A Lagrangian Based Approach to the Asymmetric
Generalized Traveling Salesman Problem
Charles E. Noon
Department of Management Science
The University of Tennessee
James C. Bean

Department of Industrial and Operations Engineering
The University of Michigan

Technical Report 88-17

A Lagrangian Based Approach to the Asymmetric

Generalized Traveling Salesman Problem

Charles E. Noon
Department of Management Science

The University of Tennessee, Knoxville 37996.

James C. Bean
Department of Industrial and Operations Engineering

The University of Michigan, Ann Arbor 48109.
November 9, 1988

ABSTRACT

This paper presents an optimal approach for the Asymmetric Generalized Traveling Sales-
man Problem (GTSP). The GTSP is defined on a directed graph in which the nodes are grouped
into predefined, mutually exclusive and exhaustive sets with the arcset containing no intraset
arcs. The problem is to find a minimum cost m-arc directed cycle which includes exactly one
node from each set. Our approach employs a Lagrangian relaxation to compute a lower bound
on the total cost of an optimal solution. The lower bound and a heuristically determined upper
bound are used to identify and remove arcs and nodes which are guaranteed not to be in an
optimal solution. Finally, we use an efficient branch-and-bound procedure which exploits the
multiple choice structure of the node sets. We present computational results for the optimal
approach tested on a series of randomly generated problems. The results show success on a

range of problems with up to 104 nodes.

1.0 Introduction and Mathematical Formulation

The Traveling Salesman Problem (TSP) is one of the oldest and most widely studied opti-
mization problems in the field of operations research. The basic problem is to find a minimum
cost Hamiltonian cycle, or tour, over the nodes of a graph (see Lawler, et al. [1985], Parker and
Rardin [1983]). The TSP model assumes that the decision maker has decided which nodes will
be sequenced, i.e., which cities will be visited. This paper considers a generalization of the TSP
which combines the decisions of node selection and node sequencing. Instead of preselecting
the nodes to be visited, the generalized model assumes the nodes have been grouped into
mutually exclusive and exhaustive node sets. The Generalized Traveling Salesman Problem
(GTSP) is then to find a minimum cost cycle which includes exactly one node from each node
set. It is generalized since a TSP is a special case with node sets of cardinality one.

The Generalized Traveling Salesman Problem allows node alternatives to be considered in
the decision process. The first application of a GTSP was presented by Henry-Labordere [1969]
for sequencing computer files. About the same time, Saksena [1970] modeled the routing of
welfare clients through governmental agencies as a symmetric GTSP. More recently, Laporte,
Mercure and Nobert [1987] describe GTSP applications in the routing of mail vans. Potential
applications can be found in Noon [1988] with respect to warehouse order picking with multiple
stock locations, airport selection and routing for courier planes, and certain types of flexible
manufacturing scheduling.

The asymmetric GTSP is defined on a directed graph D with nodes A" and connecting arcs
A. Let N be the union of m mutually exclusive and exhaustive node sets, ' = S; U Sy U
++USm and SyNSy =0, forall I,J, I # J. Assume that arcs are defined only between
nodes belonging to different sets, that is, there are no intraset arcs. Each arc (,j) € A has a
corresponding cost c;;, with |cij| < +oo.

The GTSP can be stated as the problem of finding a minimum cost m-arc cycle which
includes ezactly one node from each node set. Figure 1 displays an example GTSP defined
on a digraph. The bold lines illustrate a feasible GTSP tour for the problem.

The GTSP simultaneously selects the nodes to include in the cycle and sequences the nodes

along the cycle. In the problem form presented, given a preselection of nodes or a presequence

Figure 1: Example GTSP on a digraph (with feasible tour in bold).

of node sets, the remaining problem is well known. Given a preselection of nodes, the remaining
problem is a TSP. Given a presequence of node sets, we could determine the nodes to pass
through by solving a series of acyclic shortest path problems. These two characteristics will
later play an important role in our optimal approach.

Although our problem form assumes considerable structure, we are not narrowly focusing
on a special case of the GTSP. It can be shown that a class of problems with overlapping node
sets, intraset arcs, and sets which may be visited more than once, can be efficiently transformed
to a problem in the form presented (Noon and Bean [1988]).

We can model the asymmetric GTSP as an integer program (P) with variable z;; equal to

1 if arc (¢, j) is used in a solution tour and 0 if it is not. Problem (P) is displayed as follows.

Minimize Z CijTij

(1,7)€A
Subject to,
> Y m=1
1€ST jgsl
(h.j)eA y for all sets, S;. (?)
> D w=1
i¢S; j€Sy
(t.5)€A /
Z zij — Z zjr= 0 forallnodes j €N. (#)
1EN kEN
(1.5)eA (4,k)eA

Z Z Z Z zij > 1 forall sets 7, which are proper subsets (1)
I€TieS; J@T . ;
eTies 7 (z:’j)SGJA of the total number of node sets.

zi;=0orl forall (,j) € A. (1v)

Constraint group (z) contains two constraints for each node set. One constraint requires a
solution to include exactly one of the arcs entering a set and the other requires a solution to
include exactly one of the arcs leaving a set. Group (i1) contains one constraint for each node.
They are equivalent to network flow conservation constraints and ensure that a solution tour
is uninterrupted and continuous. Constraint group (#:7) is needed to prevent subtours from
occurring and may contain as many as 2™~! — m — 1 constraints. Constraint groups (7) and
(#41) are generalizations of the assignment and subtour prevention constraints commonly used
in formulations for the asymmetric TSP.

