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ABSTRACT

The theory of signal detectability is extended to include optimum adaptive receiver
designs for the detection of signals with a nonperiodic time structure. The specific
problem considered is that of detecting a recurrence phenomenon in noise. This
phenomenon is a fixed waveform that recurs in time. The fixed waveform is selected from
a finite class of possible waveforms, and the receiver is initially uncertain as to the
waveform selection. Three basic recurrence patterns are considered: (1) Sporadic-
Poisson, (2) Synchronous-Poisson, and (3) Periodic. For (1) and (2), the recurrence
time is a random variable. The approach to the detection problem is Bayesian and the
initial uncertainties of the fixed waveform and recurrence times are expressed in terms
of a priori probabilities. For the Sporadic- and Synchronous Poisson cases, the
recurrence time is always uncertain, but an adaptive receiver can learn the fixed
waveform.

Several realizations of the optimum receiver are presented for each of the three
basic recurrence time patterns. The receivers are designed by solving an over-all
optimization problem in which the likelihood ratio of the entire input observation is
formed. A difficulty in the design of the optimum receiver for signals with a nonperiodic
time structure is the exponentially growing memory required by the classical non-
sequential realization. To obtain a receiver design with a practical memory size, a
basic technique is presented in which the signal ensemble is described indirectly in
terms of the fixed waveform and the time structure by which these waveforms are
assembled. The receiver design is obtained by realizing the likelihood ratio in a
sequential manner rather than by postulating a sequential learning model per se.
Therefore, the use and proper updating of the contents of the temporary receiver
memory are specified by the design procedure.

Although equivalent for detection purposes, different realizations of the same

optimum receiver appear to operate in different manners. Receiver designs are

xvii



presented in which the receiver appears to "learn" the fixed waveform which is being
transmitted. Such a receiver was simulated for a special but useful case to illustrate
its operation. Other receiver designs are presented which, although optimum, do not
incorporate this learning feature in an obvious manner. The important feature of the
adaptive realizations is their fixed-size memory requirement and availability of a
classification output.

The effect on detectability of the uncertainty in arrival times of the fixed wave-
form is investigated. The detection performance for the case of a fixed waveform, known
exactly, that recurs with a Synchronous-Poisson Time Structure is presented in terms

2E

of the receiver operating characteristic (ROC) as a function of average duty factor, T\I—C’
0
and time. Ec is the energy in the fixed waveform and No is the noise power per unit

bandwidth. This is a useful case since its performance is an upper bound onthe attain-
able performance when the fixed waveform is uncertain or recurs with the Sporadic-
Poisson Time Structure. The performance results show that even when the fixed wave-
form is known exactly, the uncertain arrival times can have a substantial effect on
detectability.

The importance of storing and updating likelihood ratio terms in the temporary
memory was investigated by comparing the performance of the optimum receiver with one
that simply recirculates the input waveshape. It was found that storing and updating
likelihood ratio terms rather than recirculating input waveshape becomes more important

2E

c .
N ipcreases and the average duty factor decreases.
0

as

xviii



CHAPTER I

INTRODUCTION

1.1 Nature of the Problem

The problem of reception of a signal buried in noise is common to sonar, radar,
and communication situations in general. In some cases, such as arise in the reception of
speech, the goal is that of recovering the signal so that its waveshape is as close as possible
to the original transmitted signal. However, in many applications the primary goal is often
deciding whether a signal is present or not, and there is no particular need to reconstruct
the original waveshape.

In the early 1950's several authors formulated a theory of signal detectability in
which the making of the best possible decisions was the primary goal (Refs. 1-3). Since
the noise is considered known only in a probabilistic sense and since there are uncertainties
regarding the signal, one cannot decide with certainty whether or not a signal is present in the
noise. The early work in signal detectability theory recognized the detection of signals in
noise as a problem which could be solved by the application of statistical decision theory.

Signal detection theory encompasses receiver design and performance. The branch
of signal detection theory that is given primary emphasis in this study is the design of re-
ceivers that are optimum in the sense of making the best decisions. In particular, rather
general techniques of designing optimum receivers which operate in a sequential mode are
considered. Such receivers frequently exhibit adaptive characteristics.

Both the design and performance of an optimum receiver depend upon the signal
uncertainties and the noise. The optimum receiver usually takes on its simplest form at
either of the two extremes of knowledge regarding the signal; i.e., precise knowledge of the
signal on the one hand, or at the other extreme, a large amount of initial signal uncertainty
in which parameters of the signal cannot be learned. The performance of the optimum re-

ceiver usually decreases as the amount of signal uncertainty increases.



Most of the literature on signal detectability has been concerned with periodic
signals which may be, for example, uncertain in amplitude and phase. This is understand-
able since a primary application of signal processing is to active sonar and radar systems
where a periodic transmission is characteristic. The knowledge that the signal is periodic
or nearly periodic is definite information that a receiver designer can use to advantage.

One class of signals studied here is a type that is more likely to be encountered in
a passive situation. Here, the signal emitted is beyond the control of the designer of the
over-all transmitter-receiver system and is often nonperiodic. A broad class of such
signals is one in which a fixed but quite unknown waveform is emitted recurrently in a non-
periodic and quite unknown way. The interest is in detecting the presence or absence of the
entire recurrence phenomenon rather than making a local detection of the presence or absence
of an individual fixed waveform. If the signal-to-noise ratio were high, individual local
detections could be made relatively easily. However, a case of special interest is when the
unknown waveform has a low signal-to-noise ratio and a low duty factor. Then, local detection
beccemes difficult. If one has sufficient time to observe the receiver input, however, the
recurrence of the same waveform permits the possibility of "learning' or "adapting to' the
waveform sent. This learning or adaptation must be done in spite of the noise and the
"unknown'' epoch of the waveform.

The general type of signals considered are shown in Fig. 1.1. This sketch shows
possible noise-free signals that might appear at the receiver input. The particular local
waveform that is sent in a given signal burst is uncertain and is one out of a finite number
of local waveforms. Although the same local waveform is recurrent in each signal burst,
the precise times of recurrence are uncertain. It can be seen that a wide variety of signal

bursts can result; the receiver must be designed to detect any one of them.

Three basic types of recurrence-time processes are considered. They are:
1. Sporadic-Poisson process
2. Synchronous-Poisson process
3. Periodic process.
These three processes differ in that they represent three degrees of knowledge regarding the

manner of recurrence of a waveform. The Sporadic-Poisson process involves the least
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time

Fig. 1.1, Four "typical" bursts of signal.

amount of knowledge regarding the structure of the signal in time. The Periodic case,
representing the most knowledge regarding the time recurrence, is included in this study for
comparison purposes. Precise mathematical formulation of the possible signals that could
occur is postponed until Chapter IV.

The basic technique of designing adaptive or sequential realizations of optimum
receivers is considered in this study. As we shall see, there is no unique adaptive realiza-
tion. Adaptive realizations of the optimum receiver are presented, in general block diagram
form, for each of the three basic recurrence-time structures discussed above. The
receiver is designed to be optimum in the sense that it makes the best decision as to presence
or absence of the entire recurrence phenomenon. It is provided, sequentially in time, with
two outputs; a decision output and a classification output. The detection output provides
information for deciding presence or absence of the recurrence phenomenon and the classifi-
cation output provides updated probabilities of the various possible fixed waveforms that
could occur.

When the recurrence time process is nonperiodic, the design of the optimum receiver
is complicated by receiver memory requirements. A nonsequential realization of the optimum
receiver requires an exponentially growing memory. It will be shown that this difficulty can

be eliminated by realizing the receiver in a sequential mode.



1.2 Background of Previous Work

The foundation of this study is the theory of signal detectability as developed by
Peterson, Birdsall and Fox (Ref. 1). This theory emphasizes the central role of likelihood ratio
in the receiver design. Related basic material can also be found in Helstrom (Ref. 5).

A number of authors have applied "adaptive' techniques to the problem of the detec-
tion of signals in noise (Refs. 10, 11, 15, 16, 17, 18). The problem of designing an adaptive
filter for a fixed waveform whose time of arrival is unknown has been considered by Glaser
(Ref. 10). In this work a statistical decision theory approach is used. Local waveform
uncertainty is expressed in terms of an a priori probability density function but recurrence
time uncertainty is not. The epoch is instead detected on a local basis and the assumption
is made that the epoch measurement is accurate,.

Jakowatz, Shuey and White (Ref. 11) have proposed an adaptive filter for detecting
a recurrent fixed waveform. A simplified block diagram of their original adaptive filter is
shown in Fig. 1.2. The basic operations of this filter as described by Jakowatz are:

(1) comparison of a sample of the incoming waveform, x(t), with an estimate, m(t), of the
unknown signal, s(t),by correlation of x(t) and m(t), (2) on the basis of the correlator output,
A(t), guess whether or not a signal is contained in the current sample of x(t), and (3) at
those times when a signal is guessed to be present, form a new estimate of the signal which
consists of a weighted average of that sample of the input with the prior estimate.

Although basic guidelines from signal detection theory are used in the adaptive
filter of Jakowatz et al, the design approach is not an optimal one as the authors indeed
recognized. Two characteristic features are apparent in this adaptive filter. First, a
local detection is required before any modification of the memory is made. Secondly, the
receiver memory is used to remember a single waveform. This is undoubtedly an
inadequate memory for the receiver to be optimum. Their adaptive filter may be, however,
a practical receiver when the local waveform signal-to-noise ratio is large enough to
permit good local detection. In such cases the simple implementation of a receiver with
a single waveform memory may justify its suboptimum detection performance.

Several authors have considered a local detection problem in which a fixed local
waveform recurs in a synchronous manner (Refs. 15 and 18). In the local detection case

the problem becomes that of detecting where each of the local waveform recurrences are,
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Fig. 1.2. Jakowatz, Shuey and White original adaptive filter.

using all past information. The approach is Bayesian and one of optimum receiver design.
One central problem is common, however, and that is the problem of implementing an
optimum receiver which requires an exponentially growing memory. As Scudder (Ref. 18)
points out, the standard nonsequential realization of the optimum receiver is very complex,
grows exponentially with time, and the analysis of its performance is close to impossible
even using present day computers. Marcus and Swerling have recognized a similar problem
of providing sufficient receiver memory in regard to a multiple-resolution-element radar

problem (Ref. 12).

1.3 Method of Attack of the Problem

The Bayesian viewpoint is adhered to in this work. That is, it is assumed that

some knowledge is available to the receiver designer regarding the signals and noise that

will be received. The particular knowledge available must be expressible in terms of
probability distribution functions.

Since the primary goal is the making of the best decision about the presence or ab-
sence of the entire recurrence phenomenon, rather than determining the location of each

recurrent waveform, the problem is to decide between the two hypotheses; presence of

recurrence phenomenon and noise or noise alone. If one prefers correct decisions to mis-



takes, Birdsall (Ref. 9) has shown that the optimum receiver is one which realizes the like-
lihood ratio of the observation and this fact does not depend on any specific quantity to be
maximized or minimized.

Likelihood ratio plays a central role in the design of adaptive receiver realizations
as it did in the design of optimum receivers in classical detection theory. The adaptive
receiver realization is obtained by forming the likelihood ratio of the observation which is
optimum for deciding the presence or absence of the entire recurrence phenomenon and then
realizing this likelihood ratio in a sequential manner. It is interesting that receivers

designed on the basis of sequentially realizing the optimum receiver often exhibit "adaptive"

characteristics. The adaptive feature is, however, a result of the particular form of the

realization chosen, This approach to the problem is in contrast to ones in which a block

diagram of a receiver is chosen by analogy to a biological adaptation mechanism, or by

extension of electronic techniques used in tracking devices.

1.4 Organization of Material

Chapters I and II provide background material for this work. Chapter II is a review
of the basic signal detection theory that is relevant to the problem considered here. This chapter
introduces the problem and expresses the importance of approaching optimum receiver
design via likelihood ratio. In Chapter III the extension of the fixed time theory to a time
varying situation is presented as well as methods of realizing the optimum receiver with an
adaptive form. The inherent role that the classification problem plays in the optimum
detection is also pointed out. In Chapter IV the particular types of transmitted signals
considered are described in detail and defined. In Chapter V the optimum adaptive receiver
design is developed in detail. Four realizations are presented for each of the three basic
types of time uncertainty. This demonstrates the necessity of the adaptive receiver design
for the sporadic and synchronous cases due to practical memory requirements. This is
contrasted with the periodic case where no such memory problem exists. Chapter VI
presents some special but interesting cases of the receivers of Chapter V.

In Chapter VII the detection performance of the optimum adaptive receiver is
presented in terms of the ROC (receiver operating characteristic) for some specific cases,

primarily for the Synchronous-Poisson time uncertainty. Also included in this chapter are



Monte Carlo runs whichdemonstrate the "adaptive' features of the adaptive realization.

In Chapter VIII conclusions to this work are presented.



CHAPTER II

REVIEW OF BASIC SIGNAL DETECTION THEORY

2.1 Classical Signal Detection Theory

Since the basis of optimum receiver design is the work of Peterson, Birdsall, and
Fox (Ref. 1), it is appropriate that it be reviewed. This theory is now called classical,
fixed-time detection theory. It applies to situations where the receiver input is observed
over a fixed interval of time and a decision is then made concerning the presence or absence
of signal during that interval. A block diagram is shown in Fig. 2.1. The transmitted signal
and added noise or noise alone is presented to the receiver input. The question is whether

the switch is open or closed. Classical detection theory encompasses optimum receiver

design, receiver realization, and evaluation of receiver performance.

Signal Optimum

Transmitter }—e»——- .
Receiver

Noise

Fig, 2.1, Basic detection problem.

Optimum receiver design is approached frgm a decision theory viewpoint. When
the input waveform to the receiver is bandlimited, it can be characterized by sample values

(Ref. 1). Typically, there are 2WT independent observation samples, (XI’XZ’ e ,XZWT),

if W is the bandwidth over which the observations are defined and T is the total length of

observation. The total observation, (Xl’X2’ ... , is considered to be made on either

s Xowr)

noise alone or signal plus noise. At the end of the observation interval, a single terminal

decision is made by a device which can make two alternative decisions; conclude that



signal was present during that entire observation interval or conclude that signal was not
present during the entire observation interval. The time sequence in which observations
and decisions are made in the fixed time theory are represented in Fig. 2.2, When the

actual cause is signal plus noise, the decisions correspond to a detection and a miss,

respectively. Similarly, when the actual cause is noise, there are a corresponding correct
and incorrect decision. There are, therefore, two correct and two incorrect responses.
There are values and costs associated with these four possible responses, and the theory
prescribes the optimum receiver which makes the balance between correct and incorrect

responses which optimizes some function of these values and costs.

x(t) |start observation
| stop observation

: make terminal decision

t

0 t +T
0

Fig. 2.2. Observation-decision scheme for fixed time theory.

The cost of making an observation is not considered in this theory. As a result no
premium is attached to making decisions rapidly. The theory of sequential analysis (Ref. T),
or deferred decision theory (Ref. 8) considers such a cost of observation. In the classical
theory, the optimum receiver is one which calculates the likelihood ratio of the input observa-
tion. A decision level or threshold is then put on the likelihood ratio. When the likelihood
ratio exceeds this threshold the response is ''signal present' and when it falls below this
threshold the response is ''noise alone''. The receiver design is still that of a likelihood
ratio processor in deferred decision theory, but the simple output threshold is replaced
with a time-varying comparison function.

Receiver realization is specification of equipment, in block diagram form, that
realizes the likelihood ratio. In general there is no unique way of specifying a block diagram
which realizes a mathematical equation. However, one realization may have an advantage

over another in terms of equipment complexity or cost. There is no procedure at present
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for selecting a ''best' receiver realization. Such a theory would need to incorporate an
equipment cost perhaps best characterized by memory cost.

An important aspect of detection problems is evaluation of detection performance.
It is often useful to evaluate the performance of suboptimum as well as optimum receivers.
The evaluation of optimum receivers puts an upper bound on attainable performance. Evalu-
ation of suboptimum receivers may reveal a receiver whose performance justifies its
simpler form. In the fixed time theory, the error performance for all possible likelihood-
ratio thresholds is the complete evaluation, and this is summarized by the receiver operating
characteristic (ROC). This is a plot of probability of correct detection versus the probability
of false alarm.

Analytical evaluation of receivers frequently becomes a difficult task. An alternative
technique is an experimental approach such as simulation on a computer (Ref. 22), In the
present study, a digital computer simulation of several receivers was employed (See

Chapter VII).

2.2 Optimumness of Likelihood Ratio

In the formulation of the detection problem one considers the input to the receiver
as being due to either of one of two causes; i. e., noise alone or a mixture of signal and noise.
One of the primary conclusions that has resulted from the fixed observation theory is that
the optimum receiver is one which realizes the likelihood ratio. In fact, it has been proved
that the optimumness of likelihood ratio does not depend on any specific quantity to be

maximized or minimized, but only on the condition that one prefers correct decisions to

mistakes (Ref. 9). This is a powerful result which gives perspective to any investigation of
new processing techniques since the likelihood ratio receiver puts an upper bound on attain-
able performance. Although the optimumness of likelihood ratio is not restricted to additive
noise, most of the examples in this study will assume added white Gaussian noise,

The likelihood ratio for the fixed observation time detection problem, when the

signal is known exactly, is given by

f(x,,%X0,...,X% I's, SN)
X, Xoyene, X Is) = 1”2 2WT (2. 1)
1272 2WT £ IN)
X s Xgr oo Xgum
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where f(xl,x2, e ,XZWTIS, SN) is the probability density function of the joint observation
(Xl’ Xgyeoe ’XZWT) under the condition the signal is known exactly and signal plus noise is
present and f(xl, Koy oo ’XZWT{N) is the density function of the joint observation

(Xl’XZ’ ... ’X2WT) under the condition noise alone is present. The entire signal vector,

(sl, Sgree s S2WT) is denoted by s. As an example, in the classic case of a signal known
exactly in added white Gaussian noise one may work with the logarithm of the likelihood ratio
(also optimum since it is a monotone function of the likelihood ratio) yielding the familiar

crosscorrelator as the optimum receiver. In this case

2WT S
ﬂnﬁ(xl,xz,...,xzw,rls) = 1;1 (Xisi - ) (2.2)

where s, are the sample values of the known signal.

2.3 Composite Hypothesis Problems

In the signal-known-exactly example, the likelihood ratio gives the optimum strategy
for choosing between two hypotheses: (1) observation was due to noise alone, N, and
(2) observation was due to signal mixed with noise, SN. For the signal-known-exactly

case, both hypotheses are termed simple hypotheses. If, however, the observation under

either hypothesis depends on some parameter, that hypothesis is called a composite hypo-

thesis. An example of a composite-signal-hypothesis problem that has appeared in the liter-
ature is the problem of detecting a signal known exactly except for phase. There the parameter
is the unknown phase angle, 6.

The sporadic problem which will be formulated later is a composite-signal-hypothesis
problem; the parameter is the signal vector, s. The optimum receiver is then one which
realizes the average likelihood ratio

ﬁ(xl,xz, .. ’X2WT) = L f(xl,xz,

all
seS

...,X2WT|S) pO(S[SN) (2.3)

The probability po(slSN) is the probability a signal s = (sl, So) - is sent under the

- Sowr)

condition that some signal-plus-noise is sent. It is based on information available prior to

the observation (i. e., at time to). The likelihood ratio, £(x Is), is the

¥ Xowr

likelihood ratio of the joint observation, (Xl’ Xosoe s ’XZWT)’ conditional to each specific
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signal s that could occur. The entire ensemble of signals is denoted by S. Formally,
Eq. 2.3 says that the detection output of the optimum receiver is obtained by forming the

individual likelihood ratios, £(x Is), for each signal and averaging them

X Xawr
over the a priori probabilities of the various signals that could occur.

As remarked earlier, the theory of signal detectability is a theory which provides
for the insertion of the a priori knowledge. It can hardly be doubted that the designer of the
receiver has some knowledge about the types of signals for which the receiver is being
designed to observe. This a priori knowledge appears in equations for likelihood ratio in
the form of the probabilities, po(s [SN). A wide range of initial knowledge about the signal
can be specified by describing the entire signal class, S, and assigning values to the proba-
bilities, po(s ISN). As a special case, this receiver reduces to a single crosscorrelator

when only one possible signal could be sent, since pO(s ISN) = 1 for that signal and zero for

all others.

2.4 Memory and Signal Detectability

The classical theory of signal detectability is a full memory theory: the implicit
assumption is that an unlimited amount of memory is available with which to realize the
optimum receiver. The cost of providing such a full memory is an obvious practical
problem in certain situations. The optimum receivers for the synchronous and sporadic
recurrent waveforms present this problem. Unless special care is taken in obtaining the
proper receiver realization for these cases, an impractical amount of memory may be
required. It turns out that realizing such optimum receivers in a sequential form results in
receivers with practical memory requirements.

Although optimum receiver design in this study will be based on the full memory
theory, emphasis is placed on obtaining optimum receiver realizations with adequate but
practical memory size. There is no theory yet developed on the proper utilization of
receiver memory but the study of the manner in which the memory is utilized in adequate
and full memory receivers should contribute to an eventual theory of the use of memory in

signal detectability.



CHAPTER III

ADAPTIVE REALIZATION OF THE OPTIMUM RECEIVER

3.1 Adaptive Receiver Design Philosophy

Qualitatively, the term adaptive receiver conveys the requirements of a time-varying

structure and a "learning'' feature. As is evident from scanning the literature, adaptive

processing schemes are not unique. The philosophical discussion of what constitutes a "true"

adaptive device is not considered here,.

In this chapter, a technique is developed for the design of full-memory, adaptive,
optimum receivers. In the full-memory theory evolved here, the term "adaptive' or
"adaptive realization' is used to label forms of optimum receivers which exhibit adaptive
characteristics. Although not considered here, a different theory of adaptation would
undoubtedly result if a receiver were to be designed with an inadequate memory.

Full-memory adaptive receiver design may be approached from the basic viewpoint
of classical signal detection theory. The theory must center on the primary goal of making
the best decisions. The mathematical operations that an adaptive receiver must make are
then specified by the theory. It will be shown how the existing theory of signal detectability,
because of its fundamental approach, enables the synthesis of adaptive realizations of the
optimum receiver. This puts full-memory, adaptive signal processing within the framework
of the theory of signal detectability. It has already been pointed out in the previous chapter
that the optimum receiver under many criteria is one which realizes the likelihood ratio.
There may be several different realizations, equivalent in that each processes the input to
realize the same required likelihood ratio, or a monotone function of this likelihood ratio.
The performance of these realizations may be equivalent; however, the different realizations
may have unique advantages or disadvantages from a practical point of view. It will now be

shown how the likelihood ratio can be realized in an adaptive manner.

13
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It is convenient to consider first the adaptive receiver form for directly described
signals. Direct description is the traditional description of signals in the classical theory.
It becomes more convenient to use an indirect signal description in subsequent chapters.
There the signal will be described indirectly in terms of a smaller ensemble of waveforms

and a time structure whereby these short waveforms are assembled.

3.2 Adaptive Realization of the Optimum Receiver - Directly Described Signal Ensemble

The adaptive receiver realization which will be developed in this section operates
sequentially, so that in every T seconds the observations in the past L} seconds are processed.

Except where otherwise noted, the notation used throughout is that X, denotes x(t) for

k
0 < t < k7; and x, denotes x(t) for (k- 1)71 < t< k7,. Inother words, a capital letter

indicates the observation from the beginning of time to now (i. e., k7,) and the lower case

"
letter refers to the present observation which is to be processed as a unit. Sequentially
in time the receiver updates whether the signal was or was not present in the entire
observation, Xk’ and the opinion is updated as to which signal it is if indeed signal is present.
Classical signal detection theory is a fixed-time theory. That is, much of the work
in the past involved receiver design in which the processing time was chosen before building
the receiver. However, in an adaptive approach the processing time remains variable,
Actually, classical fixed-time theory only appears to specify a fixed observation, Xk'
The theory is easily generalized to permit a receiver which operates over a variable time
interval. In particular, if the optimum receiver is to be designed to work on the time
interval (0, le), then the optimum receiver is one which realizes the sequence of the

likelihood ratios, £(X.), Q(Xz), ceey f(Xk). This receiver provides the output which is

1

necessary for making the best decision as to presence or absence of signal from time zero

to time k’TI, and does so in a running or sequential fashion. The optimumness of likelihood

ratio guarantees that all available information prior to time zero, along with that available
from the observation itself, has been used to make an optimum decision as to presence or
absence of signal in the entire running time interval (0, k'rl). This is called a long-term
detection problem.

