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CHAPTER I

INTRODUCTION

Signals, Noise, and Prior Knowledge

In the collection and processing of data about any real system,
the desired information is always perturbed or disrupted by irregularities
or uncontrolled variation in the data. If some prior knowledge is avail-
able concerning the expected properties of the information sought, it
may be possible to analyze the collected data to determine more from it
than is obvious by direct inspection. 1In short, if you know what to
look for, you will have an easier time finding it.

The data considered in this thesis are obtained by photograph-
ing symmetrical structures. The prior knowledge concerning the data is
the knowledge of the symmetry of the object photographed. It will be
helpful to keep in mind the idea that the data i1s a photograph, even
though the notion of the observed data will be generalized considerably.
In particular, the data are given over a region of space (the area of
the photograph) and the prior knowledge is a knowledge of certain rela-
tions between the images at different spots on the photograph.

The develcpment of information thecry and the analysis of
information handling systems has led to very powerful techniques for
processing the data that arise in communications. Very general data
handling problems can also be formulated within the framework of infor-
mation theory, independent of the context of the appliication or the
source of the data. Described in communications terms, the data proces-

sing problem becomes one of detecting and analyzing a "signal" in the
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presence of obscuring "noise.”

To make clear the connection between analyzing the photograph
and processing communications data, consider the following paradigm for
the observation of data (Fig. 1.1). The system under study produces
(or emits or outputs) information, the signal, which is transmitted to
the observer through a channel. The signal is that aspect of the
system in which we are currently interested. Simultaneously the system
may be producing extraneous information which is included as the noise
source to the channel. In addition, other sources may contribute to the
channel; these are all lumped together as noise. The result is the
channel output, the observed data.

Of primary importance to us is the prior knowledge we may have
concerning the system under study, the noise, and the channel. This
prior knowledge may have been obtained previously through the channel,
through a different channel, or may even be a hypothesis concerning
the system. In the language of information theory, the presence of this
prior knowledge means that the signal is redundant. This redundancy
allows the recovery of part of the signal from the noise.

The type of prior knowledge usually considered in communica-
tions theory is the knowledge of the probability distributions of the
signal parameters. In information theory, the signal may consist of
discrete symbols and the prior knowledge is given in terms of joint
probability distributions or groups or words of these symbols. In
signal theory, the signal is considered a function of time and the
prior knowledge is knowledge of certain correlation or power spectral

density functions. 1In signal detection theory, the signal is of a



PRIOR KNOWLEDGE OF NOISE

NOISE
SOURCES
NOISE
SIGNAL
SYSTEM
UNDER
STUDY

CHANNEL

OBSERVED DATA

>

OBSERVER

Figure 1.1.

PRTIOR KNOWLEDGE OF SYSTEM

Paradigm for Data-collection.




I

known form but with an unknown, random parameter such as its time of
occurrence.

In the problem considered here, neither the statistical para-
meters nor the form of the signal is known a priori. Instead the signal
is assumed to have a kind of internal structure, a symmetry, so that
certain relations are known between one part of the signal and another.

There are two significant differences between the signals I
will consider and those usually considered in communications theory.
First, the prior knowledge concerning the signals in this thesis is
given by geometric structure relations between different parts of the
signal, rather than by assumptions on the statistical parameters of the
signal. And second, the signals are defined in terms of space, rather
than in terms of time. It is not meaningful to speak of one observa-
tion as occurring before another -- of data that have been observed in
the past and data that have not yet been collected.

As a consequence of the non-temporal nature of the problem,
two considerations of great importance in communications theory do not
arise -- prediction and realizability. The prediction problem is the
estimation of a future value of the signal on the basis of knowledge
of past values of the data. The realizabllity criterion expresses the
metaphysical idea that the processing cannot involve data not yet col-
lected. Since the data are all obtained simultaneously, there is no
prediction problem, and all the data may be used in the estimation of
any value,

The idea of processing this type of data grew from the problem

of analyzing electron micrographs of virus particles. In order to
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provide motivation for the concepts to be developed, the structure of
viruses is briefly reviewed. The form of the present problem is derived
by considering the problems I encountered in trying to process micro-

graphs of viruses.

Virus Structure

Viruses are believed to be constructed from a core of nucleic
acid, containing the genetic information, and a protective coat of
protein, the capsid. This nucleo-capsid is sometimes surrounded by a
membrane. (See Horne, 1963 and 1964; Horne and Wildy, 1963.) Of parti-
cular interest in the processing problem are the so-called simple viruses
which almost invariably appear as rods or spheres in the electron micro-
scope. These may have a diameter from 150 & to 1300 E,

Early electron microscopic observation of these virus particles
did not disclose any internal structure, although a growing body of
evidence indicated that the protein coat was composed of a number of sub-
elements. X-ray diffraction studies, though, did show the shell to have
internal structure, leading Crick and Watson (1956,1957) to suggest
that the shell is composed of identical units packed together in an
orderly manner. The spherical viruses would have their subunits arranged
in a pattern similar to one of the regular polyhedra; the rod viruses
in a helical pattern. Two observations supported this hypothesis. First,
there was not enough genetic material to code a large number of different
proteins. Second, a regular arrangement of identical units would be a
minimum energy configuration, aiding in self-construction. Further

X-ray diffraction studies showed the internal structure of the spherical
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viruses to be that of the icosahedron, one of the regular polyhedra.

Soon after, direct evidence for icosahedral symmetry was
observed in the electron microscope, when a technique of double shadowing
on the largest "spherical" virus showed it to have angular corners
arranged in a pattern consistent with an icosahedral configuration.

With the development of the "negative staining" technique in
1959, surface structure became visible (Fig. 1.2). Since then, many
viruses have been shown to be icosahedral and all viruses examined show
that the surface is composed of an orderly array of small subunits,
or capsomeres. The capsomeres are about 50 R or 60 X in diameter and may
have a central hole of 30 R or 40 2. The number of capsomeres making
up the capsid of spherical viruses varies from 12 to 812 (see Almeida,
1963; Hosaka, 1965).

The bewildering diversity in number of capsomeres was resolved
by Caspar and Klug (1962), who found a rational basis for categorizing
the capsomere counts and arrangements. Only certain arrangements and
numbers are possible, and can be enumerated in advance,

The best resolution so far possible in electron micrographs of
viruses is on the order of 20 R, so that capsomere structure cannot be
determined by observation. Indeed it is frequently not possible even
to determine the number of arrangement of the capsomeres in the capsid
(Howatson, 1965; Klug and Finch, 1965).

The 1limit on resolution is not set by the electron micro-
scope, which has a theoretical resolution on the order of an Rngstrom
(Heidenreich, 1964). Rather it is due to random noise, which may be

caused by shot noise in the electron beam, photographic losses, and



Figure 1.2.

Electron Micrograph of Viruses. Upper, portion
of an electron micrograph field of human wart
viruses, negatively strained with phosphotungstic
acid. Scale: 0.1lp. Lower left, single virus
particle at high magnification. Scale: 50mpu.
Lower right, model in same orientation as par-
ticle. (Figure 3 of Williams, et. al., (1961),
reproduced with the kind permisgzbn_gf the
authors and Nature.)
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random irregularities due to the staining technique and the supporting
film. Valentine and Wrigley (1964) discuss the first two noise sources
and some analysis has been made of the statistical properties of photo-
graphic granularity (Klein and Langner, 1963, and Thiry, 1963), but no
data are yet available concerning the statistical properties of the

staining and support film irregularities.

Processing Virus Micrographs

Since the object being examined has such a high degree of
structure, the micrograph has a large amount of redundancy. It should
thus be possible to recover some of the signal structure from the noise
by suitable processing techniques. Two processing problems appear:

signal classification to determine the arrangement or the number of

capsomeres, and signal extraction to determine the structure of a single
capsomere.

A processing scheme has been proposed by Markham, et al.
(1963) to increase the resolution by utilizing part of this redundancy.
This 1s a superposition téchnique which averages sections of the micro-
graph that correspond to each other. This technique was found to have
several pitfalls (Agrawal, et al., 1965) which could lead to misinter-
pretation of the data.

My interest in the virus micrograph processing problem began
with the recognition that this technique can be described in precise
mathematical terms. The pitfalls in the technigque could then be anti-
cipated, hence avoided (Normen, 1966). The analysis lead me to investi-
gate the possibility of using more sophisticated signal processing

methods on these photographic data.
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The power of signal theory in describing data processing rests
largely on the idea of the Fourier transform, or spectrum, of a function,
The data is represented as a sum of known standard functions with simple
properties. The process of finding this representation is the transform,
the coefficlents in the representation are the spectrum. An especially
important class of data manipulations, the linear operations, have a
particularly simple form when expressed in terms of the transform; the
data processing involves multiplying the data spectrum by the "system
transfer function" of the manipulation.

A simple lens system can be used to find the transform of photo-
graphic data: +the spatial distribution of light in the back focal plane
of a lens is the transform of the light distribution in the front focal
plane. Multiplication by a fixed function can be implemented by passing
the light through a suitable photographic transparency.