Early approaches for the GTSP were presented by Henry-Labordere [1969], Srivastava, et
al. [1969] and Saksena [1970]. These approaches are similar to the dynamic programming
approach for the TSP (Gonzaléz [1962]) in which a state is defined by the sets already visited.
One drawback to these types of approaches is that the number of states grows rapidly as the
number of node sets increases. More recently, Laporte and Nobert [1983] proposed an integer

programming approach for the symmetric GTSP which was successful on problems with up
50 nodes.

For the asymmetric GTSP, relaxation-based approaches are presented in two papers by La-
porte, Mercure and Nobert [1985,1987]. In the first paper, the subtour prevention and node flow
conservation constraints are relaxed with the latter being brought into the objective function.
The relaxed problem is solved as a network flow problem and serves as a lower bound. In
the second paper, the authors relax the subtour prevention constraints and a set of constraints
which ensure that each set is visited. The relaxed problem is solved as an || x |\| assignment
problem. In both approaches, the relaxations are used in a branch-and-bound algorithm which
branches on the arcs of subtours or on nodes of unvisited sets. The later approach proved to
be the most successful and was able to solve 100 node problems using several hundred cpu

seconds on a mainframe computer.

2.0 An Optimal Approach

The optimal approach we present consists of three separate procedures; problem bounding,
arc/node elimination, and branch-and-bound enumeration. The procedures exploit the problem
structure realized by mutually exclusive node sets, no intraset arcs, and the requirement of
exactly one visit to each set. The first procedure uses a relaxation to efficiently compute lower
bounds on the optimal objective value of the problem. The procedure also includes a heuristic
for determining upper bounds. These bounds are then used in the second procedure to identify
and remove many nonoptimal arcs and nodes. With the problem well-bounded and reduced

in size, the third procedure uses implicit enumeration to guarantee an optimal solution.

2.1 Bounds for the GTSP

The first procedure employs a Lagrangian relaxation for bounding. The constraints in group
(22) are relaxed and brought into the problem’s objective function via a vector of multipliers,
A. The relaxed problem reduces to that of finding a minimum cost tour over the node sets,
without requiring the tour to enter and leave a set through the same node. We can show

that the relaxed problem can be solved as an m-city TSP or closely bounded with an m x m

assignment problem. An advantage of this approach is that the size of the relaxed problem
depends only on the number of node sets.

Let A be a vector of length || where); is the multiplier applied to the node ¢ constraint
of group (7). A nonzero JA; value has the effect of subtracting that value from the costs of all
in-arcs of node ¢ and adding the value to costs of all out-arcs of node :. This does not change
the order or cost of GTSP solutions, it merely redistributes the costs of the problem. We can

define the following Lagrangian relaxation (PR,) as,

Minimize Z (cij = Ai + Aj)zij (PR))
(1.5)eA
Subject to, (2), (#1), (3v).

For any problem (-), let V() equal the problem’s optimal objective value. For any given A,
V(PR)) is a lower bound on V(P). Our relaxation has the advantage that in solving (PR)),
we need consider only the minimum cost arcs between node sets. For a given), let cf\j be the

adjusted arc costs, ie., cg\j =cij — Ai + ;.

Lemma 1 : There exists no optimal solution to (PR)) tn which z;; = 1,1 € S1,j € Sy,

and c;\j > cﬁ,,k €S, lesy,

Proof : Let z* be an optimal solution to (PR)) with element z;; = 1 and c?j > ¢}y, with
i,k € Sy and j,I € S;. We could reduce the cost of the tour z* by replacing arc (%, 5)
with arc (k, /). The constraints of (P R)) require each set to be visited and prevent node
set subtours. The solution obtained by replacing arc (%, j) with arc (k,[) would remain
feasible since both arcs connect the same pair of sets. The new solution would be feasible

with a lower cost. Hence, z* could not be optimal. =

In solving (PR,), Lemma 1 allows us to eliminate all arcs which are not arguments of the
minimum costs between node sets. We can now define an aggregation of the original digraph

based on the interset arc cost minimums.

Definition : Digraph D’ = (N’, A’) is an aggregation of the original digraph D. Let A’

consist of m nodes where each node corresponds to a node set of A. Given two nodes

I,J € N,anarc (I,J) € A’ will exist if and only if there is at least one arc (i, j) € A
with ¢ € Sy and j € S;. Let the cost of arc (I,J) € A’ be defined as c}; where

o = minimum cf\-}.
L i€Sn,jesSy Y

Lemma 2 : Ifz is a feasible solution to (PR)) over D, then there ezists a feasible TSP

tour y over D' with 'y < Ptz
Proof : This follows from the construction of D’. m

From Lemma 2, we can translate a feasible set-tour over D to a feasible TSP over D’. We
may now define a mapping that allows us to translate a feasible TSP tour over D’ to a feasible

solution for (PR)) over D.

