.2)) should reasonably
coincide with the corresponding experimental curve.

It was out of question to write a least-squares fitting program for
H(E), since the corresponding formula is highly nonlinear in ci/x and T.
However, successive empirical adjustments worked remarkably well, as it can
be concluded from Figs. 20. The following table presents the resulting

values for c. and T.
i

*The fission spectrum was computed with the help of: X(E) = 0.771343 \E
e-0.776E
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TABLE D.I

Adjusted Values for c. and T

System Designation 1 o 5
(See Table VI)
238
u2%.0% ratio 3.13:1 5.0:1 6.82:1
A 0.17k 0.18% 0.13
(from: c - c, = A) ) ) 159
cF/x 0.473 0.395 0.322
A

¢/ 0.60 0.70 0.81
(from the curve-fitting)

e, = (e, M) 0.10k 0.128 0.113
T (Mev) 0.3L 0.41 0.36
(from the curve-fitting) ) ) )

®@ (Mev)

(effective inelastic threshold, set

equal to the position of the maximum 0.125 0.150 0.125
of H(E)




APPENDIX E - TO CHAPTER VI

= 3.13:1)

TABLES OF CALCUIATED VAILUES OF p(x,E) IN SYSTEM 1 (U258:U255
TABLE A
E Variable, x = 5 m.f.p.
E 3 2 1.5 1 0.8 0.6 |o.4
(MeV)
Prg 971 | 971 | 972 | .97k | 977 | .981 | .990
P 971 | 971 | .972 9Tk | .977 | .981 | .990
TABLE B
E = 1.5 MeV, x Variable
X 2 3 L 5 6 8 10 15
(m.f.p.)
Prg 907 | 937 | .958 | .972 | .981 | .992 | .996 | .999
P 899 | .93k | 957 | .972 | .981 | .992 | .996 | .999
TABLE C
E = 0.8 MeV, x Variable
X ) 3 L 5 6 8 10 15
(m.f.p.)
Prg 951 | 961 | .969 | 977 | .983 | .991 | .995 | .999
P 948 | 959 | .969 | 97T | .983 | .991 | .995 | .999
TABLE D
E = 0.4 MeV, x Variable
X 2 3 L 5 6 8 10 15
(m.f.p.)
Pag 1.017 {1.000 | .99% | .990 | .990 | .993 | .995 | .999
P 1.015 |1.000 | .993 | .990 | .990 | .993 | .995 | .999
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SYSTEM 2 (U

TABLE A

E Variable, x = 5 m.f.p.

E 3 2 1.5 1 0.8 0.6 0.4
(MeV)
Prs 971 971 | .971 | .972 | .974 | .978 | .986
P 970 | .970 | .970 | .972 | .974 | .978 | .986
TABLE B
E =1.5 MeV, x Variable
X 2 3 i 5 6 8 10 15
(m.f.p.)
Prg 902 | L9323 | .955 | .971 ; .981 | .992 | .997 | .999
o 895 | 931 | 955 | 971 | .98L | .992 | .997 | .999
TABLE C
E = 0.8 MeV, x Variable
X 2 3 I 5 6 8 10 15
(m.f.p.)
Pasg 945 | 955 | 965 | .97L | 981 | .990 | .995 | .999
P Qb2 | 954 | 965 | .97k | .981 | .990 | .995 | .999
TABLE D
E = 0.4 MeV, x Variable
X 2 3 L 5 6 8 10 15
(m.f.p.)
Pas 1.008 | .99% | .987 | .986 | .987 | .991 | .99k | .999
o 1.007 | .99% | .987 | .986 | .987 | .991 | .994 | .999
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258:U255

SYSTEM 3 (U = 6.83:1)

TABLE A

E Variable, x = 5 m.f.p.

E 3 2 1.5 1 0.8 0.6 0.4
(MeV)
Prg Lo | .9k9 | 949 | 950 | .952 | .957 | .969
o 9L | .9k | 9k9 | 950 | .952 | .957 | .969
TABLE B
E = 1.5 MeV, x Variable
2 3 L 5 6 8 10 15
(m.f.p.)
Pas 852 1 .89L | 926 | 949 | .965 | .98L | .993 | .999
0 BU6 | .893 | 925 | 949 | 965 | .98L | .993 | .999
TABLE C
E = 0.4 MeV, x Variable
2 3 h 5 6 8 10 15
(m.f.p.) .
Pas 088 | 973 | .968 | .969 | .971 | .980 | .987 | .997
0 987 | 973 | .968 | .969 | .971 | .980 | .987 997




APPENDIX F

ON A COMPLETENESS THEOREM BY R. J. BEDNARZ AND J. R. MIKA

In Ref. 13, Bednarz and Mika presented a general method for solving the
energy-dependent transport equation. The main feature was the introduction of
a change of variables, which allowed the consideration of arbitrarily varying
cross~-sections. Completeness was proved only for the full-range expansion,
extending Case's method.