Through certain tricks (which are themselves derived from
communications ideas!) using coherent 1light (see Cutrona, et al., 1960)
it i1s possible to multiply the light amplitude by negative or even
complex values. These coherent optical technigues seemed to be parti-
cularly appropriate for processing the micrograph data.

If the original data has translational symmetry, corresponding
to the periodic functions of signal theory, the transform is simple. The
light energy in the transform plane 1s concentrated into discrete
points, with no light energy appearing in between. The helical sym-
metry of the rod shaped viruses gives rise to a more complex spectrum,
but one which has been determined for X-ray diffraction purposes (Cochran,

et al., 1952). Klug and Berger (196k4) took advantage of this fact and
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used the optical transform of micrographs of helical viruses to make
certain measurements, although they did not attempt any actual processing.
Berger, et al., (1966) proposed using coherent light in the optical
system, but only for practical convenience, again not utilizing the pro-
cessing capabilities. Besides this optical transform technique and
Markham's superposition technique, no processing method has been proposed
to utilize the redundancy in the virus micrograph.

One of the difficulties in applying transform methods is that
if the original symmetry is rotational, the transform also has rotational
symmetry and no simplification is effected. The superposition technique
succeeds because, in polar coordinates, rotational symmetry is reduced
to translational symmetry in the angular coordinate. If ¢he original
symmetry is more complex, e.g., icosahedral, no general expression for
the structure of the transform has yet been obtained. Moreover, no
simple coordinate change will reduce the problem to translational
symmetry.

My original intention was to perform both the signal class-
ification and the signal extraction problems using the coherent light
techniques. The classification problem was to be handled using the results
of signal detectability theory -- the matched filter (Middleton, 1960;
Kozma and Kelly, 1965). Filters were made from models of the appro-
priate arrangements so that the correlation coefficient between the
data and each arrangement could be determined. These models were based
on structureless capsomeres (Fig. 1.3). The transforms of some of the
virus models are shown in Fig. 1.4. Although the patterns are complex,

it can be seen that different arrangements have their energy concentrated
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Figure 1.3. Virus Models. Constructed from flat
capsomers placed on a spherical surface.
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Figure l.lka. Optical Transforms of Virus Models. Upper,
central region of model. Lower, optical
transform of the model. (a) Arrangement
with 42 capsomeres. Three-fold rotation

axis central. Model based on spherical
surface.
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Figure1.4b. Optical Transforms of Virus Models. (b) Arrange-
ment with 92 capsomeres., Three-fold rotation
axis central. Model based on icosahedral surface.
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Figure 1.4c. Optical Tramsforms of Virus Models. (c) Arrange-
ment with L2 capsomeres. Five-fold rotation axis
central. Model based on spherical surface.



Figure 1.4d. Optical Transforms of Virus Models. (d) Arrange-
ment with 42 capsomeres. Five-fold rotation axis
central. Model based on icosahedral surface.
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in different places. A working hypothesis was assumed: the structure
of the capsomere does not influence the basic pattern of the spectrum,
only the relative intensities of the different parts of the pattern.

On this basis, a filtering operation suggested itself. Since the
transform of the model shows that no light should be expected in certain
areas, any light actually appearing at those places should be due to
noise. The appropriate filter should then block light from passing
where 1t is not expected, allowing it to pass where it is expected. This
filtering process is very similar to an "optimal" filter derived by
Wiener (1949), the so-called Wiener smoothing filter. I expected to

be able to justify my procedures, first by proving the working hypo-
thesis, then by demonstrating the applicability of the matched and

the Wiener smoothing filters in this application.

Two mathematical problems had to be solved. First the spectrum
or transform of icosahedrally symmetric structures had to be determined.
And second, the assumptions on which the Wiener filter is derived had to
be reconciled with the knowledge of the symmetry of the virus data.

In considering the first problem, I came to realize that the
icosahedral symmetry of the data was not consistent with the concept
of the Fourier transform. The representation in terms of the exponen-
tial function is intimately linked with translational symmetry, as seen
by the very simple structure of the transform of periodic functions.
Although each data function has a transform, two functions almost
identical under icosahedral symmetry may have vastly different transforms.
In fact, the regularities that exist between regions of icosahedrally

symmetric data lack some of the mathematical prerequisites for performing
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the Fourler transformation; the domain of the data is not a topological
group.

Considering the second problem, I recognized that the difference
between the formulation of the virus processing and the Wiener proces-
sing problems is in the nature of the prior knowledge. The Wiener filter
is derived using the statistical structure of the signal and the noise
as the prior knowledge. In the virus problem, the prior knowledge is
the symmetry relation in the underlying structure. There 1s no a priori
reason to believe that a Wiener filter, derived under such different
considerations, would be at all appropriate for my purposes.

In the process of solving these two mathematical problems, I
came to realize that the optical processing techniques were not appro-
priate for the virus problem. The full analysis of the micrographs would
require digitizing the data and performing the analysis by computer.

The results would probably not justify the tremendous effort required.
However the concepts required in the solution represented a distinct
generalization of signal theoretic ideas. The present thesis is a
consideration of this generalization; the specific problem, the virus

micrograph, will no longer be considered.

The General Processing Problem

Two general problems have to be answered: (1) What kind of
signal processing can be performed on data which 1s defined on a mathe-
matical structure weaker than a topological group? (2) What is the
relation between such processing and the Wiener smoothing filter?

The development of these questions from the virus problem

has led to the notion of symmetric functions and to a generalization
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of the types of spaces these functions are defined on. Since the data
are spatial, not temporal, the ideasof prediction and of realizability
do not arise. Because these latter concepts create some of the mos@
difficult aspects of the general processing problem in signal theory,
the generalization in the statement of the problem has been obtained at
the expense of the demands on the solution.

The idea of a symmetric function in the present context 1is
novel, so that techniques of processing had to be developed. These
techniques are essentially parallels of those involved in classical
signal theory, particularly the introduction of abstract function spaces.
It is thus natural to sketch some of the history of signal processing,
following the development of the concepts.which I will be using. The
concepts themselves will be defined at the time they are used.

The ideas of processing random signals and nolse begin with
Wiener's work (1949) on stationary time signals, where he applies his
development of random harmonic analysis (Fourier analysis of random
signals) to the engineering problems of prediction and smoothing. The
engineering or communication theory aspect of processing was generalized
to include certain kinds of deterministic signal functions (Zadeh and
Ragazzini, 1950) until now it is a standard part of signal theory
(Middleton, 1960; Davenport and Root, 1958). Particular specilalizations
of interest include multivariate analysis, or simultaneous processing
of several signals (Masani and Wiener, 1957, 1958), and "distortionless
filtering" (Bendat, 1957; Stewart and Parks, 1957).

The mathematical development of similar ideas is intimately

bound up in the representation of random or stochastic processes in an
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abstract mathematical space, a Hilbefrt space (Kérhunen, 1947). Hilbert
space notions had been developed to handle linear operations in classi-
cal analysis as well as for the development of Fourier analysis in a
generalized and abstract manner (see Murray, 1941; Halmos, 1957).

Although Wiener did not stress Hilbert space methods in his
1949 work, it was implicit in the relation between abstract harmonic
analysis, generalized Fourier analysis, and the Hilbert space represen-
tation of the noise process and the linear manipulations on the data.
The explicit nature of abstract space ldeas in prediction and filtering
was brought out by Doob (1953), Grenander and Rosenblatt (1957), and
Loeve (1960).

Meanwhile, development of Hilbert space representations of
random processes continued (Cramér, 1951; Doob, 1953; Loéve, 19603
Kawata, 1965), particularly on weakening the requirements on the sta-
tionarity of the process; the parameters of the random process could
change with time. 1In addition, the random process could be defined as
arbitrary mathematical functions, not only as functions of time.

The introduction of the reproducing kernel Hilbert space
(Aronszajn, 1950) lead to new applications of the abstract space ideas
to signal theory (Parzen, 1961 and 1962). These developments were
brought into the engineering literature just recently (Capon, 1965).

The "classical" approach of Wiener and followed by the engineer-
ing texts derives integral equations for the processing operations. The
processing is optimized using techniques of calculus of variations. In
the abstract space approach, the data functions are represented as

points in a space and the optimization is done geometrically, by minimizing
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the distance between two points. The latter approach is the one that

will be used here.

The Solution

The first step in this thesis 1s the exact formulation of the
notion of symmetry and of symmetric functions. The data will be considered
to be a function defined on a mathematical space, the data space. The
nature of this space is left unspecified, but it must have some mathema-
tical structure to allow data manipulation. The notion of symmetry is
expressed in terms of geometric relationships in this data space.

The observed data 1s represented as a point in an abstract
function space, the data space. The data 1s assumed to be the sum of
some specific, but unknown, symmetric function and a random noise
function. The processing problem can thus be expressed in geometric
terms: given the observed data point, find the signal estimate that
lies closest to the actual signal point.