Definition : Let y be a TSP tour over D'. Let the mapping f be defined as [f: Y — X],
where Y is a subset of all (0 — 1 vectors of order |A”'|> and X is all 0 — 1 vectors of order
|N|2. Given a solution y, f maps y to a solution z as follows:

- For yz7 = 1, choose (arbitrarily) exactly one x;j, i € S1, j € Sy, such that ¢j; = c};
and set that z;; = 1 and all other), k € S, [€ S, equal to 0.

-For yr7 =0, set z;; =0 overall i € Sr,j € Sj.

From the construction of D’ and the mapping f, it follows that if y is feasible for the m-city
TSP, then z = f(y) is feasible for (PR)) and the solutions have equal objective values. In fact,
(PR)) is feasible if and only if the m-city TSP is feasible.

Theorem 3 : For a given A, an optimal solution to (PR)) can be obtained by solving

an m-city TSP over the digraph D’.

Proof : Let y* be an optimal solution to the TSP defined over D’. We can map y* to a
solution, z*, which is feasible for (PR)) and has objective 'y* = c*z*. If z* is not
optimal for (PRy), then there exists a feasible ! such that c*z! < c*z*. From Lemma
2, there must exist a feasible TSP tour y' over D' with ¢'y' < c*z!. This implies
cy! < Pzl < z* = /y* and contradicts the assumption of optimality on y*. Hence,

no such z! exists and z* must be optimal to (PR)). =

Theorem 3 allows us to solve (PR)) as an m-city TSP to determine lower bounds and,
under certain conditions, optimal solutions for (P). Although the TSP is considerably smaller
than (P), it is nevertheless an NP-hard problem and may be difficult to solve. Let (APR)) be
the problem obtained by dropping the subtour elimination constraints of (PR}).

Minimize E (cij = Ai + Xj)ij (APR))
(1.5)eA
Subject to, (), ().

Since (APR)) is a further relaxation of (PR)), V(APR)) is a lower bound on V(PR,).
From the usual relationship between the TSP and the assignment problem, Corollary 4 easily

follows.

Corollary 4 : For a given A, an optimal solution to (APR)) can be obtained by solving

an m X m assignment problem over the nodes of D’.

The problems are ordered as below.

V(APR)) < V(PR)) < V(P)
{m x m Assignment Problem} { m-city TSP} {Full GTSP}

The relaxation (APR)) allows us to obtain a fast lower bound on our original problem
(P). The strength of the bound depends greatly on the vector). Ideally, we would like
to find a vector of Lagrange multipliers such that V(APR)) is maximized. Since (APR))
has the integrality property (see Geoffrion [1974]), we know that V(APR,) is maximized by
setting A equal to the optimal dual values of a linear programming relaxation of (P) excluding
constraint group (#:¢). Rather than optimally solve such a large LP using a direct method,
we approximate the A vector using an iterative subgradient algorithm (see Fisher [1981]). The
subgradient approach is easier to code and, relative to direct methods, uses little storage.

Our bounding procedure begins with a nearest neighbor heuristic generated from each
node. The heuristic is identical to the well known nearest neighbor heuristic for the TSP except
that a node becomes ineligible once its node set has been visited. The heuristic provides the

feasible incumbent (upper bound) as needed for the subgradient algorithm. At each step of

the subgradient algorithm, (APR,) is solved as an assignment problem and its solution is
used to compute a subgradient direction. Throughout the algorithm, if an assignment problem
solution is also a feasible TSP tour, we use it to check for a better incumbent. A TSP tour over
the aggregated digraph represents a sequence of node sets over the original digraph. Given a
sequence of node sets, we can find a local optimum by solving acyclic shortest path problems
over the sequence of node sets. This is often successful in finding better incumbent solutions
and, in some cases, optimal solutions.

The subgradient algorithm terminates when either the lower bound equals the upper bound
or the rate of improvement nears zero. The final output of the bounding procedure consists of
a final vector of Lagrange multipliers A, a lower bound V(APR;), and a feasible incumbent
with upper bound value Z.

2.2 Arc/Node Elimination

After the bounding procedure, we use arc and node elimination tests to reduce the size of
the problem. The tests are performed using the reduced (or relative) arc costs for (APR;).
The reduced cost of an arc represents the minimum amount the objective value will increase
over V(APR;) if the arc is used in a solution. Given the output) vector from the bounding
procedure, we can solve for the optimal dual solution of (AP R;). For node set Sy, let ur, vz
be the optimal dual values of the constraints of () corresponding to S7. In computing the
reduced costs, uy is subtracted from the costs of all arcs entering Sy, and vy is subtracted from
the costs of all arcs leaving S;. For an arc (i,5), ¢ € S1,j € Sy, its reduced cost is given as
T = cij— i+ A j — ur — vy and, by dual feasibility, ¢;; > 0. These computations do not
change the underlying problem, they merely remove costs that will necessarily be incurred in
a problem. This allows us to work with the problem defined over the reduced costs. The cost
of the current incumbent solution defined over the reduced costs is [Z — V(APR;)], where Z
is the upper bound from the subgradient optimization.