The sequence of likelihood ratios, #(X,), #(X

, 2(X. ), could be obtained at

1 SURERRRICN

each time le by repeated application of Eq. 2. 3. This equation suggests, however, that
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one store all past observations as well as all the probabilities up to time kTI' A gross

block diagram of this realization is shown in Fig. 3.1. The samples of the observation

are stored in an input memory. In addition, it is necessary to make provision for storage

of all the a priori probabilities, po(s[SN). The storage requirements for both these purposes

increase as time increases, which makes this type of realization impractical in many cases.

Input, Xk
—_— Xk Input Memory

)

Likelihood Ratio Computer [——®= Detection Output
r ,Q(Xk)

Memory for Probabilities

po(s ISN)
Fig. 3.1, Gross block diagram of a nonsequential receiver realization.

Another way of forming these likelihood ratios is to derive ¢(X, ) from the previous

.
one, Q(Xk_l), together with the kth observation, and a set of updated probabilities. Several
of the forms which these realizations can take will be considered later. This study is con-
cerned primarily with this approach and its implementations. This approach is especially

interesting because it leads to realizations which exhibit the features of an adaptive type of

processor. First, however, these full-memory adaptive realizations are shown to be

related directly to the original likelihood ratio by an equivalence transformation.

3.2.1 Sequential Realization of Likelihood Ratio - Independent Observations

Conditional to SN. Many classical detection problems have dealt with the situation where

either the signal transmitted was independently chosen from the signal ensemble in each
unit of observation, X, or where only one possible known signal could be transmitted

throughout the entire observation, X, . The latter is the classic SKE (signal known exactly)

K
case. Under certain conditions, this results in a simple recursive equation for obtaining the

likelihood ratio of the observation, Xk’ from the likelihood ratio of the observation Xk—l
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To illustrate this, consider that the likelihood ratio of the observation, Xk’ is by
definition
f(Xk]SN)

It is assumed that the observations are independently distributed under the background

condition of noise alone. The independence of the observations under noise alone permits
computation of the probability density function for a section of observation from a similar
probability function for shorter sections multiplied by the probability density function for

the most recent section. Thus

f(XkIN) = (X, . IN) f(xklN) (3.2)

k-1

Since the observations are assumed independent under the condition SN, the probability
density function of the observation under the condition signal plus noise can be similarly

separated so that
f(X, |SN) = (X, _; ISN) 1(x, [SN) (3.3)

Substituting Egs. 3.2 and 3. 3 into 3. 1, the likelihood ratio can be written as

[0y 189) || I8N 60
(X, N | | 16, 19

(X

k)

Applying Eq. 3.1, which is the definition of likelihood ratio, Eq. 3.4 can be written as

(3.5)

For independent observations under SN with independent noise, the likelihood ratio of the

total observation, Xk’ is the product of the likelihood ratios of the independent parts.

1For example, this is the assumption in Helstrom, Statistical Theory of Signal Detection,
Chapter III, Section 4, "Sequential Testing of Hypotheses. "
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Fig. 3.2, Optimum sequential receiver, independent observations.

A simple block diagram of a receiver which realizes Eq. 3.5 is shown in Fig. 3. 2.
After the first unit of observation, a likelihood ratio f(Xl) is computed. This is stored.
Then the likelihood ratio f(xz), of the next unit of observation is computed and multiplied by

Q(Xl) to form Q(XZ) which is stored. This procedure is iterated. This is a sequential form

of an optimum receiver.

3. 2.2 Sequential Realization of the Likelihood Ratio - Dependent Observations

Conditional to SN. In this section it is shown how the likelihood ratio of the observation over

an interval (0, k'rl) can be realized, in a fashion equivalent to the above, for cases where

the observations, X, are dependent under the hypothesis SN. This is the situationin a com-
posite hypothesis problem. The derivation begins with the likelihood ratio, #(X

)
entire observation, Xk’ which is known to be optimum under many criteria, and transforms

of the

Q(Xk) into an equivalent sequential form.
Once more, we start from the likelihood ratio of the observation Xk’ given by

f(Xk [ SN)

ﬁ(Xk) = — (3.1)
f(Xk[N)

As before, the observations, X;, are assumed independent when noise alone is present, so

Eq. 3.2 applies. In composite signal hypothesis problems, however, Eq. 3.3 does not hold
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and f(XkISN) is written, instead, by definition of conditional probabilities, as

f(XkISN) = f(Xk_llSN) (kuXk 1,s ) (3.6)

Thus, ¢(X,) can be written as

k

(X, {ISN) || f(x, X ., SN)
Q(Xk) _ k-1 k k-1 (3.7)
f(Xk-l IN) f(xk [N)
or
B(Xk) = Q(Xk_ ) (xlek l) (3.8)
where we have defined
f(x, I1X ., SN)
ox, 1X, )= —EL (3.9)
f(xk!N)

Note that Eq. 3.8 is similar to Eq. 3.5 except that the function £(x kIXk 1) is dependent on
the entire past observations in addition to the unit observation, Xy

Let us now determine £(x, X, ,). To do this, let us consider in more detail the

k' k-1
numerator, f(kuXk U SN), of Eq. 3.9. Solving Eq. 3.6 for f(x k[Xk 1 SN) one obtains
H(X, ISN)
f(Xk_IISN)

The numerator of Eq. 3. 10, by definition of a composite signal hypothesis, is
£(X, |SN) = fs f(X, s, SN) pO(SISN) ds (3.11)

where f(Xkls, SN) is the probability density function of the observation X, under the condition

k
SN and where a specific signal, s, is being transmitted. At the start of the observation,
specified as time to’ the observer is uncertain as to the specific signal to be sent. This

uncertainty is expressed by the probability density function, po(slSN). If the signal is simply

added to the noise, then the observations, conditional to a specific signal, s, are independent.



19

Thus
f(Xkls, SN) = f(Xk_lls, SN) f(xk|s,SN) (3.12)
Substituting Eq. 3. 12 into 3. 11 results in

f(X, ISN) = fs f(X, s, SN) f(x, Is, SN) p (sISN) ds (3. 13)

Equation 3. 10 therefore becomes
f(Xk_lis, SN) po(s!SN)

f(x, I1X. . ,SN) = f(x, Is, SN) d (3.14)
& k-1 fs HX,_,1SN) kS >

where f(X ISN) has been incorporated in the integrand since it is independent of the variable

k-1
of integration. It is natural to define a new probability function for the signal ensemble based

upon all the observations up to time (k- 1)71. This is done by singling out the bracketed term

of Eq. 3. 14 and defining it as

#X, _1s,SN) p (sISN)
p_q(s1sN) = — Yo (3. 15)
H(X,_,1SN)

Substituting Eq. 3. 15 into 3. 14, one can write f(x kIXk 1 SN) as

f(x 1X _;,8N) = [ f(x, |s,SN) (sISN) ds (3.186)

) by _
k “k-1 S k-1

which is in direct parallel to Eq. 3. 11, except that the weighting probability is not the
original defining density at tO but is an up-to-date probability function based upon the obser-
vations over all the time up to the last unit of observation. The probabilities, pk(s ISN),

can also be obtained from pk_l(s ISN) rather than pO(SISN). We can rewrite Eq. 3. 15 with

the subscript indexed ahead by one,

f(X, Is, SN) p (s ISN)
p, (sISN) = (3.17)
K f(X, 1SN)




20

Solving Eq. 3. 15 for po(s [SN) and substituting this into Eq. 3. 17 results in

f(X, Is, SN) f(X, _;18N)

pk(s [SN) = s|SN) (3.18)

P4 (
f(X, _41s,8N) f(X, ISN)

The ratio in the first bracket is conditional to the signal s and so Eq. 3.12 holds. Similarly

the reciprocal of the ratio in the second bracket is f(xlek_l, SN) by Eq. 3.6. Therefore

Eq. 3. 18 becomes

f(xk] s, SN)
pk(s [SN) =
f(xle

p_1(sISN) (3. 19)
1o SN)

We have still to get the form of Eq. 3.8 for likelihood ratio. Using Eq. 3.9 for the

definition of !Z(xk IXk_ 1) along with Eq. 3. 16 one gets

f(xk! s, SN)

x 1X )={ |——xn (sISN) ds (3. 20)
Xk k-l]; (s, 1) Pr.1

where f(xklN) has been brought inside the integral since it is independent of the variable of

integration. Define a likelihood ratio of the unit observation, x,, conditional to a specific

k’

signal as

f(xkls,SN)
ﬁ(xkls) = — (3.21)
f(xklN)

then the conditional likelihood ratio, ﬂ(xk!Xk_ 1) can be written as

s|SN) ds (3.22)

Py 1(

1, 1%, )= fs 0(x, Is)

Similarly, if numerator and denominator of Eq. 3. 19 are divided by f(xklN) and Egs. 3.9 and

3.21 are used, the updating equation can be written as

ﬁ(xkl s)
p(s[SN) = py._1(sISN) (3. 23)

o Xy

xk[X
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Equations 3. 8, 3.22, and 3. 23 form the basis of design of the sequential receiver. Table 3.1
summarizes the basic sequential receiver design equation for both dependent and independent

observations under SN.
TABLE 3.1
BASIC RECEIVER DESIGN EQUATIONS

SEQUENTIAL REALIZATION OF THE LIKELIHOOD RATIO

Independent Observations Conditional to SN

Detection Output
!Z(Xk) = Q(Xk_ 1)ﬁ(xk) (3.5)

Dependent Observations Conditional to SN

Detection Output

X)) = (X, ) 4x 1% ) (3. 8)

Sequential Average Likelihood Ratio

(x, 1%, ) = fs 0(x,1s) p,_y (sISN) ds (3.22)

Classification Output

ﬁ(xk| s)

Q(xkl Xk— 1)

Py (sISN) = Py_1(s1SN) (3.23)

By comparing Eqgs. 3.22 and 3. 23 we observe the primary earmark of adaptive
operation: the feedback of results to modify the processing of subsequent observations.
Thus, from po(SISN) and X, one can calculate pl(S|SN). This is used to determine the
weighting on x, (Eq. 3.22) which in turn is used to compute pz(SISN) and so forth, The

quantities calculated are shown in Fig. 3. 3.
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0(|Xk_ ! 0(x,)
P _1(siSN) p, (s ISN) \

] 4 | }
T L) | T
k-1 "k ka1

time
—_—
Fig. 3.3. Sequential realization representation.

It is likely that one could arrive at Egs. 3. 22 and 3. 23 by proper application of
Bayesian logic. The author has overtly chosen not to do this so that it is obvious that the
aforementioned equations for conditional likelihood ratio and for updating knowledge are a
result of simple mechanical manipulation of the formula for likelihood ratio of a complete
observation, Xk'

A block diagram indicating the operation of this adaptive receiver is shown in Fig. 3. 4.
The likelihood ratio of the incoming observation is computed for each pcssible signal that
could occur. These individual likelihood ratios are then weighted by up-to-date probabilities,
pk_l(s ISN), as to which signal is being transmitted, and these products are added over all
seS to obtain the conditional likelihood ratio ﬂ(kuXk_l). The information regarding which
signal is present, as expressed by p, _ 1(s), is then updated using the quantities B(xkls) and
ﬁ(kuXk_ 1) which contain new information from the kth observation as to which signal is being
transmitted. This forms the up-to-date probabilities, pk(s ISN), which will be used for
weighting the individual likelihood ratios of the (k+1)st observation. In addition, pk(s | SN)
can be displayed to provide classification information. The purpose of this section has been
to show how to design optimum detection equipment which has a property normally associated
with adaptive equipment: namely, the property of utilizing observations to increase know-
ledge and using this knowledge in interpreting subsequent observations.

We have seen how the equation for updating knowledge as to which signal was being
transmitted (Eq. 3.23) gave a "learning" feature to the receiver design. This feature was

absent in the realizations discussed in Section 3. 2. 1 since it was assumed that either (1)

the signal was known exactly, in which case only the central question of its existence remains,
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or (2) the signal samples in successive observation units were independent, in which case
what is learned in one unit is irrelevant to observations in any other unit.

3.3 Classification of Signals in Noise

Frequently, more than just presence or absence of signal information is wanted from
the receiver. In classical detection problems, information as to which signal was being
transmitted was often suppressed. This resulted from the fact that the receiver was designed
to answer the question of presence or absence of signal regardless of the particular signal
transmitted. The realization of Fig. 3.4 displays the classification information which has
always been inherent in the formation of the receiver detection output.

pO(SISN) is the probability density function that represents our opinion, prior to
any observation, as to which signal will be present. This is the classification output at time
to" As has been shown in the previous section, updated versions of this density function,
pk(siSN), are obtained sequentially in time by the receiver and used to form the detection
output, i.e., the likelihood ratio. Thus, the detection and classification outputs are obtained

simultaneously and are intimately related.



CHAPTER IV

INDIRECT DESCRIPTION OF SIGNAL ENSEMBLE

In Chapter III it was shown that an optimum, full-memory, adaptive receiver design
could be put within the framework of classical fixed-time theory. The basic form for an
optimum, full-memory, adaptive receiver was obtained there for the case where the signal
ensemble is described directly. If the design equations (Egs. 3.8, 3.22 and 3. 23) are applied
directly to the case of recurrent waveforms, the resulting realizations still require a contin-
ually growing memory for storing updated probabilities, as we shall see in Chapter V,

In the next two chapters, it will be shown that optimum "adequate-memory' adaptive
receiver designs will be obtained for detecting the recurrence phenomenon., An optimum
"adequate-memory' receiver is one that has sufficient memory. In developing a theory for
the design of an "adequate-memory' receiver, an indirect description of the signal ensemble

proves useful.

4.1 Component Ensemble and Time Structure

The input voltages to the receiver, which are functions of time, are assumed to be
defined for all times t in the observation interval, 0 = t= T. They are assumed to be
limited to a band of frequencies of width W. By the sampling theorem, each receiver input

can be thought of as a point in a 2WT dimensional space, the coordinates of the point being

the value of the function at the sample points t = 2_VJW , for 1= j= 2WT. The notation

X, denotes a receiver input, (Xl’ Xgyeee, X

value, or coordinate,

k), where k = 2WT and xj denotes the jth sample
To state the problem of detecting presence or absence of the recurrence phenomenon

within the terminology of signal detection theory, it is necessary to clarify what is meant

here by the word "'signal. "' This word is often used loosely and sometimes means the noise-

free emission from a transmitter, whereas at other times it refers to the noise-~contaminated

25



26

waveform at the receiver input. In this study a signal is the voltage waveform at the receiver
input when noise is not present,

In Fig. 1.1 four "typical" segments of signals of the type of interest here were
shown. A possible signal is shown in Fig. 4. 1. There are intervals of no energy interrupted
by occasional occurrences of the same waveform. This short waveform is called a signal
component or simply a "'component, "' A signal consists of a recurrence of the same

component and the blank spaces in between,

Signal

A

I e e e L
cgarTTTT UI_IU ULJU"'%sﬁme

L_Y_J
Component
Occurrences
Fig. 4. 1. A signal composed of components,

The notation s denotes the signal, (Sl’ Sgpeees sk), as it would appear at the receiver

input in the absence of noise where sj denotes the jth sample value, or coordinate, c!

denotes a particular component, ( 1 1 91 0% ), where < i denotes the jth sample of

)

the ith component. Any value, including zero, can be assigned to these samples. By the
sampling theorem, a component can be thought of as a point in a 2WT1 dimensional space,

where T1 is the duration of the component. Since the duration, T., of a component can be

17

different for each component, the number of component samples or coordinates in a component
is denoted by n, where n, is equal to 2WT1 for the ith component. For example, if the

1
component in Fig. 4.1 is labeled C , then n, = 7 and it is written as C1 =(-1,1,1,-1,-1,1,-1)

1

and the signal in the interval (0, t,.) is written as

45)
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s=1(0,0,-1,1,1,-1,-1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1, 1,1,

-1,-1,1,-1,0,0,0,-1,1,1,-1,-1,1,-1,0,0, 0, 0) (4.1)

In order to define the detection problem it is necessary to specify the initial signal
uncertainty, This is most conveniently done by describing the signal indirectly in terms of
components and their timing, thus distinguishing two types of uncertainty: uncertainty as to
component character and recurrence-time uncertainty. Consider the block diagram shown
in Fig. 4.2. One component out of a finite class of b components is chosen by the component
generator to be characteristic of a transmission at its outset, Transmission of the character-
istic component occurs only upon command by the trigger generator which introduces the
recurrence-time uncertainty. Triggers may occur only at discrete times and may not occur
within a component. Three basic distributions of recurrence-time intervals are considered,;
the Sporadic-Poisson, the Synchronous Poisson, and the Periodic. Signals of the three types
are illustrated in Fig., 4.3 and defined below. The component is not restricted to a binary
waveform but is shown as such for illustrative purposes. In particular, a component can

have zero sample values, thus permitting signals composed of periodic pulses to be described.

Trigger Component Signal

Generator Generator

Fig. 4.2. Block diagram of signal generator.

The simplest temporal distribution of components within a signal occurs for a
Periodic Time Structure. In this case a component is transmitted periodically with period
Tl’ where T1 is the duration of a component., Such a signal is shown in Fig. 4.3 ¢, With
the Sporadic-Poisson Time Structure, there is a probability of initiation of a component at
each of the times tk = le that is zero within a component and invariant at other times. This

type of signal is shown in Fig. 4.3 a. For the Synchronous-Poisson Time Structure, there
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kT

time
a. Sporadic-Poisson Process
Lﬂ }_¥
time
_ b. Synchronous-Poisson Process
i
1
-
time

c¢. Periodic Process

Fig. 4.3. "Typical" signals.

is a probability that a trigger will occur at times T1 seconds apart. In the next three sections

the three types ot time processes will be mathematically defined.

4, 2 Sporadic-Poisson Time Structure

The signal ensemble for this time structure can be indirectly described in terms of

the components and time structure. The kth sample of the signal, S» can be defined in

terms of the (k-1)st sample, s and a set of transition probabilities. In other words, the

k-1’

signal can be defined by a one-step Markov process. In the sporadic case, a sample of the

signal can be in any of the states C. 112G 9o ci fori=1, 2,...,b, where < i corres-
3 b s i ?

ponds to the jth position of the ith component, There are b components in the component

ensemble and the ith component has n, sample values. One other state is possible and that

is where the ith component has been selected but is off. This is designated by < o
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Only certain transitions from one state to another are possible. For example, if
the component has seven samples and s = ¢, o, thens, =c, , with probability one. This
k-1 7,3 kK 7i,4
is a result of the fact that once a component starts it must be completed and also no new
component may start until a component is completed. The various possible transitions are

visualized with the aid of Fig. 4.4. This figure shows the possible states of the (k-1)st and

Fig. 4. 4. Sporadic-Poisson process for the ith component.

kth signal samples. The arrows indicate the possible transitions. Also included on the
diagram are the probabilities of the various transitions. More specifically, the properties of

the Sporadic-Poisson process are defined as:

rS =C =
Kk~ %0 Sk-17 4,0
g(sk ‘Sk—l’ SN) = 1-1/i forﬁ (4. 2)
Gk~ %, 0 %k-17 %, n, J
o - e
k7% 1 Sk-17 %0
g(sklsk_l, SN) = 2 for< > (4. 3)
Sk ™%, 1 Sk-17 %y, J
g(sklsk_l,SN) =1 for Sy = Ci,j’ 81" ci,j—l

(4. 4)
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g(sklsk_l, SN) =0 otherwise (4. 5)

The interpretation of Eq. 4. 2 is that if the ith component is either off, ¢, or at its last

, 0’

component position, ¢ no at time tk-l’ then it is off at time tk with probability l—vi.
, I,
i

Similarly, from Eq. 4.3, if the ith component is either off or at its last component position

at time t then the ith component starts again at time t, with probability Vi Equation 4, 4

k-1’ k

says that if the (j-1)st position of the ith component is present at time t then the jth

k-1’

sample of the ith component is present with probability one at time t Equation 4. 5 says

K

that no transitions other than the ones expressed by Egs. 4. 2 through 4., 4 are possible.

4.3 Synchronous-Poisson Time Structure

The Synchronous-Poisson Time Structure is intermediate in recurrence time
uncertainty between the periodic and sporadic processes. The component selected at the
start of transmission is one of a finite number of b possible components. Due to the
synchronous nature of the time structure, there is no detailed positional uncertainty of
components as was true in the sporadic case. If a component is triggered, the time
position of component samples is known exactly. This enables the component sample values
to be combined into one state, Ci, 0= (ci’ o ci, 07 e

component is selected but the component is off. C, . =(c, ., ¢, ,,...,C. ) is the state
i, 1 i,1’ 7i, 2 i, n.

$ O) is the state that results if the ith
b

that results if the ith component is selected but the component is on. The signal vector can

be "blocked off" into ni-dimensional segments, each segment being designated by Sk" For

example, if the component in Fig. 4.3 b is labeled Cl, then this signal is

s=(S (4. 6)

1»59:83:84:89) = (€ ,C; 1,C; €

3°4 5 i,0%,06, 7

The possible states and transition probabilities are shown in Fig. 4. 5. The properties of

the Synchronous-Poisson process are defined as:

g(SRISN) = 1—1/i for Sk = Ci,O

g(S, |SN) = v, for 8, = C, 4

’
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k-1 k
io io
Ci1 it
Fig. 4.5. Synchronous-Poisson process for the ith component,

The above two equations express the fact that vy is the probability that a component will
appear in the kth synchronous interval and l—vi is the probability that it will not appear in

the kth interval independent of its presence or absence in any other synchronous interval.

4,4 Periodic Time Structure

The periodic process represents the least amount of time uncertainty of the three
types considered. One of a finite number, b, of components is selected and recurs period-
ically. This recurrence process is completely deterministic. The possible states of Sy and

the transition probabilities are shown in Fig. 4.6. The properties of the Periodic process

are:

g(s lsk_l,SN) =1lfors =c,

k k- %, 5 %k-17 %, 41
(4.9)
j= 2,3,...,ni
g(sklsk_l, SN) = 1 for Sy = ci, 1 Ske1” Ci,ni (4. 10)
= i 4.1
g(sklsk_l, SN) =10 otherwise (4. 11)

Equation 4.9 expresses the fact that the jth component sample of the ith component occurs at

time tk if the (j-1)st component sample of the ith component is present at time tk—l' The

interpretation of Eq. 4. 10 is that the first component sample occurs at time tk if the last

component sample occurred at time t Equation 4. 11 states that no transitions other

k-1
than the ones defined by Eqs. 4.9 and 4. 10 are possible.
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In the next chapter the design of optimum adaptive receivers will be presented for

each of these three time structures.

k-1 k

Fig. 4.6. Periodic process for ith component.



CHAPTER V

OPTIMUM ADAPTIVE RECEIVER DESIGN

In this chapter optimum adaptive receiver design is considered for a component that
recurs with Sporadic-Poisson, Synchronous-Poisson, and Periodic Time Structures. A

summary of the signal categories considered are shown in the chart of Fig. 5. 1.

One of b possible components that

recurs throughout a transmission

Sporadic Time Structure Synchronous Time Structure

1. Uncertain time of occurrence 1. Uncertain time of occurrence

2. Uncertain component length (synchronous times)
3. No component overlap 2. Known component length

(Eqs. 4.2 - 4.5) (Egs. 4.7, 4.98)

Periodic Time Structure

Uncertain repetition frequency,
fixed throughout transmission

(Egs. 4.9 - 4.11)

Fig. 5. 1. Summary chart: signal categories.

