Since unambiguous ranking of income distributions according to their degree of
inequality is not always possible, choice of inequality measure must rest on the
appropriateness of particular measures for particular substantive problems. This
article provides a complete account of one measure of inequality, 8, defined, for
x > 0, as the ratio of the geometric mean to the arithmetic mean—a measure that
is closely linked to the sense of distributive justice. Its properties are summarized,
and formulas reported for the effects of transfers and of location changes. Analytic
expressions for 8 for three classical probability distributions—the Pareto, Log-
normal, and Rectangular families—are provided, and 6's behavior in within-family
comparisons discussed. The measure 8's behavior in between-family comparisons
is explored using a new procedure for bounding the zones of ambiguity in in-
equality comparisons. Finally, a newly obtained decomposition formula for
& is reported.
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nambiguous ranking of income distributions according
to their degree of inequality is known to be possible only
for certain sets of distributions, notably, for observed distribu-
tions whose Lorenz curves do not intersect (Atkinson, 1970, 1975;
Rothschild and Stiglitz, 1973; Sen, 1973; Champernowne, 1974,
Cowell, 1977; Allison, 1978; Fields and Fei, 1978) and for a priori,
mathematically specified distributions drawn from the same
distributional family (Cowell, 1977; Jasso, 1980). In all other
cases, use of different measures of inequality yields different
orderings, and, hence, different answers to the question: Which
distribution is more (or less) unequal?

Thus, if one is comparing the relative inequality of five Pareto
distributions or of five observed distributions possessing non-
intersecting Lorenz curves, then choice of inequality measure
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does not affect the result: All measures yield the same rank
ordering. However, if one is comparing the relative inequality
of two Paretos and three Lognormals, or of five observed distri-
butions possessing intersecting Lorenz curves, then choice of
inequality measure determines the resulting rank ordering.

The fact that different measures of inequality can produce
different rank orderings suggests that they vary in their sensi-
tivities to the amounts of dispersion and concentration at varying
points along the income continuum—suggests, that is, that they
highlight different aspects of the distribution’s inequality. The
question of which inequality measure to use thus reduces to a
question about which aspect of the distribution’s inequality the
investigator wishes to tap. This choice is crucial because: (1)
correct specification of the substantive phenomenon depends on
it; and (2) empirical samples of social aggregates (e.g., nation-
states) are likely to include some whose income distributions have
intersecting Lorenz curves. In this view, a measure of inequality
is never regarded as in general superior to another, but only as
more appropriate for a particular substantive problem.

Informed choice of inequality measure involves fitting the
measure’s properties to the substantive relation under investi-
gation. It follows that the social scientist’s inventory of tools
should contain many measures of inequality and thorough
knowledge of each measure’s properties. Note that some mea-
sures of inequality have been originally obtained by solving a
substantive problem. For example, Gini’s Index of Concentra-
tion is a scale-invariant version of a measure obtained by solving
for the mean of all the pairwise absolute differences, i.e., ob-
tained as an answer to the substantive question, “What is the
expected absolute difference between two randomly selected
individuals?” (See Jencks, 1972, for an interesting use of this
measure.)

This article reports a detailed description of a measure of
dispersion & and of its derivation from a substantive problem
in the study of distributive justice. This measure is defined as
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the ratio of the geometric mean to the arithmetic mean of a
distribution of a positive magnitude. In the observed case,

N 1/N N
5= Hl X + (1/N) .21 X [1]
= i=

In the a priori case,

oJyew)dy

' i .

where y = In x.

Since in all unequal distributions of a positive magnitude, the
geometric mean is smaller than the arithmetic mean, and in the
equal distribution the two are equal, § can take values from
near-zero to one. Inequality increases as 8 grows smaller.
Although, as will be seen, this has a natural interpretation, the
usual convention of denoting increasing inequality by an in-
creasing positive number can be achieved by defining the trans-
formation

A=1-6 [3]

This article describes the substantive foundations of the
measure §, summarizes its properties, presents formulas for &
in three classical probability distributions, examines 8’s behavior
in cross-family comparisons, and reports decomposition for-
mulas.