One classic variable elimination test for integer programming was first discussed by Dakin
[1965]. It was noted that a variable could be eliminated if its reduced cost exceeded the reduced
cost of the incumbent solution. This simple yet powerful test is valid since any solution with the

variable equal to one would have an objective value greater than the known feasible incumbent.

For the GTSP, the preceding variable elimination can be extended. Let the shortest reduced
cost path be defined as the shortest directed path from one node to another over the reduced
arc costs. Let SP(3, j) be the total cost of the shortest reduced cost path from node i to node j.

Theorem 5 : If [6;j + SP(j,i)] > [Z — V(APR;)] then the variable z;; and its cor-
responding arc cannot be included in a feastble solution which is better than the current

incumbent and can be eliminated from the problem.

Proof : For a given arc (4,), its reduced cost is separable, and hence, only represents the
additional cost incurred by traveling from the arc’s tail (node ¢) to its head (node j). Yet
if the arc is to be used in a feasible solution it must be connected to a tour. Any tour
which includes arc (3, j) also includes a “return path” from j to ¢. The length of a tour’s
“return path” must be at least as long as the shortest “return path” from j to . Hence,
Tij + SP(j,1) is a lower bound on the reduced cost of any tour which includes arc (3, 5).
If this lower bound exceeds the reduced cost of the current incumbent, then arc (3, j) is
guaranteed not to be in a feasible solution which is better than the incumbent and can
be eliminated. m

The arc elimination test can remove a considerable number of arcs from a problem. In some
cases all arcs incident to a node might be eliminated, thus allowing the node to be eliminated.
Typically, that is not the case and the eliminations merely result in a less connected digraph.
The following node elimination test checks for nodes which are not fully connected to all other

sets.

Theorem 6 : For a given node i and any set Sk such thati & Sk, if

Ag"g’g;:m [SP(i,j) + SP(j,i)] > [Z - V(APR;y)], then node i cannot be included in a
feastble solution which is better than the current incumbent and can be eliminated from

the problem.

Proof : For node ¢ to remain under consideration, there must exist a round trip path be-
tween i and at least one node in Sx with a total path cost less than the current incumbent

reduced cost. A lower bound on the round trip cost between some node 7 € Sy and a

10

node j € Sk is equal to SP(i, j) + SP(j,). Otherwise, node i can be eliminated since
there can exist no GTSP tour which visits node ¢ and a member of Sk and has a cost

less than the incumbent. ®

We begin the elimination procedure by calculating the reduced arc costs. The optimal
dual values needed for the calculations can be obtained by solving the assignment problem
associated with (APR;). The dual solutions of the two problems are equivalent. Once the
reduced costs are computed, we apply the nearest neighbor heuristic. In our experiments, the
heuristic applied over the reduced costs often produced an improved incumbent.

Next, an induction algorithm is employed for computing the shortest reduced cost path
between all pairs of nodes. The algorithm requires O(n®) steps, where n is the total number
of nodes. Note that since the shortest path computations are all performed on the nonnegative
reduced costs, there is no chance for a negative cycle to appear.

The procedure then iterates between the elimination tests and the nearest neighbor heuristic.
The arc elimination test checks each arc one at a time for elimination. The node elimination test
is applied on each node and involves checking every other node set for round trip connectivity.
After the tests are performed, the nearest neighbor heuristic is applied to the reduced costs of
the remaining arcs. If a better incumbent is found, the elimination tests are repeated as well as
the heuristic. In many cases, the eliminations allowed for better incumbents to be found. The
procedure terminates when the heuristic fails to produce a better incumbent. Theoretically, the
procedure could iterate as many times as there are arcs, however, in practice, the elimination

procedure iterated at most three times.

2.3 Enumeration Procedure

If the upper bound is equal to the lower bound then the upper bound solution is optimal.
If it is not, we must use an enumeration procedure to divide the feasible region and optimize
over the components. One way to enumerate the problem would be as follows. First, list all
possible selections of exactly one node from each node set. For each of these combinations,
optimally solve an m-city TSP over the selected nodes. The optimal TSP tour with the least
cost among all combinations is the optimal tour for the GTSP. This methodology provides the

framework for our approach. But rather than explicitly enumerate and list all node selection

11

combinations, we use branch-and-bound to implicitly enumerate them.

The node sets possess a “multiple choice” structure since a feasible solution must include
exactly one node from each set. We take advantage of this structure by using a branching
scheme similar to the approach found in Bean [1984] for multiple choice variable sets. The
basis of our branching strategy is that if we select a node to be included in the solution, then
we are automatically fixing the other nodes of its set to be ezcluded. This allows us to divide
any problem into separable subproblems by choosing a node set and branching on each node
of the set.