33
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It is necessary to consider the adaptive realization for the Sporadic-Poisson and
Synchronous-Poisson Time Structures because of practical memory requirements. This is
a facet of optimum receiver design that did not exist in the periodic case, In the Periodic

Time Structure, for components of duration T., there are the same number of signals in the

1
signal ensemble as components in the component ensemble after observing for a time le.
For the Synchronous-Poisson Time Structure, however, there are 2K times as many signals
in the signal ensemble as there are components in the component ensemble after a time le.
In this latter case, the receiver designer is faced with an exponentially growing signal ensemble.
If the receiver design is a nonsequential one, Eq. 2.3 is realized directly. This is the reali-
zation represented in Fig. 3.1 and it requires an exponentially growing memory for
po(slSN). The nonsequential realization is therefore usually too complex to be practical.

The question arises as to whether an adaptive realization might provide a practical
optimum receiver design. The optimum adaptive realization was discussed in Chapter IIL
The basic equations for the adaptive realizations are summarized in Table 3. 1 and presented
in the block diagram of Fig, 3.3. The form of the adaptive design equations in Table 3.1 is
unsatisfactory since an updated probability, pk(s {SN), of each of the entire signal vectors, s,

up to time t, must still be stored, and this requires an exponentially growing memory,

k
In this chapter design equations are obtained of optimum receiver realizations which
have a memory that remains fixed in size, The order of presentation of the receivers is from
the one for the least certain time structure, the Sporadic-Poisson, to the most certain, the
Periodic. Four realizations are presented for each of the three time structures. These
realizations of the optimum receiver show how the detection output can be formed in many
different ways. The derivation of Realization I is presented in this chapter in detail for
each of the three time structures, as are the results of Realization IV, The remaining
realizations are presented in Appendices A through C. Following the presentation of the

receiver realizations for each time structure, the operation and use of the memory are

discussed,

5.1 Optimum Adaptive Receiver Design, Sporadic-Poisson Time Structure

In this section an adaptive realization of the optimum receiver is presented for
detecting signals with a Sporadic-Poisson Time Structure. One of b components is selected

for transmission and the same component recurs throughout a total observation, Xk' The
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components need not have the same duration nor recur with the same duty factor, Due to the
Sporadic-Poisson Time Structure, there is local positional uncertainty of a component
occurrence. The probability of triggering a component at any of the times k71 conditional
to selection of the ith component is v, unless a component is in progress. The state diagram
for the ith component has been shown in Fig, 4. 4.
To review, the following basic steps are followed in the derivation of the optimum

adaptive receiver realization:

1. Form the likelihood ratio, !(Xk), of the total observation, Xk
(Eq. 2.3).

2. Obtain equivalent sequential realization of the likelihood ratio,
Q(Xk), in which the receiver updates information after each unit observation, X, (Egs. 3.8,
3.22 and 3. 23).

3. Describe signal ensemble in terms of components and a time
structure (Chapter IV),

In this section the properties of the Sporadic-Poisson Time Structure signal are

used along with Eqs. 3.8, 3.22 and 3. 23 to obtain the adaptive receivers.

5.1.1 Sporadic-Poisson Time Structure, Realization I.  The derivation of this

sequential realization begins with the specification of the likelihood ratio of the observation

over the interval, (0, tk), which is known to be optimum. This likelihood ratio is

(x)= [ #X Is)p (sISN)ds (5.1)
all

seS

o

In Chapter III, it was shown that this likelihood ratio could also be realized in a

sequential fashion. The result was

0% = 0%, e X, )
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where

1(x X)) = fu 0(x, |5)p, _(s/SN)ds (3.22)
seS

and the information regarding which signal is present is updated by

0(x, Is)p, ,(sISN)
p(sISN) = L (3.23)

(xk | Xk 1)

For a finite number of possible signals, the average sequential likelihood ratio as given by

Eq. 3. 22 can be written as

0(x X ) =

*k “k-1 i

xkls)pk_l(SISN) (5. 2)

L

seS

where the integration has been replaced by summation. If the likelihood ratio of the kth

sample of the observation depends only on the kth sample of the signal, then !(x Is) = f(x kJ ).

K
This is a condition which holds for signals in added noise. In this event, the average sequential

likelihood ratio of Eq. 5.2 can be written as

((x, 1%, ) = L ((x, Is)p_,(sISN) (5. 3)

This is still a summation over all the possible signal vectors that could occur during the

observation Xk' One can rewrite pk_l(slSN) so as to include the generator process. The

vector s in sampled form is
pk-l(s |SN) = pk_l(sl, Sg,- .- ,sleN) (5. 4)

By cdefinition of a joint probability, P_ 1(slSN) becomes

(sISN) = s s

1SN (s, 18 ),8,,..,5, SN (5.5)

Pg-1 pk-l(sl’SZ""’sk 1

Now, pk—l( k| $1,S9r - S 1> SN) is the probability, before taking the kth observation, of
the kth sample of the transmitted signal under the condition that signal and noise are present

and one has exact knowledge of the k-1 samples of the transmitted signal. This probability
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is not a function of the observation but only of the previous samples of the signal., However,

the state of the kth sample of the signal depends only on the state of S-1° In other words,

pk_l(sklsl, Sore v Sy SN) = g(sklsk_l, SN) (5.6)

since the state of s, is independent of the states of S

K Sgyeee)S

K-2" Therefore Eq. 5.3 can

be written as

ox 1X )= )
S

e Kot eSf(xklsk) pk—l(sl’ Sgs e ,sk_IISN) g(skisk_l, SN)  (5.7)

Now, the summation is over all the vectors, s, in the total space S of signals that could
possibly occur. Expanding this summation to sum over one dimension at a time of the signal

vector for each of the k possible samples gives

b
(CHb SN EDID) Dy e M ds (s, Isy 4, SNIpy 4(s .80, 8, (ISN)

=1 54=¢; 4 597¢ 0 5k, 0

(5.8)

Since the sums are finite, the order of summation may be interchanged in any desired

fashion. Thus, Eq. 5.8 can be written as

¢ n % n c1 n C1 n
b 1:n1 by 1,1 i ! P
f(xkiXk_l):l Y 3 2 P
=11 8126 9 Sk-17%,0 517, 0 %27%, 0 %k-27%,0
ﬁ(xklsk)g(sklsk_l, SN)pk-l(sl’ Sge e ,sk_IISN) (5.9)

Now f(xklsk) depends only on the summation over s, , and g(skl Sp-1’ SN) depends only on the

summation over Sy and Sk-1 Factoring these terms out gives

C. C. C. C. C
i, n, i,n, i,n, i,n i, n,
?\ >’\ 1 1 ? 1 v 1
c(xklxk_l)_élsjc f(xklsk)s Z_c g(sk|sk_1)sf Lo Z_ Beo1(Sp - 8 1SN)
k %0 k-1"%,0 17%,0 %27%, 0 %k-27%, 0
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The term in brackets is a joint probability of k-2 variables summed over the first k-2
variables. This, by definition of marginal probabilities, can be written as

i i
] ZJ ; Y, Pk_l(sl,sz,...,sk 1!8N)

e _ = pk-l(sk-IISN) (5. 11)
1 10 2 10 k2 i,0

This permits us to write Eq. 5.10 as

b i,ni Ci, n,
(x| X, ) ; Z Uz, Is) L_ g(s, s, _1,SNp, (s, _{ISN) (5.12)
i=1 s, =c. S, 4=C.
k i,0 k-1""1,0

Many of the g(skl Si-17 SN) terms of Eq. 5.12 may be zero, depending upon the generator
process.

From Chapter IV the properties of the generator process for the Sporadic-
Poisson process are:

r —_ -—
k™ %0 Sk-17%,0
g(s, ls, 1, 5N) = 1-u forﬁ (4. 2)
Bk~ %,00 Sk-176, n,
(< - _
%1 Sk-17%,0
(sklsk v SN) = v for< (4. 3)
Pk 1, %1 n,
(sk[sk 1,S N) =1 for Sk'c1,1’ Sy1 Ci,j-l
(4. 4)
J = 2, 37 b ni
(skisk T SN) =0 otherwise (4.5)

Substituting these generator properties into Eq. 5. 12 gives
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b
| Y _ - = =
Q(thxk_l) = 1;1 (1 Vi) pk—l(sk-l ci,0|SN) + pk-l(sk-l Ci,niISN) Q(Xklsk ci,O)
+ Viﬁ(xk]skzci, 1) P 1(Sk—1=ci,O|SN) + pk—l(sk-lzci, niISN)
n,
\1‘
+ L f(xklsk:cL j>pk-1(sk—1zci, j—llSN) (5. 13)
Now, < 0 has the value zero and for a known signal in added white Gaussian noise,
s 2
O '
_ N|"k "k 2
ﬁ(xklsk) =e (5. 14)
where N is the noise power in the bandwidth W. Therefore
f(xklsk:ci,o)=f(xklsk=0)= 1 (5. 15)
For convenience, let us use the notation
bi, j(k) = pk(sk = ci,j|SN) (5. 16)

The interpretation of the probability, bi j(k) is that it is the probability that the signal sample

b

at time tk is the jth sample of the ith component under the condition that signal and noise are

present and that the previous k observations have been seen. Using the bi j(k) notation

along with the definition of Q(xkl S, = ¢ o) for signals in added white Gaussian noise as given

)

by Eq. 5. 15, one obtains

\/:U'

L

0 Xy =i, 1 (l—ui)[bi,o(k-l) + bi’“i

(k- IE]+ viﬁ(xklsk = ci’ 1) I:bi’ 0(1«:-1) + bi, ni(k—l)]

(k-1) (5. 17)
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Factoring out bi O(k- 1) + bi n (k-1) permits Eq. 5. 17 to be written as
b ) i

) .
ﬁ(xlek_l) = izzll E)i’ O(k—l) + bi, ni(k—l{| El—vi) + viﬁ(xklsk = Ci, 1{]

(k-1) (5. 18)

n
i
,0 =
+jZ=2 (xklsk Ci,j) bi,j—l

which is the expression for the average sequential likelihood ratio for the Sporadic-Poisson

generator process.

In this realization the probabilities bi J.(k) must be updated as each unit observation,

)

Xpo is taken. In Chapter III the general equation for updating information was shown to be

pk_l(SISN)ﬁ(xkls)

Q(xk | Xk- 1)

(3. 23)

pk(s [SN) =

We now need to put this in the form of the bi j(k) probabilities as in Eq. 5. 18,
’

Note that the denominator, { (xlek_]), is a normalizing factor given by Eq. 5. 18.

Also, as before, let ﬂ(xkls) = ﬂ(xkl s, ). As remarked earlier, this assumption holds for
problems of signals in added noise. Expanding the signal vector, s, in terms of its samples

permits Eq. 3. 23 to be written as

)

s ISN)M(x. I
k k_k (5. 19)

P_1(8p 89+
0x, |X

pk(sl, Sgren e sleN) =

x| X y)

Let us now sum both sides of Eq. 5. 19 over the first k-1 samples of the ith component,

Z Z pk(sl,s2,...,skISN):

C C. C.

i, n, i, n, i,n,

Z1 Zl Z1 pk_l(sl,sz,...,sleN)f(xklsk) (5. 20)
517%,0 S27%,0 Sk-1"%,0 1651 X _y)
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The sequential average likelihood ratio, ¢ (x lek 1), is independent of the summation over
the k-1 sample values of the signal so that the denominator may be removed from the sum-
mations. (xkl sk) is also independent of the summations and can be factored out. This means

that Eq. 5. 20 can be written

°17%,0 S
ci n ci n % n
( !S ) s 4 ] 1, i
*k 'k ‘
e o ), Yo ) Py_1(S1:8gr -+, SN) (5. 21)
101X 1) 817¢4 0 S97¢4 0 Sk-17%4, 0

The left hand side of Eq. 5. 21 is by definition of marginal probabilities

i, ni i, ni i, n,1
Y\ -
Z_c R ZC P81, 89, -8, [SN) = p, (s, ISN) (5. 22)
517%,0 ®27%,0 ®k-17%,0
Therefore Eq. 5.21 becomes
c, c, c,
1,n i,n, i,n,
x ls Z_ ) ZC e Z_C pk-l(sl’SZ""’Sk|SN)
51°¢ i,0 "2 7,0 "k-1"71,0
P, (s, ISN) = (5.23)
o(x i Xp_q)
As before, by definition of a joint probability, we can write
pk-l(sl’ Sgye - ,skISN) = pk—l(sl’ Soy- - ,sk_IISN)pk_l(sklsl, Sgre e Sy ps SN)
(5. 24)
Now considering generator processes, which can be expressed as a function g(skl S 10 SN),
we can write Eq. 5. 24 as
pk-l(sl’ Sgre - ,skiSN) = pk-l(sl’ Sgre - ,sk_llSN) (sk]sk 1,S N) (5. 25)

Inserting this expression into Eq. 5. 23 results in
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C. C, C.
i, n, i, n, 1,ni
1(x, Is)) Z_ PP} Py 1051 8q, .., 8, ¢ 1SN)g(s, Is, ;,SN)
Sl—C. 0 82=C. 0 Sk_1=c. 0
(S |SN): 1, 1, 1,
Pk 0(x, 1% )
k' k-1

(5. 26)

Since this equation involves finite summations, the order of summation can be interchanged.

Summing with respect to Si-1 first and factoring out g(sklsk_l, SN) from the summation

over the first k-2 samples of the signal, since it is independent of that summation, results

in

C. C. C. C.
i, n, i, n, i,n, i,n,
fxls) L alsyls, 8N ) >: }J_ P_1(S1:Sgr- -5, _11SN)
b (5. 1SN) = Sk-1"%, 0 517%,0 527%, 0 %k-27%, 0
Kk O =
00 X, p)

(5. 27)

Once more by definition of marginal probabilities, the summation in the numerator over the

first k-2 samples can be written as Py 1(sk_llSN). Therefore Eq. 5.27 can be written as

c,
L0
0(x, Is) D g(s, Is,_1,SNp, (s, ;ISN)
k-17%,0
p (s, ISN) = : (5.28)
g (kuXk_l)
Insertion of the generator process, g(skisk_l, SN), for the Sporadic-Poisson process results

in a reduction of terms under the summation since only certain transitions are permitted.

These properties were previously defined by Eqgs. 4.2 through 4. 5. Equation 5. 28 then takes

on three basic forms:

(l'Vi) [:pk_l(sk_fci, 0ISN) + pk_l(sk_ lzci, n, | SN;—|

2

pk(sk=ci’ 0 ISN) = P

X X y) (5. 29)
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v, E)k_ l(sk-lzci, 0 ISN) + pk—l(sk- lzci, niISI\ﬂf (xkl sk:ci, 1)

’ o(x, 1X )
k'"k-1 (5. 30)

— { —
pk(sk—ci, j SN) = -
a k-1

forj:2,3,...,ni

Xy

If we use the bi j(k) notation as defined by Eq. 5.16, Egs. 5.29, 5.30 and 5. 31 become

b

(1- Vi) [bi, O(k-l) + bi, ni(k-lil

q&m= (5. 32)

ﬂ(kuXk_l)
vy E)i’ 0(k—l) + bi, rli(k—lﬂ f(xkl Sk:Ci, 1)

b, (k) = (5. 33)
b 0(x 1X )
k' “k-1

b, . (k-1)f(x Is =c. )
b ;) = i,j-1 kK i) (5. 34)
4 (xlek_l)
for j = 2,3,...,ni

5.1. 2 Operation of the Adaptive Receiver. The basic equations of Realization I for

the Sporadic-Poisson Time Structure are summarized in Table 5. 1, These equations can be
interpreted by considering a simplified, illustrative example. Suppose there are two possible
components, C1 and Cz, each with three possible sample values; i.e., b= 2 and ng=ny = 3.

Table 5. 2 summarizes the receiver design equations for the example.
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TABLE 5.1

BASIC RECEIVER DESIGN EQUATIONS, SPORADIC-POISSON TIME STRUCTURE
REALIZATION I

Optimum Detection Output

02X [16:¢ (x, 1X ) (3.8)

k) kl)(k k-1

Sequential Average Likelihood Ratio

b
Y _ _ _ _
0(x lek 1) = “/:1 E)i,O(k 1) + bi, ni(k 1}[1 v+ Viﬁ(xklsk—ci, lﬂ
N
+sz,2 by joq(k-Dllxlsy =¢; ) (5. 18)

Classification - Component Identification and Position

(l-ui) [bi, O(k-l) + bi, ni(k— 1{]

b, (K = (5. 32)
L0 o X))

viE)i,O(k—l) + bi’ni(k—lﬂ (xklsk—c 1)

b,1 1(k) = (5. 33)
2(x klxk 1)
b, . ((k-1)(x Is, =c. .)
ij(k)= i,j-1 k "k i, (5. 34)
’ (kuXk 1)
for j=2,3,...,n

Classification - Component Identification

CISN Z b, (k) (5. 35)
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TABLE 5.2
ILLUSTRATIVE EXAMPLE OF THE BASIC EQUATIONS

SPORADIC-POISSON TIME STRUCTURE
REALIZATION I

Optimum Detection Output

0X) = 0X e 1% ) (3.8)

Sequential Average Likelihood Ratio

ﬂ(XkIXk_l) = E)l’ 0(k—l) + bl, 3(1«:-1} (l-vl) +&>1, 0(k—l) + bl, 3(1(-18 Vlﬂ(xki sk:cl’ 1)

+b, (k-1)¢(x, |s, =c

1,1 K!Sc=C1, 9 + b

. 2(k- 1) ﬁ(xkl S ¢y, 3)

+ E)z’ O(k—l) + b2, 3(k—1;:| (1-1/2) + |:b2’ O(k-l) + bz’ 3(k—lﬂ Vzﬁ(xkl sk=c2, 1)

+ b2’ 1(k—1)ﬂ(xk]sk=(:2’ 2) + bz, Z(k—l)ﬂ(xklsk:cz’ 3) (5. 36)
Classification - Component Identification and Position
[b (k-1) + b (k—lﬂ (1-v.)
b, (k)= =50 1,3 1 (5. 37)
1,0 (x, X, )
k k-1
[b (k-1) + b (k-lﬂv I(x, Is =c, )
b, (k) = 1,0 1,3 1 7k "k 1,1 (5. 38)
11 iz 1X )
' k-1
b, (k-1)L(x, s =c, )
b (g - ~L1 k' Sk 1,2 (5. 39)
1,2 Lx, 1%, )
k k-1
b, (k-1)2(x, s =c, .)
b, (K = 1,2 k'"k 71,3 (5. 40)
L3 (x, 1X, )
k' k-1
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b, (k) = (5. 41)
2,0
ﬁ(kuXk_l)
[b (k-1) + b (k-lzl v A(x, Is =c, )
by (9 - 2,0 2,3 2" ¥k S Cy o (5. 42)
’ 0(x, 1X )
k k-1
b, (k-1)¢(x, Is =c, o)
by (k) = —2L k k 2,2 (5. 43)
2,2 ((x,1X )
k' k-1
b, o(k-1)0(x, Is =c. .)
b. (k) = 2,2 k "k 72,3 (5. 44)
2,3 o(x, 1X )
k k-1
Classification - Component Identification
p(CTISN) = by o) + by 49 + by 4+ by 5 (5. 45)
2
pk(C ISN) = b, 0(k) +by (k) + by 5(K) + by 5(k) (5. 46)

3 y ’ i

Each term in the sum of Eq. 5.36 and each numerator of Eqs. 5. 37 through 5. 44 is
the product of three basic factors. One factor is a probability or combination of probabilities
of the bi, j(k- 1) type. These probabilities contain all past information relevant to the optimum
detection. The second factor is a probability associated with the generator process which is

Vi Vos l-ul, 1—1/2, or 1. The third factor is a likelihood ratio term, B(xkis = ¢, .). This

k™,
is the factor which extracts the proper new information from the unit observation, Xy In
addition, a normalizing factor, f(xk[Xk_l), appears in the denominator of Eqs. 5. 37 through

5.44. In Fig. 5.2, the sequential quantities that are calculated are represented on a time axis.

The bi j(k—l) terms relate to the time just prior to the kth observation. The probability

’

associated with the generator process is combined with the b, j(k) terms to obtain an

’

a priori probability about what will occur during the observation x These are combined

"
with a Q(xkl Sk:ci, j) term to get Q(Xk) and a new set of bi j(k) terms.

)
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"%, o(x)
bl’j(k—l) bi,j(k)
1 L [ L
) 1 1 1
Xk-1 *x Xet1

Fig. 5.2.

time

Sequential quantities, Sporadic-Poisson receiver, Realization L

In Fig. 5.3 a state diagram is shown for our illustrative example. Using this figure

as a reminder of the various possible component positions let us interpret each term in the

sum of Eq. 5.36. The term b1 0(k— 1) + b1 3(k- 1) is the probability after k-1 observations

) ’

k-1 k

Fig. 5. 3. Sporadic-Poisson process, illustrative example.
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1
that component C* has been selected but is either off, ¢i o Or at its last component sample,
)

Cl 3 at time tk—l' This is multiplied by the probability, l—vl, that the component will not

start at time tk under the condition component C1 has been selected. This is then multiplied

by the likelihood ratio of the kth observation if the component C1 had been selected but is off

at time tk' This likelihood ratio has the value one.

The interpretation of the second term in the sum of Eq. 5. 36 is that
[bl 0(k— 1) + b1 3(k— lﬂ y is the probability after k-1 observations that component C1 has been

selected and will start at time tk' This probability is multiplied by the likelihood ratio of the

kth observation if the first sample of the component Cl, which is ¢ is present at time t

1,1’
(k-1) is the probability after k-1 observations

K
In the third term of Eq. 5. 36, b1 1

that the first sample of component Cl, denoted by ¢y o Was present at time tk—l Also
hidden is a factor of one which is the probability that the second sample of component Cl,

occurs at time t, if the first sample of component Cl, CL 1 occurred at time t
b

€1, 2 k k-1
This is then multiplied by the likelihood ratio ﬁ(xk! Skzcl, 2), of the observation, X)- This is
the likelihood ratio of Sk had the second sample, Cl, 9 of component C1 occurred at time tk.
The interpretation of the fourth term of Eq. 5.36 is analagous to that of the third
term. The fifth through eighth terms refer to component C2, and their interpretation is

analagous to that of the first four terms. The reader will notice that terms of Eq. 5. 36

appear individually in the numerators of Eqs. 5. 37 through 5.44. The denominator, f(x, IX

k Tk-1

is a normalizing factor. All eight probabilities bi j(k) could be displayed as a classification

)

output, but it is more likely that the only information wanted is which of the two components
is presented. The component identification output, which can be displayed is given by
Egs. 5.45 and 5. 46 in Table 5. 2.
In Fig. 5.4 a block diagram of Realization I is shown for the general case. This
receiver operates sequentially in time, extracting and updating information after each

sample of the observation, x Two outputs are provided sequentially in time. One is the

K

logarithm of the likelihood ratio from time zero to time t,_, which is /nf(X the detection

k’ k)’
output. This output is used to decide presence or absence of a recurrence phenomenon in the
interval (0, tk). The other output is the classification output, pk(C1 ISN). This output provides

information, in the form of updated probabilities, as to which component has been recurrent

from time zero to time tk.

)?
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The summer stores a number which represents the logarithm of the likelihood ratio

of the observation X When the next observation, X is made, the possible component

k-1
waveform samples, Ci, it stored in fixed memory are used to form the likelihood ratio of the
kth observation for each of the possible components and component positions. These individual
likelihood ratios are weighted by the updated probabilities of the various components and
component positions which are stored in the temporary memory and which are the result of

combining initial knowledge and information from the observation, X This weighting is

k-1’
performed in the box labeled ﬂn(kuXk_ 1). The output of this box is added to ﬁnﬂ(Xk_l),

which is already in the summer to form Qnﬂ(Xk), the detection output over (0, tk). This output
is compared with a threshold to provide a yes-no decision.