SUBSTANTIVE FOUNDATIONS

The measure 6 has been independently derived in two sub-
stantively meaningful contexts.
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ATKINSON'S MEASURE OF INEQUALITY

The ratio of the geometric mean to the arithmetic mean first
emerged as a measure of inequality when it was noticed that it
arises as a special case of Atkinson’s Index of Inequality (1970,
1975),

[ N 1/e]l/(l—(:‘)
A=1—[(1/N) El (x;/m) e>0 [4]

where € is an explicit inequality aversiveness parameter. That
special case occurs when e approaches one (Champernowne,
1974; Bartels and Nijkamp, 1976; Cowell, 1977; Allison, 1978).
The proof utilizes a proof that

N 1/6 1/(1—e€) )
lim {(1/N) 2 (x,) = geometric mean [5]
e—~>1 i=1

based on L’Hopital’s Rule (see, for example, Kendall and Stuart
[1977: 37]). Thus,

limA =1-5 (6]
€—~>1

Substantively, a value of one on the inequality aversiveness
parameter means that the desire to reduce inequality is of the
following strength: In administering a transfer of size h from a
relatively richer person R (of income xgr) to a relatively poorer
person P (of income xp), society (or the person making the
judgment) is willing to lose up to a (1 - xp/xr) fraction of h (see
Atkinson, 1970, 1975; Cowell, 1977). For example, one would
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be willing to take $10,000 from a person of income $50,000 in
order to give $2,000 to a person of income $10,000, thereby losing
$8,000 in the transfer process (and still not achieving equality).

Of course, choice of a particular value of e implies imputing to
society’s members a certain inequality aversiveness—implies,
moreover, imputing to all society’s members the same degree of
inequality aversiveness. No research has been undertaken to
discover an empirically based e.

THE DISTRIBUTIVE JUSTICE FOUNDATIONS OF §

The foundation of 8 as a measure of inequality has been
recently strengthened by new developments in the field of dis-
tributive justice. Recent empirical and theoretical work (Jasso,
1978, 1980) suggests that the magnitude of the sentiment of justice
or injustice experienced by an individual about his/ her amount
of a social resource (such as income) varies with the logarithm
of the ratio of the amount to the arithmetic mean of the relevant
population:

justice  _ P 7]

evaluation U

In this formulation, the sense of distributive justice is represented
by the full real-number line, with zero the point of perfect justice,
the negative segment representing the sense of unjust under-
reward, and the positive segment representing the sense of unjust
overreward.

It is suggested further that a social aggregate may be usefully
represented and characterized by the distribution of the sentiment
of justice among its members. That is to say, the justice distri-
bution is as pertinent a description of a collectivity as is the
income distribution that gives rise to it. The location, dispersion,
and other characteristics of the justice distribution, too, are
considered as useful as the characteristics of the underlying
income distribution. Moreover, it is hypothesized that each of
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the attributes of the justice distribution predicts different social
phenomena, that is, each exercises hegemony over a different
area of the social life.

Of course, the income distribution and the justice distribution
are closely linked. The latter can be obtained from the former
by a change of variable. Their characteristics, too, are closely
linked. For example, the quantity “proportion that feels un-
justly underrewarded” is equal to the quantity “proportion with
incomes below the mean.”

