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ABSTRACT: A power series zolution of the
Rayleirhi-Eesaat equaticn governing
the collapse of a spherical eavizy
in an inviseid fluid is presented.
lumerieal values for the nonedimene
sional solusisn t = t(R) are obtained,
where R ie eoxpressed in terms of the
initial bubdle radius Ry and zire is

S s

expressed in serus of Rox/{@/ﬁbg
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i+ Introduction.

In the earliest studies of the collapse or growth of a spherical
ﬁﬁvitvaitﬁin a continuous liquid mediumyBesanﬁlin 1859;and later
Rayleighzin 1917, obtained by different methods a differential equa-
tion governing the motion of the bubble wall. This equation, based
on the assumption cfan inviseid and incompressible fluid, is written:

R+ 287 = - ?73.9.
where fis the density ofkthe liquid and pa) the pressure‘at a very
large distance from the collapsing or growing cavity , which is assumed
to contain a vacuun,

By integfation in t,_the above cquation reduces to:
ﬁ2=3399-[(§-°)3-1] (1)

3 £ "\R _
of which no solutions exist in the literature.

An exact solution of (1) would be of considerable interest in

connection with bubble dynanic stﬁdies, since it could be compared
%0 the results obtained fron nore sophisﬁicated analyses, such as
those of Gilmore7 or Flynna, in which viscosity and compressibility
are taken into account, ,

The function R =’R(t) determines the radius of a collapsing
tublle of initial radius Ro as a function of time, and will be therc-
fore a single-valued function, I, consequence, a solution of the
formn t = t(R) will be équally useful and easier to obtain, In faet,
Rayleighl gave in his‘original paper a solution for the "time of
complete collapse™ required for the bubble to reduce its diameter
to zero. For all other times, as pointed out by Lamb?, the solution
is not so easily found,



2, rower Series Solution,

To express equation (1) in a more tractable form, let:

K = 30@‘/;% (2)

and define a new dependent variable f as:

R
== (3)
RO
Tus g
8 . 1 &
dt Ry dt

and equation (1) beeconmes:
8. 41 1__3#_3
dt X P
But for the collapsing bubble, dR/dt <0, and hence, also dp/dt<O0.

Since K is a positive number, only the negative sign has physical
meaning in the above expression, which is then written:

¥
dt = = K e
(l - PB)Yl

The tine required for the bubble to eollapse from an initial radius
Ro (i.e., 3= 1) to an arbitrary radius R is thus~

= .:K j (ll-)
’ [j PR (1-p 3)/‘

For (3= 0, the time of complete collapse ¥ is obtained:

T-K[Ol -‘%%)"‘ (5)

As shown by Rayleighz, this integral is easily solved in terms
of the gamma function, Let:

’33 -z and then - 3 Pzdﬁ = dsz



E_ 3 -
The integral (5) bceomes then:

1 :
TeX .lf zm,é (J.-\-z)""/‘1 dz
3’ \

Recalling now the well known farmula*
2 o
/ xmdl(l-x)n'l dx = F{m} f‘gn{
o

M(mtn)

we have for this case, for m= 5/6 and n = 1/2:

» .k Tys/6) Tase)
3 U(s/3)

After calculation of the gamna functions and replacing K by iis
value,(2), one finally obtains: |

T= ,91468 Rg -—P—- ' (6)
Pop

as given by Rayleigh. ,
But we are interested in caleulating t when the final value
of F is different from zero. For that case, equation (4) is rewritten

as follows:

l .yz
§ = Kj .E.%_;d.ﬁ. - xjr-ﬁ—ﬁﬁ-,
(1= (33)/- 5 (1 .,,FB)I

[o]

or also, cong idering equation (5):

P %
=7 eK/a%'Ff‘)iﬁ (7)
(s)

The integral P ap
| 1 =/ 3" (8)
o (1"(5

will exist for all 0% f<1, since the integrand is defined within
this interval. This integrand is then expressed in terms of the

(*) See Referenece 4, page 383, for example.
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powers of F' starting fron the formula