Simultaneously, information from the observation, Xy, @8 provided at the output of
the average likelihood ratio box is combined with classification information from the observa-
tions, Xk-l’ in the probability updater. The probability updater performs the operations
specified by Egs. 5.32 through 5. 34. The updated probabilities, bi, j(k)’ replace bi, j(k—l)
in the temporary memory, and the receiver is ready to accept the k+1 observation. A
classification output could be taken directly from the temporary memory. It is more likely

that a display of the updated probabilities, p (CIISN), Eq. 5.35 in Table 5. 1, is wanted and
k

this can be obtained by summing bi j(k) over all j.

5.1.3 Other Receiver Realizations and the Use of Memory. In Section 5.1.1, a

realization of the optimum receiver for a sporadic-recurrent component is presented.
Although the receiver realization discussed here was obtained by formal manipulations of a
likelihood ratio equation, its nature is intuitively satisfying. It uses each observation, Xpo
to "learn' as much as possible which component is present. This information is stored in
the form of the bi, j(k) matrix in the temporary memory. This knowledge is kept current by
combining knowledge of the generator process, the information contained in all previous
observations, and information obtained in the kth observation. As time progresses, this

receiver "adapts' to the particular component waveshape that is recurrent, and it "adapts"

locally to position within a component.
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In this realization bi j(k— 1) must be kept up to date as each observation is taken.

H

These probabilities express up-to-date knowledge on which component is present as well as
component positional information. Although the receiver takes into account all the possible
time patterns of components, its memory need not store all of these patterns. Realization I
has a temporary memory which is continually updated and which has a finite size of i n
words. This finite memory is a primary practical feature of this realization. =

Realization I is not unique. In Appendix A, three other realizations of the optimum
receiver are presented. Realization II (see Appendix A. 1) is similar to Realization I except
for the fact that information about component identification and component position are
updated separately. Therefore, Realization II requires a finite-size temporary memory of

}t: n, words for component positional information and b words for component identifcation
i:’.:f:)rmation.

Another receiver realization is Realization III (see Appendix A, 2). This is a
receiver which has a channel for each of the b possible components. Each channel calculates
the likelihood ratio of the observation conditional to presence of the ith component and the
channel outputs are then weighted by the a priori probabilities, pO(CiISN), of the selection
of each of the components, and then summed. This receiver looks "less adaptive' since
pO(Ci[SN) is not explicitly updated at each step in time. i n, words of temporary memory

i=1
are needed to store component identification information and positional information and b

words to store ﬁ(Xk lCi) terms.

An important practical realization is Realization IV (see Appendix A.3). Itis a
b-channel receiver that appears to require the least number of computations of the four
realization presented. The basic design equations are summarized in Table 5.3 and a
block diagram is shown in Fig. 5.5. By comparing Table 5. 3 with Table 5. 1 one can see

the simplification in computations of Realization IV. In this realization a quantity
Qi ].(k) = ﬂ(Xk)bi j(k), instead of bi j(k), is stored in temporary memory for each possible
) ki ) b

component and component position. A finite-size memory of E ny words is needed to store
i=1

the Qi j(k) terms. The updating equations for the Qi j(k) terms are, however, simpler than

those required for the bi (k) terms in Realization I. Moreover, in Realization IV, the

likelihood ratio is calculated by simple addition of the Qi j(k) terms and the classification

output is obtained almost as simply.
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TABLE 5.3

BASIC RECEIVER DESIGN EQUATIONS, SPORADIC-POISSON TIME STRUCTURE
REALIZATION IV

Optimum Detection Output

. (A. 38)
1 j=0 I
Information Updating

Qo0 = [Q glkD + Qg 0] 1)

(A. 35)
Qi, l(k) = l:Qi, 0(k'1) + Qi, ni(k-IEI vl (Xklsk:ci’ 1) (A. 36)
Qi, J.(k) = Qi, j_1(k- 1)1/(ku sk=ci’ j)
(A.37)
for j=2,3,...,n
Classification - Component Identification and Position
Q. .(k
(k) = =l A4
Classification - Component Identification
n,
1
Q. .(k)
=0 i,]j
CISN Z b, ; K==~ (A. 46)
ﬂ(Xk)

Figures 5.6 and 5.7 show a more detailed block diagram of Realization IV for signals
in added white Gaussian noise. Figure 5.6 shows one channel of the first portion of the
receiver which computes ¢(X )pk(Ci!SN). Each channels only "looks' for the ith component
taking into account all possible time patterns of that component

Figure 5.7 shows how each
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of these channel outputs are combined to form the detection and classification outputs. This
realization uses the logarithm of Eqs. A. 35 through A. 37. New information obtained in the

unit observation, x, , is combined with information obtained from previous observations in the

k’
series of adders shown to the left of the 1 delays where 1 is the smallest possible time

shift on a component. The unit observation, Xy is first processed to determine how likely
it arose from the various possible positions of the ith component. This processing consists

of correlating x, with each of the possible positions that a component could be in and adding

k
bias terms, ﬁnvi - Ci, j2/ 2. These outputs are then applied to a series of adders, each
separated by a 1 delay. The outputs of these adders are the logarithms of the Qi, j(k) terms
which contain all the information about the likelihood of the jth position of the ith component
being present during the kth observation. These terms are summed over j giving the likelihood
that the ith component has been recurrent. As one can see from Eq. A. 37, the Qi, j(k) term

is obtained at time t, , and it is calculated from a similar quantity, Qi j(k- 1), at time t

Kk’ k-1
The £ delays provide the memory delay for this computation. The "loop' on the far left in
Fig. 5.6 calculates Qi, 0(k) + Qi, n.(k) along with its logarithm which is used to make the
computations specified by Egs. A.135 and A, 36.

The output, Q(Xkl Ci)pk(Ci]SN), becomes one of the inputs to the remainder of the

receiver shown in Fig. 5.7. The detection output, ¢nf(X, ), is obtained by summing the

"
terms, f(XkI Ci)pk(Ci |SN) of the b channels. The classification outputs are obtained by
taking logarithms of ﬂ(Xkl Ci)pk(CiISN) for each channel and subtracting the logarithm of the
detection output, Qnﬂ(Xk).

Figure 5. 8 shows another version of one of the input channels, which could be used
in place of the realization shown in Fig. 5.6. It is quite similar except it implements
Egs. A. 35 through A. 37 directly, rather than the logarithm of these equations. As a result
some of the adders must be replaced by multipliers.

The important feature in common to all four realizations is the fact that the size
of the temporary memory remains fixed and "slides' in time. This is of practical importance
not only for receiver design but also for receiver evaluation. A nonsequential realization
would have required a growing memory. Such a realization is impractical to build. A

receiver must be designed before it can be evaluated; the sequential or adaptive realizations

provide simpler expressions to work with.
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5.2 Optimum Adaptive Receiver Design, Synchronous-Poisson Time Structure

In this section an adaptive realization of the optimum receiver is presented for
detecting signals with a Synchronous-Poisson Time Structure. This time structure provides
interesting cases in that the amount of time uncertainty is between the periodic and sporadic
time processes. The uncertainty is in the exact component waveform transmitted and in the

component recurrence times associated with the Synchronous-Poisson Time Structure. One

of the b components is selected for transmission and the same component recurs throughout

a total observation, X Primarily for convenience and simplicity, it is assumed that all

K

components in the finite ensemble are of common duration and the possible starting times of
a component are known.
Due to the synchronous nature of the time structure, there is no positional uncertainty

of components. Therefore, the component samples can be combined into one state. Thus,

Ci’ 0= (Ci, 0’ Ci, 0 ’Ci, O) represents absence and Ci, 17 (ci T Ci, PERERE Ci, ni) represents

presence of the ith component. The probability of triggering a component, conditional to

’

selection of the ith component, is vy The state diagram for the ith component has been shown
in Fig. 4. 5.
The basic steps in the development of the receiver realization for detecting signals

with the Synchronous-Poisson Time Structure began with steps 1-3, given on page 35. In this
section the properties of the signal for the Synchronous-Poisson Time structure are combined

with Egs. 3.8, 3.22 and 3. 23 to obtain the adaptive receiver.

5.2.1 Synchronous-Poisson Time Structure, Realization I. In the Synchronous-

Poisson case, component position is known exactly, but whether a component is present or
not is uncertain. Therefore the receiver can operate sequentially in time blocks equal to a
component duration. In this section Xy is an ni—dimensional observation having the duration

of a component and Sk is an ni-dimensional segment of the signal, s = Sl, SZ’ e.. ’Sk’ which is
either the ith recurrence phenomenon with the component on, Ci P or the ith recurrence
phenomenon with the component off, Ci 0" With this change in the notation, the sequential

average likelihood ratio analagous to Eq. 5.2 is

0(x, 1%, ) = sésf(xk| s)p, _1(sISN) (5. 47)
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The signal ensemble space, S, can be partitioned into b disjoint subspaces, Si' Each S.1
subspace contains all those signals that might result from the ith component alone. This is
a result of the restriction that a given component, Cl, is selected and fixed at the beginning

of each long transmission. Thus, Eq. 5.47 can be written as

Y fxl9)p,_(sIC'sN)p (ClIsN) (5. 48)

b
oz, X ) =) «

ko k-1 i=1 seS;

i

Expanding the vector, s, into sample form, Eq. 5. 48 becomes
C, C. C. 1

i, 1 i, 1 i,
) ) 0x, 18,80, 8))

P

b
0x, IX ) =)
R = I

%0 szzci;;)'skzci, 0
D157 S0+ 8, 1C SN, (CIsN) (5. 49)
Since s is the receiver input if there were no noise,
(5. 50)

f(xkl Sl, SZ’ R ,Sk) = f(xklsk)

Due to the independence of the signal recurrence (see page 30), we write

i i i
P_1(Sq:Sy, - S ICLSN) = p_(8,,8,,...,8,_IC,,8N)p, (S, 1C",8N)  (5.51)

Substitution of Egs. 5.50 and 5. 51 into Eq. 5. 49 results in

L G G G
-y N Y i
(%1%, _q) = Lol o ZC g % 0(x, 18P, _1(S1,8,,...,8,_{1C",8N)
L 217,0%2771,0 Pk i, 0
(5. 52)

p,_,(S,/C',sNp, _(ClIsN)

Since we are dealing with finite sums, the order of summation can be interchanged. Re-

ordering the summations and factoring, Eq. 5.52 can be put in the form
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1
b , i, |
= 1 f 1
202, 1X, ) Z p_1(CI8N) ), (x,.18)p, (S, IC",SN)
i=1 S =C.
k 7i,0
& :
sZ=c S %c g Z:C Py 18189+, 8 41C,8N) (5. 53)
1774,0 72774,0 Tk-17i,0

where the term in brackets is equal to one. Therefore

ﬁ(xlek_ 1) '

il
T o

i _ ) i
. pk_l(C [ SN) E)(xkl Sk_ci, O)pk_ 1(Sk-ci, 0 IC", SN)

B B i
+ 4,18, =C; oy _4(8,=C; 41C ,SNﬂ (5. 54)

By definition of the signal generator process considered here, (Egs. 4.7 and 4. 8),
_ i 1 _ i _ : ;
Py l(sk_ci, 0IC ,SN) =1 v, and pk—l(sk Ci’ 1]C , SN) V. Also for zero energy signals in

added noise, ﬂ(xkl Sk:Ci 0) = 1. We can then put Eq. 5. 54 in its final form. 1

b

- i . -
0x, 1%, ) _gl P.1(C ISN)E i+ vl 18 =C lﬂ (5. 55)

It is also necessary to obtain equations that update which component is being

transmitted. The updating equation is

ﬁ(xkls)pk_l(sISN)

pk(slSN) = (3.23)

Q(xkl Xk- 1)

Using the definition of conditional probabilities, this equation can be written as

1An expression similar to Eq. 5. 55 with b = 1 (in which case pk_l(CllSN) = 1) arose from a

Synchronous-Poisson trigger process in the paper, ""A Sequential Test for Radar Detection
of Multiple Targets, " W. B. Kendall and I. S. Reed, IRE Trans. on Information Theory,
Vol. IT-9, January, 1963.
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. . 0(x, Is)p,_(sIC,sN)p, ,(ClIsN)
p(sIC!,sN)p (ClIsN) = k k-1 k-1 (5. 56)

] (Xkl Xk— 1)

Writing s in sample form and summing both sides of Eq. 5. 56 over all possible signals for

the ith component gives

‘i1 ‘%1 Sy1 0 S
1 . i
L 0(x, 18, _1(8,IC ,SN)S ZC Lo Z-c P ((SpSgr- 18, _{IC, SN
(ctisn—k 1.0 1=%1,0 °27%,0 "k-17%4,0
Hel } 0(x, 1X, )
k! Xk-1
(5. 57)

The bracketed terms on each side of Eq. 5. 57 are equal to one so that we have

_ _ i _ _ i
@(xklsk-ci’ O)pk—l(sk_ci, 0 |C",SN) + ﬁ(xkl Sk_ci, l)pk-l(sk_cidl C, SNEI

00x, 1 X, )

(5. 58)

The terms in brackets in the numerator of Eq. 5. 58 become, as before, 1—1/i + Vif(xkl Sk:Ci 1).

b4

The updating equation for component information is

. i
[1'“1 + (5 18,=Cy 1{] Py_1(CISN)

f(xle

pk(CilSN) = (5. 59)

k- 1)

Equations 5. 55 and 5. 59 are the basic equations for the adaptive realization. Defining the

component conditional sequential likelihood ratio as

iy _ -
ﬂ(kuXk_l, CH = l—yi + vif(XkISk—Ci’ 1) (5. 60)
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one can put Eq. 5. 55 into the form

b . .
_ i !
x, 1%, ) _i; Py_1(CISNI(x, X, _{,C) (5.61)
and Eq. 5.59 can be put in the form
i i
. p,_{(CTISN)/(x, IX, ., C)
p (ClIsN) = KL L (5. 62)
k 0x X )
k k-1

The basic receiver design equations for this realization are summarized in Table 5. 4.

TABLE 5.4
BASIC RECEIVER DESIGN EQUATIONS, SYNCHRONOQUS-POISSON TIME STRUCTURE

(COMMON COMPONENT DURATION)
REALIZATION I

Optimum Detection Output

E(Xk) = E(Xk_l)ﬂ(xk]Xk_ 1) (3.8)
Sequential Average Likelihood Ratio
b . .
0z 1%, ) = 1; p_1(CT 1SN (x, X 4, C) (5. 61)
Component Conditional Sequential Likelihood Ratio
(5. 60)

i —
L’(kuXk_l, C) = 1-1/i + l/iﬁ(xklsk—ci’ 1)

Classification - Component Identification

i i
ClISN((x, |X, 4, CY

01X, )

(
P-1 (5.62)

i _
pk(C |SN) =
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5.2.2 Operation of the Adaptive Receiver. Figure 5.9 is a block diagram of

Realization I for components in added white Gaussian noise. In this case

P
K i, 1 3

ﬂ(xlek=Ci’ 1) =e (5.63)
where N, the noise power in the receiver bandwidth, is one. The receiver input, X is
correlated with each possible component that could occur, and the bias Ci 1 Ci 1/ 2
subtracted. These outputs are then passed through a nonlinearity,

C, 1 C. 1
X+ C .- —h=- LI
i k i, 1 2
ﬂnﬂ(kuXk_l,C )= fn l—ui + ve (5. 64)

This nonlinearity depends on the trigger probability, Vi which is also the duty factor in the
Synchronous-Poisson Time Structure. This nonlinearity is called the "v nonlinearity." One

could write this equation in words as f(x, IX )= (1-Vi) (likelihood ratio of x, given the

k k-1 k

selection of the ith component but no component occurrence) + v, (likelihood ratio of Xy

given the selection of the ith component and component occurrence). Thus, the likelihood

ratio of the observation, x,, is computed as if a component occurred and this is ""watered

k’
down'' because of the recurrence uncertainty. Figure 5. 10 shows a plot of the v nonlinearity

for several values of v.

The outputs of these nonlinearities, ﬂ(xlek_l, Ci), are then weighted by updated
knowledge, Py . 1(CiISN), as to which component is being sent. This forms the sequential
average likelihood ratio, ﬂ(xlek_l), which is combined with Q(Xk_ 1) to provide the detection
output, { (Xk).

The receiver also updates pk_l(CiISN), the component information, to pk(CiISN) and
stores these updated probabilities in preparation for the next observation, These probabilities

can be read out to form a classification output.

5.2.3 Other Receiver Realizations and the Use of Memory. In Section5.2.1, a

realization of the optimum receiver for a synchronous-recurrent component is presented.

Realization I has a temporary memory which is continually updated and which has a finite
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size of b words. Although the receiver takes into account all the possible time patterns of
components, its memory need not store all of these patterns. This finite memory is a
primary practical feature of this realization.

Two other realizations of the optimum receiver are derived in Appendix B.
Realization III (see Appendix B. 1) is a b-channel receiver. The likelihood ratio of the
observation Xk conditional to presence of each of the b components is computed sequentially
in separate channels and the outputs are weighted by the a priori probabilities, po(Ci |SN),
of the selection of each of the components and then summed. In this receiver b words of
memory are needed to store the likelihood ratios, ﬂ(Xk] Ci).

Realization IV is an important practical receiver since it appears to be the simplest

(see Appendix B, 2). The basic design equations are summarized in Table 5. 5 and a block

diagram is shown in Fig. 5.11. This is a b-channel receiver. The ith channel correlates
TABLE 5.5

BASIC RECEIVER DESIGN EQUATIONS, SYNCHRONOUS-POISSON TIME STRUCTURE
REALIZATION IV

Optimum Detection Output

b
(X)= ) Q® (B. 19)
h 1
i=1
Information Updating
Qi(k) = Qi(k—l) E-vi + Viﬁ(xkiskzci, 1)] (B. 17)
Classification - Component Identification
; Q, (k)

the input with the ith component and subtracts a bias term c’.c'/2. This quantity is then
fed into a v nonlinearity to form Qi(k)' The Qi(k) terms are stored and accumulated for each
of the components by means of the channel adders and the T1 delays. These terms are

exponentiated, summed, and the logarithm formed to obtain the detection output. The
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classification output is obtained by subtracting ﬂnﬂ(Xk)

culating delays. By comparing Table 5. 5 with Table 5. 4 one can see the simplification in

from the output of each of the recir-

computation of Realization IV. In this realization b words of memory are required to store
Qi(k) = ﬂ(Xk)pk(CilSN) in temporary memory.

The receivers presented in Section 5. 2 are different realizations of the optimum
receiver. The particular realization of the optimum receiver chosen determines whether
the receiver "looks'' adaptive. Realization I has an adaptive feature in that component
information is updated. On the other hand, Realizations III and IV have a separate channel
for each possible component and the "learning' of which component is being sent is not an
obvious feature.

A problem in receiver design that has emerged when dealing with time uncertainty
and nonperiodic components is the problem of receiver complexity or memory. Since it is
uncertain whether a component will start or not, the receiver designer is presented with an
exponentially growing number of time patterns or signals. In the Synchronous-Poisson Time
Structure, the ensemble of possible signals grows like b2k where k is the index on time and
b is the number of components in the component ensemble. The implementation or simulation
of such a receiver designed on the basis of this growing ensemble can rapidly become imprac-
tical. On the other hand, the adaptive or sequential realizations presented have been designed
by describing useful signal ensembles indirectly in terms of components. The result is a
receiver design which utilizes a fixed size memory. The important reason for wanting
sequential or adaptive realizations is not their adaptive-looking nature, but the fact that this

is a way of realizing the optimum receiver with a fixed size memory.

5.3 Optimum Adaptive Receiver Design, Periodic Time Structure, Unknown Repetition

Frequency.

In this section an adaptive realization of the optimum receiver is presented for
detecting signals with a Periodic Time Structure. This is the most certain of the three time
structures considered and it differs from the sporadic and synchronous cases in that it is

learnable. One of b components is selected for transmission and the same component recurs

periodically throughout a total observation, Xk' The repetition frequency and start of the

period are initially unknown but fixed throughout a transmission.
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The development of the receiver in this section is similar to the development of
the receiver designed for the Sporadic-Poisson Time Structure (see Section 5.1). The
first three steps are given on page 35. In this section the properties of the signal for the
Periodic Time Structure are combined with Eqs. 3.8, 3.22, and 3. 23 to obtain the adaptive

receiver.

5.3.1 Periodic Time Structure, Unknown Repetition Frequency, Realization I. This

realization follows the development of the receiver for the Sporadic-Poisson Time Structure

given in Section 5. 1. 1 up to Eq. 5.12. That equation for the sequential average likelihood

ratio was
c, C.
i, n, i, n,
f(x, 1% ) Zl ZC fxls) L g(sk!sk 1SN p_q(s, _{ISN) (5. 12)
EL5% 0 Sk-17%,0
Recall that the signal properties are defined in terms of the generator process, g(s, |s SN),

k “k-1’

by Eqgs. 4.9, 4.10, and 4. 11. The possible states of a signal sample, s, are the possible

k’
component samples, < i fori=1,2,...,bandj=1,2,... 1. The number of samples, n;,
of a component can in general be variable so that b possible components can be defined to

represent b possible repetition frequencies. 0

)

is not an allowed state in the periodic case
since some portion of a component is always present. If the development in Section 5. 1. 1
up through Eq. 5. 12 is modified for the periodic case by summing over the allowed states,

. ,ci L an analagous equation becomes:

C. C.
b 1,ni 1,ni
(2 X =0 L !/(xkisk) ) glslsy 1SN py (s ISN)  (5.65)
i=1 s, =c, =c,
k i, 1 Sk-1 i,1

The properties of the generator process for the Periodic Time Structure are:

(sklsk T SN) =1 for Skzci,j Sk-lzci, i-1 for j=2,3,. N
(4.9)

(sklsk 1 SN) =1 for sk=ci’1 SK-17% n (4. 10)

g(s, Is SN) =0 otherwise (4. 11)

k k-1
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Using these properties and the notation of Eq. 5. 16, bi j(k) = pk(sk=ci jISN), one can write

Eq. 5.65 as

f(xkl Xk-l)

ERl=2

1 bi’ni(k—l)ﬁ(xk!sk:ci,l) + j;z b j.q(k-Dllx I =c, ) (5. 66)

This is the equation for the sequential average likelihood ratio.
The equations that update component identification and positional information are
obtained by following steps similar to those that lead to Egs. 5.32, 5.33 and 5. 34 for the

Sporadic-Poisson Time Structure. In the periodic case the sums are only over the states

ci, T Ci,Z’ e ’ci,ni' Thus Eq. 5.28 becomes
C.
i,n,
xls) ) Py_1(5,_1 /SN gl 1s, 1, SN)
Sk-1"%,1
p, (s, ISN) = : (5. 67)
Kk f(x 1X )
k k-1

Substituting the properties of the generator process (Egs. 4.9, 4. 10, and 4. 11) into Eq. 5.67

and using the notation bi J.(k) = pk(sk:ci jISN), one can write the component updating

equations as

bi, n.(k-l)f(xkl =4 1)
b (k) = : (5. 68)
’ ﬂ(kuXk_l)
b, . (k-1)0(x Is =c, .)
by () = Lol kK k Lj (5. 69)
’ 1(x 1X )
k™ k-1 for j=2,3,...,n,
where component identification information is obtained by forming
n,
i i
p (C'ISN) = ) b, .(K) (5. 70)
k =1 L]

The design equations for this realization are summarized in Table 5. 6.
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TABLE 5.6
BASIC RECEIVER DESIGN EQUATIONS, PERIODIC TIME STRUCTURE

UNKNOWN REPETITION FREQUENCY
REALIZATION I

Optimum Detection Output

0(x) = 1X,_Px X)) (3.8)

Sequential Average Likelihood Ratio

n
b i
Mz )X ) = 12:1 b ni(k-l)f (x5 =¢; ) + 2, by ;_y(k-D 00 ls=c; ) (5.66)
Classification - Component Identification and Position
by (k=D fxy Is=¢; o)
b, (k) = ! (5. 68)
’ f(kuXk_l)

b (k-1)#(x, Is, =c, .)

bi j(k) _ i,j-1 k'"k "i,j (5. 69)
’ ﬂ(xlek_l)
for j=2,3,...,n,
i
Classification - Component Identification
n,
i i
P, (C'ISN) = > b, (k) (5.170)
=1 L]

5.3.2 Operation of the Adaptive Receiver. In Realization I, the Periodic Time

Structure, the optimum receiver stores information obtained from the past observations, Xk-l’
and initial knowledge of the situation, in the form of probabilities, bi, .(k-1) (see Table 5. 6).
Since the interpretation of the terms bi, j(k-l) and f(xklskzci j) is similar to that given for

the Sporadic-Poisson Time Structure in Section 5. 1. 2 it will not be repeated. Note that in the
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periodic receiver there is no state, < o This is reflected in the absence of bi

b

O(k—l), l-ui

’

and vy terms in the receiver operations.