The measure 8 was obtained by Jasso (1980) as part of the
solution to the question, “What is the arithmetic mean of the
justice distribution?” Equation 15 in Jasso (1980) reports the
definitional formula for the arithmetic mean of the justice
distribution,

N
Z (o xi/u)
i<

justice mean = N (8]

where the x; are the individuals’amounts of the resource (such as
income) and u is the arithmetic mean of the resource distribution.
Equations 16 and 17 in Jasso (1980) show that the definitional
formula for the justice mean is equivalent to

N 1/N
I1 X,
i=1

u

n (9]

or the logarithm of the ratio of the geometric mean of the income
distribution to the arithmetic mean. That is,

justice mean = {n § [10]

This link between the income distribution and the justice
distribution may be expressed as

justice mean = fn income inequality [11]
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where income inequality is measured by 6. The mean of the
justice distribution has a range from negative infinity to zero,
the point of perfect justice, which it realizes only when income
is equally distributed. Thus, as § grows toward unity (i.e., as
inequality decreases), the justice mean increases toward zero.
Stated differently, & realizes a magnitude of one if and only if
income is equally distributed.

The relationship between inequality as measured by 6 and
the sense of distributive justice provide § with a firm, empirically
based, substantive foundation. The measure 8 may appropriately
be used for any substantive problem in which the social scientist
specifies a social variable as dependent on a linear, additive com-
bination of the magnitudes of justice or injustice experienced
by all the collectivity’s members, with each person’s sentiment of
justice or injustice receiving equal weight.

PROPERTIES OF é

The principal properties of a measure of inequality are its
limits and its sensitivities to the location, scale, and shape
parameters of the distribution and to the size N of the sample or
population. (For a fuller discussion of these properties, see
Dalton, 1920; Yntema, 1933; Champernowne, 1974; Allison,
1978; Cowell, 1977: 62-73, who provides a convenient tabular
summary of some properties of many common measures of
inequality.)

LIMITS

The value of & has fixed limits of zero and one, being open
at 0 and closed at one. Since in any distribution of a positive
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quantity, except an equal one, the geometric mean is less than
the arithmetic mean, the value of & is a proper fraction for
all unequal distributions. As noted above, in an equal distri-
bution 6 equals unity. Since both the geometric mean and the
arithmetic mean of a set of positive magnitudes are themselves
positive magnitudes, 8 never reaches zero. The measure 8§ thus
satisfies Yntema’s (1933: 423) criterion of definite limits, “prefer-
ably zero and one.”

It should be noted, however, that fixed limits are not un-
ambiguously desirable, since, as Cowell (1977: 69) argues, there
might be good substantive reason to specify inequality as partly
dependent on the size N of the population. In any case, fixed
limits are no rare property, for “there are many ways of trans-
forming the measure such that it lies in the zero-to-one range”
(Cowell, 1977: 69).

SENSITIVITY TO LOCATION

Consider an income distribution of any specified location and
shape. If a constant amount c is added (or subtracted) to each
income, then the graph of the distribution (either the frequency
distribution in the observed case, or the probability density
function in the a priori case) will move sideways along the x-axis.
The visual shape, as well as the size of the graph, remains intact,
although, as will be seen below, the shape parameter of an
a priori distribution may change.

What is the effect of such a change on measured inequality?
Stated differently, do distributions whose graphs are horizontal
translates of each other differ in their degree of inequality? The
answer will reflect an inequality measure’s sensitivity to the
cardinal properties of the order statistics, that is, to the absolute
amounts of income, as well as to changes in the individuals’
relative shares.
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To derive &’s sensitivity to location, first define the new
quantity

R N 1/N
6= 1l x;+c +(utc) [12]
i=1
By restating the formulas for § and 6
[~
5=exp| X fn (xi/u)”N:l [13]
i=
and
A E N
6 = exp ,21 n ((x; +c)/(utc)) [14]
i=

(from Equation 8 above), it can be seen that the elementary units
of the formulas are of the form x;/u and (xi + ¢)/(u + ¢).

Since the function 1/N is in this case a positive constant, and
since the logarithmic and exponential functions are monotonic,
the effect on 6 of adding or subtracting a constant may be
observed by constructing inequalities for the two formulas’ ele-
mentary units.

