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The disease gonorrhea (GC) is a major public
health problem in the United States, and the
dynamics of the spread of GC through popula-
tions are complicated and not well understood.
Studies have drawn attention to the effect of
concurrent sexual partnerships as an influen-
tial factor for determining disease prevalence.
However, little has been done to date to
quantify the combined effects of concurrency
and within-partnership sex-act rates on the
prevalence of GC. This simulation study
examines this issue with a simplified model of
GC transmission in closed human populations
that include concurrent partnerships. Two
models of within-partnership sex-act rate are
compared; one is a fixed sex-act rate per
partnership, and the other is perhaps more
realistic in that the rate depends on the number
of concurrent partners. After controlling for
total number of sex acts, pseudo-equilibrium
prevalence is higher with the fixed sex-act rate
than under the concurrency-adjusted rate in all
the modeled partnership formation conditions.
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1. Introduction

Although effective treatment has been available for
the last half-century, the disease gonorrhea (GC) re-
mains a major public health problem in the United
States. More than 300,000 cases were reported in the
U.S. in 1996, and GC is a major cause of pelvic inflam-
matory disease, infertility, ectopic pregnancy and
chronic pelvic pain [1]. An additional public health
concern is that concurrent infection with HIV has been
shown to increase the risk of HIV transmission [1].
Along with the human suffering caused by GC, this
preventable disease contributes to the $10 billion in
annual direct and indirect costs resulting from mor-
bidity due to the major sexually transmitted diseases
(STDs), excluding HIV/AIDS [2].

Neisseria gonorrhea, the bacterial pathogen which
causes GC, is perhaps one of the best understood
human pathogens from a microbiologic point of view.
However, the GC transmission system which consists
of the contact patterns of the human hosts, or which
members of the population engage in sexual activity
with each other, and host immune system-pathogen
interactions, is complex and not well understood.

One part of the transmission system that has not
been elucidated to date is the effect of within-sexual-
partnership sex-act rates on the prevalence of disease
in a population that is not strictly monogamous. Over
the length of a sexual partnership, one or both part-
ners can have multiple partners at a point in time, or
concurrent partners, from whom they can become



infected or transmit infection to. The effect of concur-
rent partnerships on disease prevalence has been dem-
onstrated in models by several authors [3, 4, 5, 6, 7].
These models have, however, assumed a constant rate
of transmission per partnership in continuous com-
partmental models (CCM) [3, 4, 5], or constant risk of
transmission per day between infected and non-in-
fected partners in the stochastic models of Kretzschmar
and Morris [6, 7]. Evidence that concurrent partners
can affect the sex-act rate within a partnership has
been presented by Blower and Boe [8].

The effects of concurrency and sex-act rates on
disease prevalence cannot be evaluated without con-
sidering the contact pattern of the human host popu-
lation. The importance of contact pattern for GC was
presented by Yorke, Hethcote and Nold [9] and Heth-
cote and Yorke [10], who used CCMs to demonstrate
the need for a small, highly sexually active subgroup
in the host population for GC to remain endemic. With
the advent of the AIDS epidemic, many CCMs (for
example, [11]) were formulated that showed the rate
of new partner acquisition, as well as non-random
contact patterns, were important factors in the spread
of HIV and other STDs. While these models provided
great insight into STD epidemiology, they have, for
the most part, modeled disease incidence and partner-
ship formation as continuous flows, which makes it
difficult or impossible to analyze the effects of patterns
of sex acts and concurrency within partnerships on
disease prevalence.

To evaluate the effect of sex-act rates within part-
nerships on disease prevalence, this paper builds on
the classical mixing model of Hethcote et al. by ana-
lyzing simulations of a stochastic process model that
includes non-random partnership formation, partner-
ships that have a defined length, concurrent partner-
ships and a defined within-partnership sex-act rate.
Disease prevalence under two sex-act rates, one a
function of concurrent partners and one independent
of concurrency, is analyzed.