5.3.3 Other Receiver Realizations and the Use of Memory. In Realization I, com-

ponent identification and positional information are stored in a temporary memory as the

probabilities bi j_l(k- 1). These probabilities are updated after each unit observation, x
b ’

Z n, words of memory are needed to store these probabilities.

i=1

K

In Appendix C, three other realizations of the optimum receiver are presented. In
Realization II (Appendix C. 1) component identification and positional information are
updated separately. i n, words are required in a temporary memory to store component
positional informatimi:alnd b words to store component identification information.

In Realization III, there is a channel for each of the b possible components. Each
channel computes the likelihood ratio conditional to presence of the ith component and the
channel outputs are then weighted by the a priori probabilities of each of the possible
components that could occur. i n, words are needed to store component identification and
positional information and b wolxjc}s to store the Q(Xkl Ci) terms.

Realization IV (Appendix C. 3) is the simplest of the four realizations. These receiver

design equations are summarized in Table 5.7 and a block diagram is shown in Fig. 5. 12.

TABLE 5.7
BASIC RECEIVER DESIGN EQUATIONS, PERIODIC TIME STRUCTURE
UNKNOWN REPETITION FREQUENCY

REALIZATION IV

Optimum Detection Output

b
1) =2 L Qi (C.13)
i=1 j=1

Information Updating

Q10 = Q , (kD sl Isyeey o (€.11)

’
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Qi, j(k) = Qi, j—l(k_l)ﬂ(xklskzci, j) (C. 12)

Q, (k)
b, () = ~Ll (A. 44)
’ f(Xk)
Classification - Component Identification
n,
i
L QK
p(CTISN) = = (A. 45)
(X

Here the receiver updates the quantities Q.1 J.(k) = !Z(Xk)b. j(k) directly using Egs. C. 11 and

’ ’

C.12. From the Qi ].(k) terms the likelihood ratio can be calculated by simple addition.

b
Z n, words are required to store the Q, J.(k) terms just as in Realization I, However, by

i=1 ’

comparing Tables 5.6 and 5.7, it can be seen that the operations performed by Realization IV

are much simpler,

In all four receiver realizations for the Periodic Time Structure, the receiver
memory is finite. This result is not surprising here since this signal ensemble does not

grow with time.

5.4 Optimum Adaptive Receiver Design, Periodic Time Structure, Known Repetition Frequency

In this section an adaptive realization of the optimum receiver is presented for
detecting signals with a Periodic Time Structure in which the repetition frequency and the start
of the period are known. This is the usual classical periodic case. One of b components is
selected for transmission and the same component recurs periodically throughout a total
observation, Xk' In this case the observations can be processed in blocks of time equal to
a component duration. The notation used is the same as that used in the Synchronous-

Poisson Time Structure. In other words, X is an ni-dimensional observation having the



75

duration of a component and Sk is an ni—dimensional segment of the signal. The optimum
receiver is the same as that which would result if v, were set equal to one in Eq. B. 17,

Table 5.5. The equations for the receiver design are presented in Table 5. 8.

TABLE 5. 8
BASIC RECEIVER DESIGN EQUATIONS, PERIODIC TIME STRUCTURE
KNOWN REPETITION FREQUENCY, KNOWN START OF PERIOD

REALIZATION IV

Optimum Detection Output

b
1X) =) QK (B. 14)
. i
i=1
Information Updating
- - _cl 5
Qi(k) = Qi(k l)ﬁ(kuSk—C ) (5.71)
Classification - Component Identification
; QK
p(C ISN) = X, (B. 20)

Let us consider this receiver in more detail for the case of added white Gaussian

noise. In that case, for the noise power, N, equal to one,

CLL]

9(xkisk=ci) - Jk 2 (5.72)

and so

[X i _Cl_Cl_J
Q;(k) = Q(k-1) e ‘ ? (5.173)

But by repeated application of Eq. 5.73, Qi(k) can be written as
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Ql(k) = Qi(O) e (5.74)
and
i i ¢
b ['kczc +C- ) XJ
UX) = Zo Q,0) e = (5. 75)
1:

From this equation one can see that the observations themselves can first be added in
synchronous intervals and this sum correlated with each of the possible components.
When the component is known exactly, a monotone function of the likelihood ratio,

which is also optimum, is simply
; k
M(X)=C". ) x (5. 76)

In this case, the observations themselves may be simply accumulated and the sum correlated

with the known component, ch,

5.5 Comparison of Receivers for Synchronous-Poisson and Periodic Time Structures

It is interesting to compare the optimum receivers for the Synchronous-Poisson
and Periodic Time Structures when the repetition frequency is known. First, consider the
case of component known exactly (CKE) in added white Gaussian noise. A block diagram
of the optimum receiver for the Periodic Time Structure, obtained by setting b = 1 in the
equations of Table 5. 8, is shown in Fig. 5.13a. A realization of the optimum receiver for
the Synchronous-Poisson Time Structure, obtained by setting b = 1 in Table 5.5, is shown

in Fig. 5.13b.

In the periodic case, the adder and T1 delay recirculate the input waveshapes,

X{rXgy e e Xpe Recall that in this periodic case, X represents an input observation of 2WT1

samples. After the observation x, , the receiver has formed X HXgt. .. 4X and this average

k’ k

waveshape is correlated with the component.
The optimum receiver (see Fig. 5.13b) for the Synchronous-Poisson Time Structure

does not simply add the input waveshape in synchronous intervals., Instead, a more abstract
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quantity, a likelihood ratio, is recirculated. The observation, X is first correlated with the
known compounent waveshape, a bias term is subtracted, and this quautity is then fed into a
v nonlinearity, which is a function of the duty factor. The synchronous sum of such non-
linear functions of the input signal and noise waveshapes are stored.

Next, let us compare the optimum receivers for the Synchronous-Poisson and Periodic
Time Structures when the compornent is kuown statistically (CKS). A block diagram of the
receiver for the Periodic Time Structure was shown in Fig. 5. 12 and the receiver for the
Synchronous-Poisson Time Structure was shown in Fig. 5. 11. The receiver for the periodically
recurrent component is simpler in two respects; the number of recirculating delays and the
nonlinearities. In the periodic case, the observations are recirculated by means of a
single adder and a T1 delay. These outputs are fed into b parallel channels where they
are correlated with each of the possible components that could occur, exponentiated, and
summed in a final summer. In the receiver for the synchronous case, however, a likelihood
ratio, rather than an input signal plus noise waveshape, is circulated. The input observation
is correlated with each of the possible components, fed into a nonlinearity which depends on
the duty factor, v, and then stored and recirculated. These outputs are then summed to

form the detection output. Thus, the receiver for the periodic case is much simpler since

the input waveshape can be recirculated with a single adder and delay.

Ty
Delay
Tnput { Detection
Input)- C |
*k + + > »  (Input) —> Output

Fig. 5.13a. Optimum receiver, CKE, Periodic Time Structure
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T
"1
Delay
+
Input oLt v Detection
x » XL > =+ >
k Koniinsarity Cutput

Fig. 5.13Db. Optimum receiver, CKE, Synchronous-Poisson Time Structure

5.6 Summary of Chapter V

In this chapter optimum receiver designs have been developed to detect a recurrence
phenomenon in noise. The receivers are time varying in the sense that they are capable of
processing an increasingly longer observation and are capable of making a corresponding
optimum decision as to presence or absence of the recurrence phenomenon in that observation.
There is uncertainty in which component, out of a finite class of components, will be selected

and there is uncertainty in the recurrence times of a component. Three basic types of
recurrence-time uncertainty are considered; Sporadic-Poisson, Synchronous-Poisson, and
Periodic.

The approach used in designing the receiver has been to solve an over-all optimization
problem and then to realize this optimum receiver in a sequential manner that works on a
component basis. In other words, since the primary goal is detecting the recurrence

phenomenon during the observation, X, , the likelihood ratio of the observation, X, , is formed

Kk )
and put into an equivalent form in which component information is updated. Since the
receiver development starts with the likelihood ratio of the observation, Xk’ it is optimum.
We are assured that the operation of the receiver on a local component basis is correct since
the receiver design is a result of transforming this likelihood ratio into an equivalent form.
A contrasting method of attack would be to formulate the detection problem on the basis of
detecting a single component and to then combine these results in a manner that would result
in an optimum decision over the entire observation.

Providing the required amount of receiver memory is a basic difficulty which emerges

in the design of the optimum receiver for nonperiodic components. There are as many signals
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in the signal ensemble as there are components in the component ensemble multiplied by the
number of possible component time patterns. This is a fixed-size ensemble for all time for
components recurring with a Periodic Time Structure. However, for the Sporadic-Poisson
and Synchronous-Poisson Time Structures, the signal ensemble grows with time. If the
receivers are designed using classical terminology, they become too complex. To obtain
receivers with a fixed-size memory or receiver structure, the signal ensemble is described
indirectly in terms of components and the time structure. Other time structures besides the
three considered could be studied.

We have seen how the optimum receiver can be put into different forms. Different
aspects of the receiver operations are explicitly displayed by the particular realization
chosen. It is an interesting sidelight that sequential realizations, such as Realizations I
and II, often appear to work in an adaptive manner. These realizations display an explicit
updating of component information, giving them a ''learning' feature. On the other hand, in
Realizations III and IV, it is not so obvious that the receiver is learning the component
selected since the receiver does not explicitly work with component quantities. In any of
the realizations, classification information can be obtained regardless of whether the receiver
appears to use it or not.

The quantities stored in the receiver memory depend on the time structure of the
signal and the particular realization chosen. For the Sporadic-Poisson Time Structure,
component identification and local component positional information are stored and updated.
In Realization I this information is combined in the bi, j(k) matrix, 21 n, words are
required in a temporary memory to store this information. In Realiz_ation II, component
identification, pk(CilSN), and local %omponent positional information, b'i’ j(k)’ are stored
in separate temporary memories. 21 n, Wordsbof memory are needed for b'i, J.(k) and b
words for pk(CilSN) terms. In Rea};zation 111, 'Zlni words of temporary memory are needed
to store component identification and positionai_information and b words to store ﬂ(Xk! Ci)
terms. In Realization IV, il words of memory are needed to store Qi, j(k) terms.

For the Synchronouls_-Poisson Time Structure, only component identification information

must be stored since there is no uncertainty about component position. In Realization I this
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information is stored as pk(CIISN) and b words of temporary memory are required. In
Realizations III and IV, b branches are needed for each of the possible components.
For the Periodic Time Structure, unknown repetition frequency, component

identification and local positional information are stored in a temporary memory. In
Realization I this information is combined in the bi, j(k) matrix and iil n, words are needed to
store this information. In Realization II, component identification a_nd positional information
have been separated so that 51 ny words are needed to st%re positional information and b
words for identification info;—mation. In Realization III, Z n, words are used to store
component identification and positional information and b \1;v=olrds to store ﬁ(Xk ICi) terms.

In Realization IV, i ny words are used to store the Qi (k) terms. When the repetition

= '3

frequency is known 1;51 well as the start of the period, only b words of component identification
information must be stored.

The fixed-size memory or receiver structure of the adaptive realizations presented
in this chapter is important for two reasons. First, it is a necessary realization in terms
of providing a practical receiver implementation. The second interest is in regard to optimum
receiver performance. In order to examine the effects of time uncertainty on detectability
for the optimum receiver it is first necessary to design this receiver. The adaptive
realization provides a receiver that is more manageable, in many cases, and can therefore
be evaluated analytically or by simulation techniques with a digital computer, The much

simpler adaptive realizations enable us to study how time uncertainty affects the performance

of the optimum receiver, This is an area of study that begins in Chapter VIIL



CHAPTER VI

OPTIMUM RECEIVER DESIGN - SPECIAL CASES

In Chapter V the design of optimum receivers was carried through in rather

general terms. In this chapter several miscellaneous cases of receiver design will be

considered. (The reader who is interested in receiver performance and the effect of time

uncertainty can go to Chapter VII without loss of continuity.)

6.1 Finite Class of Periodic Equal Amplitude Pulses, Known Exactly Except for Repetition

Frequency.

Consider the problem of optimum detection of a periodic pulse sequence when the
pulse waveshape is known exactly but the repetition frequency can be one of a finite number
of values. This class of signals can be thought of as a finite class of periodically recurrent
components where each component has n, sample values. Each component is then of the
form Ci = (Ci, v 0,0,0,...,0) in which the number of component samples is equal to n,.

The various possible repetition frequencies are specified by stating the class of Iy values.

Any of the basic four realizations could of course be considered, but Realization IV
is the simplest and we will consider it. From Table 5.7 the information updating equations

are given by

Q. .k =Q (k-l)f(xkls

L - (C.11)
b b 1

K-S, 1)

)

Q .(k=Q

. i73._1(k—1)f(x Is :Ci,j)

k 'k

(C.12)
for j=2,3,...

81



82

But for signals in added white Gaussian noise

0(x, s :cij):lforj=2,3,...,ni (6. 1)
so Eq. C. 12 becomes

Q. (k) =Q

L i,j—l(k_l) for j= 2, 3,...,n,1 (6.2)

The detection output, the likelihood ratio of the observation Xk’ is given by

—

b
ﬁ(Xk):E QK (C. 13)

) gD (6. 3)

If all pulses are of equal amplitude "a'', then ¢, =2 for all i and Eq. 6.3 can be written as

)

b b i
) =S lsp =) @ (k=1 + ) ) Q (k1) (6.4)
i=1 i i=1 j=2
But
ot
]22 QgD = 1= G (D) (6. 5)
So Eq. 6.4 can be written
by
(X)) =b+|Ux I =a) -1 121 Q) ni(k-l) (6. 6)

From Eq. 6.6 one can see that the optimum receiver forms the likelihood ratio of the unit

observation, Xy given a pulse is present and subtracts from this the value one. This is
b b b

multiplied by the sum :51 Qi’ni(k-l), which is /(X ;) gl P 105 17¢. ni). So ), Q

has the interpretation of being the likelihood ratio of the observation Xk

=1 N
-1 times the probability

after taking the (k-1)st observation that the(k-1)st observation is the last sample value just

b
requires only the sum, Z Qi n (k-1),

i=1 i

prior to a pulse occurrence. Even though ﬂ(Xk)
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both component identification and positional information must be updated to keep the sum

up to date.

6.2 Unknown Duty Factor

The possibility of a component recurring with a duty factor which is one of b
possible duty factors has already been incorporated into the receiver design equations since
v; can have a different value for each possible component. For example, if the component is
known exactly (CKE) and the time structure is Synchronous-Poisson, Realization IV becomes

a single crosscorrelator that correlates the unit observation, x, , with the component C and

k’
subtracts the bias term C- C/2. This is then fed into b parallel v nonlinearities and these

outputs are summed. The block diagram of such a realization is shown in Fig. 6. 1.

6.3 Overlapping Recurrent Component Versus Nonoverlapping Recurrent Component,

Example

In previous sections, all signals considered have been assumed to be composed of
nonoverlapping recurrent components. Overlapping component examples can be formulated
in a similar manner. The receiver design, however, rapidly increases in complexity
since overlapping means many more states are now possible.

To illustrate an overlapping component case, consider a two-sample sporadically
recurrent component, Since there are only two samples to the component, there is only
one possible overlap position. This overlap situation is defined as the Ci, z state. The

state diagram for this case is presented in Fig. 6.2. The updating equations follow the same

general patterns as before. The results for Realization IV are

Qo0 = @ glicD + @, 2<k-1ﬂ (1-0) (6.7)
Qi, 1(k) = Eli’ O(k- 1)+ Qi, 2(k lﬂ viﬁ(xkl S, 1) (6.8)
Q0= [a sD v 0 z(k—lﬂ -yl lsze, ) (6.9

Q. (k= [Qi, 1(k—l) + Qi, Z(k— IEI ui,ﬂ(xklskzci Z) (6. 10)

)
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k-1 k

Fig. 6.2. Sporadic-Poisson process for ith component, overlapping components.

and the over-all likelihood ratio, ﬁ(Xk), becomes

,‘1 {l—?i’ O(k- 1) + Qi, 2(k—l)] El—ui) + viﬁ(xkl Sk:Ci, 1-):|

* [Qi, jleo1) + Q) (k- 1{‘ El_yi)ﬁ(xklskzci, o) + vl ls=c; zﬂ (6.11)

The state diagram for two nonoverlapping components is shown in Fig. 6.3. Now, the

o

(X)) =
I

updating equations for Realization IV become

Qi,O(k) = [Qi,o(k-l) + Qi, 2(1{-19 (1-v,) (6.12)
Qi, (0 = [Q.l, ole-1) + Qi, 2(k-1)]viﬁ(xkl sS4 N (6.13)
Qi,z(k) = Qi’ Jk-1ex, s, =c, 5) (6. 14)

b

and the detection output is

b
ﬁ(Xk) = gl{\éi’ O(k— 1) + Qi, 2(1<:~1ﬂ [1-1/i + Viﬁ(xklsk:ci’ lﬂ+ Qi, 1(k—l)f(xkl sk=ci’ 2)

(6. 15)
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k-1 k

i,0 i,0
C. C.
i, 1 i, 1
c. c.
1,2 132

Fig. 6. 3. Sporadic-Poisson process for ith component, nonoverlapping components,

Comparing Eqs. 6. 11 and 6. 15 it is apparent that if component overlap is possible
the receiver complexity increases. It is important to note, however, that the receiver can

still be realized with a fixed size memory when component overlap is possible.



CHAPTER VII

PERFORMANCE OF THE OPTIMUM ADAPTIVE RECEIVER

Chapters V and VI considered several optimum receiver designs. Although these
receivers are optimal for signal detection, the detection performance remains to be investi-
gated. Detection performance, which may be summarized by a receiver operating
characteristic (ROC), depends upon waveform uncertainties and noise of the particular
problem. The receiver designs in Chapter V are rather general. In this chapter the
performance of the optimum receiver is evaluated for several specific signals. Emphasis
will be placed on evaluation of some special, useful examples of the Synchronous-Poisson
and Periodic Time Structures. The evaluation of an optimum receiver for the detection of a
signal with a Synchronous-Poisson Time Structure is new work. The evaluation of the
receiver for a Periodic Time Structure signal is taken from the literature and is included for
comparison purposes (Ref. 1).

We are interested in the following items:

1. The operation of an adaptive receiver realization.
2. Detection performance of the optimum adaptive receiver for some

special cases.

3. Effect of component uncertainty on detectability.

4, Effect of component recurrence time uncertainty on detectability.

5. Comparison between the optimum adaptive receiver and the simple
energy detector.

6. Comparison of the performance of other suboptimum receivers
with the optimum receiver.
Before considering these items, let us briefly review the basic techniques of receiver

evaluation.

87
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7.1 Review of Receiver Evaluation

The detection performance of a receiver performance may be summarized on a

receiver operating characteristic (ROC). The ROC is a graphical means of portraying the
quality of detection in a situation involving signal, noise and a receiver (Refs. 1 and 19).
When noise is present, the detection process is always accompanied by the possibility of
making errors. In the basic decision problem there are two types of errors, false alarms and
misses, and two types of correct decisions, correct detection and correct rejection. A false
alarm is the result of responding "signal present' when the noise was actually the cause and
a miss is the result of responding "signal absent' when signal was indeed present. A correct
detection is the result of responding ''signal present' when signal was actually present, and
a correct rejection is the result of responding "signal absent'" when signal was indeed
absent. In a detection problem there are probabilities associated with each of these types of

errors and correct decisions. The notation used for these probabilities is:

P(AIN) probability of false alarm
P(BISN) probability of a miss
P(A|SN) probability of a correct detection
P(BIN) probability of a correct rejection
where
A is the response "'signal present”
B is the response ''signal absent"
SN the hypothesis "'signal mixed with noise"
N the hypothesis '"noise alone"

The probabilities of errors and correct decisions are not independent since

P(AISN) + P(BISN) = 1 (7.1)

and

P(AIN) + P(BIN) = 1 (7.2)

Therefore all of the available information can be conveyed by a plot of the relationship
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between the probability of detection, P(A|SN), and the probability of false alarm, P(A[N),

Such a plot is made by determining the probability of detection versus the probability of
false alarm for all possible threshold settings on the receiver output,
An ROC is called "normal" if it can be parameterized by the normal probability

distribution as follows:

N _ (u+d')2
PAISN) = —L— [ e 2 du (7.3)
2T -0
when
2
\ o
1 . 2
PAIN) = —— [ e du (7.4)
27T -0
If we use the notation
2
t _un
1
B(t) = | e 2 (7.5)
ST -0
then it becomes convenient to described the normal ROC as
P(AISN) = ®(A + d'), when P(AIN) = (1) (7.6)

Therefore, when the ROC is normal we can characterize the entire curve by the parameter,
d'. It is frequently convenient to plot the ROC on double probability paper which linearizes the
normal ROC curves.

It is interesting that for signals in added white Gaussian noise, the two extremes of
knowledge regarding the signal results in a normal ROC. If a signal of energy E is known
exactly and the noise power per cycle per second is No’ then the ROC for the optimum receiver

is normal and the parameter d' has the value

2E

N
0

d'=

(7.7)
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This case is a valuable reference case since it is an upper bound on possible detection per-
formance, It is sometimes convenient to plot the ROC as a function of the parameter d = (d')z.

The ROC's for the signal known exactly case for several values of the parameters d = (d')2 are

plotted in Fig. 7. 1.

When the parameters of the signal waveform are very uncertain and distributed
over wide ranges we are at the other extreme of knowledge regarding the signal. The
normal ROC is frequently a limiting curve in such situations. For example, when the
signal itself is a sample of white Gaussian noise of T seconds duration in a bandwidth W
cycles per second wide, and the signal-to-noise ratio is sufficiently small and WT is

sufficiently large, then d'is approximated by (Ref. 1)

where (%) ' is the input signal-to-noise ratio.
in

In general, in order to evaluate an optimum receiver, we need the distribution of
the likelihood ratio, or a monotone function of it, under both signal and noise and noise alone.
These density functions may be as shown in Fig. 7.2. For a given threshold setting, the
striped area under the £(s(t) + n(t)) curve is equal to P(A[SN) and the cross-hatched area under
the £(n(t)) curve is equal to P(AIN). An ROC is obtained by plotting P(AISN) versus P(AIN)
for all possible threshold settings. In practice, there is often considerable difficulty in
expressing analytically the probability density functions of the likelihood ratio under signal
and noise and noise alone. Although the appropriate integrals can be specified, their
evaluation frequently becomes difficult.

An alternative technique for receiver evaluation is one in which a digital computer
is used as an experimental tool. This is Monte Carlo technique. The receiver operations are
simulated on the digital computer and the signal mixed with noise and noise density functions
are sampled. Even though this technique is an approximate one, it is quite useful. However,
the usefulness of this method is limited by the number of trials that can be run feasibly on

the computer.
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ROC for signal known exactly in added white Gaussian noise.
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Probability l Threshold PrObjfblhty
of
I 2(s(t)+n(t))

£(n(t) I

Fig. 7.2. Probability density function of likelihood ratio under noise and signal
plus noise.