(l"’t) = 1 + ! "E__lxz + @*l)on.Z) x3 * 0o

valid for any real number m and for |xj<1.
For our case: m= «1/2

X* - P3
and therefore:
- = (man 7] o
(1 - ra)y. a=1 (2n) 11 |
valid for Loe., Within the interval of interest 0< p<ls
and where:

(20e1)11 = Lo3e5eecess(2ne3)(20=1)
ands (2n) 11 = 2.406000e0ee(2n=h)(2n=2)2n
The radius of convergence " of the power sories (9) ean be
found by using the forrula “‘;’

*
r* = lim'.&_.'
n+00'Cnel
For this case: (2n-1)11
€ * (2n)1!

(20+1) 11
c =
ntl  (one2) 11

and therefore:

o = 14m (2n=1)1!(2n*2)11 _ ., 2n+2

D 2011 (2001011 pecp 2001 T

The power series is then absolutely convergeat in the interval
ocp<1
i*) Reference i'& page 35'90, for example

++) Reference




and converges uniformly for:
0g psry< 1
vince a power series ean be integrated term by term within the

interval of convergence s by substitution of (9) imo (8) we obtain:

I-/f.f.’/:._iﬁ_ /F‘ *ZL—‘-‘—'ll-’—'-— £ e

(1 (33)7 n=1 (Zn) It

 f e }
,[(,’/*d{”o = (2n-1)1! PBnndP

n=l (2n)!!
3n
(2n-1)11 _P
or: I =-(3 Fé ()11 3n+ 2 (20)

For F-l, the intcgration term by tern is not valid, since the
powver scries (9) diverges at that point. For our purposes, this is

not inportant, since for (G-r 1 the value of I is, fron equation

(5): 1..1.{2: and 4n (7)s t = 0O

By substitution of (10) into (7) then:

ey S B

(2!1)!! 3n + %
Replacing ¥ and K by their respective va'luea (6) and (2), the desirsd
solution of the Rayleigh--esant equation is expresued'

\J" 5/.(2 2 (2ne1)1! p>"

(2n)!l

(11)

for 04{“1, and:
t=0

for Pa 1. This is also evident fron physical comsiderations,

(*)  Roference 4, page 352, Theorsm 37.
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3o humerical Solutione

Fraetical applieations of equation (12) require thec ealculee-
sion of numerieal values that are independent of the particular
problen under consideration. Clearly, then, the first step is to

express (12) in a dimensionless form, For that, one observes that

the quantity: P
Ry \ /—-—-—-
Po

has the dimensions of a tinie. Hence, if t is expressed in terms of

this quantity, equation (12) becomes:

-
. 3
v = 0.91#68 _g‘;leg +Z (2n~1)1! B0 "y

5 n=1 (211)!! 3n + %

valid for O¢ F<1, vhere Pa R/Ros This non=dimensional equation

can also be written, in a more compact form:
t = 0,91468 = S(fs) (15)

where S(P) i8 defined as:

oo
_ | (2n-1)11 30 1 -
S(F) 19224?45(004 +§i (Zn) 11 3}1*205 F (16)

The next problem, then, is to dtermine how many terms one must

caleulate to obtain S(’S) with an error less than a giver value € ,

3n 0
£ .=
3n

70 do that, let:
@

Z (%n;%?!!

n=1 + g- n=l
and calculate:
Up+l | (2n+1) p3 n*3 3n + 2’ 3
lim | =2=| = 1im " n| " F
n+0 | Yn | nwm | (2n+2) 3n+Y P



*
Then, the remainder of the series is given by the expression :
3n+
W4y (nsu)11 7
2n+2)11(3n + iy . o3
1']43 (2n+2)11(3 2 (1 F)

(17)

This formula gives only an upper bouid of the error. One notices

that for p-l,,(l- F3) -¢ 0, and therefore the values of Ry wili
increase as (@ approaches 1, If ) is the maxirum value of fin

the interval of interest, the actual error for ’3 will be less than
the value given by (17) for B =f3.