Unfortunately, their completeness theorem is erroneous: in their proof,
they consider an integral equation, the kernel of which is a sectionally
holomorphic operator; completeness is strictly equivalent to the solubility
of this integral equation. They make explicit use of the Fredholm alternative:
"the condition of the solubility of the integral equation is that the inhomo-
geneous term be orthogonal to the eigenfunctions of the adjoint homogeneous
equation” (Ref. 13, page 1288). Unfortunately, the Fredholm alternative holds
only for compact operators, and it collapses for operators which are neither
compact, nor bounded; this is indeed the case for a Boltzmann equation where

energy-transfer occurs only through slowing-down. Similarly, they claim: "It

is evident that the spectra of the operator...and [its adjoint] are identical"
(Ref. 13, page 1287). This statement is incorrect, if one deals with unbounded
and noncompact operators, like those found in pure slowing-down situations.
Rather than going into purely theoretical arguments, we will present a
counter-example, following step by step their argumentation. We will point

out a case where:
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A) The direct operator has no eigenfunctions and eigenvalues (empty

point spectrum).

B) Its adjoint has a set of regular eigenfunctions and eigenvalues.

C) A necessary condition of solubility of the integral equation involved
in the completeness proof is still that: +the inhomogeneous term should be
orthogonal to the eigenfunctions of the adjoint homogeneous equation.

D) There are no discrete modes of the direct operator, with the help of
which one could make the inhomogeneous term of the integral equation satisfy
the above condition.

E) Therefore, the modes of the transport equation, as defined by Mika
and Bednarz, are incomplete.

We will consider an energy-dependent Boltzmann equation where energy
transfer occurs only through inelastic scattering and slowing-down. We will
use the synthetic inelastic scattering kernel introduced in Section 2.2. Since
the main features are similar for both variable and constant cross-sections
cases, a fast outline can be given, using the constant cross-sections model.

The starting equation is:

¢} +1 ©
. f E'

h(E")

(F.1a)

+
[€5]
—
b
=
™~
-
=
SN

Since we are in a constant cross-section situation, the angular variable p is

identical to the auxiliary variable v of Ref. 13:

wo= v (F.1b)
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Then, the homogeneous equation (F.la) becomes:

> % = (x,v',E")
v — ¥(x,v,E) + ¥(x,v,E) = —= g(E) /ﬂ av' E—§¢X—L——— ag’ (F.2)
x 2 g h(E")
Introduce the Ansatz:
-x/t
Vv(x,v,E) = e *¢(t,v,E) (r.3)
Then:
v ® o(t,v',E')
(t - v) o(t,v,E) = —f av' ¢, g(E) EVLE) g (F.4)
2J 4 i h(E")
Put:
+1 0
o(t,v' B!
H(t,v,E) = fl av' e, g(E)é (h(g,) dE' (F.5)
Then:
o(t,v,E)=(t/2) ﬁ%gl + N(t,E)+8(t-v) (F.62)
In fact, H(t,v,E) does not depend upon Vv:
H(t,v,E) = H(t,E) (F.6Db)

To the normal mode ¢(t,v,E) defined in Eq. (F.6a), apply the following

operator:

+7 )
/ av' e, g(E)é ﬁ; aE' (F.7a)
1
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And obtain:

+1 0 .
H(t,E) '{[:Céf t (-ivv}.ci g(E)_é %%EE'_)) dE}

-1

-, g(E)Hé kh?E'y aE" (7.70)

At this point, we can define the sectionally holomorphic operator Q(z,E),
following the pattern of Ref. 135:
1 * H(z,B'
O(z,E) = H(z,E) = H(z,E) - (z argth Z) c, g(E)\é: -%%iﬁjl'dE'

(F.8)

The operator Q(z,E) will be essential in the tentative proof of the complete-
ness theorem. Its eigenfunctions correspond to the discrete solutions of the

Boltzmann equation. Unfortunately, Q(z,E) has no discrete eigenvalues. For,

calling the hypothetical eigenfunctions H(Li,E), we would have:

Q(Li,E) &H(Li,E) = 0 (F.9a)
That is:
00 H(Li,E')
H(L = — 348’ F.9
(1,8) = A g(EK[ - (F.5%)
where we defined:
N, = ¢ L argth'];— (F.9c)
i i i L
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But Eq. (F.9b) is nothing but the eigenvalue problem for the operatoz‘f%;
as studied in Section 2.3. There, we proved in detail that the point spectrum
is empty.