In this chapter, the evaluation of the receiver is done analytically where possible
and supplemented by results from the Monte Carlo method. Before obtaining the ROC for

several cases, we wish to display the operations of an adaptive receiver realization.

7.2 Simulation and Operations of an Adaptive Receiver Realization

Although the design of the optimum adaptive receiver realization has been developed
for a number of cases in previous chapters, the question remains as to how it operates.
Recall that the approach to adaptive receiver design has been an optimal one. The adaptive
design is a result of realizing the optimum receiver in a sequential manner. Although the
detection performance of various realizations of an optimum receiver are equivalent, the
receiver form and the operations performed by these receivers may appear quite different.
In this section we consider simulating an adaptive receiver on a digital computer for a
rather specific case to observe how the detection and classification outputs grow or decay
with time.

An optimum adaptive receiver realization was simulated for a signal having a
component ensemble of eight orthogonal components and a Synchronous-Poisson Time
Structure. Both a detection output, fnﬂ(Xk) and a classification output, pk(CilSN), were
printed out sequentially in time. The receiver simulated was that of Realization IV, whose
operations are summarized in Table 5.5. Of course, fnf(Xk) and pk(CiISN) are available
from any of the four realizations. The adaptive receiver simulation was programmed for

an IBM 7090 digital computer. Because of the large amount of output data, the digital
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results were converted to analog form in a digital-analog converter and the results printed

out on a pen recorder.

The component ensemble chosen consists of eight equal energy orthogonal components.

That is,
R
J c-cdwda=£€ s, . (7.9)
0 ¢ i,]
where
Ec is the component energy into 1 ohm
Cl(t) is the ith component waveform
T1 is the component duration

i, ] is the Dirac delta-function
K

The noise alone and signal plus noise density functions were approximated by a representative

set of 50 discrete probabilities. Details concerning the computer simulation techniques are

contained in Appendix D.

2E
One hundred runs were made. The triggering probability, v, was .1 and -1

N
0

A priori each of the eight possible components was assumed equally likely. Figures 7.3

through 7. 13 show the result of these runs. Twelve functions of time are displayed simul-

taneously for each run, The total duration of each of the runs plotted is 1000 times a
component duration. Let us define each of these functions. The function labeled ''signal
energy'' is the total accumulated signal energy from the start of transmission. Full scale
corresponds to 64 occurrences of the component. After 64 occurrences the pen is reset to
zero; i. e., the signal energy is plotted mod 64.

The third column, iabeled Log #(x(t) + n(t)), is the sequential detection output when
signal plus noise is present. The scaling of the detection output is from -5 to +9. This

output is the value of the logarithm of the likelihood ratio at each time, t , for the particular

k?
set of observations obtained up to that time.

The fourth through eleventh columns are classification outputs. The scaling is
from zero to a full scale of one. Each of the columns, labeled P(CIISN) fori=12,...,8

is an updated probability of presence of the ith component conditional to the fact that signal

plus noise (i. e., the recurrence phenomenon plus noise) is present.
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The final column, labeled MAX P(CiISN), is a function constructed from the
classification outputs. It is obtained bly picking the largest of the eight classification
outputs at each instant in time. The scaling goes from zero to one. The second column,
labeled Log f(n(t)), is the sequential detection output when noise alone is present to the
receiver input. (The initial negative pulse in each of the traces of detection and classification
outputs should be ignored.)
In runs O through 99, component C1 was the actual component transmitted and it
was recurrent in all of the runs. A wide variety of detection and classification responses
result. The reader can obtain an idea of the number of component arrivals by looking at the
signal energy plotted as a function of time in the first column.
Since each of the eight components was assumed equally likely at the start of a
transmission, the probabilities, P(CiISN), were each initially set at 1/8. In a majority
of runs, the classification output, P(CiISN), rises abruptly after a sufficient number of
components have recurred. Due to the noise and the fluctuations in total signal energy
from run to run, the time of rapid build-up of P(CiISN) varies, For instance, in runs 0,
3 and 71 the abrupt changes occur early whereas in a run such as 70 there is a considerable
delay before the receiver "learns' which component is being transmitted, On the other
hand, there are runs where no abrupt rise in the classification output, P(CiISN), occurs
even though C1 is being transmitted. Such cases are shown in runs 20, 26, 35, 59, 68 and 74.
There are, in fact, a few runs in which the receiver has "learned'' the wrong component.
This has happened in runs 64 and 92,
To see how the detection and classification outputs respond to noise alone, an
additional set of 27 runs were made. These runs are shown in Figs. 7. 14 through 7. 16
as runs 100 through 126. The labeling and scaling in these runs is the same as in the first
100 runs except an additional quantity, labeled "Selected i'", is plotted in the last column.

This is a plot of the component whose probability, P(CiISN), is a2 maximum at each instant
of time. The scaling on the "'Selected i"" column is quantized in unit steps from zero to eight.
In the noise alone runs of Figs. 7. 14 through 7. 16 the detection output, in general, drifts
downward. In general, the classification outputs, P(Ci[SN), give no consistent indication

of any particular component. There are occasions, such as runs 115 and 122, where the

receiver "learns' a component even though noise alone is present. The fact that the
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adaptive realization occasionally indicates the '"wrong' component is of course not a fault
of the adaptive realization but a reflection of the statistical nature of the noise and signal

uncertainties.

The 127 individual runs have been displayed in Figs. 7.3 through 7. 16 in order to
observe how an optimum receiver which has been realized by an adaptive realization operates.
Recall that an important motivation for the development of an optimum adaptive receiver is

the complex nature of the nonsequential realization (see Chapter V). In the problem simulated

here, there are eight possible components in the component ensemble and 21000 possible time

patterns of component occurrences., In terms of a formal nonsequential receiver realization,

1000

this would require the storage of a priori probabilities for 8 - 2 thousand-dimensional
signal vectors along with 8 - 21000 multipications of each of these probabilities by the

likelihood ratio conditional to each of the time patterns. Such a receiver realization is much
too complex to be simulated even on modern digital computers. Such a realization also
appears ''nonadaptive. " On the other hand, by going to the adaptive mode, the optimum
receiver has been simulated by storing eight probabilities, P(Ci!SN), and continuously
updating them as the observations come in. Although the primary reason for operating the
optimum receiver in the adaptive mode was to greatly reduce receiver complexity, the
resultant adaptive realization displays '"learning" features which are hidden in the nonsequential
mode of operation,

Although it is interesting to look at each of the runs of the adaptive receiver, the
variety of receiver outputs is too great to tell just how well the receiver is performing,
In order to evaluate the adaptive receiver properly we need to obtain the ROC (receiver
operating characteristic). This can be done by properly using the data from all 100 runs
to obtain the approximate ROC at several points. From these ROC's we can obtain a
meaningful estimate of the way the detectability builds in time. This will be deferred to

Section 7. 3. 2. 3.

7.3 Receiver Performance

In Section 7. 1 the basic problem of receiver evaluation in terms of the ROC was
reviewed. In Section 7.2 individual operating runs of an optimum adaptive receiver are

displayed. The ROC for a number of cases will be obtained in this section.
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It is necessary to determine the probability density function of the likelihood ratio
or a monotone function of it under both hypotheses in order to obtain the ROC for the optimum
receiver. Two approaches can be used to obtain these density functions -- an analytical
approach and an experimental approach. While the analytical approach can lead to "exact"
answers, considerable difficulties in performing the necessary integrations frequently result.
The experimental approach referred to is a Monte Carlo technique using the digital computer
as an experimental tool. In this approach it is necessary to represent the input noise and
signal plus noise density function by a discrete set of probabilities. It is also necessary to
make a sufficient number of runs in order to obtain confidence in the results. The total
number of runs, however, is limited by the cost of computing time.

The receiver evaluation is separated into three parts according to the time
structure; the Periodic, Synchronous-Poisson, and Sporadic-Poisson Time Structures. The
simplest time structure is the periodic structure, This type of time structure is characteristic
of many active detection and ranging systems working in a stable medium; the detection of
such signals has been well understood for a number of years. It is included here so
comparisons can be readily made. The next order of complexity in time structure is the
Synchronous-Poisson Time Structure. It is like the periodic case in that if a component
occurs, it starts only at synchronous times. That is, it starts only at integral multiples of
a component duration. If it were always triggered a periodic signal would be generated.
However, it is only triggered some small percentage of the time. The third order of time
structure complexity is the Sporadic-Poisson Time Structure. In this time structure a
component can start at times other than multiples of a component duration.

The component uncertainty is represented by a component ensemble consisting of
equal energy orthogonal components. There are M components of common duration Tl' The
—2{}41— so that 2WT, is at least M.

In this chapter a number of experimental ROC's have been obtained for the

minimum bandwidth must be

Synchronous-Poisson Time Structure. These will be compared with the known performance
for the Periodic Time Structure. Since uncertainty increases in going from the Periodic to
the Synchronous-Poisson to the Sporadic-Poisson Time Structure, and since performance
necessarily drops as uncertainty increases, the results of the Synchronous-Poisson case

can be used as an upper bound on the detection performance for the Sporadic-Poisson case.
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We are especially interested in cases where the duty factor is low and the input signal-to-noise
ratio is sufficiently small so that a receiver could not make a good decision on the basis
of a single component occurrence.

In the classical theory, the SKE (signal known exactly) is an important reference
case. For this case there is no uncertainty regarding the signal. In the recurrent component
problems we will use the CKE (component known exactly) for various time structures as a
basic reference case., Since component uncertainty creates a more difficult receiver
evaluation problem, it is useful to have the detection performance of the CKE case as an
upper bound.

7.3.1 Receiver Performance - Periodic Time Structure (Known Period, Known

Start).

7.3.1.1 CKE (Component Known Exactly). When a known component

recurs in time, and the period and starting time of the component are known, the signal is

known exactly. This is then an SKE (signal known exactly) case and the detectability is

2Ec
d=k N (7. 10)
0
where
k is the number of components observed
Ec is the energy of a single component of duration T1
N0 is the noise power per unit bandwidth

Since k is a measure of time, this equation shows that d increases linearly with time.

7.3.1.2 CKS (component known statistically), One of M Orthogonal

Components. This is a case in which there is uncertainty about the component, but the
period and start of the component are known. This is one of M orthogonal signals, and one
can use the results in the literature to obtain the detectability, d (Ref. 1). At time te the
total signal energy is kEc and the detectability is

1 1 2E,
d=fn 1_V +M_ exp k—N-O— (7.11)

where M is the number of orthogonal components in the component ensemble. By varying

M an idea of the effect of component uncertainty on detectability can be obtained.
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7.3.1.3 Performance of the Energy Detector. A very simple detector

which is not optimum is the power or energy detector. It is interesting to compare the
optimum receiver to it, in order to see how much performance is gained by the more
complex optimum receiver. For small signal-to-noise ratios, the performance of the

energy detector is (see Appendix E)

™\ N (7. 12)

7.3.1.4 Effect of Component Uncertainty. The effect of component

uncertainty is shown in Fig. 7.17. Using Egs. 7.10 and 7. 11, the detectability is plotted as

a function of time for no component uncertainty, (CKE), and two degrees of uncertainty,
(CKS, one of eight and one of 100 orthogonal components). There is no uncertainty in the
time structure since this is a periodic case in which the period and start of the component is
known. The detectability for the CKE case rises linearly with time. There is a threshold
effect for the two CKS cases plotted. The slope of the detectability curves for CKS
approaches the slope of the CKE curve after the receiver has obtained sufficient evidence that
a particular component has been transmitted. The effect of component uncertainty is a
rather mild function of M in that the vertical displacement of the CKS from the CKE curve

is {nM for large processing times. If one compares the detectability of the CKE and CKS
case, the ratio eventually approaches unity. In either case, the CKE curve provides a useful
upper bound on detectability.

7.3.1.5 Performance of a Receiver That Does Not Utilize Repeat-

ability of a Component. The optimum receiver for M orthogonal components, whose

performance is given by Eq. 7.11, would look as though it "learned' which component is
being sent if it had been realized with an adaptive realization. Let us now consider the
performance of a suboptimum receiver that is optimum for a component duration but which
does not utilize what it has "learned' about the component to process subsequent information.
In other words, at the start of each occurrence of the periodic component the receiver
anticipates one of M orthogonal components and it can use no component information obtain

from the previous observations. The detectability for each interval T1 (a component
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duration) is then

2E
fn 1—L +—1— exp——-g——
M M No

and the detectability at time tk is given by

1 1 2Ec
d=Xk¢n 1-T+ﬁ—eXp_N—o_ (7. 13)

The performance equation of this suboptimum receiver differs from that of the optimum

receiver in the argument of the exponential. In Eq. 7. 13 the argument of the exponential is
2Ec

NO ’
The variable k, representing time, is outside of the logarithm and so the detectability

simply a quantity associated with a time interval equal to a component duration.
eventually rises linearly with time although locally there are exponential segments. In the
case of the optimum receiver, the time variable, k, appears in the exponential of Eq. 7. 11
which gives rise to the knee in the detectability curve for the optimum receiver. A
comparison of the detectability of the optimum receiver, which makes use of what has been
"learned' about the component sent, with the suboptimum receiver, which does not, is

shown in Fig. 7.18.

7.3.1.6 Comparison of the Optimum Receiver with the Energy Detector.

In Fig. 7.19 the performance of the optimum receiver for one of eight orthognal components
is compared with the performance of the energy detector. Once past the "threshold, " the

detectability of the optimum receiver increases rapidly over the energy detector.

7.3.2 Receiver Performance, Synchronous-Poisson Time Structure, (Common

Component Duration). In the previous section receiver performance was obtained for detecting

a component generated by a periodic triggering process. In this section, the Synchronous-
Poisson triggering process is considered. That is, the probability that a component will
occur in a synchronous interval is v, the probability that it will not occur is 1-y, and the
occurrences are independent from one interval to another. In the Synchronous-Poisson

Time Structure v is also the duty factor and the average signal energy in t, seconds is vkEc.

k

Most of the ROC curves presented in this section were obtained by using the

digital computer as an experimental tool. This is an approximate but useful technique. The
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performance of the optimum receiver for CKE will occupy much of this section. Comparing
this performance with the performance where the occurrence times of the component are
known exactly shows the effect of the Synchronous-Poisson Time Structure on detectability.
Also, the CKE case puts an upper bound on performance when there is component uncertainty.

7.3.2.1 CKE (Component Known Exactly). When the component is

known exactly and the time structure is Synchronous-Poisson, the optimum receiver cross-
correlates the input observation with the component waveform and subtracts a bias. This is
fed into a "'v nonlinearity " and its output integrated. A block diagram of this receiver was
shown in Fig, 5.12b. The performance of the optimum receiver for the case of a component

known exactly was experimentally determined on the digital computer for values of v (duty
2Ec

N

0

factor) and shown in Table 7. 1. For each set of parameters, 500 simulation runs

TABLE 7.1

VALUES OF PARAMETERS RUN
CKE, SYNCHRONOUS-POISSON TIME STRUCTURE

2E

. b

o
. 0125 1
. 0707 2
. 0707 4
1 4

1 .02
.1 1

1 1.3
1 2
1 4
. 1414 2
. 1414 4
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were made on the digital computer to determine the ROC. The duration of a run depended on
2E
the particular set of parameters. For example, for v = .1 and N—C =1, a run lasted 1000
0

times a component duration. The probability distribution of the optimum receiver output (the
likelihood ratio) was obtained for several points in time under both hyptheses, SN and N, Time
is indexed by k, the number of synchronous intervals. From the probability distributions of the
receiver output the ROC was obtained. A normal approximation to the data points was made.
Further details on the computer simulation are discussed in Appendix D.

The ROC's for the parameters listed in Table 7. 1 are presented in Figs. 7. 20 through
7.30. For a given set of parameters, v and ZNEC , one can see from the ROC's how

0
detectability builds in time as k increases. It is easier to show this effect if we read the ROC

along the negative diagonal (i. e., read the ROC where the probability of each of the two
possible types of errors are equal) and plot this detectability, d, as a function of time. This

has been done in Figs. 7. 31 through 7. 33 for the parameters listed in Table 7.1, except for

2E
v =.,0125 and N € - 1. From these curves one can see that detectability is nearly a linear
0
function of time. In Fig. 7. 31 detectability, d, is plotted as a function of time for v = .1
2E 2E
and N €= .02, 1, 1,3, 2, and 4. As N increases, the slope of the curves increase, as
o 0

one would expect, In Figs. 7.32 and 7. 33 detectability is plotted versus time with the duty
factor, v, as a parameter. These curves are also nearly linear and increase in slope as the
duty factor increases. Using this data, the effect of the Synchronous-Poisson Time Structure
and component uncertainty on detectability will be investigated in subsequent sections.

7.3.2.2 CKS (One of Eight Orthogonal Components). ROC curves are
2E

plotted in Fig. 7. 34 for the case of one of eight orthogonal components for v =, 1,
and k = 100, 250, 500, 750, and 1000. The data for these ROC curves was obtained from the
receiver simulation displayed in Section 7.2. These ROC's were obtained from 100 runs
rather than the 500 runs for the ROC's of the CKE case.

7.3.2.3 Effect of Component Uncertainty. A preliminary idea of the

effect of component uncertainty on receiver performance for the Synchronous-Poisson Time
2Ec
No

This comparison is made in Fig, 7. 35 in which the detectability is plotted as a function of time.

Structure is obtained by comparing the CKE and CKS curves for v = . 1, =1,

The CKS curve exhibits a threshold effect. After approximately k = 100, the detectability
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rises almost linearly. The slow rise in d, below k = 100, occurs during the time when the
receiver is "learning' which component is being sent. The effect of component uncertainty

on receiver performance appears to be relatively small once a sufficient processing time

has elapsed. There is undoubtedly a tradeoff between component uncertainty and the time it
takes for detectability to reach a constant slope. These effects are similar to those observed
in the periodic case shown in Fig. 7.17. The tilt in the ROC curves for high k values and the
fact that the slope of the CKS curve in Fig. 7. 35 does not quite approach the slope for the CKE
curve may be due to the smaller number of runs (100) used for the CKS data as compared to
the 500 runs used for the CKE curves. This analysis is only the start of a study of the effect

of component uncertainty on detectability.

7.3.2.4 Effect of the Synchronous-Poisson Time Structure on

Detectability. The CKE is an important case. The performance of the optimum receiver,
when the component is known exactly, putsan upper bound on attainable performance when
there is initial component uncertainty. In other words, the performance of the optimum
adaptive receiver designed for a relatively known component can never exceed the performance
of the optimum receiver designed for a component known exactly even after the adaptive
receiver has '"learned' which component is being sent. Even then, the receiver is still

faced with uncertain component arrival times. We now wish to investigate the effect of the
uncertainty in component arrival times on the detection performance of the optimum receiver.
To do this we will need to know the performance of an optimum receiver had the arrival times
been known exactly.

When the component and arrival times are known exactly, the optimum receiver is
one which gates on only when a component is known to occur, and at those times crosscor-
relates the input observation with the component waveform and subtracts a bias term
proportional to the component energy. These outputs are then integrated to form the detection
output, Although the signal is known exactly in any given transmission, the number of
components that occur in an interval, (0, tk) varies from one transmission to the next. In
fact, the number of components that occur is described by the binomial distribution. The
detection performance is then a performance averaged over the various number of components

that could occur.
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2E
This case was simulated on the digital computer for v = .1 and N €= 1, 2,4, and
o

the resulting ROC's are plotted in Figs. 7. 36 through 7. 38, The detectability, d, is read off

these curves along the negative diagonal and plotted as a function of time. This is shown in

2E
Fig. 7.39 for v = .1, and N_C =1, 2, and 4.
[e]

The average number of components that occur in the interval (0, tk) is vk. If the
actual number of components that occurred on each transmission were equal to the average

number, the detectability would be given simply by

2E
c
N
0

d=1rk

(7. 14)

This analytical approximation is plotted in Fig. 7. 39 along with the experimental curve.
Both the analytical equation and the curve that results from the experimental runs are

approximations to the true curve. The agreement between the two approximations is best
2E

for _N_c =1, The simplicity of Eq. 7. 14 makes it a useful rule of thumb equation for the
o

performance of a receiver which knows the component arrival times exactly.
The analytical equation for detectability for the CKE, known arrival times, case is

compared with the detectability for the CKE, Synchronous-Poisson Time Structure in Fig, 7. 40.
2E
These performance curves are shown for y = . 1 and T\IE =1,2,4, The difference in the
0

detection performance is due to the uncertain component arrival times. This shows that
even when the component is known exactly, a fairly high price must be paid in the detectability

by even the optimum receiver when the recurrence times of the component are this uncertain,
2E

N
(0]

increased 6. 85 times that required if the compouient recurrence times are known exactly.
2E 2E
Nc = 2, it is 5.7 times longer and for —=< = 4 it is about 3. 4 times longer., Thus,

N
it is at low component signal-to-noise ratios where component recurrence time uncertainties

For example, when = 1, for the same detectability, signal processing time must be

For
o 0

affect detectability the greatest.
2E

Figure 7. 41 shows the same comparison for N € = 2, and v = .0707, .1, and . 1414,
0
For v = .0707, anincrease in processing time of about 6. 4 times longer is required, in order

to attain the same detectability, than would be required if the component recurrence times
were known exactly. For v =.1, itis 5.67 and for v = . 1414 it is 4. 74. These curves
indicate that component recurrence time uncertainty affects detectability the most at low

duty factors.
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In general, it can be seen that the effect of Synchronous-Poisson time uncertainty on
2E
(¢
N
0
here. Component recurrence time uncertainty, of the Synchronous-Poisson Time Structure,

detectability is substantial for the range of values of duty factor, v, and considered

degrades performance the most at low component signal-to-noise ratios and low duty factors.

7.3.2.5 Comparison of the Performance of the Optimum Receiver with

the Energy Detector (One of Eight Orthogonal Components). The optimum adaptive receiver

has already been discussed for the case of one of eight orthogonal components (see Section 7. 2).
It uses a temporary memory for storing probabilities of each of the eight components and
continually updates these probabilities with new information obtained in subsequent observations.
On the other hand, the energy detector has one square-law nonlinearity followed by an
integrator. The energy detector also has no classification capability. It is interesting to

see how the detection performance of such a limited memory receiver compares with the
performance of the optimum receiver. The performance of the energy detector for the

Synchronous-Poisson time uncertainty signals has been derived in Appendix E for one of M

2E
orthogonal components, and for small —N—C ; it is
0
u2k 2Ec ’
d-= T No (7. 15)

The performance of the energy detector is degraded by a factor of vz which is the duty
factor squared, and by the component uncertainty, expressed by M. Figure 7.42 is a
comparison of the detectability of the optimum receiver and the energy detector. After
about k = 100, the detectability of the optimum receiver increases rapidly over the energy

detector. This shows the value of the optimal use of the receiver memory.

7.3.2.6 Effect of the "v Nonlinearity" On Receiver Performance.

When the design of the optimum receiver for the Synchronous-Poisson Time Structure was
compared with the optimum receiver for the Periodic Time Structure, many striking
similarities were found (see Section 5. 4). In fact, the primary difference was the presence
of a "v nonlinearity" in the receiver designed for the Synchronous-Poisson Time Structure
C-C

(see Fig. 5.13Db). In the optimum receiver for the Periodic Time Structure, X, - C- 5
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was circulated through the delay forming

Since this can be written as

X, (7. 16)

one can see that for the periodic case the observations themselves could be simply added in
k

synchronous intervals and this sum, Z X correlated with the component C. In the optimum
receiver for the Synchronous—Poissorll-’ll‘ime Structure, however, the observations must first
be correlated with the component, passed through a v nonlinearity and then summed. A
natural question arises as to how important this nonlinearity is. Since the input to the
nonlinearity is a random variable, more than just the shape of the nonlinearity must be
examined. In this section the effect on detectability of the v nonlinearity will be studied by
evaluating the detection performances of two receivers. These two receivers are: (1) the
optimum receiver for CKE, Synchronous-Poisson Time Structure, (Fig. 5. 13b) and (2)

a suboptimum receiver for the CKE, Synchronous-Poisson Time Structure (Fig. 5. 13a).
The first receiver is optimum and includes the v nonlinearity and the second receiver (which
is suboptimum for the synchronous case but happens to be optimum for the periodic case)
does not have a nonlinearity. The optimum receiver has already been evaluated using

Monte Carlo techniques. The suboptimum receiver has been evaluated analytically and the

derivation of this result is presented in Appendix F. The performance of this suboptimum

receiver is

2E
d=V2k NC

[0}

(7.17)

The performance of this receiver is affected by v squared. One v accounts for the fact that
signal energy is reduced by v and the other v accounts for the uncertainty in recurrence times
of components.