Any subproblem can be divided further by choosing an unbranched set and branching on
each node of the set. If we branch down m levels, we reach subproblems at the bottom of the
enumeration tree. A bottom-of-tree subproblem will have one node selected from each node
set. Let us refer to these subproblems as full combination subproblems. Any subproblem at a
higher level of the tree will have fewer than m nodes selected. Let us refer to these subproblems
as partial combination subproblems.

In the spirit of branch-and-bound, we try to avoid explicit enumeration by eliminating (or
fathoming) partial combination subproblems at the higher levels of the tree. For a given partial
combination subproblem, we first check to see if the node most recently selected for inclusion
in the subproblem can be eliminated. This is done by calculating the round trip costs between
this node and every other selected node of the subproblem. If any one of these round trip
costs exceeds the current incumbent, then we know that the subproblem cannot yield a better
feasible incumbent and can be fathomed.

If a partial combination subproblem cannot be fathomed using the round trip test, we
solve a relaxed problem to get a lower bound. The mathematical formulation of any partial
combination subproblem is identical to the original GTSP problem except for the nodes that
are automatically excluded by the selected nodes. Therefore, for the given subproblem, if we
delete the arcs incident to the excluded nodes, we can use the Lagrangian relaxation (AP Ry)
to compute a lower bound on the subproblem. This is done by simply adjusting the aggregated
arc costs ¢’ corresponding to the node sets of the selected nodes and solving the resulting m x m

assignment problem. The subproblem can be fathomed if its lower bound exceeds the cost of

12

the incumbent since any solution that includes the selected nodes will have a total cost greater
than or equal to the incumbent.

The enumeration algorithm begins by choosing a node set and branching. Each resulting
subproblem is checked for fathoming. Subproblems which cannot be fathomed are put on a
list with other unfathomed partial combination subproblems. The subproblem with the least
lower bound is selected and we branch on its next unbranched node set. If branching has
the effect of creating a full combination subproblem (a bottom-of-tree subproblem), then we
model the full combination using (P R;) and solve it as an m-city TSP. The TSP solution tour
either produces a new feasible incumbent or it demonstrates that the selection of nodes is not
the optimal combination. Hence, bottom-of-tree subproblems are never added to the list. The
algorithm continues until the subproblem list is empty or the least lower bound of the list is
greater than the incumbent. At this point, the optimal solution is the feasible incumbent.

Throughout the algorithm, each assignment problem solution is checked for being a TSP
tour. If a TSP tour is found, we search for a better incumbent by solving acyclic shortest paths
over the sequence of sets. If a shortest path cost is lower than the current incumbent cost, the
shortest path becomes the new incumbent.

Let P!i 2. ik represent a subproblem with the first k£ node sets fixed so that a solution tour
must pass through, in no specific order, node i1 of set S, node i? of set S5, ..., and node ¥
of set Sx. Let Z represent the cost of the best feasible incumbent. The enumeration algorithm

is given below.

Step 0 : Formulate the problem with no sets fixed, P, and solve (APR;) for a lower
bound. If V(APR;) > Z, stop, the incumbent is optimal. Otherwise, start a list with
P° and go to Step 1.

Step 1 : If the list is empty, stop, the incumbent is optimal. Otherwise, choose and remove
from the list the problem that has the least lower bound. Let that problem be P‘.’§ e I
its lower bound is greater than or equal to Z, stop, the incumbent is optimal. Otherwise,
create a subproblem for each node in node set Si41, that is, ﬁ’i:‘;}'m’ikd forall j € Sk41.

If k+1=m, go to Step 3. Otherwise, go to Step 2.

13

Step 2 : For each newly created subproblem, P‘.li’:} ok 7 J € Sk41, do the following:
If SP(i,)+SP(j,i) > [Z—V(APR;)] forany i = i',i?,... i, then fathom P5*]

142 0k 50

Otherwise, formulate (APR;) for the subproblem and solve the associated m x m as-

signment problem. The optimal objective value of the assignment problem represents a

lower bound on the subproblem. If the lower bound is greater than or equal to Z, fathom

k+1
11,42,k 5

. Otherwise, add Pt’:-,tgz",g to the list and check if its assignment problem

solution is a feasible TSP tour. If so, solve the acyclic shortest path problems defined by

the tour sequence. If a shortest path yields a feasible GTSP tour with cost less than Z,

then the path is a new incumbent.

When all newly created subproblems have been addressed, go to Step 1.

Step 3 : For each newly created subproblem, Pz .m-1;, j € Sm, do the following:

Formulate (APR;) for the subproblem and solve the associated m x m assignment

problem. If the optimal assignment problem objective value is greater than or equal to

Z, fathom P2 m-1 ;. Otherwise, formulate (PR;) for the subproblem and solve the

associated m-city TSP. If the optimal TSP objective value is greater than or equal to Z,

fathom P’z .my i Otherwise, the TSP solution is a new feasible incumbent solution

..... 1

and set Z equal to the TSP objective value.

When all newly created subproblems have been addressed, go to Step 1.