2. Methods

The methods section contains three main sub-sections.
The first presents a conceptual description of the model
that was used to control the formation of sexual part-
nerships among the simulated humans. The second
contains the definitions of the two different models
that were used to define sex-act rates within partner-
ships, and the third describes the experiment that com-
pared disease pseudo-equilibrium prevalence between
the two sex-act rate models.

2.1 Partnership Formation Model

The pattern of sexual partnership formation within the
simulated population, or mixing pattern, was central

to this investigation. As discussed in the introduction,
mixing patterns can greatly affect disease prevalence.
For this study it was necessary to control who formed

partnerships with whom, as well as the characteristics
of the resulting partnerships, so that the effects of the
sex-act rate assumptions within partnerships could be
isolated and evaluated independently of the effects of
the mixing pattern. The model of the partnership
formation process used in this project allows explicit
definition of the types of partnerships that can form,
the rate at which each type of partnership forms, and
the quantity of concurrent partnerships in the popula-
tion. The model is described here in a general form
and could also be applied to other simulation studies
involving sexual partnership formation or other forms
of non-random contact (needle sharing among intra-
venous drug users, for instance). The specific param-
eters used in this study are given in Section 2.3.

The model assumes that a finite number of different
types of partnerships can be formed in the simulated
population. The types of partnerships and their char-
acteristic parameters are defined by the investigator.
Characteristics describing a type of partnership could
include, but are in no way limited to, length of part-
nership, type of sexual activity desired by the partners,
ages of the partners, etc. Examples of partnership
types could be: long-term partnerships between hu-
mans 20 to 30 years old, or, one-sex-act partnerships
between commercial sex workers and their clients. By
model definition, sex acts can only occur within the
context of a sexual partnership.

In addition to humans who form partnerships, the
partnership formation model has two major compo-
nents: “mixing bins,” which generate partnerships,
and “tokens,” which are assigned to humans and con-
trol the number of partnerships any human can be in
at any point in time. There is one mixing bin in the
model for each type of partnership. Each mixing bin
generates new partnerships of its defined partnership
type at the rate specified by the investigator as long as
there are tokens in the unpartnered state representing
humans eligible to form partnerships in the mixing bin.
Each human in the model has one token for each part-
nership it can be in concurrently. For example, a hu-
man with one token will always be either unpartnered
or have one partner. A human with three tokens can
have zero, one, two or three partners at any point in
time. Each token can be in one of two states: part-
nered or unpartnered. A token in the unpartnered
state represents the availability of its owner to form a
sexual partnership; a token in the partnered state
indicates that the human is involved in a partnership.

A partnership can form between two humans if:

1. Each of them has a token in the unpartnered state,

2. The model rules governing partnership formation
allow them to form a partnership (for example, if
only heterosexual couples are allowed, two males
or two females could not form a partnership), and

3. They are not already in a partnership with each
other.
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Figure 1. Five snapshots of a mixing bin taken at consecutive times show partnership formation and
breakup. Detailed description is provided in the Partnership Formation Model section of the text.

When two humans form a partnership, the token of
each human who was in the unpartnered state is set
to the partnered state. When the partnership ends, the
two tokens are returned immediately to the unpart-
nered state and the humans who were in the partner-
ship are again available to join new partnerships. To
control the type(s) of partnerships(s) each human can
enter into, tokens are assigned to one of the mixing
bins in the model. For instance, a human with three
tokens might have one in a mixing bin that generated
long-term partnerships, and his or her remaining two
tokens in a bin that outputs short-term “one-night
stands.” Two humans must each have at Jeast one to-
ken in the same mixing bin in order to be able to enter
into a partnership with each other.

To illustrate how a mixing bin works, Figure 1
shows a diagram of a heterosexual partnership pro-
ducing mixing bin containing six tokens belonging to
four different humans, two female and two male.
Snapshots of the mixing bin at five consecutive times
are presented: at each pictured time point, the existing
partnerships and all possible partnerships are listed.
At time 1, the only existing partnership is between
humans 1 and 2. Human 2 has no unpartnered tokens
in the mixing bin, but humans 1, 3 and 4 can still enter
into partnerships of the type generated by the mixing
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bin. A partnership between human 1 and human 4 is
formed at time 1.5, and at time 2 the only humans with
available tokens in the mixing bin are human 3 and
human 4, and so the only partnership that can form is
between humans 3 and 4. At Time 2.5 the partnership
between human 1 and human 2 breaks up; after that
(Time 3 is shown), all the humans with tokens in the
mixing bin have unpartnered tokens and can form new
partnerships. Humans 1 and 4 are already partnered
and so cannot form another partnership with each
other, however.