In Figs. 7.43 through 7. 45 the performance of the optimum and suboptimum receivers

are compared. The performance curves for the optimum receiver are obtained from Monte
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Carlo runs (see Figs. 7.20 through 7. 30), and the performance of the suboptimum receiver

is given by Eq. 7.17. Let us discuss each of these three figures. In Fig. 7.43 detectability

2E
, N—C =1, 2, and 4. The increased

o
processing time necessary for the suboptimum receiver to reach the same level of detection

vs. time is plotted for the two receivers for v=.1

performance as the optimum receiver can be determined by comparing the performance of
the two receivers at a constant d. The ratio of optimum receiver processing time to sub-

optimum receiver processing time required to reach the same detectability is:

2EC Ratio of optimum to
N suboptimum receiver
o} processing time.
1 1, 46
2 1,76
4 2,25
2E
This data shows that the importance of the v nonlinearity increases as T increases.
o
In Fig. 7. 44 the performance of the optimum and suboptimum receivers are
2E
plotted for Nc =2 and v =,0707, .1, and . 1414, In Fig. 7. 45 similar data is presented

2E 0

Nc =4 and v =.0707, .1, . 1414, and.2. The ratio of processing times required by
o}

the suboptimum and optimum receivers to reach the same detectability is plotted in Figs.

for

7.46 and 7. 47, The ratio of processing times for v = 1 is one since then the two receivers
are identical, It is difficult to obtain data for very low values of v because of the longer runs
required on the digital computer. Figures 7,46 and 7. 47 show that the importance of the v
nonlinearity increases as the duty factor, v, decreases.

In conclusion, the importance of the v nonlinearity in the ontimum receiver increases
2E

N

c .
increases and the duty factor decreases.
0

as
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7.4 Summary

In this chapter an adaptive receiver realization was simulated on a digital computer
for one of eight orthogonal components, Synchronous-Poisson Time Structure., Individual
runs of the detection and classification outputs as a function of time were displayed to illustrate
how such a receiver operates. However, it is difficult to judge receiver performance from

the individual runs.

The performance of the optimum receiver for a CKE, Synchronous-Poisson Time

Structure was evaluated experimentally on the digital computer for various values of the

2E

__N_c , and k (time). The detectability builds up in time in
o

a nearly linear fashion. The signal detectability is reduced when the arrival times are
2EC

N
o
required to reach a specified detectability is 6. 85 times longer than would be required if

parameters v (duty factor),

uncertain, For example, for = 1 and a duty factor of 10%, the processing time
the component recurrence times were known exactly, This extra required processing time
increases as component signal-to-noise ratio and duty factor decrease.

By comparing the detectability for one of eight orthogonal components with the CKE
case, it was found that component uncertainty affects detectability in a rather mild manner
after sufficient processing time has elapsed. This effect is similar to that which occurs
when the component recurs periodically. The performance of the optimum receiver for one
of eight orthogonal components was compared with the energy detector to show the value of

the optimal use of the receiver memory.

The importance of the v nonlinearity in the optimum receiver for the CKE, Synchronous-
Poisson Time Structure was investigated by evaluating a suboptimum receiver which does not
contain the v nonlinearity. It was found that the importance of the v nonlinearity increases as

2E

W_c increases and the duty factor decreases.
o



CHAPTER VIII

SUMMARY

8.1 Conclusions

An exciting new area of research is the application of adaptive processing techniques
to the problem of detecting signals in noise. Adaptive techniques have been considered by
several researchers in regard to detecting an unknown, but fixed, waveform that recurs
randomly in time. For such a detection situation it seems quite natural to postulate an
adaptive device to "learn' this waveform in order to aid the detection process. However,

a basic contribution of this study has been to show how the theory of signal detectability can
be extended to include techniques of optimum receiver design for problems of this type.

Most past work in detection theory considers signals whose time structure is
periodic. In the usual radar problem, the time structure is basically periodic of known
repetition frequency but unknown start of the period and parameters such as amplitude are
assumed unknown. A significant difference in this study is in the consideration of the
detection of signals in noise in which the time structure is nonperiodic.

A rather general problem is considered to which adaptive techniques have been
applied by others. A fixed waveform, called a component, is initially uncertain but
learnable. One of b components is selected prior to the start of transmission and the
same component recurs at uncertain times which are unlearnable. The receiver must be
capable of detecting such a recurrence phenomenon in noise. This problem is formulated as
an over-all optimization problem in detection theory rather than as a problem in which an
adaptive receiver is postulated. Detection theory provides a mathematical model in which
initial knowledge about component and recurrence time uncertainties are expressed in terms
of a priori probabilities. The component is uncertain in the sense that one of a finite
number of b components is selected for transmission. The recurrence-time uncertainties

studied are of three basic types: Periodic, Synchronous-Poisson, and a Sporadic-Poisson

153
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Time Structure. The basic philosophy is to design an optimum receiver which makes the
best decision as to presence or absence of the recurrence phenomenon in the entire

observation, X, , and to realize this optimum receiver with an equivalent adaptive realization.

k)

From detection theory it is known that the optimum receiver forms the likelihood

ratio, ¢(X,), of that observation. If the receiver is to run in time, it must keep forming

k)!

the likelihood ratio of the entire observation as k increases. In Chapter III it was shown

how this optimum receiver could be realized in an alternate equivalent form. This is a form

in which the likelihood ratio of the observation, Xk

operations performed by the sequential and nonsequential receivers appear quite different

, is realized in a sequential manner. The

although the receivers are equivalent for detection purposes. The sequential receiver

is called an adaptive realization because of the explicit manner in which it updates knowledge
of the situation. A classification output, which is a set of updated probabilities, can be
conveniently made available.

A basic difficulty in receiver design emerges when considering signals with a
nonperiodic time structure which does not appear in the classical periodic cases. This is
the problem of providing sufficient receiver memory to store probabilities of signals in an
ensemble that grows rapidly in time. To design a practical optimum receiver, it was found
necessary to develop an indirect description of the signal ensemble. In an indirect description,
the signal ensemble is described in terms of a component ensemble and a time structure.
Optimum adaptive receivers were designed for the Sporadic-Poisson, Synchronous-Poisson,
and Periodic Time Structures using this technique and the sequential realization.

The proper use and updating of the contents of the temporary memory for the
adaptive realizations are specified by the design procedure. When the time structure
is periodic, the starting times of the component are known, and the possible components
are of common duration, the temporary memory of the optimum receiver stores and sums the
input waveshape to the receiver. If the period is unknown or if the time structure is
Synchronous-Poisson, then the temporary memory stores a more abstract quantity such as
an updated probability of each possible period or component. Finally, in the Sporadic-
Poisson Time Structure, the adaptive realization stores and continually updates component
identification and local component positional information in its temporary memory. The

updating processes have been formalized and presented.
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An adaptive receiver realization was simulated on the digital computer, and its
operation was displayed for a number of runs. These displays show the "adaptive' nature of
this type of realization. However, it was found difficult to judge receiver performance from
any single run. Instead, performance is presented in terms of the ROC (receiver operating
characteristic).

This study also contributes to the understanding of the effect of time uncertainty on
detectability. Since the adaptive realization provides a receiver of manageable form, it
becomes feasible to evaluate its performance. Evaluation of the performance of the optimum
receiver for a particular time structure then sets an upper bound on the performance of any
other receiver in that same environment. The effect of Synchronous-Poisson Time Structure
uncertainty on detectability for the case of a component known exactly (CKE) was investigated.
This is an important first case. Even when the component is initially uncertain and has been
"learned' the performance of the optimum receiver for that case cannot exceed the CKE case.

The performance of the optimum receiver for the CKE, Synchronous-Poisson Time Structure,
2E

N y
¢}

was presented in terms of the ROC for various values of the average duty factor,
and time. The detectability, d, builds almost linearly in time.
The price in performance that must be paid by even the optimum receiver, because

component arrival times are not known exactly, was investigated. For example, for a

2E

TC = 1 and an average duty factor of 10%, the receiver processing time required to reach
o

the same detectability is about 6. 85 times longer than would be required if component recur-

rence times were known exactly. This extra processing time required is a decreasing

2E

N € anda decreasing function of average duty factor. These results show that
o

even when a component is known exactly, the effect on detectability can be substantial.

function of

The results of comparing the detectability for one of eight orthogonal components
with the CKE, Synchronous-Poisson Time Structure, suggest that component uncertainty
affects detectability in a rather mild manner after a sufficient amount of time has elapsed.
This situation is similar to that of the periodic case. The performance of the optimum
receiver for one of eight orthogonal components was compared with the energy detector to

show its superior performance.
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The importance of storing and updating probability or likelihood ratio terms in the
temporary memory for the optimum receiver, CKE, Synchronous-Poisson Time Structure,
was investigated by comparing its performance with a receiver which stores and modifies
input waveshape. From these results it was found that storing probabilities or likelihood
ratios in the temporary memory rather than input waveshape became more important as
?ﬁEg increased and the average duty factor decreased. For example, at 2NEC = 2 and an

0 0
average duty factor of . 0707, about twice as much processing time is required by the

receiver that circulates input waveshape to obtain the same detectability as the optimum

receiver.

8.2 Future Work

There are a number of directions in which future work can go. First, the effect of
time uncertainty on detectability has just begun. Although the optimum receiver has been
designed, its actual performance in terms of the ROC remains to be determined. The
effect of the Sporadic-Poisson Time Structure and component uncertainties on detectability
remains to be investigated.

The problem of optimum receiver design for an infinite component ensemble
with a learnable parameter and a Synchronous-Poisson or Sporadic-Poisson Time Structure
is an area of investigation. At present, such a problem could be attacked in an approximate
manner by representing such a component ensemble as finite and using the receiver design
techniques presented in this study.

Another area of investigation is the design of optimum receivers for learnable time
structures which are initially uncertain. In this study the design of the optimum receiver for
detecting a recurrence phenomenon of unknown period was presented and this could be
extended to more complicated time structures.

Three basic time structures have been considered: the Periodic, Synchronous-
Poisson, and Sporadic-Poisson. The extension of the same optimum receiver design

approach could be considered for many other types of time uncertainty.



APPENDIX A

OPTIMUM ADAPTIVE RECEIVER REALIZATIONS
SPORADIC-POISSON TIME STRUCTURE

A.1 Realization II

The optimum adaptive receiver realized in Section 5. 1. 1 is not unique A slight

modification of Realization I results if one writes the joint probability, b, .(k) as
)

b, (1) = b'; (i) p (ClISN) (A. 1)

where b'i J.(k.) is the probability of the jth component sample under the condition that the ith

)

component and SN are present and that k observations have been taken. Writing bi J.(k)

in this manner emphasizes the classification output, p (CllSN). Substituting Eq. A. 1 into
k

Eq. 5.18 for the sequential average likelihood ratio results in

b .
ﬁ(xk!Xk_l) =i;1 pk_l(C1|SN){|: 'i,O(k'l) + b'i, ni(1«:—1)] El-v.l) + viﬁ(xklsk = ci’ lﬂ
b
+j§2 b'y joqlk-Dalxlsy = c; ) (A.2)

where pk(CilSN) has been factored out. We can therefore define a conditional sequential

Sy - i
likelihood ratio, ﬁ(xlek_l, C)

E(xlek_l, Ci) = [b'i, 0(k—l) + b'i, ni(k-ISJ El-vi) + Viﬁ(xklsk = ci, 1;/]

n,
1
+j§2 b gDl ls = ¢ ) (A.3)
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The preceding equation gives the likelihood ratio of the observation X assuming the ith
component has been recurrent, Substituting Eq, A, 3 into Eq. A. 2 results in the average

sequential likelihood ratio, Q(xk IXk—l)’ becoming

b . .
(%, 1%, _{) = ) pk_l(CllSN)!Z(x X .,ch (A. 4)

-1
£1 k k-1
The updating of component information still requires equations similar to Eq. 5. 32

through 5. 34. If one makes the substitution

b, (k-1) = b, (cl1sN) (A. 5)

(k-1
L] 1,]( )

Pr-1

and factors out Py 1(CllSN), then Egs. 5. 32 through 5. 34 become

(1-v,) [b'i, olk-1) + by ni(k— 1ﬂ P 1(CiISN)

b'. (K)p (ClISN) = (A. 6)
L0077k Q(kuXk_ 1)
\ i _
, Vi[b i,O(k_l) + bi, rli(k—lﬂ pk_l(C ISN)Q(xklsk = Ci, 1)
b, 1(py(C ISN) =
1= 1%y ) (A7)
. b'. . (k-Dp, .(CHSN)g(x, Is, =c, )
bt .(k)pk(C1|SN) _ i,j-1 k-1 k "k i, § (A. 8)
L) ﬁ(xklxk_ 1)

forj=2,3,...,ni

Instead of updating products of the form b', . .(k-1)p (CIISN), b'. . .(k-1) and p, .(C'ISN)
i, j-1 k-1 j-1 k-1

1,

can pe updated separately by noticing that

(1-u) [b'i, o) + b, ni(k-lﬂ

i
E(xk!Xk_l, cH

(A.9)

b i, ok =
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vi['i,j_l(k Dby 1]_(Zxk|sk )
by, 100 = o 1,01) (4.10)
k k-1’
and
. p_;(ClIsNx, 1x,,CY R

1 Xy p)

The updating of component information can be implemented by updating of the probability of
the ith component, pk(CllSN), and updating the probability of the jth component sample given
the ith component, b'i j(k). This then gives an alternative realization of the optimum adaptive

’

receiver. The design equations for Realization II are summarized in Table A, 1,

TABLE A. 1

BASIC RECEIVER DESIGN EQUATIONS, SPORADIC-POISSON TIME STRUCTURE

REALIZATION 1I

Optimum Detection Output

Q(Xk) = !Z(Xk_ 1) (kuXk 1) (3.8)
Sequential Average Likelihood Ratio
5 i i
(x| X ) = 2 py_4(CTISN) (x X, _,,C) (A.9)

i=1
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Component Conditional Sequential Likelihood Ratio

’ni(k—l)] [l-yi + Viﬁ(xk!sk = Ci, 1)]

i 1 A
ﬁ(kuXk_l,C ) = IE)i’O(k 1) +b i

n

i
+ Zz b'i’j_l(k-l)ﬂ(xklsk = ci,j) (A.3)

—

Classification - Component Position

(1-v) ‘},vi, ok=D) + b’y ni(k—lﬂ

b'. (k) = - (A.9)
i,0 E(Xklxk_l’ cly
Vi |:b'i’ 0(k-l) + b'i, n'(k-IE] ﬁ(xklsk = ci’ 1)
b, (k) = L - (A. 10)
ﬁ(xk]Xk_l, CH

b (k—l)ﬁ(xklsk = ci,j)

b’y (0 = Lj-1 : (A. 11)
s
ﬂ(kuXk_l, C)
for j = 2,3,...,11i
Classification - Component Identification

i i

. p, (CTISN)e(x, IX ., C)

p(ClisN) = K 1 k" k-1 (A. 12)

Q(xklxk_l)

A block diagram of the realization is illustrated in Fig, A.1, This realization is
basically the same as Realization I in Section 5. 1. 1. In Realization II, however, the informa-
tion regarding which component is present is kept in a temporary memory separate from the
updated component positional information. This means that Realization II requires a greater
amount of temporary memory. On the other hand, Realization I requires a summer,
nj

Z bi j(m) to calculate the component classification information.
=0 "



161

ndinQ
uo1309319(

11 uonezitesy
‘9anjonJaig dwWl], UOSS10J-91peaodg ‘UOTIBZITEDI 19418904 aAalydepy ‘I1°V "Sig

P—

PIOYSaIYL,

>—

Aerdsia o

(NS | ﬂovxg #) .a Jayepdn
ndino ¢ 1 ¢

Arowo |y Krowa |y Annqeqoadg

UOBIISSED
-3, 3 T-%, A 1 _ A, A
—] wng (XX ug mo X| Xy 0 : m 0 ="lg| ®)y
andwo) aindwo) andwo)

ndug



162

A. 2 Realization III

There is a third adaptive receiver realization which is a "b'" channel receiver in
which each channel "looks' for one of the components. For a finite number of signals in
the signal ensemble the integral in Eq. 5.1 becomes a sum so that the likelihood ratio of the

observation Xk is

= Zs (X, Is)p (s1SN) (A. 13)
SE

Now the signal space, S, can be partitioned into b disjoint subspaces, Si. Each Si subspace
contains all those signals that might result from the ith component alone. This is a result of
the restriction that a given component, Cl, is selected and fixed at the beginning of each long

transmission. Thus Eq. A. 13 can be written as

b . .
(x,) = ) (X, 1s)p (s] ¢!, SN)p (C'IsN) (A. 14)
i=1 se Si 0

where by definition of a joint probability, po(siSN) has been written as

po(siSN) = po(lei, SN)pO(CilSN) (A, 15)

First, the summation in Eq. A. 14 is carried out over each subspace, Si‘ Since po(CIISN) is

a factor for each sum over Si’ Eq. A. 14 can be written as

(x) = 21 p (CISN) Szesf(XkIs)po(s]Ci, SN) (A. 16)
or
. b . .
ﬁ(xklcl) = izﬂﬂ(XkICI)po(ClISN) (A, 17)

Now the sum over the space Si is the likelihood ratio, i(incl) of the observation Xk under the

condition the ith component is present. In other words,

ﬁ(xklci) - SEZS .Q(Xkls)po(slci, SN) (A. 18)
1
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This likelihood ratio, ﬂ(XleI), can in turn be realized in a sequential fashion for each of the

b possible components. So

Ichex, Ix, . ch (A. 19)

i
0(x, 1Y = (x K

k-1

where !Z(xlek_l, Ci) is given by Eq. A. 13 along with Egs. A.9, A, 10 and A, 11, The class-
ification output for component identification is given by
i i
p (C lSN)!Z(XkIC)

p(ClISN) = —2 (4. 20)
E(Xk)

Table A. 2 summarizes the design equations. This realization has a channel for each of the

b possible components. A gross block diagram of one channel of the receiver, Realization III,
is shown in Fig, A, 2. In this realization each of the branches calculates the likelihood ratio
of the entire observation, Xk, under the condition the ith component is being sent. The out-
puts of each channel are then weighted by the a priori probabilities, pO(CiISN), of the
selection of each of the components and these are summed to form the likelihood ratio, ﬁ(Xk).
This realization looks ''less adaptive' since pO(CiISN) is not explicitly updated at each step

in time. It differs from Realization II in that it has a separate channel for each of the possible

components,

TABLE A, 2

BASIC RECEIVER DESIGN EQUATIONS, SPORADIC-POISSON TIME STRUCTURE

REALIZATION III

Optimum Detection Output

b . .
(X)) = ), 2(x, 1CY)p (C'ISN) (A. 18)
i=1
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Component Conditional Likelihood Ratio

iche Ix, ., ch (A. 19)

i
o(x, 1¢h = 1(x X

k-1

Component Conditional Sequential Likelihood Ratio

l(k—l?“i—vi +vi!2(xk[sk = Ci, 1)]

k k-1

i 1 - 1
o(x 1X C)-E)i,o(k 1)+bi,n.

n

i
+ j;z b'i,j_l(k-l)ﬂ(xklsk =c ) (A.3)

Classification - Component Position

(1- Vi)[b'i, 0(k-l) + b'i, ni(k—lﬂ

b'i j(k) = : (A.9)
H
ﬁ(xk[Xk_l, Cc)
1/,1IE)'i 0(k—l) + b'i N (k—l]ﬁ (xk[sk =c j)
b ’ 1 b
b (k) = ! - (A. 10)
’ ﬂ(xlek_l, c)
b'o o (k-De(x, [s, =c. )
by {9 = =2 Kot bl (A. 11)
’ £0x, 1%, 1, CY
Classification -~ Component Identification
. p (CHsNy (x,ICl)
p, (C'IsN) = =2 k
k Q(Xk) (A.20)
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A.3 Realization IV

We now come to one of the most interesting and useful realizations. The receiver
realizations discussed previously are adaptive and operate in an intuitively appealing manner.
A simpler sequential realization is possible. Let us begin the derivation of this realization

by considering the likelihood ratio of the observation Xk-l' This likelihood ratio is

c, c, c
1, . 1, N,

b % i ! .