In order to carry out the geometric interpretation, a notion
of distance is needed in the function space. This distance notion is
to correspond to our intuitive ideas of how difficult 1t is to distinguish
between two functions. Two functions that are close together are easily
confused, while functions distant from each other are easily resolved.
Because the difficulty in resolving two functions is caused by the
noise, which may be different in different parts of the space, the
distance function must depend on the noise process. Optimizing the
solution by selecting the signal estimate nearest the actual signal
point is interpreted as minimizing the mean square error between the

estimate and the signal.
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Finding the estimate depends on the notion of the signal, or
symmetric function, subspace. This subspace consists of those functions
which satisfy the symmetry requirement. The actual signal point must
lie in this subspace.

The processing proceeds by recognizing that the signal sub-
space can be segregated from the non-symmetric functions in a natural
way. The problem of finding the optimum signal estimate is then shown
to be simply the problem of finding the point in this signal subspace
which lies closest, according to the distance measure, to the data
point. The estimate is found by the projection operation, whereby the
data point is projected perpendicularly down into the signal subspace,
the foot of the perpendicular being the estimate. Integral equations

are then derived which completely determine the processing procedure.

Results and Conclusions

The optimal processing procedure is completely specified by
three conditions: symmetry, ldempotency on the symmetric function
subspace, and self-adjointness. The first condition states that the
signal estimate is itself a symmetric function -- if P 1s the
projection operator and d 1is the data function, then the signal
estimate ® = P[d] is symmetric. The second condition states that
if s 1is any symmetric function, then P[s] = s. The term "idempotent"

2

is used to describe the fact that P~ = P. The third condition

expresses the perpendicularity of the projection. If R 1is the noise

ad

covariance function, interpreted as a linear operator, then PR =R P ,

where Pad is the adjoint of P.
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A special case of the general processing problem arises if the
data are a finite set of numbers. The three processing conditions can
then be expressed as a matrix equation, the function space being a finite-
dimensional vector space. The optimal processing operator may be found
explicitly by solving a finite set of simultaneous linear algebraic
equations.

In another special case, the data consist of a finite set of
functions. This case may arise in considering a replicated experiment,
each trial producing a data function. The processing operator again
may be expressed as the solution to a matrix equation, with the matrix
entries now being functions, rather than numbers. The operator may be
found by solving a finite set of simultaneous linear integral equations.
In particular, the Wiener multivariate smoothing problem may be expressed
readily in this context and the smoothing filter obtained as the solu-
tion to a symmetric function smoothing problem.

Another special case arises when the data space is a topolo-
gical group, for then Fourier analysis is possible. However, the
power of Fourier analysis is lost unless the symmetry structure is com-
patible with the group structure of the data space. The only type of
symmetry compatible with topological group structure 1s translational
symmetry. Although many important types of symmetry are translational
-- periodic functions of time, for example -- the virus symmetry is
not, so that Fourler analysis 1s not appropriate for processing the
virus micrographs.

The idea of a symmetric signal may be expressed, loosely, by
saying the signal is repeated over the domain of the data. A nalve

approach to estimating the signal -- here called the "trivial" processing
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technique -- is simply to average over all the repetitions. 1In general,
the optimal processing solution weights the repetitions differently,
depending on the relative amplitude of the noise over the various repeti-
tions. Moreover, the optimal estimate of the signal at one point may
depend on all the data, even data values which appear at first to be irre-
levant to the estimate since they occur at points which are not related

to the estimated point by the symmetry.

Under many important special cases, the optimal processing
procedure reduces to this "trivial" operation. These cases include
white noise and noise for which the covariance function is symmetric.

If the data space is a topological group, the concept of stationary or
wide-sense stationary noise can be defined; for these cases the "trivial"
processing is again optimal. Furthermore, if the processing technique

is restricted to be stationary, or translation invariant, the "trivial"
processing is the best that can be done. This latter result has
important practical consequences, since the optical technique, as well

as ordinary electronic devices, have the stationarity property.

The processing procedure is solved for an example in which a
periodic signal function is observed over three periods. The noise is
assumed to be uncorrelated between points, but varies in amplitude over
the observation period, reaching a minimum of zero at one point. The
estimate of the signal at this point is, of course, the data value.

The data with the least noise is weighted most heavily in computing the
signal estimate but, interestingly, the data with the most noise 1s not
weighted least.

The results of the study indicate that the optical processing

technique 1s inappropriate for the processing of virus micrographs on
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two counts. First, the optical technique is based on the Fourier transform,
and the virus symmetry is not compatible with the transform. Second, the
processing operation is restricted to the "trivial" one, since the optical
processing technique is translation invariant.

The idea of a symmetric signal covers more than just photo-
graphs or diffraction patterns of geometrically symmetric structures.
It includes statistical sampling, multivariate or replicated data, and
periodic time functions. Under the unifying mathematical development
presented here, it may be possible to apply results from one to another,
seemingly unrelated area. In particular, the solved example derived a
processing filter for time-varying noise in a relatively easy way. This
approach may prove to be useful in the analysis of other time-varying

problems concerned with periodic functions.
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THE PROCESSING PROBLEM

A. The Structure of the Data

The Data Space

The signal, the noise, and the observed data are the functions
which will be considered in this thesis. A function, f(x), is a rule
which assigns a real or complex value to each point =x 1in a data space
X. In the fullest generality, the space X 1is left undefined, although
it must have some mathematical structure in order to perform the desired
manipulations on the data.

Definition 2.1. The data space, X, is a countable union

of disjoint connected Hausdorff spaces with a Borel

measure.

It is convenient to take the measure of the whole space as cne.
For bounded data spaces this poses no problem. In unbounded cases this
may be accomplished by a procedure illustrated by the distinction between

«®
2
functions of finite energy, |£(t)|” dt < », and those of finite power,
+T Fd -0
lim (1/2T) |£(t)| dt < «. The latter type of integral corresponds
T— o -
to making the measure of the entire real line equal to one.

An important type of data space arises when an experiment is
replicated several times. Consider the data obtained on the first
trial. This data will be defined over a space, X;. Similarly the data
from the i-th trial is defined over the space X;. Assuming that no

experimental conditions change between trials, all the X; spaces

should have the same structure. The data space X corresponding to

-25-
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the totality of the data 1s the union of all the spaces from the separate
replications, X =LJi {Xi} .

In communica£ions theory the functions are usually functions
of time, functions of a single real variable. Sampled data are defined
only at discrete points in time, the data space consisting of the set
of these discrete points. If each trial of a replicated experiment pro-
duces a time function as data, the data space consists of a union of
lines. The same data space occurs 1f a single signal is monitored simul-
taneously on separate channels, the multivariate signal case.

In optical data processing, the functions are defined on two-
dimensional spaces, usually the surfaces of photographs. Three-dimen-
sional data spaces may also enter into optical data processing by a
consideration of emulsion thickness (van Heerden, 1963), by photography
of three-dimensional objects as in holography (Upatnieks and Leith,
1964), or by considering time varying two-dimensional figures. Three-
dimensional data spaces also occur in X-ray diffraction problems (Buerger,
1956). The functions involved in the structure of viruses are defined
on a sphere or a cylinder. The virus micrographs, being photographs,

are functions defined over the face of the micrograph plate.

Symmetrical Functions

The structure to be assumed for the signals is a generalization
of the notion of periodicity. A periodic function of a real variable,
say sin (x), is left unaltered if the data space, the real line, is
moved a certain distance to the left or right: sin (x + 2n) = sin (x).
Similarly a cube is left unaltered if it is rotated 120° through

a body diagonal. These are rigid body motions of Euclidean data spaces.
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The concept of motion is now generalized to include all transformations
that do not involve bending or tearing.
Definition 2.2, An automorphism, a:X —»X, is a 1:1

continuous mapping of X onto itself., If x' 1is the
image of x under a, then a:x -»x' or x' = x%

The automorphism a:x — x' acts on a function f(x) defined
on X to form a new function, f'(x) = f(x'). It may happen, as was
the case with f(x) = sin (x) and x' = x + 2x, that f'(x) = f(x).
Definition 2.3. A function f(x) on X 1is invariant
with respect to a, an automorphism of X, if f(x) =
f(x®) for all x in X.
Two automorphisms can be applied in succession to form a third,
the product. If a function is invariant with respect to each of the
two, 1t is also invariant with respect to the product. A function invar-
iant with respect to an automorphism 1s also invariant with respect
to the inverse automorphism. All functions are invariant with respect
to the identity. Thus a function invariant with respect to a set of
automorphisms is invariant with respect to the group generated by that

set. Conversely, the set of all automorphisms which leave a function

invariant is a group.

Definition 2.4. A symmetry group, G, is a discrete
group of automorphisms of a space, X. The Borel
measure of X 1s assumed to be invariant with respect
to the elements of the symmetry group.

By this definition, the idea of symmetry is expressed in terms
of the algebraic structure of the data space. The relation between

this imposed structure and any pre-existing algebraic structure of the
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The whole data space is the union of these subregions.