Each mixing bin randomly produces new partner-
ships with an exponentially distributed rate defined by
the investigator as long as it is possible for new part-
nerships to form (i.e., there are tokens belonging to
male and female humans who are not already part-
nered in the mixing bin). The mean length of partner-
ships formed by a mixing bin is the inverse of an
investigator-defined breakup rate parameter. Partner-
ship lengths are random, independent and exponen-
tially distributed. Defining parameters for average
partnership length provides useful information about
the number of each type of partnership present because
by specifying the rate at which a type of partnership
forms and its average length, the expected number of
partnerships of any type in existence when the model



is at equilibrium is implicitly defined. The use of expo-
nential distributions allows for certain special cases of
the mixing model (one mixing bin model) to be ana-
lyzed in closed form as a birth-death process. This
feature assisted with model validation.

2.2 Sex-Act Rates

The two sex-act rates compared in this investigation
were termed a “fixed” sex-act rate and a “concurrency-
adjusted” sex-act rate. For the fixed sex-act rate, each
partnership started with a sex act and after every sex
act, the time to the next sex act in the partnership was
taken from an exponential distribution with an arbi-
trarily chosen mean rate of 1/0.43, or about three times
a week. Simulated sex acts were generated at the fixed
rate until the partnership ends.

Under the concurrency-adjusted sex-act rate, each
new partnership also began with a sex act. Additional
sex acts within the partnership were generated at a rate
inversely proportional to the total number of concur-
rent partners of each partner. This rate was recalcu-
lated after each sex act in the partnership. For example,
if A and B are partnered, and A has a total of N, part-
ners, and B has a total of Ny partners, then the concur-
rency-adjusted sex-act rate is proportional to 1/(N,
+Np). A constant of proportionality was chosen so
that the total number of sex acts in the entire popula-
tion per unit time would be the same for both the
fixed and concurrency-adjusted sex-act rate simula-
tions. Without the adjustment parameter, the number
of sex acts in a simulation running with the fixed sex-
act rate would have been higher than the number
occurring in a simulation that was identical, but run
with the concurrency-adjusted sex-act rate. This dispar-
ity in number of sex acts, or potential opportunities
for disease transmission, could have explained any
observed differences in disease pseudo-equilibrium
prevalence, and so it had to be controlled for.

2.3 Experiment

In order to determine if disease pseudo-equilibrium
prevalence differed between the fixed and concurrency-
adjusted sex-act rate assumptions, a complete block
experimental design was used to compare pseudo-
equilibrium prevalence under both rates at two levels
of three factors that have been shown to affect GC
prevalence. The three two-level factors included in
the experiment were:

1. Amount of concurrency defined by the percentage
of the high and low sexual activity population sub-
groups capable of having concurrent partners and
the average number of concurrent partners among
those capable of concurrency.

2. Amount of mixing between the high and low
sexual activity groups defined by the percentage of
partnerships within each group that were formed
in mixing bins that allowed high and low activity
group members to form partnerships.

3. Amount of sexual activity defined by the new
partnership formation rates of the mixing bins.

Parameters describing the levels of the factors
amount of concurrency and between-group mixing
are displayed in Table 1. Four mixing bins regulated
partnership formation rates (factor 3) and the types of
partnerships that could be formed; the bins are de-
scribed in Table 2. Mixing bin partnership formation
rates were calculated using the structured mixing
formulation of Jacquez et al. [12] so that the expected
number of new partnerships per year in the high
activity group was 30 and 50 at the low and high
partnership formation rate settings, respectively, and
1.1 and 1.5, respectively, for the low activity group.