In consequence, expression (17) ean be used to obtain an estimate

of the error that will result %mputing only n terrs of the sum,
for different values of /9 o The following values were obtained:

BB | = | Rg
0,90 | 10 | 0,00054
0,99 | 10 0,1145

20 0,6332,
0.999 | 10 1.5285
"20 0.5852

Using a 7090 IHi digital computer, values of ¢ as given by (14)
were calculated for different values of n and 3. A preliminary
calculation showed that the actual error, for given n and Bsis as

follows: | [a : <

0< p¢0.7{10 | 1076
0.7¢ p¢0.9 |30 | 107
0.9¢. 860,96 | 80 | 10
0.96¢p €0.99 hoo | 2073
(*) See Reference 4,page 328,




confirming that the valucs of € are rmch less than the values Rp
predicted by using expression (17). Using then these values of n
o Iinal machine caleculation was performed, incrementing P by 0.01
between 0 and 0.99. The rcsults are listed in Table I, while the
corrsponding plot of ¢ vs, P is presented in Figure 1. One must

keep in mind that # represents a non-dimensional radius, defined

as:
B
Re
and that t is a non-dimensional time, related to the actual time ¢°?

by the expression:
1 A

Ro\/F7§;o

It is interesting to note fronm the above that the usual consi~

t =

derations of dynarmic similarity apply to this ease in that times of
collapse for different fluids would be equal as long as the available

"head drop", ie., P //J , Were the same,

S S
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p t P t R t
0.99 0.016145 0.64 0.733436] 0,29 0.892245
0.98 0.079522 0463 0741436} 0.28 0.894153
0.97 0,130,400 0.62 04749154 0427 0.895956
0,96 0.174063 0.62 0.756599| 0,26 | 0.,897658

0,95 0212761, 0,60 0.763782 0,25 0899262
0.9 04247733 0.59 0,770712 0025 0.900769
093 | 06279736] 0,58 | 04777398 0.23 0.902182
0,92 06309297 0457 0.783847 0,22 0.903505
0,91 0.336793 0.56 0.7900 0621 0,904,738
0,90 0,362507 0.55 0.796068 0,20 0.,905885
0.89 | 0,386662 0.54 0.80185. 0.19 0906947
0.88 0.409433 0453 0.807433 0,18 0.907928
0.87 00430965 0-52 0.812810 0.17 00908829
0,86 0.451377 0,51 | 0,817993 0,16 0,909654
0485 0.470770] 0,50 0.822988 0,15 0,910404 |
0,84 | 0,489229 0,49 0.827798 0.1 0.911083
0.83 0.506830 Ouk8 | 0,832431| 0,13 0,911692
082 0523635 0.47 | 0.836890 0,12 0912234
0.81 0539701 046 0.841181 0.11 0,912713
0,80 0.555078 045 0.845308 0,10 | 0,913130
0.79 0.569810 Oolis | 04849277 0,09 0.913489
0.78 0.583937 043 0853090 0,08 0,913793

0477 0,597495 0oL 0.856752 0,07 0,914,045
0.76 | 0.610515 0.4 | 0,860268 0,06 0,914248
0075 - 00 623027 0 .11.0 0.86361}0 0 005 O. 9]-II'ZI'O6
074 0,635059 0,39 0,866872 0.04 0914523
0,73 0,646633 0.38 0.869969 0,03 0,914,604
0,72 0.657773 0,37 0.872933 0.02 0.911652
0.71 0,668,98 0.36 0.875768 0.01 0,914675
0,70 0.678830 0.35 0.378477 0,00 0.91,68

0469 | 0,68878) 0034 | 0.881062
0,68 0.698377 0.33 0.883528
0,67 0,707625 0.32 0.885876
0,66 0.716542 0,31 0.888110

Error lcss than 10'6

for O&f‘ 0.96
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Fig.l. Non-dimensional Time vs, Non-dimensional Radius
for Collapsing Srherical Void.
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