3.0 Computational Results

The objectives of the computer implementation were to gain a better understanding of

GTSP difficulty and to test the performance of our approach. The procedures were coded in

FORTRAN, and tested on a series of randomly generated problems. In addition to specially

written subprograms, the code employed routines for solving the following problems; Assign-

ment Problem (Burkard and Derigs [1977]), All Shortest Paths (described in Murty [1976]),

Asymmetric TSP (Phillips and Garcia-Diaz [1981]). All computational tests were performed on

the University of Tennessee’s Vax 8800 computer.

Test problems were created by specifying the number of sets (m) and number of nodes per

set (n). Since each of the m sets contained n nodes, a problem had a total of mn nodes. Arcs

14

were implied to exist from each node to every other node not in the same set. Hence, the total
number of arcs, | A|, is given as m(m — 1)n?.

As in Laporte, Mercure and Nobert [1985,1987], arc costs were generated according to two
methods, namely, Euclidean and Non-Euclidean. For Euclidean problems, 2mn points are
randomly drawn on the [0, 100]? plane. Let the pointsbe P, P, ..., Pnnand Q1,Qs, . . . , Qmn.
The Euclidean problem arc costs were calculated as ¢;; = ||P;—P;||if i < jand ¢i; = ||Qi—Q;l]
if 2 > j and then rounded to the nearest integer. The Non-Euclidean problems were assigned
arc costs drawn from a uniform [0,100] distribution and then rounded to the nearest integer.

Table 1 shows the combinations of m, n and cost generation used in our study. For each
combination, five random problems were created from randomly drawn seeds. With the ex-
ception of one combination, all combinations of five problems were successfully solved and the
reported results represent average performance for the five problems. The sole exception was
in the Euclidean combination of m = 18 and n = 3. Our attempt to solve one of the problems
in this combination was unsuccessful in that an unusually large number of subproblems were
listed in the enumeration algorithm. As noted, the results for this combination are averaged

over the four successful problems.

Results for the bounding procedure show its ability to produce good bounds with little
computational expense. Table 1, column 1(a), shows average final lower bounds attained by
(APR;) as a percent of the optimal objective, Z*. The percentages tend to decrease as the
number of nodes per set increases. The more nodes per set present, the more opportunity there
is for fractional solutions to be present. As the number of sets increase, there appears to be
no definite trend. This is probably due to the fact that we are using an assignment problem
relaxation. An assignment problem solution can be decomposed so that each subtour is an
optimal assignment over some subset of nodes. Therefore, as the number of sets increases, so
will the number of solution subtours. Each subtour group, therefore, has approximately the
same ratio of lower bound to optimal. The collection of these ratios stays approximately the
same as the number of sets increases. The number of subgradient algorithm iterations averaged
44 for the Euclidean problems and 39 for the Non-Euclidean.

The percentages of arcs and nodes eliminated during the elimination procedure are shown

15

Problem Bounding Elim. Enumeration

Specifications 1(a) 1(b) 1) | 1(d) 1(e) 10| Ug)

V(APRy) % Eliminated | No. = Max No. cpu

m n |4 | ==2% |Arcs Nodes | AP’s Queue TSP’s | secs

Euclidean

8 3 504 87.2 83.7 150 119 20 30 0.6

4 896 85.3 89.7 288 | 146 17 10 09

6 2016 77.2 84.7 6.7 | 1288 205 72 4.2

10 5600 75.2 94.5 29.8 | 4347 352 141 193

13 9464 69.3 95.4 19.8 | 2896 291 16| 259

10 3 810 85.6 83.5 113 289 30 4.6 13

4 1440 84.2 75.0 10| 1574 182 12.8 46

6 3240 77.0 84.0 13| 5024 653 20| 171

10 9000 74.3 90.3 22 120,584 2647 22| 1074

12 3 1188 86.8 70.6 05| 977 126 10.0 38

4 2112 84.9 73.2 08 | 2432 348 8.0 94

6 4752 825 88.3 12.2 | 6509 1258 08| 321

15 3 1890 84.7 5.7 08| 763¢ 801 11812 | 396

4 3360 86.9 76.0 03| 5970 1055 48 | 346

t18 3 2754 879 6.1 00| 3869 1163 198 | 305
Non-Euclidean

8 3 504 83.3 86.6 225 69 12 08 05

4 896 67.7 83.1 25| 426 57 1.8 1.3

6 2016 70.2 93.6 342 | 367 39 04 24

10 5600 43.7 96.6 445 | 968 150 0.2 9.0

13 9464 38.4 98.5 619 | 524 75 00| 151

10 3 810 77.8 86.8 240 | 362 38 2.0 14

4 1440 59.9 86.0 70| 1968 157 84 55

6 3240 745 96.6 54.7 | 838 216 04 5.0

10 9000 40.4 95.7 19.0 | 6903 742 16| 389

12 3 1188 739 76.6 33| 1008 142 26 39

4 2112 73.1 85.9 1.7 | 715 115 1.0 4.2

6 4752 575 88.2 3.3 | 4687 741 06| 236

15 3 1890 729 75.3 0.0 | 2337 501 60| 126

4 3360 60.2 834 03 110,704 1023 52| 622

18 3 27%4 69.8 67.6 0.0 | 9888 1457 196 | 75.7

i Averaged over four successful problems. i One problem had 255.