So, Eq. (F.9b) has no solutions; the point spectrum of Q(z,E) is empty,

and the associated Boltzmann equation has no discrete normal modes.

Things are quite different for the operator adjoint to Q(Z,E); call this

adjoint Q*(z,E):

E
0*(z,E) = H(z,E) = H(z,E) - (z argth %) 3 h%mfo g(E') H(z,E' )dE"

(F.102)
The adjoint eigenvalue problem becomes:
Q+(Li,E)mH+(Li,E) = 0 (F.10b)
That is:
1 E
L ,E) = — E') H'(L,,E')de’ .10
H(1,8) = o [ s(E) H(L,, B ae (5.100)
0
where we defined:
1
N, = ¢, L, argth — (F.104)
i i1 L,
i
Equation (F.10c) has the obvious solution:
A -1
n i
H(Li,E) = h(E) (F.1la)

h
(just remember that %E = g(E)).
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Therefore, the adjoint to the Boltzmann equation (F.2) has the following

set of discrete regular normal modes:

¢+(Li,v,E) = —=—nh(E) (F.11b)

where Li is defined by Eq. (F.10d).

The point spectrum of Q(z,E) is empty, while its adjoint has eigenfunc-
tions; this is not surprising mathematically, since we are considering opera-
tors which are neither self-adjoint, nor compact, nor bounded.*

Let us now turn our attention to the proof of the completeness theorem,
as established in Ref. 13. Following their pattern, the crux of the full-

range completeness lies in the inversion of the following operator equation:
0(z,E) = N(z,E) = F(z,E) (F.12)

where Q(z,E) is defined in Eq. (F.8); F(z,E) is a known function, stemming
from the source term of Eq. (F.1); N(z,E) includes the unknown expansion coef-
ficients for the set of singular normal modes.

Let us now show that F(z,E) must be orthogonal to the eigenfunctions
¢+(Li,v,E) of the adjoint equation, as defined in Eq. (F.1lb). Suppose that

the source term is separable in the energy variable:

F(z,B) = F(z)-S(E) (F.1%a)

*Term 1/h(E) in the scattering kernel, unbounded for E = O.
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Take S(E) such that, everywhere:

s(E) > 0 (F.13Db)

Then, obviously, for every A real and positive:

f S(E) h(E)xul dE > 0 (F.1L)
0
But:
S(E) F(z) = N(z,E) - ci(z argth -i—) g(E).‘[ -N—}(l—?—f;—)— ag’ (F.12)

-1
Then multiply both terms of Eq. (F.12) by h(E) =, integrate over the whole
energy range, from zero to infinity, invert the order of integrations in the
right term of Eq. (F.12), and get:

00 C, ©o
F(z)f s(e) n(e)""t ar - {1 - Xi 2z argth %}/ (z,8) n()""" ag
0

0

(F.15)

However, for values of z such that:
1
N = c, z argth = (F.16)
i zZ
the right term of Eq. (F.15) becomes identically null, which is in contradic-

tion with the condition (F.14). Therefore, we must have:

[ S(E) h(E)“iL = 0 (F.17)

\_,O
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This is strictly equivalent to the condition of orthogonality of F(z,E) to
the adjoint eigenfunctions defined in Egq. (F.11b).*

But we cannot satisfy this orthogonality condition for an arbitrary

source term F(z,E), since we do not have any available set of discrete modes
for the direct Boltzmann equation. Therefore, the normal modes such as de-
fined by Mika and Bednarz, are incomplete.

We know, of course, that we have to work with a transformed energy-variable
On}transformation defined in Section 2.4). The completeness proof by Mika
and Bednarz is, of course, valid whenever one considers bounded and compact
operators: this is the case for finite dimensional matrix operators, for de-
generate projection kernels, and for compact thermalization kernels. It fails
for noncompact operators found in slowing-down situations; without or with

fission regeneration.

*We only proved that this condition is necessary.
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