Figure 2.1. Data Space Corresponding to the Replicated
Fxperiment.
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data space will be explored in a later chapter. The types of groups

that are to be studied are all discrete, so that no processing capability
1s lost by restricting the symmetry group to be discrete at this stage.
By making the Borel measure invariant under the symmetry group, the
automorphisms are, in effect, rigid motions that do not distort distance.

Definition 2.5. A function is symmetric with respect

to a symmetry group, or more simply is symmetric, if

it is invariant with respect to all the automorphisms

of the group.

This concept of symmetry as invariance under a group of auto-
morphisms is important in virtually all branches of mathematics. The
concepts of physical law and prior knowledge, the foundations of
modern physics, are based on just this concept of symmetry (Weyl, 1952).
It is not surprising, then, to find symmetry arising from such diverse
situations as periodic functions or replicated experiments, as well

as measurements made on regular structures such as crystals and viruses.

The Unit Cell

Symmetry has been defined as an algebraic concept. In this
section, symmetry will be expressed in terms of the geometry of the
data space. The goal is to find a way of expressing the data space in
terms of "building blocks", each block being identical to every other
block.

The data space in the case of a replicated experiment has
already been described as the union of subspaces, Xi, each resulting
from a single trial. Let x; and X5 be corresponding points in the

subspaces Xj and Xj (see Fig. 2.1). The signal function s(x)
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must have the same value on x; and xj, s(xi) = s(xj), so that the

automorphisms of the symmetry group must be of the form, aixXj - Xj.
Since all of the spaces X; are equivalent, the automorphism group
consists of all the ways of shuffling these subspaces, leaving the
structure of the subspaces unchanged. If there are m replications,

the symmetry group is the full symmetryl on m items, the group of

all permutations of the subscripts.

Any one of these subspaces can be taken as a building block
for the whole space in that X 1is composed of a series of these blocks
which are completely equivalent by the symmetry. Any symmetric
function on X 1is completely specified merely by defining its values
on this building block, since the function must repeat these values
on all the other blocks.

In the replicated experiment situation there is a natural way
of choosing the building block. In general, though, there is no
reason why the natural block, shown in Fig. 2.2a, should be chosen
rather than the chopped up block of Fig. 2.2b. Either selection is
adequate for describing the symmetry and structure of the data space.
There is no a priori way of choosing a single building block descrip-
tion out of all the possibilities.

In addition to not being able to select a unique representation,
two further difficulties arise in the building block concept. The first

arises if the data space contains "singular" points under the symmetry

group.

L The word "symmetric" is used here in a technical sense (Hall, 1959). In

this case, the symmetry group is the symmetry group.
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(a)

(b)

Figure 2.2, Two Possible Building Block Configurations for the
Data Space of Figure 2.1.
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Definition 2.6. A point x of X 1is singular with

respect to the symmetry group G 1f there exists in

G an automorphism, a, not the identity, such that

aix — X.

All the points on a rotation axis or on a plane of reflection are singular
points. The difficulty is caused by the fact that two building blocks
must overlap at singular points. The topological structure of the
building block at these singular points becomes very complex. The

second difficulty is caused by the fact that the overall geometry of

the building block can be rather different from that of the data space.
This situation occurs when two different points on one building block

are equivalent and will be illustrated later.

To avoid these complications, the building block idea is
dropped in favor of the mathematical idea of a quotient space, the unit
cell space. This space may be considered to represent all the equivalent
building blocks superimposed; i1t hasall the properties and only those
properties that all the building blocks share.

Definition 2.7. Two points, x and x', of X are

equivalent under the symmetry group G, or simply

equivalent, if there exists an automorphism in the

symmetry group such that a:x - x'.

Definition 2.8, The unit cell space, Y, of X

under the symmetry group G 1s the set of equi-

valence classes of X under G. The topology of

Y dis that induced from the topology of X.

In topological terms, the space X forms a covering space
for Y. Several topological structure results are of interest. If

X is connected, then Y 1is not simply connected. Conversely, if Y

is simply connected, then X 1s composed of disjoint subregions and
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the building block type of structure of X 1is valid. Further topolo-
gical structural relations will be considered in a later chapter.

The unit cell space for the replicated experiment situation
looks superficially the same as the "natural building block" of Fig. 2.2a.
A point y in Y, though, represents an equivalence class of points of
X, rather than a single point of X.

The unit cell space corresponding to the periodic functions
of a real variable is a circle whose circumference is the period. The
data space is the real line. According to the building block concept,
the data space is composed of a sequence of segments, each of length
equal to the period, joined end to end (see Fig. 2.3a). But the end
points of any segment are equivalent, so that topologically they may be
considered joined, forming the circle. In this sense, the geometry of
the building block differs from that of the data space. This case also
illustrates the point that a connected data space gives rise to a non-
simply connected unit cell space.

A more accurate description of the formation of the unit cell
in the periodic function case is illustrated in Fig. 2.3b. The data
space is drawn as a helix so that the distance around one turn 1s equal
to the period, and equivalent points lie on a vertical line. The unit
cell is the set of these vertical lines, a cylinder. Since the vertical
dimension has no significance, it is dropped and the set of lines becomes

the set of points shown, the circle.

B. The Noise Process

The noise is assumed to be a sample function from a set of

random variables, one for each point of the data set. At any particular
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Figure 2.3. DPeriodic Function Data Spaces.
(a) "Building block" representation of periodic function

data space.
(b) Quotient space representation of periodic function

data space and unit cell space.
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point x of the data space, the noise value n(x) is a random variable
taken from a probability distribution which depends on x and possibly
also depends on the values of the noise at other points. It is assumed
that the expected value of n(x), that is the mean, is zero at all points
and that the probability distribution is independent of the signal func-
tion. The noise must have finite second moment at all points, but it is
not assumed to be stationary, either in the full or the wide sense, nor
are ergodic properties assumed.

The assumptlon concerning the independence of signal and noise
is necessary to develop the processing procedure without undue compli-
cations. It 1s recognized that non-linearities in the channel may cause
larger noise amplitudes at small signal amplitudes than at large, or
vice versa. In a photographic system the noise may well depend on the
intensity of the signal in that two different noise mechanisms may
apply. At small signal values the noilse will be a background of dark
granules, hence the mean is positive, while at high signal levels it
is "drop-out", with a negative mean. This situation will apply to all
data which are restricted in range -- at extreme values of signal, the
noise will have a non-zero mean tending to bring the data back to the
center of the range. In electron microscopy, a large noise component
is the shot effect of individual electrons in the electron beam, so
the nolse amplitude again depends on the strength of the beam, hence
the signal.

The prior knowledge that is assumed about the noise, in
addition to the assumptions of independence from the signal and zero

mean, is the covariance function, R(x1,xp) = E [n(xy) n*(x5)], where
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the asterisk denotes complex conjugation. The expected value is taken
across the probability distribution, not over the data space.

The covariance function is assumed, for convenience, to be
strictly positive definite. This means that no linear combination of
noise samples will cancel to zero, not only in the mean but for every
sample.

Assumptions on the noise. The noise is a sample function

from a set of random variables with zero mean, finite

second moment, independent of the signal. The covariance

function is assumed known and strictly positive definite.

In signal theory, great emphasis is placed on stationary or
wide sense stationary noise processes. If the noise is stationary, the
probability distribution underlying the noise is independent of location
in the data space -- the noise has the same structure at all points.

For wide sense stationarity, only the first two moments need be stationary,
other noise parameters may vary at different locations in the data

space. In particular, either type of stationarity implies that

R(x7,x1) = R(xp,xp) for any x; and xp in X.

It is not possible to express completely the notion of either
type of stationarity in the data space without some additional algebraic
structure. Either condition implies that R(xy,X5) = R(X3’Xu) if
Xp - X = X) - X3. In the general data spaces so far considered, it is
not possible to subtract two points of the data space.

It is possible, though, to define the notion of periodic noise:

Definition 2.9. The noise process 1s symmetric with

respect to the symmetry group G, or more simply

symmetric, if R(xy,%5) = R(x;%,%,%) for all a in
G.
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The noise process is symmetric if it has the same structure at all equi-
valent points. Note that this is not the same as saying that each
sample function is symmetric. It will be shown later that symmetry is

a weaker condition than weak sense stationarity, in that if the noise

i1s weak sense stationary it must necessarily be symmetric.

C. Data Processing

The Functilon Space

The basis for the data processing is the construction of an
abstract space, the function spaceﬁ‘. The possible data functions,
the signal functions, and the noise sample functions are all included
in this space as separate points. The space must also include all
linear combinations of points within it: if f(x) and g(x) are
represented as points in the function space, then the function
af(x) + Bg(x) must also be a point, where o and B are complex
numbers. It is also necessary that limits of Cauchy sequences of
functions exist in the function space. Integration is then possible,

so that the function:

is a point in the space.