Addition of a positive constant yields the inequalities,

+
xtc X x < i
utce M
[15]
+
X7 X x> u
mtece M
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and subtraction of a positive constant yields the opposite,
namely,

< <
p—c e
[16]
X—C > X >
- X
p—c M H

For x less than pu, the ratio is a proper fraction, and its loga-
rithm is negative; for x greater than u, the ratio exceeds unity
and its logarithm is a positive quantity. A basic property of
logarithms is that only reciprocals have equal absolute magni-
tudes. Hence, adding a constant decreases the absolute value of
the negative logged quantities more than it decreases the magni-
tude of the positive logged quantities; subtracting a constant
increases the absolute value of the negative logged quantities
more than it increases the magnitudes of the positive logged
quantities.

Therefore, adding a constant produces a larger value of 6,
reducing inequality; subtracting a constant produces a smaller
value of 8, increasing inequality. This means that when in-
equality is measured by 8, an across-the-board bonus of fixed
absolute size reduces inequality, while an across-the-board tax
of fixed absolute size increases it.

SENSITIVITY TO SCALE

Sensitivity to scale is an important property of measures of
inequality. Changes in scale do not alter the shape of the graph
of a frequency distribution or of a probability density function,
but they do alter the size of the graph. There are two main
arguments advanced in favor of scale-invariance. The first, as
Cowell (1977: 63) puts it, is that “measured inequality should
not depend on the size of the cake. If everyone’s income changes
by the same proportion then it can be argued that there has been
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no essential alteration in the income distribution, and thus that
the value of the inequality measure should remain the same.”
The second is that measured inequality should be “independent
of the units in which income or wealth is measured” (Yntema,
1933: 423), that is, as Allison (1978: 866) puts it, measured in-
equality “should not depend on whether income is measured in
dollars or yen.”

The measure 8 can be quickly shown to be scale-invariant by
using a version of the argument used in discussing sensitivity to
location, where

X
for all x x o X [17]
cu M

Thus, inequality as measured by & varies only with changes
in the ratios of own income to the mean income. This means that
only proportional taxation leaves inequality intact; progressive
taxation can be seen to be an instrument of reducing inequality.

SENSITIVITY TO SHA PE

Sensitivity to shape is examined separately for observed and
for mathematically specified distributions.

Observed Distributions

An appealing way to explore sensitivity to shape in an ob-
served distribution is by considering the effect of transfers from
one to another person in the distribution. Given the value of the
pretransfer §, and expressing the value of the posttransfer mea-
sure as 6*, the ratio of 8* to 8, for the case in which one transfer
is made, equals:

1/N
_(Sj _ [(xj —¢) (xi + c)] 18]

5 (Xixj)l/N
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Since the product of two quantities whose sum is fixed varies
inversely with the absolute difference between them, it follows
that transfers from scores with lower order statistics to scores
with higher order statistics (i.e., from relatively poorer to rela-
tively richer) produce a 8* smaller than §, and that transfers
from scores with higher order statistics to scores with lower
order statistics (i.e., from relatively richer to relatively poorer)
produce a 6* greater than 8. This means that transfers from poor
to rich persons reduce the value of §, thereby increasing in-
equality, and vice versa.

How sensitive is 8 to the size of the transfer? The magnitude of
the ratio of 8* to & varies curvilinearly with the size of the
transfer. For a transfer from x; to x; given that x; > x;,

-

1/N
5% xixj + cxj —CX; — c2
5 B X.X. [19]
- )
which
B ) /N
XX, * c(xj —X;)—c¢
= [20]
XX

This expression shows that there is no change in 8 (i.e., 8* = §)
when the distance between the two pretransfer scores equals the
size of the transfer and that the value of the ratio of 6* to § peaks
when the size of the transfer equals one-half the distance between
the two pretransfer scores. This property illustrates &’s strong
sensitivity to pairwise equality.