The number of tokens assigned to a population
subgroup was one token for each member of the group,
plus one token for each possible concurrent partner-
ship that concurrency-capable humans in the subgroup
could be in. All humans in a subgroup were randomly

Table 1. Levels of factors affecting the high and low activity population subgroups. Percent
partnerships in bin {1, 2, 3, 4} is the expected percentage of each activity group’s partnerships that
form in each of the four mixing bins. Proportion capable of concurrency is the proportion of humans
in a population subgroup who can have concurrent partnerships; average concurrency tokens is the
average number of concurrent partnerships in excess of one assigned to those humans.

Factor Level High Activity Group Low Activity Group
Between- Percent Partnerships in Bin {1, 2, 3, 4} | Percent Partnerships in Bin {1, 2, 3, 4}
Group Low {0.0, 2.5, 2.5,95.0 {95.0,2.5,25,00
Mixing High {0.0, 10.0, 10.0, 80.0} {80.0, 10.0, 10.0, 0.0}
Proportion Average Proportion Average
Capable of Concurrency Capable of Concurrency
Concurrency Tokens Concurrency Tokens
Concurrency | Low 0.8 4 0.1 1
High 1.0 5 0.2 2
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Table 2. Expected partnerships formed per day in each mixing bin. Activity group indicates
whether the “high” activity group, “low” activity group, or both have tokens in the bin.
Expected partnership length is the inverse of the break up rate for the mixing-bin.

Mixing Bin Output Partnerships/Day
Factor: Level:
Activity Expected
Mixing | Group (High, | Partnership | Partnership Formation Rate: Low Low High | High
Bin Low, Both) | Length (days) | Between-Group Partnerships: | Low High Low High
1 Low 200 1.35 1.14 1.85 1.56
2 Both 60 0.09 0.35 0.13 0.56
3 Both 3 0.09 0.35 0.13 0.56
4 High 3 1.95 1.64 3.25 2.74

assigned one token from all the tokens available to the
subgroup. Each human in the group capable of concur-
rency was randomly assigned one more token so that
concurrency-capable humans had at least two tokens.
Remaining concurrency tokens (if any) were then ran-
domly assigned to the concurrency-capable humans
in the group. Tokens were assigned to mixing bins
based on the percentage of each subgroups’ partner-
ships that were expected to form in each mixing bin.
For example, in a simulation where the between-group
mixing factor was set to low, 95% of the high activity
group’s tokens would be assigned to bin 4, which pro-
duced short partnerships at a high rate. The number
of male and female tokens in each mixing bin was the
same for this investigation.

The simulated population consisted of 500 male
and 500 female humans who could form heterosexual
partnerships and engage in sex acts with their part-
ners over the course of the simulation. Jacquez and
Simon [13] have shown that for stochastic models of
closed population susceptible-immune-susceptible
(SIS) epidemics, population sizes of 100 or more pro-
duce a pseudo-equilibrium prevalence that is close to
that observed in a comparable deterministic model.
Jacquez and Simon also note that the true equilibrium
prevalence for a stochastic closed SIS model is 0, al-
though it may take an extremely long time to reach.
Because of this finding, we refer to pseudo-equilibrium
prevalence when discussing the results of this experi-
ment. The population size of 1,000 is also consistent
with other recent GC simulation models [14]. For this
investigation, the population was closed with no births,
deaths or migration. There were two population sub-
groups in this experiment; 5% of each sex was in the
“high” sexual activity subgroup that formed more
partnerships and had a higher predilection for having
concurrent partners; the remainder of the population
was in the “low” activity subgroup. Sexual activity
was the only subsetting characteristic of the popula-
tion. Yorke, Hethcote and Nold [9] estimated the size
of the core, or high activity, group, to be about 2.5% of
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the at risk population. The 5.0% parameter used in this
investigation was to insure that the simulated epidem-
ics did not die out.

The simulated GC pathogen was transmissible with
defined probability at each sex act between an infected
and uninfected human. There was one type of sex act
in the simulation, analogous to vaginal intercourse.
The transmission probability per sex act from infected
female to uninfected male during vaginal intercourse
has been estimated at 0.19 and 0.53 [15]. The risk of
transmission from infected male to uninfected female
has not been measured, but is generally thought to be
much higher than from female to male. For this inves-
tigation, the probability of transmission from female
to male was 0.30 per sex act, and for male to female,
0.70 per sex act. The transmission probabilities were
adjusted upward from the literature values to insure
that the simulated epidemics did not die out.