The functions in the space are assumed to have the properties
necessary for convergence of all integrals and limits. This assumption
is usually expressed by limiting the functions to those that are inte-
grable square, or Lo. No great emphasis is placed on these mathema-

tical niceties since the data in practice must satisfy the assumptions.
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The data is bounded, of bounded variation, and at least piecewise contin-
uous, being derived from physically occurring variables. The data space
is actually compact in any real situation, since it must be a bounded
region of a finite-dimensional space. The resolution of observation is
limited so that data occurring at one point is related to the data
occurring at nearby points. It is possible to make only a finite number
of independent observations on the data. The actual number of these
"degrees of freedom" in the data is not important, it is sufficient that
the number be countable for all the ensuing mathematical operations to
be valid without further restrictions.

Some geometric structure 1s needed in this function space.
First, the notion of distance is required, so that it is possible to
say how similar or dissimilar two functions are. Furthermore, the notion
of an inner product is needed. With an inner product it is possible
to say, not only that two functions are so far apart, but whether the
dissimilarity is due to differences in the nature of the functions or
in their amplitudes. Mathematically, the inner product provides for
the notion of direction in the space: +two points f and g are
orthogonal if their inner product is zero. The inner product between
two functions f(x) and g(x), written® (f(x),g(x)), is a complex
valued bilinear, skew-symmetric, function on the function space. That
is, it must satisfy the conditions:

(af1 + Bfp,g) = a(fy,g) + B(fo,g), where o and B
are complex numbers,and (f,g) = (g,f)".

2

A "norm", written® [|f(x)|, can be defined from the inner

2 When several different spaces are being considered, a subscript is
used to identify which inner product or norm is meant; i.e., (f,g)

or HfH"', La
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product for all functions in the space: Hf(x)”2 = (f(x),f(x)). The
norm must be a positive definite quadratic form: [f(x)|| > 0, with
equality holding if and only if f(x) = O. The distance between two

functions can now be defined as the norm of their difference:

17(x) - g(=)ll.

Definition 2.10. The function space,P#, is a complete

linear inner product space; a Hilbert space. The points

in ¥ are functions defined on the data space.

In the processing problem, we are given an observed data
function which is the sum of a particular, but unknown, signal and
noise, The signal is a symmetric function; the noise a sample function
from the random process. We are to find the "best" estimate of the
actual signal. To optimize the estimate, a quantitative error value
is assigned to every possible estimate, the best being the one with
the smallest mean square error value. The 1ldea now is to choose the
function space so that the distance between the signal function and
the signal estimate 1s the desired quantitative error value. The
problem then becomes a geometric one: given a data function point,
find that point of the function space which lies closest to the signal
point and which can be found by knowing only the data.

The notion of the distance between two functions 1s inter-
preted to mean the ease with which the two deterministic functions
can be resolved in the presence of the noise. In the situation illus-
trated in Fig. 2.4, the difference between f and g, appears to be
smaller than the difference between f and go. Thus f should be

more easily confused with gy than with go. However the discrepancy
1 2 D ’
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Figure 2.4,

Resolving Signals in the Presence of Noise.
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or error, between f and g, occurs at a place where the noise is
small, while the error between f and go occurs where the noise is
large. Thus f and g; are more easily resolved than f and gp.
The notion of distance, hence of inner product, must depend on the mag-
nitude of the noise at each point.

If the noise has the same magnitude at each point, and if
the noise at one point is uncorrelated with the noise at any other point,
then the noise is said to be white. The noise amplitude may be normalized
to have unit variance at each point, R(x,x) = 1, without loss of
generality. With white noise, the distance between two functions depends
only on the difference between them, not on where in the data space the

difference occurs. The square of the distance can be taken to be:

2

le(x) - g(X)th,

il

[ ez - 6017} e
X

corresponding to the inner product:

(2.1) (t.6), fx B (g%(x) £(x)] dx.

The subscript,?’, indicates that this inner product is derived from the
white noise process. The function space consisting of the functions on
X with this inner product will be denoted W . DNote that this inner
product definition, without the expected value operation, is the usual
one for L, function spaces.

Two mathematical concepts will be useful for the further
development of the function space: the notion of a coordinate system
or a "basis", and the "assoclated linear operator" of an inner product.

A set of linearly independent points, Dbj, in a space is said
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to form a basis for that space if any point, p, in the space can be

written as a linear combination of the basis elements:

The vector from the origin to b; can be considered to be a coordinate
axis, with @3 the coordinate of p along this axis.

The data space X can be thought of informally as forming a
"span" for ¥ . Any point f in ¥ is a function f(x); the coordinate
in the x; direction being the value of the function f(xi). The actual

span element corresponding to x; 1s the function:

(2.3) £y (x) = {o, x # xi

1, x =%5

The span is reduced to a basis by considering only linearly independent
points of the form given in Eq. 2.3.

A basis is called orthonormal if:
10, 1#7]
(2.4) (bs,05) = { 1o

Interpreting Eq. 2.4 geometrically, a basis is orthonormal if two different

coordinate axes are perpendicular (orthogonal) to each other and if the

unit length along each axis (the norm of the basis element) is one. If

the coordinate system is orthonormal, the inner product is that of

Eq. 2.1. The white noise space,ﬂh’, has an orthonormal coordinate system.
The second concept is that of the associated linear operator,

corresponding to an inner product (cf. Friedrichs, 1960). The functions

f(x) and g(x) are points, f and g, in the white noise space W

as well as the function space #. The idea of the associated operator



_ug-

states that the inner product of P can ve expressed in terms of a

bounded, self-adjoint, linear operator inW .

(2.5) (f,8)

= (f,Hg

= (Hf,g

oy o

In terms of integral operators, H becomes H(x,x'):

(2.6) (f,g%w. =L[7; E [g¥(x) H(x,x') f(x')] dx dx'.

In terms of a coordinate system, the inner product of two basis elements
is (bi)bj»#. = H(xj,xi). The coordinate system is orthonormal if and
only if H 1s the identity operator?

The remainder of this section is concerned with deriving the
form of the inner product fkﬂ‘?#. It will be shown that, 1f the covar-
iance function, R(x,x'), is considered to be a linear operator, then
the operator H is the inverse of R: H = Rt

This derivation is easily provided if a formulation for the
space A can be found in which the noise becomes white. This formula-
tion will be given by a transformation of variables, a change to an
orthonormal coordinate system. Assume for the moment that such a

transformation, T, is found so that n(x) is tranformed into a white

noise process N(t):

Nﬁ)i[ﬂmﬂn&)w

0, t £t

and E[N(t) N*(t')] ='{ 14 = g

3

This result is valid even for spaces of uncountable dimension. The
delta function is really the integral operator representation of the
identity operator.
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This same transformation is applied to the deterministic functions:

F(t) =L/‘T(t,x) f(x) dax.

The functions F(t) form a new function space, @f'. Since

the noise in 7*‘ is white, the inner product is given by Eq. 2.1:

(waw=@ﬁ% =j5[@@)ﬂw]&.

The inner product in ?{ is now defined to make it consistent

with that in ﬂ+’:

(2-7) (fJg)# = (F)G),*,

Writing T for the adjoint of T:

4
Tg)

(£,8)q = (F,0)y, = (1£,%6), , = (£, 7% w

But the associated operator notation gives (f,g)

Y]

the desired inner product is obtained by setting:

= (f’Hg)ﬁV’ so that

(2.8) H=171 or H(xx') =L/\T*(t,x) T(t,x') dt.

Since the noise is assumed to be strictly positive definite,
R(x,x) is bounded away from zero and the operator T 1is bounded and

has an inverse:

so that

(2.9) R(x,x') = E [n(x) n*(x")] =b[\T'l(x,t) T*'l(x',t) dt.
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Interpreting Eq. 2.9 as an equation in linear operators, R = T'l(Tad)'l.
Thus
(2.10) rl =718 7 -p, Q.E.D.

Finding the transformation to represent the noise in terms of
a white noilse process is a complex problem. Cramér (1951) derives a
condition very similar to Eq. 2.9 using the assumption that R(x,x')
be of bounded variation in every finite domain. It should be noted that
a white nolse representation 1s always possible if the data is defined
on a countable set of values (Loéve, 1960).

The assumption of strict positive definiteness on R guar-
antees the existence of R'l as an operator, hence as an inner product
measure (Friedrichs, 1960; Thm. 31.1). For the general function space,
the inner product of Eq. 2.5 using H = R*1 can be simply posited,
the formulation being justified by the actual construction of R"l on
any subspace of countable dimension.

The function space M with inner product measure given by
gt is very closely related to the idea of the reproducing kernel
Hilbert space introduced by Aronszajn (1950) and applied to signal
processing by Parzen (1961, 1962; cf. Capon, 1965). The noise process

forms a Hilbert space (Karhunen, 1947),%, where:

(5, = @y =[] &0 R6ox) £o) ax e,

An operator B = B(x,x') 1is a reproducing kernel if, when considered

as a function of its first variable, it satisfies:

(f(x), B(x,x")), = f(x'); or (f,B.1) =f.

U "



b6

Using the associated linear operator, R:

f.

]

(£,8-1), = (£,R8-1)

M

Thus RB = I, the ldentity operator, and the reproducing kernel is R'l.
Conversely, the space for which R 1is the reproducing kernel must have

-1 for the inner product operator. The space 1% that we shall use is

R
this space with reproducing kernel R. Using this viewpoint, the process
of changing inner products replaces the process of finding a transforma-
tion between two spaces.