Classical Mathematically Specified Distributions

In the study of classical probability distributions, variation
in shape appears in two ways. First, there is a sense in which
shape is coterminous with distributional family or distributional
form. For example, the Normal family is identified by a distinc-
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tive shape, as are the Lognormal, Gamma, Pareto, and all other
families of curves. Second, variation in shape also occurs within
distributional family and is usually determined by a “shape
parameter” (Hastings and Peacock, 1974: 20), which, like the
other basic parameters, “appear[s] explicitly in the specification
of the distribution” (Kendall and Stuart, 1977: 32).

Within distributional family, the measure & varies with the
shape parameter c.' A discussion of the functions that describe
this variation for three distributional families follows. Across
distributional form, however, variation in 8 is irregular and
cannot be completely predicted a priori. The final section of the
article attacks this problem through an examination of two
situations: one, in which very different distributions have
identical values of §; and another, in which 6 and the Gini Index
of Concentration produce different rank orderings of distribu-
tions as to their degree of inequality.

SENSITIVITY TO THE SIZE N
OF THE SAMPLE OR POPULATION

The measure & is insensitive to the size N of the sample or
population. Two ways which render visible this insensitivity to N
are: First, if k identical discrete distributions are pooled, the
value of 6 remains unchanged; and second, adding persons to a
distribution of rank-order statistics leaves 6 unchanged (see
following discussion of rectangular distributions). This property
satisfies another of Yntema’s (1933: 423) criteria, namely, that
the measure of inequality be “independent of the number of
persons in a distribution.”

Note, however, that the appropriateness of a measure with this
property depends on the substantive problem under investi-
tation. As Cowell (1977: 63-64) observes, a two-person world
in which one person has all the income has rather different
implications for the social life than a four-person world in
which two persons have all the income.



316 SOCIOLOGICAL METHODS & RESEARCH

FORMULAS FOR 6 IN SOME CLASSICAL
PROBABILITY DISTRIBUTIONS

When the distributional family is known a priori, the formula
for 8 may be expressed in terms of the analytic formulas for the
geometric and arithmetic means, which in turn are expressed in
terms of the distribution’s location, scale, and shape parameters.
The formulas for 8 are given below for three distributional
families, the Pareto, the Lognormal, and the Rectangular.

PARETO DISTRIBUTIONAL FAMILY

The Pareto is a two-parameter family of positively skewed
curves. Its probability density function, with the location pa-
rameter fixed at the arithmetic mean p, is given by

f(x) = p°(c - 1) x! c> 1 [21]

where ¢ the shape parameter, known as Pareto’s constant, is
restricted to values greater than one (in order that the mean be
defined). The graph of the Pareto’s probability density function
has a single mode at the lower limit, which is a quantity greater
than zero, and is everywhere decreasing at an increasing rate.
For a fuller treatment of the Pareto family, see Hastings and
Peacock (1974: 102-105) and Johnson and Kotz (1970a: 233-249).

The formula for 8 is obtained by evaluating the expression in
Equation 2. The first step, obtaining the expected value of the
logarithmic function of the Pareto density (see Hoel, 1971: 72
for this procedure), yields

{80 x f(x) dx = &n &g_ﬂ + % [22]
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Taking the exponential of that expression and dividing by u
produces

(c—1)e'le
C

5= c>1 [23]

The measure 6 varies with ¢, approaching zero as capproaches
one and approaching one as ¢ goes to infinity. Pareto’s constant
is regarded as a crude measure of inequality (see Cramer, 1971:
51-58). In fact, in all within-family comparisons, it operates as
a general measure of inequality, controlling all the other measures

of inequality.’
LOGNORMAL DISTRIBUTIONAL FAMILY

The Lognormal is a two-parameter family of positively skewed
curves. Its probability density function, with location parameter
fixed equal to the arithmetic mean, is given by

2 o= C718 o~ @n(x/w)*/2c?

f(x) = c>0 [24]

cx(2x7r)1/2

where the shape factor c is the standard deviation of the logged
Lognormal variate. The graph of the Lognormal’s probability
density function has a lower limit approaching zero, a mode at a
subsequent value, and two points of inflection, one on either side
of the mode. For a fuller treatment of the Lognormal family,
see Hastings and Peacock (1974: 84-89) and Johnson and Kotz
(1970a: 40-111).