For this investigation, GC was modeled as a suscep-
tible-immune-susceptible (SIS) disease. Immediately
upon infection, a newly infected human became infec-
tious and remained infectious until his or her infection
ended. Infection did not result in any immunity, and
an infected human was susceptible again immediately
after an exponentially distributed infectious period.
Mean recovery rates for females was 1/45 per day and
for males, 1/30 per day. Although not biologically
plausible, the exponential infection times were used
to maintain consistency with CCM. Yorke, Hethcote
and Nold [9] cite previous modelers as having used
mean infectious period lengths of 10, 55 and 100 days
for infected males, both sexes, and females, respec-
tively. Recovery rates in this simulation were based
on the 55-day estimate and adjusted downward to
implicitly include treatment. Females had a slower
recovery rate than males to take into account their
higher likelihood of having an asymptomatic and
undetected infection. Contact tracing of the partners
of infected humans was not included in the simulation.

Thirty simulations at each of the 24 combinations of
the levels of factors were run. Pairs of fixed and



concurrency-adjusted runs used the same population
at each combination of the three factors. One hundred
humans were randomly chosen to become infected in
all experimental runs when the partnership process
reached approximately equilibrium (simulation day
1,800, or about five years). The simulation outcome was
chosen to be the percentage of the population that was
infected when the infection process reaches pseudo-
equilibrium (simulation day 3,480, or about 9.5 years).
This time was selected by visual inspection of infec-
tion levels in the population as a function of time.
Differences in pseudo-equilibrium prevalence at
different combinations of levels of the experimental
factors were tested for using an analysis of variance.
The model included main effects for type of sex-act rate
(fixed versus concurrency-adjusted) and the three fac-
tors, as well as three sex-act rates by factor interaction
terms. The analysis of variance was done with SAS
Version 6.12 PROC ANOVA (SAS Institute, Cary, NC).
The simulation program was written in Kernighan
and Ritchie C, and compiled with the GNU C compiler
(Free Software Foundation, Boston, MA). Uniform ran-
dom numbers for the simulation were generated with
the “ran2” subroutine from Numerical Recipes in C [16].

3. Results

The means of the measured prevalences for all set-
tings at fixed and concurrency-adjusted levels of the
sex-act rate parameter are displayed in Table 3. Mean
prevalence was consistently highest at the fixed sex-act
level, even when the average number of sex acts was
higher in the concurrency-adjusted level (sex-act data
not shown). The effect was much more pronounced at
high concurrency settings, however. High concurren-
cy settings also consistently had higher prevalences
than their low concurrency setting analogues. A simi-
lar effect is observable for high compared to low part-

nership formation rates. Mean prevalences at all set-
tings comparing fixed and concurrency-adjusted re-
sults are shown graphically in Figure 2.

The analysis of variance model used to evaluate factor
effects on GC prevalence had a significant (p< 0:05)
overall F-test for the existence of at least one factor
effect. Model effects that differed significantly from 0
were: sex-act rate, concurrency, partnership formation
rate and the sex-act rate by concurrency interaction.
The main effect for between-group mixing did not
differ significantly from 0.

4. Discussion

In this investigation, pseudo-equilibrium prevalence
of GC under two different within-partnership sex act
scheduling methods, fixed rate and concurrency ad-
justed, was compared after controlling for the effect of
number of sex acts in the population as a whole. In
the simulated closed population, sex-act rate method
did affect disease prevalence. The size of the effect was
smaller than the effects seen for changing the amount
of concurrency or partnership formation rate, but the
results do suggest that assuming a fixed sex-act rate
within all partnerships, or fixed risk of transmission
per day in all partnerships regardless of number of
concurrent partners, could cause an overestimation of
prevalence in models of GC or other diseases that can
be described by an SIS model.