Still a different approach to finding the inner product on ﬂ#
is the "classical" technique: finding the spectral representation of
the operator, R. Friedrichs (1960) shows that every bounded Hermitian
operator, even on a space of uncountable dimension, has a spectral
representation. Since R 1s positive definite, all its eigenvalues
are positive. The spectral representation is worked out in detail when
X is a finite line segment by Rosenblatt (1962, Ch. VIII). In general

it involves finding the eigenvalues and the eigenfunctions of the

covariance function; that is, solving:

() = [ RGex) pct) ax

The expression of the noise as a white noise process can be
found from the eigenfunction expansion (Loéve, 1960). The transfor-
mation T corresponds to the operator whose eigenvalues are the reci-
procals of the square roots of the eigenvalues of R. The existence
of a reproducing kernel means that the eigenfunctions span the whole

space . In finite dimensional terms, it means the rank of the
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covariance matrix R 1s equal to the dimensionality of the function

space. In this case, R 1s non-singular and has an inverse, r7L

It has thus been shown that R'l

exists and that the inner
product using R_l as the assoclated operator is the appropriate one
for % . The transformation T need not actually be found. . Yet the
idea of the space 4' 1in which the inner product is the simple one
of Eq. 2.1, in which the noise is white, and in which the coordinate

system i1s orthonormal, has sufficient intultive appeal that it will be

retained in the following discussions.

The Signal Subspace

The ability to process the data is based on the fact that the
symmetric functions lie in a subspace of the space of all functions.
Furthermore, a coordinate system can be given to Min which the symmetric
functions are isolated from the non-symmetric ones. Naturally, the dis-
tance notion in ¥ must be preserved in this new coordinate system.

The symmetric functions clearly form a subspace since linear
combinations and limits of sequences of symmetric functions are also
symmetric. More precisely, the symmetric function subspace,;}, is the
function space of functions defined on Y, the unit cell space. The

inner product on J is defined as:

(2.11) (51,82)4 =fj; so*(v) Ry, y') s1(v') dy dy’

- aji as
1 (y,y') = Zj_ Zs R l(x l:X' J)}

where RS 3

where y 1is the equivalence class of x, y' of x'. The summations in

-1
the definition of Rg are taken over all the automorphisms in the
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symmetry group.

Definition 2.11. The symmetric function subspace, ;J s

is the function space of functions defined on Y, with

inner product given by Eq. 2.11.

The symmetric function space is defined as a space separate frcm14+.

A symmetric function can be considered to be either a function
on Y or a special type of function on X. In geometric terms, the
space ,3 may be considered to be a separate space or a subspace of 4 .
the space J may be embedded in ¥ . The inner product for J has been

defined to make it consistent with this embedding:

(sp(x),82(x) )y = (s1(9),82(5))y 5 or

Ifx sh(x) R (x,x") s (x') dx ax' =J]; s5(y) Rgt(y,y'") s1(y') dy dy’.

This equality is easily verified, since the integration measure, as well
as sy and sp, are invariant under the automorphisms of the symmetry
group.

A method is now needed to determine which points of’* are in
the subspace J . This determination is made by extending the notion of
an automorphism of X +to a transformation of 4‘. It 1s recalled that,
given a function f(x), the automorphism, a, produced a new function
f'(x) = £(x®). The automorphism, a, can thus be considered to be a
linear operator which transforms the point f in 4+ to the new point
f' = a f. This operator is an automorphism of % in the strict mathema-
tical sense, being a 1:1 continuous mapping of # onto itself which
preserves all its mathematical structure. A function s(x) 1is symmetric

if and only if it is invariant under all the automorphisms of the



-hg-

symmetry group. Thus a point s in %V is in the symmetric function
subspace if and only if it is inveriant under all the operators, 8 in
the symmetry group.

The symmetric function subspace,xg , considered as a sub-

space of @ , is the set of all points of A which are

singular points under all the operators, a, in the sym-

metry group.

In order to simplify the processing procedure, it is convenient
to have a coordinatization of the function space in which the symmetric
functions are expressed very simply. As an example, consider a two-

L

dimensional function space” -- the x-y plane. A function in this space
will be described by its coordinates; (a,B). Suppose the symmetric
function subspace is the set of all points with equal coordinates,
(a,a). The subspace is thus the line described by the equation y = x.
If the plane is rotated through 45°, a new coordinate system x' - y'

is found, where the x'

axis coincides with the symmetric function
subspace. The symmetric function now has coordinates (',0). In the
new coordinate system, a point is in the symmetric function subspace
if and only if its second coordinate is zero.

Returning to the general case, a new coordinate system 1s to
be found in which the function f(x) becomes F(z). The set of points,
z, forms the new basis for this space§" of the functions F. The idea
is to choose the coordinates 2z 1n such a way that Eigl is in the
signal subspace if and only if Elﬂl.: 0 for certaln values of z.

That is, there is a set, Zg, such that §(z) 1is a symmetric function

if and only if §(z) =0 for z ¢ Z.

4 This space will be considered in detail in Chapter ITII.
This notation should not be confused with the inner product.
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Such a coordinate system does exist since the points in Y
form a basis for the subspace J . The orthogonal complement of ,J in
¥ is the space g or all points t that satisfy <S’t)'¥ =0 for all
s in J . A basis for & combined with the basis for ;f forms a basis
for ?( with the desired property.

The basis can be constructed by a spectral representation
technique. Each transformation, a, is a permutation of the points of
X, the basis elements of 4. Therefore they are unitary transformations,
with all their eigenvalues having absolute value one. The invariant
functions for each transformation are those eigenfunctions with eigen-
value one. The basis for the symmetric function subspace is taken from
those functions that have eigenvalue one for all the transformations.
The basis for the orthogonal complement is taken from those functions
that do not have eigenvalue one for any transformation except the

identity.

Summary of Function Spaces

Several types of spaces have so far been introduced. It will
be useful to survey the spaces and their relations in order to provide
a fuller understanding and motivation for the processing procedures.

The data is defined on the data space X. The data is composed
of a structured signal and a sample function of a noise process. The
signal is a function defined on the unit cell space Y, which may be
considered to be a representative structural unit of X. The space X
is composed of equivalent building blocks, each identical to Y (Fig.

2.5a), though these blocks may themselves have some interrelations.
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Finally, equations are derived which involve only the automorphisms of

the symmetry group and the covariance function R, and which have as their
unique solution the optimum processing operation. These equations do

not involve either the intermediate transformations or the inverse covar-

iance function R'l.

The space ’* -- A point in ‘#, written f, represents the function f(x).

The covariance function is R(x,x') = E[n(x) n*(x')]. The inner product

operator is the inverse of the covariance operator:

(f,g).w_ = (f,R“lg),W =J]E[g*(x) R-L(x,x') £(x')] dx dx'
Symmetric functions satisfy:

s =as, or s(x) =s(x®), for all a in G.

The space 4, -4 point in #', written F, represents the function

F(t):

F=T1f, or F(t) =L/\T(t,x) f(x) dx.

The covariance in ' is R'(t,t') = B[N(t) N*¥(t')]. 1In operator terms
2 2

the covariance is transformed as:
R' = T R T84,
T 1is chosen to make R' = I, giving the inner product operator Rl I:

(k.0 = [ BLG*(t) ()] at.

Symmetric functions satisfy § =T a T™T g:
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S=AS, vhere A=TaT! forall A in G

or 8(t) =fA(t,t‘) S(t') dat', where A(t,t') =fT(t,x) T’l(xa,t') dxe

The space Y. o4 point in #", written F, represents the function

F=UF, or F(z) =fU(z,t) F(t) dt.

U 1is a unitary transformation: ¥ =y, The covariance in A" is
RH,

R" =UR U =1
since R' = I. The inner product operator is R - T

(£.0) o = | BIE(2) B(2)] 2
Symmetric functions satisfy S =U A u-l S:

1 1

S=AS, where A=UATU =UTaT_lU_,forall§_inG.

U 1s chosen so that the A operator takes the form:

é F = Agzg F(z).

Since the operatory By is uniﬁary, ,Afz}lz 1. Let Zs be the set of

z such that A;(z) 1is actually 1:

Zl = {ZlAl(Z> = l}

Define Zg as the set of 2z such that all the Ai are 1:

Ly = []i 2y
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taking the intersection over all the elements of the symmetry group.

Then the symmetric functions are exactly those functions that satisfy:

S(Z! =0 for =z ¢ Zg .

D. The Optimization

Data Processing

There is now enough mathematical structure to consider the
data processing operation itself. The menipulations of the data
function that are considered here are restricted to linear, continuous
operations. If the daté is d(x), the signal estimate is the result
of applying a linear operation, L, on the data: L[d(x)]. The linearity
and continuity conditions provide that:

L [od] + Bdp] = oL[dy] + BL[do], where o and B are
complex numbers

L [fh(x,x') d(x') ax'] =fh(x,x’) L{d(x")] ax'.