Q(Xk_l) = Z ., :Z Z E(Xk_llsl,sz,...,sk_l)po(sl,sz,...,sk_IISN)

=1 817¢; 0 597%, 0 Sk-175,0

i, n

(A.21)

Since these are finite sums, the order of summation may be interchanged. Leaving the

summations with respect to i and Si-1 until last, one can write

i,n i,n i,n i,n
. . 1, 1. .
' it 'y 'y

b
CAPED) > > ) S) 0K, 151,800 58, 1)
=S 17,0 L517%,0 527%,0 Sk-27%,0

po(sl,sz,...,sk_llSN) (A, 22)
Denoting the quantity in brackets by
Ci n. ci, ni Ci, ni
A vl
st-1(k-1) = SZ:C . ;C . S ch Q(Xk_llsl,sz, e ’sk-l)po(sl’ Sgre e ’Sk—ll SN)
17%,0 527%,0 °k-27%,0
gives
c,
b Loy
(X )= ) L Q (k1 (A.24)
i=1 sk_1=ci,0 k-1

Now, the likelihood ratio of the observation Xk is defined to be

b by i,n, i,n,
ﬂ(Xk) =_Z Z Z _Z !Z(Xk_llsl,sz,...,sk_l)ﬁ(xklsk)po(sl,sz,...,sk[SN)
i=1 s, =¢, , S,=C, , S, =C.
17,072 7,0 "k 7,0

(A. 25)
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and by definition of a joint probability

po(sl, Sg»e e ,sleN) = po(sl, Sgr++ 58y [SN)jp (sklsl, RRRRL PR SN) (A. 26)

For the generator processes under consideration

g(s, Is SN) (A. 27)

P, (s lsl, ""’Sk-l’s ) = ENY

the state of the signal sample, Sy depends only on the state of the previous sample, Si_1"

Substituting Eq. A.27 into A, 26 results in

po(sl,s ,...,sleN) =po(sl,sz,...,sk_1ISN) (sklsk 1,S ) (A.28)

and substituting Eq. A. 28 into A. 25 gives

b i
_ Y\ 1 .
Q(Xk) - 21 Zc S lac s }—Jc l:ﬂ(xk_llsl,sz’ o ,Sk_l)g(xkl Sk)]
F1%17%,0 %27%,0 k4,0

[;(sk[sk T )po(sl,sz,...,sk_1|SNE| (A.29)

One can select the order of summation so that the sum over s and sk 1 follows the sum

Also, g(sk!sk 1 SN) can be factored out of the summation over the

first k-2 sums and IZ(kusk) factored out of the sum over the first k-1 sums., Equation A, 29

OVET S1,89,.++,8) o

can be written then as

c c 4
b i,n, 1y
(x) = \e ) £, Is) >fc g(s, Is, 1, SN)
i=1 Sk_ci,O Sk-1” i,
c, c. c.
i, n, i,n, i, n,
i i i o)
Y Y. Z Q(Xk_llsl,sz,...,sk_l)po(sl,sz,...,sk_l,

$17C 0 527%,0 5k-27%,0
(A. 30)
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Notice that the multiple sum in brackets is what we have defined in Eq. A. 23 as QS (k-1),
k-1
Making this substitution, Eq. A, 30 becomes

C. C.
b i,n, i,n,
(XY =) 2 txls) ) glsls, 1SN Q. (k-1).  (A.31)
i=1 sk—ci’ 0 Sk-lzci, 0 k-1

Now in a manner completely analagous to that which resulted in Eq. A. 24, one can write the

likelihood ratio of the observation Xk as

b i,n,
- A, 32
2(X) '21 L st(k) (A. 32)
=L57% 0
Therefore Eq. A. 31 can be written as
p o bimy b by “i, g
(x)= ) ) st<k)=_21 Zc Folsy) Z:c Bloyloy. SV G (D)
=1 sp=¢; =1 sp=¢; o k-1-5,0

(A. 33)

By inspecting both sides of Eq. A, 33 it can be seen that the general equation for updating

Qs (k) in terms of Qs (k-1) is given by

k K
C.
i,n,
Q, (k) = £(x, Is) > gls, s, SN Q  (k-1) (A, 34)
k Sk-lzci,O k-1

We now want the updating equation for each state that s, can be in, Let us use the

(k) = Q. .(k). By definition of the Sporadic-Poisson generator process as

notation Q. _ L

s, =C. .
k i, j
given by Eqs. 4. 2 through 4.5, many of the state transitions in the formal sum of Eq. A, 34

are zero. For Sy = ci’ 0 the only nonzero values of g(skl S 12 SN) are g(skz ci’ 0 | Si-1 :ci, 0’ SN)

= 1—1/i and g(sk = Ci,OICi, ni,SN) = 1-1/1. Since !Z(xklsk = ci,O) = 1 for signals in added

white Gaussian noise, Eq. A, 34 becomes for S, =S o
’

Q oM - [Qi, olkD) + Q n_(k-l)] (1-») (.39

> i
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The signal can only reach state 8y = Ci, 1 from Sk-1= ci, 0 OF 81 = ci, . and the

probabilities associated with these transitions are g(sk = ci, llsk-l = ci’ 0’ SN) = v, and

g(sk = ¢, 1Isk_1 =c¢c, ,SN)=vp. Sofors, = Ci, 1,Eq. A, 34 can be written as

s 1,ni i k

Q (k) = [Qi olk-1) + Qi’ ni(k-l)j] vAlx, s, = ¢ N (A. 36)

’

For any of the other states, A i where j is not equal to 0 or 1, the state S, = C; i can only

) ’

be reached from Sio1= G j-1" The probability of this transition is one. In this case
)

Eq. A. 34 becomes

= - ﬁ =
Qi,j(k) Qi,j-l(k 1) (xklsk Ci,j) (A, 37)
Now, the likelihood ratio of the observation Xk was given by Eq. A, 32 as
c,
p b
(=2 L QK (. 32)
i=1 sk=ci,0 k
Using the notation QS (k) _ o = Qi j(k), Eq. A. 32 can be written as
ko, ’
b
(x)= 2 ) QK (A. 38)
i=1 j=0 !

Equations A, 35 through A, 38 are the basic equations of this realization, This receiver is
much simpler than the previous ones. If one compares the updating equations for the Qi j(k)

matrix with that for the bi .(k) matrix of Realization I in Section 5. 1. 1, one sees that they are
?

quite similar except that the updating of bi, j(k) is more involved., In Realization I, each
bi, j(k) term had to be multiplied by a sequential likelihood ratio, ﬂ(xklsk = Ci, j), to obtain
the likelihood ratio, Q(Xk), of the observation Xk‘ In Realization IV, however, the likelihood
ratio at time tk is simply given by Eq. A, 34. In order to see how a classification output is

)

obtained from the Qi j(k) terms let us first look at another interpretation of Q.1 j(k). We
)

know from Eq. 3. 8 that

(% = XD 1% ) (3.9
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By definition

¢ . S N
A l)T 1,\1 1"\i 1, i
IX )= ; ; Zc !Z(xklsk)pk_l(sl,sz,...,s [SN)  (A.39)
N - "4, 0

For generator processes which can be expressed as a function g(sk[sk T SN), one obtains,

as before, for the average sequential likelihood ratio

C. C,

1,ni 1,ni

. Z !Z(xk!sk)sz . g(s, ls, 1, SNp,_4(s, ;ISN) (A. 40)
K 1,0 k-17%,0

m F%c‘

L X ) =
i

So the likelihood ratio of the observation Xk can be written using Egs. 3.8 and 5. 12 as

c. c,
b i, n, i,
0(Xy) = 46X, ) 21 . ZC ot CHENEDI (sklsk 1 SNp, (s, _;18N) (A. 41)
RS0 Sk-1"%
. . . . ﬁ
Since £ ( K 1) is independent of the summations over i, Sk and S,._1 One can bring (Xk_l)
within the summation signs and write Eq. A. 36 as
c, c.
b i, ni i, ni
(X =), Z_ 1(x, Is,) Z_ g(s, I, 1, SNUXK_)p, (s, _{ISN) (A. 42)
i=1 s =c, S, =
k 7i,0 k-1 7i,0

Comparing Egs. A, 37 and A. 33 one sees that

= ,a =
Qi, J.(k) (Xk)pk(sk Ci, J.ISN) (A. 43)
Recalling Eq. 5. 16
bi, J(k) = pk(sk - CI’ ][SN) (5. 16)
one can write Eq. A, 43 as
(A, 44)

Q (k0 = X )b, (1

Q. .(k) may be interpreted as the likelihood ratio of the observation Xk multiplied by the

i,]
probability of the jth component sample of the ith component, under the condition SN, and the
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taking of k observations.

If the classification output, bi J.(k) is wanted, it can be determined from
)

= ]
bi,j(k) = Q—(szr (A. 45)

If the updated component identification is desired, it can be derived from

Ny
n, )Y Q (K
=0

L]

(A. 46)

The operations that the optimum receiver of Realization IV performs are summarized in

Table 5. 3 in Chapter V and block diagrams are presented in Figs. 5.5 through 5. 8,



APPENDIX B

OPTIMUM ADAPTIVE RECEIVER REALIZATIONS,
SYNCHRONOUS-POISSON TIME STRUCTURE

B. 1 Realization III

In Section 5. 2. 1 Realization I was presented for the Synchronous-Poisson Time
Structure. Realization III is a 'b"" channel receiver. In this realization the likelihood ratio

of the observation X, may be written as

k

b . .
(%) = ) pO(CIISN) Y £(X, Is) po(slcl, SN) (B. 1)
i=1 seS‘.L

This conditional likelihood ratio is to be realized in a sequential fashion for each of the b

possible components, so that

0x, 1Y = 0x,_ 1chee 1%, Ch (B.2)

In the Synchronous-Poisson Time Structure, the component conditional sequential likelihood

ratio has been previously determined and is

i -
ﬁ(xk[Xk_l,C ) = 1—1/i +viﬂ(xkl8k— Ci, 1) (5. 60)
The classification output is obtained from
i i
i pO(C ISN)ﬁ(Xk[C)
pk(C ISN) = 7 (Xk) (B. 3)

The design equations for this realization are summarized in Table B, 1. A block diagram is

shown in Fig. B.1 for added white Gaussian noise. A feature of this realization is the separate

172
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charnel allotted for each of the b components. The receiver input, x, , is correlated with

k
each possible component that could occur and the bias Ci 1 Ci 1/2 is subtracted. These
’ y

outputs are then passed through nonlinear functions which depend on the average duty factor
of each component. The output of the nonlinear element is the logarithm of the component
conditional sequential likelihood ratio, ﬁ(xlek_l, Ci). These values are summed by means
of the recirculating T1 delay and exponentiated to form the component conditional likelihood
ratio, Q(inCi). These component conditional likelihood ratios, weighted by the a priori
probabilities of the possible components, are summed to form the detection output, f(Xk).
The classification output is obtained by taking the output of each channel and dividing it by

the detection output, Q(Xk). This is done in this particular realization on a logarithmic basis.

TABLE B, 1

BASIC RECEIVER DESIGN EQUATIONS, SYNCHRONOUS-POISSON TIME STRUCTURE

REALIZATION III

Optimum Detection Output

b . .
(X)) = i‘:;l 0(x, 1Chp (C'ISN) (A. 18)

Component Conditional Likelihood Ratio

i i i
0%, 1Ch= 0x,_ 1chax, 1%, C) (B. 2)

Component Conditional Sequential Likelihood Ratio

i
005X, €Y = Loy 4yt 18, = €, ) (5. 60)

b

Classification - Component Identification

p,(ClisN)x, ICY
%)

pk(CiFSN) = (B. 3)
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B.2 Realization IV

This realization is somewhat simpler than Realization III although the contrast is

not so great as in the sporadic receiver. Let us begin the derivation of this realization by

considering the likelihood ratio of the observation Xk-l' This is
oG S S
(X, ) :21 S_Z < _ZC o Z‘C 0Ky _418,,85,.0.,8, P (8],8,,...,8 ;ISN)
2 P17%4,0 %274, 0 Pk-1774, 0
(B. 4)
Summing with respect to i and Sk_llast one obtains
b Cl, 1 Ci, 1 Cl, 1
= 3 Y
(X ) 21 o Lo e Z_C 08X, _118,8,,...,8, )
- k-1"7i,0| 27 71,0 k-2 7i,0
NGRS Sk_llsN) (B. 5)
Denoting the quantity in brackets by QS (k-1), Eq. B.5 can be written as
k-1
b Ci,O
e ER) Y Qg (k1) (B. 6)
= B T I
k-1 71,0
Now, the likelihood ratio of the observation Xk is by definition
b Ci, 1 Ci, 1 Ci, 1
nx,) = -2—1 . _ZC . EC e EC UK, 181,89, 0 58 _PUx, 18D (S;,S,,..., S ISN)
FER1TM,0%277,0 0 Sk, 0
By definition of a joint probability
po(sl’ Sz, e ,SkISN) = po(sl’ SZ’ e ,SkISN)pO(SkISI, 82’ ... ’Sk—l’ SN)
(B. 8)

But in the Synchronous-Poisson Time Structure, the generator process is such that
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pO(SkISI, Sz, e ’sk-l’ SN) = g(SkISN) (B.9)
Substituting Eq. B.9 into B. 7 gives
b Cl, 1 Ci, 1 C1, 1
0xX) =) DREE ((x greeerSp_PUx, IS
k) 1_4:1 S _—,—C S _:C S ZC ( k- 1 1, ’ k-l) (Xkl k)po(sl,sz,..o,Sk_l)g(skISN)
1 7i,0 72 7i,0 'k 7i,0
(B. 10)

i1 Ci1

b
0(x) = 'Z Y £(x,18,) g(8, 1SN) D
= 1:

kK i,0 Sk-17%40

Z_ 5 - Z_ 1, _1181,80,+,8, )P (81,8, ..., 8 _;ISN)
17,072 7,0 "k-27 71,0
(B. 11)

But the muitiple sum in brackets in Eq. B. 11 is the same as the bracketed term in Eq, B. 5

which has already been defined as QS (k-1). Substituting QS (k-1) into Eq. B. 11 gives
k-1 k-1
. i1 i1
HAED) Z £(x, 18 e(s, ISN) ) QS (k-1) (B. 12)

i=1 S = ’0 Skl k-1

Now Eq. B. 6 can be written with the subscript k-1advanced to k resulting in

p bl
(x) =2 ) o (k) (B. 13)
K21 s =c, %k
i, 0
Comparing Egs. B. 12 and B. 13 one sees that
i1
Qg (K) = £(x, 18 )e(S, ISN) S Z_C st_l(k-l) (B. 14)

K k-1""1,0
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Let us use the simpler notations Qg _ (k) = Q, (k) and Q (k) = Q. ,(k).
Sk-Ci’ 0 i,0 Skzci 1 i, 1

By definition of the Synchronous-Poisson generator process as given by Eqs. 4.7 and 4. 8

)

g(SleN) = 1-1/i for Sk = Ci,O (4.7)

and
g(Sk[SN) =v, for S =C (4. 8)

Therefore Eq. B. 14 can be written as

Q o = (1-v) [Qi, olk-D + Q. 1(k-l{, (B. 15)
and
Q 1(B) = viﬂ(kaSk = C, N Egi O(1<-1) +Q 1(k-1€| (B. 16)

Instead of updating Q.1 O(k) and Qi 1(k) separately, one can update the sum, Qi(k) = Q,
b ’
+ Qi’ 1K)

Qi 1(k) = Qi(k-l)l:l-yi + yiﬁ(kuSk = Ci 1):] (B. 17)

Using the notation introduced above for the QS (k), Eq. B. 13 can be written as
k

b
x)=) (9 g0 q 1(‘% (8. 18)

)

or

b
0x,) = '21 Q,(k) (B. 19)
1=

Equations B. 17 and B. 19 are the basic equations necessary to obtain the detection output.
The interpretation of Qi(k) is similar to the interpretation given of Qi j(k) in the sporadic case
)

and is
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pk(CiISN) = I (B. 20)

Thus, a classification output is easily obtained. The design equations for this receiver
realization are summarized in Table 5. 5. Block diagrams of this realization are shown in

Figs. 5.5 through 5. 8.



APPENDIX C

OPTIMUM ADAPTIVE RECEIVER REALIZATIONS,
PERIODIC TIME STRUCTURE

C.1 Unknown Repetition Frequency, Realization II

A slight modification of Realization I, presented in Section 5. 3. 1 may be obtained by
writing the joint probability, bi j(k) in the form given in Eq. A.1, b J.(k) b'i j(k)pk(CiISN)’
’ ? b
and substituting into Eq. 5. 66 for the sequential average likelihood ratio. Factoring out

pk_l(CilSN) gives

n.
(x, X)) El pk_l(CiISN) b'i,ni(k-l)ﬂ(xklskz ¢\ D+ jzlz b L(k=De(x, s, ;. J)

(C.1)

Defining a component conditional sequential likelihood ratio, ﬂ(kuXk v Ci) as

Ili
(X s ch - by ni(k-m(xklsk =¢ ) +j§2 by gDy IS = e ) (C2)
one can put Eq. C, 1 into the form

0 X)) 7, P (€SN IX, ), ch (C. 3)

The updating equations for component positional information are obtained by making

the substitution of the form bi j(k) = b'i j(k) pk(CiISN) in both sides of Egs. 5. 68 and 5. 69.

’

The result is

1 i —_
b . n‘(k 1) Py 1(C |SN) (xklsk = ci, 1)

b, 1(k)pk(Ci[SN) - L (C.4)

’ (xlek 1)
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. b’ . (k-1)p,_ (CSN)U(x Is, =c. )
b’ (K)p(ClIsN) = —Lod 1 k-1 k Tk~ g .5
L] Lx, 1X )
k “k-1
Instead of updating the products of the form b'i j(k- 1) pk_l(CiISN), one can update
’
b'i j_1(1«:- 1) and pk_l(CllSN) separately by observing that
H
b i,n, (k—l)ﬁ(xkl Sy = ci’ 1)
, ‘
] (kuXk_ l)
b'. . (k-Dl(x Is, =c, .)
bvi J(k) - 41]'1 k 'k L,) (C. 7)
’
] (xlek_l)
for j= 2,3, 'y
and
i i
. p,_((CTISN)o(x, IX ., C)
1 X )
The design equations for this realization are summarized in Table C, 1
TABLE C. 1
BASIC RECEIVER DESIGN EQUATIONS, PERIODIC TIME STRUCTURE
UNKNOWN REPETITION FREQUENCY
REALIZATION II
Optimum Detection Output
oX) = X, e (x X _p) (3.8)
Sequential Average Likelihood Ratio
b i i
2(x, 1%y ) = ) p_1(C 1SN 2(x, 1X, _,C) (C. 3)

i=1
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Component Conditional Sequential Likelihood Ratio

n
. i
ch oy . _ T _
£(x kIXk v C)=b i, ni(1«: lu(xklsk ci’ 1) + jéz b i, i- 1(k 1)¢ (xk[sk Ci,j) (C.2)
Classification - Component Position
bi, 1(k l)ﬁ(xk K= ci’ 1)
b'i 1(k) = (C.86)
’ Hxe 1% )
b'. . oz, Is, =¢
b’ (k) = N ke Sl S (C.7)
L] i
x, X C
(k k-1’ ) forj:2,3,..,,ni
Classification - Component Identification
i i
. p,_,(CISN){(x IX ., C)
p(clisy) = 1 k" k-1 (C. 8)
L 1%y

C.2 Unknown Repetition Frequency, Realization III

This is a """’ channel realization in which the likelihood ratio of the entire observa-
tion, Xk’ is obtained sequentially under the condition the ith component is present. The
b channels are then weighted by the a priori probability, before taking any observations, of

each of the components. The detection output is

°X Z inc p (ClIsN) (A. 18)

Each channel forms the likelihood ratio of the observation, Xk’ conditional to the ith

component and this is formed sequentially as

i

i
Q(XkIC)= ( lC)ﬂ(k kl,C) (A, 19)
which becomes in the periodic case
o
i = 1 - — 1 - —
(Xklxk T ChY= b i, ni(k l)ﬂ(xklsk = ci, 1) + 322 b i j-l(k l)ﬁ(xklsk = Ci, j) (C.9)
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and the updating equations on component identification and position are given by Eqs. C. 6
through C.8. The receiver design equations for this realization are summarized in Table C. 2.
TABLE C, 2
BASIC RECEIVER DESIGN EQUATIONS, PERIODIC TIME STRUCTURE

UNKNOWN REPETITION FREQUENCY
REALIZATION IIL

Optimum Detection Output

b . .
= -21 (x| Cl)po(Cl I SN) (A, 17)
1:

Component Conditional Likelihood Ratio

0(x,1CY) = 0(x

SR TIOND S eh (A. 19)

k k-7

Component Conditional Sequential Likelihood Ratio

n,
. i
1, _ ' _ — ' - -
ﬂ(xk[Xk_l, Ch)=b i,ni(k l)ﬂ(xk[sk Ci, 1) +j;2 b i,j—l(k l)ﬂ(xk[sk ci,j)
(C.9)
Classification - Component Position
b ,ni(k-l)lz(xklsk =c )
H
2 (kuXk_l,C )
b . (k-1)Lx Is =c, )
bvi ]k 1, ] 1 k ik s (C. 7)
’ ﬂ(kuXk_l,C)
for j=2,3,...,n

Classification - Component Identification

. p (ClIsnex, [ch
p(CTISN) = 2 L (C. 8)
ox)




183

C. 3 Unknown Repetition Frequency, Realization IV

This realization is the least adaptive looking of the realizations but it is the
simplest. It is a ""b"" channel receiver and its development follows Appendix A. 3 for the

sporadic receiver up to Eq. A, 34 with the exception that the summations are over the states

ci’ v ci, 9re ’Ci, n, rather than Ci, 0’ Ci, v ci’ 9o ’Ci, ni. Analagous to Eq. A, 31 one can
write
C.
i,ny
Qq (k) = £(x,Is) Z_ g(s, I, 1SN Q  (k-1) (C. 10)
k S, {=C. k-1
k-1 "i,1

Using the properties of the periodic generator process given by Egs. 4.9 and 4. 10 in Eq. C. 10

one can write

Qi’ (k) = Ql’ n.(k— 1)£(xklsk = N (C. 11)
Qi, j(k) = Qi,j_l(k-l)ﬂ(xklsk = Ci,j)
(C. 12)
forj=2,3,... »
where the likelihood ratio of the observation Xk is given by
b nL
XJ)=L ) QW (C. 13)
i=1  j=1

The classification output is obtained as before from Eqs. A, 44 and A, 45. The basic receiver

design equations are summarized in Table 5. 7.



APPENDIX D

COMPUTER SIMULATION TECHNIQUE

The receiver realizations discussed in Chapter VII, from which the ROC data was
obtained, were simulated on the IBM 7090 digital computer. The general computational
method used throughout was to replace all continuous random variables with a discrete
random variable. A 50-point discrete probability distribution was used to match the continu-
ous probability distribution, each point being assigned 2 percent probability. That is, the
two probability distribution functions were matched at values of .01, .03,...,.99. This
method gives a rather good representation of the random variables within the middle
96 percent of the range, and a crude representation of the smallest 2 percent and the
largest 2 percent of the range.

The optimum adaptive receiver realization discussed in Section 7. 2 for one of eight
orthogonal components, Synchronous-Poisson Time Structure, was simulated on the digital
computer. The digital data was then converted to analog form on a digital-to-analog con-

verter and plotted out on a Sanborn pen recorder.
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APPENDIX E

DERIVATION OF PERFORMANCE OF ENERGY DETECTOR,
PERIODIC AND SYNCHRONOUS-POISSON TIME STRUCTURE

In this section the detection performance of the energy detector is derived for the
CKS (one of M orthogonal components), Periodic and Synchronous Time Structures. The

detectability, d, can be expressed as

2E
d=ng" (E. 1)
(0]

where 7 is the efficiency (See Reference 20). Lamphiear and Birdsall (Ref. 21) have shown

that the efficiency for the energy detector is approximately

(oot )2 )
2ee5) (%)

T]:

where
n=2WT
2_ 2E
- N
0
2

For — << 1,
n

and

(E. 4)
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Using these approximations, Eq. E-2 becomes

—_
S
~———

1
PN
[\V]

g
—

(E. 5)

=
Q
|
o
::[ o

For the Periodic Time Structure, E = kEC and T = le, where EC is the component

energy and T1 is the duration of a component. Therefore, Eq. E-5 can be written as

(ZE >

e

N

1 2 (E. 6)

n= 3 2WT,

For M orthogonal components 2WT1 is at least M, Using M = 2WT1,

1 2Ec
N~ o\ (E.7)
0
and the detectability as defined by Eq. E-1 becomes
1 2Ec ?

which is Eq. 7. 12 in the text.

For the Synchronous-Poisson Time Structure, and the occurrence of the average

number of components, E = ykEc and the efficiency becomes

1 2Ec
n= M \N (E.9)
o)
and d becomes
2Ec 1 9 ZEC 2
d=‘I7VkTO ZW kao— (E.IO)

which is Eq. 7. 15 in the text.



APPENDIX F

DERIVATION OF PERFORMANCE, SUBOPTIMUM RECEIVER
CKE, SYNCHRONOUS-POISSON TIME STRUCTURE

In this appendix the detection performance of a suboptimum receiver is derived
which crosscorrelates the component, C, waveform with each unit observation, X5 and

integrates. In other words, the receiver forms

S
z=z x,* C (F. 1)

where X is an ni-dimensional observation and C is an ni—dimensional component, This

derivation assumes that the detection performance is the same as that had the average

number of components occurred.

When the receiver outputs under the hypotheses N and SN are normally distributed

’

the detectability, d, is given by (Ref. 20)

(“SN,k j “le) i

d= 02 (F.2)
N,k
where
HSN k mean of the receiver output conditional to SN and k observations
N Kk mean of the receiver output conditional to N and k observations
oi K variance of the receiver output conditional to N and k observations

Let us now obtain expressions for N 1 N k and 02 Since the sum of any
? ’

N, k'
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number of independent normally distributed variables is itself normally distributed with

mean the sum of the means and variance the sum of the variances, then

HeN, Kk (1- V)kuN + VKU (F. 3)
where
vk average number of component occurrences
(1-vk average number of no-component occurrences
EoN mean of the observation, X under component plus noise
T mean of the observation, X under noise alone

The variance under noise alone after k observations is the sum of the variance under noise

alone of each observation. Thus

Substituting Eqs. F-3 and F-4 into the definition for d, Eq. F-2, results in

vE\Eoy T Py

d= 02 (F.5)
N

When component plus noise is present the mean of the receiver output is PoN = 2WEc'

When noise alone is present the mean of the correlator output is BN = 0 and the variance
.2
is o

N © ZWECN. Therefore, Eq. F-5 becomes

which appears as Eq. 7. 17.
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