Table 1: Results for test problems (average of five problems for each combination).

16

in Table 1, columns 1(b) and 1(c). With some exceptions, the arc eliminations tend to increase as
the number of nodes per set increases. This is due to the fact that for a fixed number of sets, an
incumbent value obtained will generally be lower as the number of nodes per set increases. The
reduced costs, however, will not tend to change with such an increase. Therefore, an increase
in number of nodes per set will yield a lower incumbent solution and serve to eliminate a
greater percentage of arcs.

The results also show a general tendency for arc eliminations to decrease as the number
of sets increases. The problems with more node sets are more difficult to solve and, therefore,
the incumbents obtained at this stage of the overall procedure will be relatively further from
optimal than would be for problems with fewer sets. The node eliminations occur mostly in
problems with fewer node sets.

The heuristic applications within the elimination procedure often resulted in better in-
cumbents or, in some cases, optimal solutions. The total number of optimal solutions found
before the enumeration procedure were 18 out of 75 Euclidean problems and 27 out of 75
Non-Euclidean problems.

Column 1(d) shows the average number of partial combination subproblems for which an
m X m assignment problem was solved. As expected, the numbers generally increase with
problem size and difficulty. This contrasts sharply with column 1(e) which shows the maximum
number of subproblems enqueued in the partial subproblem list. To store a listed subproblem,
we need only an integer vector of length m (to identify its included nodes) and a single real
value (to store its lower bound). The results indicate that although a considerable number
of nodes are examined, the storage demands remain modest. This claim was supported by
implementing our code on an Apple Macintosh SE. Although the cpu times were considerably
longer, we were able to solve practically all of the test problems.

For unfathomed full combination subproblems at the bottom of the enumeration tree, we
are required to solve an m-city TSP. Column 1(f) shows the average number of TSP's solved
for the problem combinations. Overall, these numbers are very low. It means that virtually
all of the fathoming occurs at the higher levels of the tree and that the methods for finding
optimal solutions through acyclic shortest paths work well.

17

Laporte, et al. [1987] Noon and Bean
Problem Specs. | No. % |A] No. Tcpul No. %|A] No. Tcpu|l cpu
IN| m |A| | Succ Elim. AP's secs || Succ. Elim. AP’s secs || Ratio
20 8 48 5 164 53 1.56 5 71.7 70 52 3.0
11 362 5 83 124 404 5 79.0 13 45 9.0
30 9 798 5 144 465 3250 5 68.1 422 168 193
11 816 5 123 517 3654 5 79.5 532 218 16.8
40 9 1420 5 174 265 37.05 5 81.7 887 342 10.8
11 1452 5 129 1080 123.26 5 810 1759 594 | 20.8
50 8 2186 5 221 38 59.17 5 94.2 854 420 | 141
9 2220 5 20.1 507 100.55 5 85.7 1803 6.76 149
11 2270 5 147 3% 127.79 5 803 5208 17.94 7.1
60 8 3148 5 237 317 82.00 5 924 1749 7.79 10.5
9 3198 5 221 555 147.29 5 86.1 3343 1197 | 123
11 3270 1 167 1257 262.27 5 79.6 11,185 43.18 6.1
70 8 4286 5 240 573 195.87 5 899 8660 24.98 7.8
11 4452 1 165 519 41948 5 820 6960 31.02 135
13 4520 1 139 785 389.33 5 743 8235 45.28 8.6
80 8 5600 4 25.7 437 233.61 5 945 4347 19.27 12.1
11 5816 2 187 220 223.23 5 889 13878 75.82 29
90 8 7086 3 278 372 269.06 5 93.9 7542 4117 6.5
100 8 8748 2 26.7 358 275.08 5 9.1 1569 30.97 8.9

T cpu seconds on a CYBER 173.

i cpu seconds on a VAX 8800.

Table 2: Comparison of results for Euclidean problems.

The overall optimal approach consisted of the bounding, elimination and enumeration

algorithms. Table 1, column 1(g), displays the average total cpu times for the problem size

combinations (excluding problem read-in). For m < 12, the Euclidean problems generally

require more cpu than the Non-Euclidean problems. For m > 15, the Non-Euclidean problems

tend to require more effort. One possible explanation for this behavior is that the ratio of

pre-enumeration upper bounds to optimal were observed to be much higher for the Non-

Euclidean problems compared to the Euclidean problems. This means that the Non-Euclidean

enumerations were probably spending considerably more time finding the optimal rather than

just proving optimality.

18

The test problems generated in Laporte, Mercure and Nobert [1987] differ slightly from our
own by including intraset arcs and allowing each set to be visited more than once. However, the
authors point out that for the Euclidean problems, it is not necessary to consider intraset arcs or
multiple set visits when triangle inequality holds. This allows us to make direct comparisons
between results for the Euclidean problems.