The formula for § is very easily obtained, since the Lognormal’s
e02/2

geometric mean = u/ [25]

Hence,

2
5 =e N2 [26]
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The measure § varies with the Lognormal’s shape parameter
c, decreasing to zero (i.e., increasing inequality) as c goes to
infinity and increasing to one (perfect equality) as ¢ diminishes
to zero.

RECTANGULAR DISTRIBUTIONS

In some applications the rank-order statistics are themselves
of interest, either instead of or in addition to the order statistics.
If the rank-order statistics are employed directly, the resulting
distribution is a discrete rectangular, described in Hastings and
Peacock (1974: 52-53) and Johnson and Kotz (1969: 238-240). If
the probability integral transformation is used (for example, to
model infinitely large populations), the resulting distribution is
a continuous rectangular, described in Hastings and Peacock
(1974: 116-119) and Johnson and Kotz (1970b: 57-74). The for-
mula for 6 is easily obtained in both cases, its value approaching
a constant as N approaches infinity.

First, consider a distribution of rank-order statistics from
one to N. Since the geometric mean of the set of integers from
one to N can be expressed as the N™ root of N-factorial, and since
the arithmetic mean is half the quantity (N + 1),

8=2NN)"N/(N+ 1) [27]

The limit of that expression, as N goes to infinity, is the quantity

2/e = 7358 [28]
where e is the base of the natural logarithms.

Second, consider a unit rectangular, that is, defined on the

zero-to-one range. Using Equation 2, obtaining the expected
value of the logarithmic function of the unit rectangular yields
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the quantity -1. Its exponential, divided by the arithmetic mean
of one-half, produces the quantity 2/e, as in Equation 28.

8 IN CROSS-FAMILY COMPARISONS

As noted previously, unambiguous ranking of income distri-
butions according to their degree of inequality is generally not
possible across families of distributions. That is to say, two
measures of inequality may yield different rank orderings. But is
a more precise statement possible? As Fields and Fei (1978: 315)
wonder with respect to the Lorenz dominance criterion, might
it be possible “to reduce further the zones of ambiguity?”

This section reports the preliminary results of work in progress
aimed at placing bounds on the zones of ambiguity in cross-
family comparisons. The principal task is to establish analyti-
cally, for any given distribution of specified parameters, which
distributions from other families it can unambiguously be ranked
with, and which distributions from other families it cannot un-
ambiguously be ranked with.

Consider a Pareto distribution of given shape parameter c.
Suppose that its inequality is to be ranked relative to that of all
possible Lognormal distributions. Suppose further that two
measures of inequality are to be used, 6 and the Gini Index of
Concentration (GIC). How can the zone of ambiguity be
bounded?

A simple approach is proposed here: First, calculate the values
of 6 and GIC for the given Pareto distribution. Second, find the
Lognormal curve whose 8 equals that Pareto’s 8. Third, find
the Lognormal whose GIC equals that Pareto’s GIC. The zone
of ambiguity for comparisons between the given Pareto and all
Lognormals, therefore, lies between these two Lognormals.

Table 1 reports the results of this procedure for three cases.
In each case, the reference distribution is a member of the Pareto
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TABLE 1
Bounding the Zones of Ambiguity for Inequality Rankings of
Cross-Family Distributions: Three Members of the Pareto Family
Each Compared to All Lognormals

8 A GIC
A. Pareto:l.5 .6492 .3508 .5
Lognormal:0.9295 .6492 .3508 .4890
Lognormal:0.9539 .6345 .3655 .5

Zone of Ambiguity: Lognormal:c|0.9295 < ¢ < 0.9539

B. Pareto:2.0 .8244 .1756 .3333
Lognormal:0.6215 .8244 .1756 .3397
Lognormal:0.6091 .8307 .1693 .3333

Zone of Ambiguity: Lognormal:c|0.6091 < ¢ < 0.6215

C. Pareto:2.5 .8951 .1049 .25
Lognormal:0.4708 .8951 .1049 .2608
Lognormal:0.4506 .9035 .0965 .25

Zone of Ambiguity: Lognormal:c|0.4506 < c < 0.4708

NOTES: & is the ratio of the geometric means to the arithmetic mean.
A=1-6
GIC is the Gini Index of Concentration.