Since the transformations between the various function spaces
are linear, the processing manipulation can be expressed equally well
in all of them: L' operates in %' on D(t), L" operates in H" on
Q&El' Specifying the manipulation in any one space completely deter-
mines it in all of them. It must be remembered that, in the most
general processing problem, the transformation T may not be available.
The processing solution must be expressed solely in terms of the ?$
space, and any results derived using concepts from the other spaces

must also be valid completely within 4.
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The error function between the signal, s, and the signal
estimate, L[d], 1is s-L[d]. The error magnitude is the norm of the

error function, Hs-L[d]HqH . The optimal processing operation Lopt

must minimize the magnitude of this error over the class of all linear

operations.

.Definition 2.12. The optimum data processing manipula-
tion, L,ut, is the linear, continuous operator that
satisfies: |[s-Lopt[dllly = inf Hs-L[dHh+, taking the
infimum over all linear, continuous operations, L.
Write & = Loppldl, and A = [s-8llg .

It is apparent that the signal estimate Q must be in the

signal subspace. For suppose the contrary. Then Q can be separated

into two components, one in 5K and one nn€73 the orthogonal complement

A
of J: s =s] +t, where s1 EJ and (t,f) = 0 for all f inJ . Then:

22 = ||s-8I7 = Jls-sy - ¢]°

ls-s[® + [I¢l

since (s-sy,t) = 0. The error may be decreased by setting t = 0,
contrary to the assumption that A is the optimal estimate.

This condition on the optimal processing operator is called
the symmetry condition, since Q must be a symmetric function.

Processing condition (1): The optimal processing oper-
ator Lopt is symmetric: Lgpt [f] ¢ o for all f in%.

This condition can also be expressed in the other spaces: Lépt[F]ezg',
n 1]
Lipy [F1 e "

The only prior knowledge that we have concerning the signal

is that it is located in the symmetric function subspace. The optimization
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must therefore proceed for all possible s :UlJ and the optimum operator
must be independent of the signal. As a consequence, the signal sub-

space points are all invariant under the processing operator: Lopt [s] = s,
for all s 1n J . Tc prove this statement, first note that, since

Lopt is linear, Lopt[dj = Lopt[S] + Lopt[n], Thus

Ag = ”S_"/S\”g = ”S-'Lopt[s] = Lopt[n]ug
(2.12) 02 = Jls-Lopg[s1]2 + IlLope[nll® + (s-Toptls], Lopylal)

+ (Lopt[n:ls S'Lopt[sj>“

Now consider the first ilnner product term.

ro _ -
(S”LOPC[S]yLopt[n]> :L[Z\E {szt[n<x)] R"l(x,xV) {s(xf)—Lopt[s(x')}} J dx dx
The signal is a deterministic function, as is Lopt[s]. Since the noise
i1s assumed uncorrelated with the signal, 1t 1s also uncorrelated with
any linear transformation of the signal. Thus the expected value opera-
tion applies only to the noise term. But the noise has been assumed to
nave zero mean. Thus the whole inner product is zero. The other inner
product is fthe complex conjugate of this one, so it, too, is zero.

fFguation 2.12 simplifies to:

(2,13} 22 = |s-1

(12 + [n__ [n]]%,

opt ‘opt

To make the minimization of error independent cf the signal, set:
(2.14) L [s] =s, for all s in Q.E.D
\ 0 ko Opt- s o d 3 . .

Since the result of processing any data is a symmetric furcticon

ily

no further improvement can be obtalned by passing the data through tre
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processing scheme twice. The second processing manipulation will give

the same result as the first: Lgpt[f] = Lopt[Lopt[f]} = Lopt[f], or

2

Lopt

= Lg Any operator that satisfies L2 = L is called idempotent,

pt’
and for every ldempotent operator there is an invariant subspace. To
show that the invariant subspace for the optimal processing operator is

the symmetric function subspace, the condition given by Eq. 2.1k will be

called idempotency on J .

Processing condition (2): The optimal processing opera-
tor Lopt 1s idempotent on § : Lopt[s]= s, for all s
in J
Similar idempotency conditions apply to the other function spaces:
pp(81= 8, for all § in "5 LY 4 [8]= 5, for all 8 in § "

Two consequences of idempotency are of interest. First,

Eg. 2.13 reduces to:

(2.15) 8= [topyladl],

The processing error 1s simply the mean amplitude of the result of
processing pure noise. The final processing condition will be derived
from this result.

As a second consequence, the signal estimate is unbiased:

E[§]

li

E[Lopt[s] + Lopt[n]] = Lopt[S] + E[Lopt[n]}

(2.16) E[8]

Il
[9)

The condition of idempotency requires Lopt to have only
1 and O as elgenvalues. Idempotency on S requires the eigenfunctions

of eigenvalue 1 to be the symmetric functions. The eigenfunctions of
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eigenvalue O form a subspace,ot, which is annihilated by Lopt:

Definition 2.13. The space i i1s the subspace of ﬂ%
which is annihilated by Lopt: Lopt[f] = 0, for all
£ ind.. The orthogonal complement of { in % is
denoted 7 .

The subspaces i~’ and { ", which are annihilated by Lépt and Lgpt’
respectively, are the analogs of i,in 4 and Y,

Two facts about ji will be of use later: (1) the spaces Ji
and d span ?/‘, and (2), i and J are disjoint. The first follows since
any point f in ¥ can be written as a sum of a point, Lopt[f], in kf
and a point, f - Lopt[f], ixlgf. The second follows since any point f
simultaneously in J and i must satisfy Lopt[f] = f and Lopt[f] =0,

hence f = 0.

Nolse Components in Subspaces

The first two processing conditions are independent of the
nolse process. The noise covariance enters by means of Eg. 2.15, which
states that the processing error amplitude is the mean processed noise
amplitude. Since the norm of any function is preserved by the trans-

formations:

(2°l51) A= ”Lopt[n]“% = ”L('th[NJ”%t = ”Lgpt[_ly_]ll,#n

The optimal processing operation has been shown to reduce the
whole function space to a subspace. Some results concerning noise
amplitudes in subspaces will be derived in this section. The main
idea to be developed is that the mean noise amplitude in any subspace

depends only on the dimension of the subspace in comparison with the
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dimension of the whole function space.
The mean amplitude of the pure noise is one, in any function

space:

(2.17) Hnll,# = gy = lmlgyn = 1.

This need only be demonstrated in one of the spaces, since the norm is

preserved by the transformations:
2
g2 =[] Bt w2 ) me)) ax ax

=ﬂx R(x',x) R71(x,x') dx dx'

=&/\ ldax =1
X

since the measure of the data space is 1. If Z 1is the "data space"

for the 4 " function space, that is the set of points z,

2, - [, Bute) (@) e

=b/\ R"(z,z) dz =\/ﬁ ldz =1
Z z

since the covariance function in @ " is the identity. The measure of
Z is 1,
Now suppose that 4" has finite dimension, k. Then Z is

a finite set and the integrals become finite summations:
2
“H‘L#,, = (1/k) Z; R(zg,25) = 1.

The weighting factor (1/k) normalizes the measure of Z to one.
Now consider the subspace of dimension 3, formed by z,, Zs

and Z7, say. The noise on this subspace will have three components:
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Ny = (W(zp), N(zg), N(z))

and the mean square noilse amplitude will be:

fh

31;2” (1/k) [R"(29,25) + R"(25,25) + B" (a7, 27)]

3/k

since the covariance R"(z,z) = 1 for all z. It is clear that the mean
square noise amplitude on any subspace of dimension 3 will also be 3/k.

The noise on any subspace of arbitrary dimension will be
composed of several components, one for each dimension. The mean square
amplitude of each of these components is equal to 1/k, since the noise
1s uniform in every direction. Taking these components to be mutually
orthogonal, the Pythagorean theorem says that the total mean square
noise amplitude is the sum of the mean square amplitudes of the compo-
nents, thus for any subspace of dimension j, Hyﬁﬂi*” = j/k.

For spaces of infinite dimension, a simple counting procedure
will not work, and this result must be modified. Still referring to the
space 44", consider the noise Nzl in the subspace of functions which
vanish outside Zy: F(z) = O for 2z ¢ Z;. The set %y, which we have

been calling a basis for the subspace, is the support for the subspace.

2 1"
W R MERENCY

where p(Zl) 1s the measure of Z;. The mean square noise is given by
measuring the support of the subspace, rather than by counting basis
elements., It should be recalled that the measure of the support of

the whole function space i1s one. The concept of the measure of the
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support of a subspace replaces the idea of the number of basis elements
for infinite dimensional spaces. Thus, if two subspaces are supported
by sets of equal measure, the mean noise amplitude in each subspace will
be equal.

The key to finding the mean square noise amplitude in a sub-
space 1s finding an orthonormal basis for the subspace, then counting
the basis or measuring its support. Orthonormality is required in
order for each component to contribute equally and independently to the
total.