Many investigators have evaluated the effect of
concurrency on disease transmission dynamics. Dietz
and Hadeler [4] modeled an SIS infection in a ran-
domly mixing population with a CCM that included
concurrent partners and partnership length; they con-
cluded that the transmission dynamics of the infection
in their model were dependent on contact rate within
the partnership and length of the partnership. Watts
and May [3] presented a CCM of HIV in a randomly

Table 3. Mean point prevalence (percentage of population infected) of 30 repetitions at each experimental
setting under fixed and concurrency-adjusted sex-act rate in the simulated population of 1,000 humans.

Mean Percent of Population Infected
Factor Levels When Sex-Act Rate Was:
Partnership Between-Group
Setting | Formation Rate Partnerships Concurrency Fixed Adjusted
1 Low Low Low 2.80 2.57
2 Low Low High 11.05 9.00
3 Low High Low 3.34 2.84
4 Low High High 10.34 8.81
5 High Low Low 4.52 4.14
6 High Low High 26.39 24.63
7 High High Low 6.59 6.01
8 High High High 24.60 22.31
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Figure 2. Mean pseudo-equilibrium prevalence (percentage of the population infected) under fixed and
concurrency-adjusted sex-act rates at the eight experimental settings defined in Table 3. Error bars denote upper
and lower 95% confidence intervals. Factor levels on the X-axis refer to the low or high settings of partnership
formation rate, between-group partnership formation and concurrency as described in Tables 1 and 2.

mixing population that included concurrent partner-
ships and length of partnership: their results focus on
the effect of concurrency on the rate of spread of the
epidemic. Altmann [5] has published a model which
allows for multiple concurrent partnerships and as-
sumes that contacts occur at a constant rate within
partnerships. The stochastic models of Kretzschmar
and Morris [6, 7] have demonstrated the strong effect
of concurrency on the prevalence of GC like SIS dis-
eases. The results of this study are consistent with the
findings of these previously published results. The
lack of effect from between-group mixing is also con-
sistent with the results of Stigum et al. [17], whose
CCM did not show a large effect on disease prevalence
until their high and low activity groups in their model
were mixing nearly randomly.

The results of the simulation showed that in simple
cases, how sexual partnerships plan the time until
their next sex act can affect disease prevalence. Ask-
ing how generalizable the findings are to real human
populations is an important step for any epidemic
simulation. This model compared the effects of two
very simple methods of determining when sex acts
occur within a sexual partnership, one of which in-
cluded concurrent partners in the decision. Important
assumptions were made with respect to:

1. Sex-act rate is homogeneous within the population,
2. The per-sex-act transmission probabilities used, and
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3. Infection with GC does not result in a protective
immune response.

It is extremely unlikely that every sexual partner-
ship in a population uses the same formula to decide
when their next sex act will occur. But this assump-
tion does not detract from the finding that if concur-
rency affects that decision, it is possible that it can
affect disease prevalence. Blower and Boe [8] have
hypothesized the existence of a “sex budget” where
the members of a population have approximately the
same number of sex acts, but they may differ in the
number of people they have sex with over a given time
period. Rather than attempt to solve the potentially
very complex problem of ensuring that all the mem-
bers of the population “spend” their sex budgets in the
allotted time, the model used here expands the defini-
tion of partnership from the classic SIS model using two
different assumptions about the sex-act rate within
partnerships. To address assumption two, additional
simulation experiments were performed to evaluate
the sensitivity of the observed results to changing
transmission probabilities (data not shown). The differ-
ences in pseudo-equilibrium prevalence were more
pronounced as lower transmission probabilities were
used, until the transmission probabilities approached 0.

It has long been believed that GC infection does not

result in a protective immune response due to the

incidence of repeat infection and multiple methods of
host defense evasion that N. gonorrhea is capable of



(reviewed in [18]). Some epidemiologic studies have
suggested otherwise [19] and substantial evidence of
a host immune response against GC infection has been
documented [20]. To our knowledge, immune response
has not been integrated into models of GC transmis-
sion to date. We hope to expand our model by adding
multiple immunologically distinct pathogens that will
induce a host immune response dependent on the
host’s previous infection and exposure status.
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