See text for formulas and procedures.

family, and the “other” distributions are Lognormal. Equations
23 and 26 are used to solve for 8, as well as to solve “backwards”
for the Lognormals. The formulas for the Gini Index of Con-
centration are:

in the Pareto, 1/(2c—1) [29]
in the Lognormal, 2FN(C/\/2) -1 [30]

where Fn is the cumulative distribution of the Normal family
(see Cowell, 1977: 153). To simplify comparisons, (A = 1 - §) is
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tabulated along with 8. Thus, greater values of both A and GIC
indicate greater inequality. Following Hastings and Peacock
(1974), distributions are identified by family name and numerical
value of the shape parameter (the location parameter being
irrelevant for these measures of relative inequality).

To illustrate use of Table 1, suppose that the reference dis-
tribution of interest is the Pareto: 2.0. Panel B shows that it has
magnitudes of 0.1756 and 0.3333 for A and GIC, respectively.
Solving for a Lognormal of equal A, the result is Lognormal:
0.6215; solving for a Lognormal of equal GIC, the result is
Lognormal: 0.6091. These results indicate that: (1) when in-
equality is measured by A, the Pareto: 2.0 is more unequal than
any Lognormal whose shape parameter is less than 0.6215; and
(2) when inequality is measured by the GIC, the Pareto: 2.0 is
less unequal than any Lognormal whose shape parameter is
greater than 0.6091. Hence, the zone of ambiguity for com-
parisons of the Pareto: 2.0 and any Lognormal comprises the
set of all Lognormals whose shape parameter ¢ lies between
0.6091 and 0.6215. This means that when inequality is measured
by A and GIC, the Pareto: 2.0 can be unambiguously ranked
relative to all other Lognormals, that is, to all except the ones
in the zone of ambiguity.’

This procedure can be applied to as many pairs of inequality
measures as are desired. For example, if four measures are to be
used, this procedure would be repeated six times, each time
yielding a pairwise-specific zone of ambiguity. The final zone
of ambiguity would comprise all the pairwise-specific zones of
ambiguity.

The major limitation of this procedure is that it requires a
specific reference distribution (e.g., a Pareto of specified shape
parameter). Obviously, a theorem expressing the relation be-
tween any Pareto and any Lognormal would be preferred.

DECOMPOSITON OF §

By algebraic manipulation, the measure 6 can be nicely de-
composed into a between-groups component and a within-groups
component.“ The decomposition formula, where there are J
groups in the population, u the population mean, and, for each
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groupj=1,...,J, X; the group arithmetic mean and p; the propor-
tion of the population in group j, is given by

X)) u (31]

That is, the population 6 is the product of two factors. The first
factor to the right of the equal sign measures the within-groups
component, that portion of é attributable to dispersion among
group members. The second factor measures the between-groups
component, that portion of 8 attributable to differences in means
across groups. As with é generally, the bounds on the components
are zero and one (open at zero, closed at one). Thus, as the value
of a component approaches unity, that component has a smaller
effect.

If the means of all groups are equal, then the population § is
equal to the within-groups component. That is to say, in this case,
the population 48 is equal to the product of the groups’ &’s, where
each of the §;’s is raised to the p; power.

If there is no variation within groups, that is, if the population
consists of J groups, each with an equal distribution, then the
population 8 equals the between-groups component.

To assess the relative contributions of the two components to
the population 8, the rule is straightforward: The component
with the smaller value is providing more inequality.