To test the relative performance of our approach, we created Euclidean problems which
were identical to those in Laporte, Mercure and Nobert [1987] in terms of size, configuration
and arc cost generation. Table 2 displays a comparison of the results. For a given number
of nodes | V| and sets m, the nodes were distributed as uniformly as possible over the sets.
An arc was generated from each node to every other node not in the same set. The results
are compared on the basis of successful attempts out of five problems, the percent of arcs
eliminated, the number of bounded enumeration subproblems, and the overall cpu time.

Both approaches were successful on most problems, however, on problems with |A| > 60,
the Laporte, Mercure and Nobert [1987] approach solved 29 of 50 problems. Our approach
successfully solved all 50 such problems. With respect to arc eliminations, our approach was
able to significantly reduce the problem size, especially for the very large problems.

A comparison between the number of enumeration subproblems indicates that our ap-
proach required stgnificantly more assignment problem solutions for lower bounds. It is im-
portant to note, ‘however, that our method solves m X m assignment problems as compared to
worst case |A| x || assignment problems. If compared on the basis of the total number of
basic operations using an O(n®) assignment problem solver, our approach requird fewer.

The last column displays a ratio of cpu times for the two approaches. It indicates our

approach to be faster, especially for medium sized problems.

19

4.0 Conclusion

The Generalized Traveling Salesman Problem is a difficult optimization problem with po-
tential applications in the areas of distribution, warehousing and scheduling. Its enhancement
over the traditional TSP is its ability to simultaneously combine selection and sequencing de-
cisions.

The combined approach of bounding, elimination and enumeration proved to be a practical
method for solving the asymmetric GTSP. The approach blends the tasks of searching for the
optimal solution and establishing its optimality in an efficient, organized fashion. As the

computational tests have demonstrated, fairly large problems can be solved.

20

REFERENCES

Bean, J.C. [1984], “A Lagrangian Algorithm for the Multiple Choice Integer Program,” Op-
erations Research, Vol. 32, pp. 1185-1193.

Burkard, RE. and U. Derigs [1977], “Assignment and Matching Problems: Solution Methods
with FORTRAN Programs,” Lecture Notes in Economics and Mathematical
Systems No. 184, Springer-Verlag.

Dakin, R. [1965], “A Tree Search Algorithm for Mixed-Integer Programming Problems,”
Computer Journal, Vol 8., pp. 250-255.

Fisher, M.L. [1981], “The Lagrangian Relaxation Method for Solving Integer Programming
Problems,” Management Science, Vol. 27, No. 1, pp. 1-18.

Geoffrion, A.M. [1974], “Lagrangean Relaxation for Integer Programming,” Mathematical
Programming Study 2, pp. 82-114.

Gonzaléz, R.H. [1962], “Solutions of the Traveling Salesman Problem by Dynamic Program-
ming on the Hypercube,” Interim Technical Report No. 18, Massachusetts Institute
of Technology .

Henry-Labordere, A.L. [1969], “The Record Balancing Problem: A Dynamic Programming
Solution of a Generalized Travelling Salesman Problem,” RIRO, B-2, pp. 43-49.

Laporte, G. and Y. Nobert [1983], “Generalized Travelling Salesman Problem Through n Sets
of Nodes: An Integer Programming Approach,” INFOR, Vol. 21, No. 1, pp. 60-75.

Laporte, G., H. Mercure and Y. Nobert [1985], “Finding the Shortest Hamiltonian Circuit
Through n Clusters: A Lagrangean Approach,” Congressus Numerantium, Vol. 48,

pp. 277-290.

Laporte, G., H. Mercure and Y. Nobert [1987], “Generalized Travelling Salesman Problem
Through n Sets of Nodes: The Asymmetrical Case,” Discrete Applied Mathemat-
ics, Vol. 18, pp. 185-197.

21

Lawler, ELL.,] K. Lenstra, AH. Rinnooy Kan and D.B. Shmoys [1985], The Traveling
Salesman Problem, John Wiley & Sons Ltd., New York.

Murty, K.G. [1976], Linear and Combinatorial Programming, John Wiley & Sons
Ltd., New York.

Noon, C.E. [1988], “The Generalized Traveling Salesman Problem,” unpublished dissertation,
Department of Industrial and Operations Engineering, The University of Michigan, Ann
Arbor.

Noon, C.E. and].C. Bean [1988], “An Efficient Transformation of the Routing With Alter-
natives Problem,” working paper, Department of Management, University of Tennessee,

Knoxville. »

Parker, RG. and R.L. Rardin [1983], “The Traveling Salesman Problem: An Update of Re-
search,” Naval Research Logistics Quarterly, Vol. 30, pp. 69-96.

Phillips, D.T. and A. Garcia-Diaz [1981], Fundamentals of Network Analysis, Prentice-

Hall, New Jersey.

Saksena, J.P. [1970], “Mathematical Model of Scheduling Clients Through Welfare Agencies,”
CORS Journal, Vol. 8, pp. 185-200.

Srivastava, S.S., S. Kumar, R.C. Garg and P. Sen [1969], “Generalized Traveling Salesman
Problem Through n Sets of Nodes,” CORS Journal, pp. 97-101.

22