Sometimes the decomposition—as well as the assessment of
the relative contributions—may be regarded as simpler if the
components are additive. This can be done easily for § by taking
logarithms. Thus,

J ] B
ins= 2 (p;nd)+ 2 (p,nX)—Wyu [32]
j=1 ] ] j=1 ] ]

or the equivalent expression

~ Jw Jj — Pj LN 33
ns= 2 (p. W)+ Z | (X)) u [33]
i=1 J J i=1 ]
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Recalling that {n 8 has range (-°¢, 0) and that the greater the
absolute magnitude the greater the inequality, it follows that the
greater the absolute magnitude of the logarithm of a component,
the greater its contribution to inequality.

Assessment of the relative contributions can be carried one
step further. The logarithm of each component may be divided by
In 8, thereby providing the proportion of § attributable to each
component.

SUMMARY

This article has presented a detailed account of the measure
of inequality 8, defined as the ratio of the geometric mean to the
arithmetic mean. The appropriateness of this measure to a
particular substantive problem can be judged by noting its
properties and its relation to the sense of distributive justice.
This measure appears suitable for any substantive problem in
which the social scientist specifies a social variable as dependent
on a linear, additive combination of the magnitudes of justice
or injustice experienced by all the members of a social aggregate,
with each person’s sentiment of justice or injustice receiving
equal weight.

NOTES

1. Distributional families whose usual definition includes two shape factors can be
divided into two subfamilies, such that in each subfamily one shape factor is held constant
and the other is allowed to vary. In such case, the varying shape factor controls variation
in 4.

2. Since the lower extreme value of the Pareto variate occurs at a magnitude greater
than zero, the Pareto variate provides a good illustration of the effects on the shape
parameter—and on inequality—of adding or subtracting a constant to every income. The
Pareto’s lower extreme value (LEV) is a joint function of the arithmetic mean and the

shape parameter:

LEV = —— [a]
[

Adding or subtracting a constant k alters both the lower extreme value and the arithmetic
mean, thereby producing a new shape parameter c* which satisfies the equation
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c* = ¢+ — [b]

where u, is the original mean. This expression shows that addition of a constant increases
the magnitude of the shape parameter, thereby reducing inequality, while subtraction of
a constant reduces the magnitude of the shape parameter, thereby increasing inequality.

3. The bounds on the zone of ambiguity signal those special cases in which two
different distributions have identical values of a measure of inequality. Jasso (forth-
coming) describes a different approach to compare different income distributions that
have identical magnitudes of the Gini Index of Concentration.

4. Derivation of the decomposition formula is reported in the Appendix. To our
knowledge, a decomposition formula for 8 has not previously been obtained.

APPENDIX

DERIVATION OF DECOMPOSITION
FORMULA FOR &

Let 6 denote the population ratio of the geometric mean to the arith-
metic mean, u the population mean, and N the population size. Let J
denote the number of groups in the population, such that j = 1 to J,
8 each group’s ratio of its geometric mean to its arithmetic mean, X; each
group’s arithmetic mean, n; the group size, and p; = (nj/N) the proportion
of the population in each group. Restating Equation 1 in the text,

[N ]I/N
M x.
i=1 ! L

u

§ = [i)

Since N is equal to the sum of the n;, each member of the population
being a member of one and only one group j, the numerator can be re-
stated to produce

T 1/N
‘Hl 'Hl X;
il [ii]
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Applying the laws of multiplication and exponentiation to the denomi-

nator yields
0 1/N
.Hl Xi
S ]

Utilizing the relations between n; and N to obtain a new numerator, and
reexpressing the denominator in terms of the group means and the popu-
lation mean,

[iv]

Each group’s 6j can now be constructed from the group’s geometric mean
in the numerator and the group’s arithmetic mean in the denominator,

producing

J p._p; —1/3
AX! [v]

This expression can be seen to equal the two-component form reported in
Equation 31 in the text.
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