The inner product function in ?+ has been defined to make the
noise in orthogonal directions uncorrelated and of equal amplitude.
By fiat, the notion of dimension in ?$ has been equated with mean square
noise amplitude. Two subspaces are of equal dimension if they have equal
noise amplitude. If an orthonormal basis for a subspace is found, so
that the support of the functions in it can be expressed, the dimension-
ality of the subspace equals the measure of the support.

For our own purposes, we need not actually count or measure
the dimension of any subspace in ?+. We need only compare certain sub-
spaces to verify that they are of equal dimension and thus have equal
mean noise. As a convenient notation, write u(!!) for this "dimension"
or measure of‘zf.

The first result we need follows from the additivity of measure

or dimension:

Lemma 2.1, If zyl and.;!zz are disjoint subspaces

that span 4L, then p(6 l) + p(’g o) = k(%) = 1.
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The second result follows from the generalized Pythagorean
Theorem: orthogonal components of noise combine by adding the mean

square amplitudes.

Lemma 2.2. Suppose '# has two orthogonal decompositions:
'#:Jl +g :Jg +@5, whereJ 14 @'l and Jg_‘_ To-
Then write n =ny + nge = ng + Ngr» where the subscript

indicates to which' space that noise component belongs.
Suppose further that u( = Jg Then Hn,j' ”Q}-

Ing, Il

Minimizing the Error

The space 'H- can be decomposed into disjoint subspaces in
three ways. We have already used the decomposition into the symmetric
function subspace J and its orthogonal complement 9’ The discussion
following Definition 2.13 gives a decomposition into the spaces ,J and
i . Finally, ?{- can also be decomposed into i and its orthogonal
complement % .

These three decompositions are illustrated in Fig. 2.6, using
the ';l” space 1n which orthogonal axes can be drawn geometrically per-

pendicular. The algebraic decompositions can be written:

(2.18) (1) n:nJO+n9_ E:NJO"+E )
(2) n=n + n N=N,6nw+N

S SRV T P
(3) n=n +n N=N + N

mo 4,

The subscript indicates to which subspace that component of the noise
belongs. The subscript JL Indicates that the component is in the space

JP and that it is obtained using the Lopt operator; the subscript 'Jo



!
|
— g (a)

/J 1" (b)

(c)

Figure 2.6. Three Ways of Representing the Noise in Terms
of Components.
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indicates that the decomposition is orthogonal.

Apply Lemma 2.1:

(2.19) i)+ (@) = w(d) + e = v + (L) =1,

(2.20) n(d) = w(g) s n(d") = w@")

It then follows from Lemma 2.2:

(2.21) HnJOH,H_ = lngy H*; i Jo”“ 0 = Hﬁ,»\,,H,#

Fur thermore, applying the operator Lopt to the noise as expressed in

the second decomposition of Egq. 2.18:

Lopt[n] = Lopt[n!j L] + Lopt[ni]

"d 1

since L annihilates ;ﬁ and leaves Hf invariant. Thus:

(2.22)

=g = u,
JL q,_ —JL1 q_n.
Now referring to Fig. 2.7, it is obvious that

i W'” g S [t JL””’# ;

since a leg of a right triangle cannot be longer than the hypotenuse.

Applying Eg. 2.21 and 2.22:

I

(i "H%,, < a=n

1 1"
o) L »
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Figure 2.7.

Relationship of the Noise Components in
Two Decompositions.
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But A 1s required to be the smallest error, so the equality must hold
and HEJL,,H = HEJO,,H. This can be accomplished by setting g " =G ".
The optimal processing operator must project the data point orthogonally
to the symmetric function subspace.

Essentially the same argument can be carried out algebraically

in the ’#— space by noting:

W MR

from Eq. 2.18. Since (n—ni ) e’m and (ni - niL> ei,
o o

(n—nio,nd\o—ni L)‘“‘ = 0.
Thus &% = lng lg =l - ny LH?#

2

= ”(n'nio>'(n.( O_ni L)“’"'

~ faen, IF o+ I
= l’l-niom l’lio—l’liL‘%
15

.74 %

Since Hnio_ni L[[ > 0 and, from Eq. 2.21, ]Inm | = HnJ o”

2
= ”nq,\”q_ + n

gy <6 lng lo
Again, A 1is not the minimum error unless HnJ L“ = ”ndo“’ which is

accomplished by setting i = 9

Processing condition (3): The optimal processing
operatoer Lopt is obtained only 1if i =

The Projection Operation

It has been shown in the previous section that the optimal



_68-

operator LOpt transforms the data orthogonally onto the signal subspace.
The best estimate of the signal is that point in &f that lies at the foot
of' the perpendicular from the data point to zf . Of course, in the space
ﬁ% this "perpendicular" is not geometrically perpendicular, but is ortho-
gonal in the sense of the inner product. Thus the processing operation
depends on the noise covariance function. The processing problem has
been expressed so that the signal estimate is that point in the symmetric
function subspace which lies closest to the actual signal point. It
turns out that the signal estimate is also that point in the symmetric
function subspace which lies closest to the observed data point.

The optimal processing operator is the operator that gives
the J component in the orthogonal decomposition of the data into the
J’and ¥ subspaces. This operator is called the "projector" or
"projection operator" from ?# to zf . The optimal processing operator
shall henceforth be written P (or P' or P") to indicate that it is
this projection operator. The existence and uniqueness of this opera-
tor is guaranteed by the completeness of the function space (see
Murray, 1941).

This projection operator satisfies the conditions of symmetry,
since it projects onto the symmetric function subspace, and idempotency,
since it 1s idempotent on its range.

The optimal processing solution. The optimal processing

operator is the projection operator, P, which projects

the function space 4 onto the symmetric function sub-
space

This operator may be explicitly constructed if the transfor-

mations T and U are found. In the coordinate system of 4 ", the
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symmetric function subspace has the simple representation:
S e " if and only if S(z) = 0 for z £ Z_.

The projection operator in 4" is found by inspection: it
sets to zero all values of the data function D(z) which correspond
to z ¢ Zs' In this coordinate system, P" has its spectral representa-

tion and is represented by a multiplicative operation, not the usual

integral:

(2.23) 8(z) = " [(2)] = P(2) D(z)
where P(z) = { 0, 2 f Zg

1, z € Z4

The manipulation may be expressed on the original data function
d(x) by transforming through 4f' to 4", obtaining D(z); performing the
A
projection using P" to get S(z); then transforming back through 4’

to ¥, obtaining g(x):

(2.24) A - p[a], where P =TT Ut P U T,

A X) =L/\P(x,x') d(x') dx', where

s (
P(x,x') =L[ZZ7‘T-l(s,t)U-l(t,z)giglU(z,t')T(t',x') dx' dt' dz dt

An alternate procedure uses some properties of the projection
operator. The projection operator to E( is idempotent and self-adjoint:

P2

=P and (f,Pg)q# = (Pf,gZ%_ for all f,g in 4. Conversely, any
idempotent, self-adjoint operator is a projection. Furthermore, any

projection that has values in J (is symmetric) and holds J’ invariant

(is idempotent on J ) must be the desired optimal operator.
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Lemma 2.3. Any self-adjoint, symmetric operator that is
ldempotent on 1s the optimal processing operator, P,
the projection from 4 to .

To prove this statement, let L Dbe a self-adjoint, symmetric operator,

idempotent onJ . Any point f in @‘ has the unique decomposition,

f=s+t, withs e, t € . Then for any s' in,f :

(s',Lt) = (Ls',t) by self-adjointness of L
= (s',t) Dby idempotency on

=0 since s'e,f and t ed .
But L t €J by symmetry of L. Thus Lt = O and:
Lf=Ls+Lt=Ls-=s.

But the projection operator also satisfies P f=s sothat Pf =1 f

)

for all f in4. Thus L =P, Q.E.D.
The concept of self-adjointness is expressed in terms of the

inner product in 4{., hence depends on the inner product associated

operator RL,

1

(f,Pg)’% = (f)R- Pg

= (Pf)g),#

e

= (Pf,R_lg),’V = (f)PadR-lg)W

In operator terminology, self-adjointness can be expressed:
(2.25) p?d gt - g7t B,

Applying the R operator to the left and right of Eq. 2.25 gives:

(2.26) R p* - p R.
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The three conditions of symmetry, idempotency on J , and self-
adjointness (as expressed in Eg. 2.26) will uniquely determine the
operator P.

The processing operator P which minimizes the mean square

error between signal and signal estimate is given uniquely
by the three conditions:

(1) symmetry: Pfe J , Tor all f in %
(2) idempotency on o : Ps=s, for all s in J
(3) self-adjointness: PR =R pad

If the noise process can be represented by a transforma-
tion of a white nolse process, the optimal processing
operator is given explicitly by Eq. 2.2k,



CHAPTER III

FINITE DATA SPACES

A. The Processing Problem

The Data Space and Symmetry

In this chapter, the data is assumed to consist of a finite
set of N numbers. The data space isa set of points, x5, i =1,...,N,
with the discrete topology. The i-th data value is the value of the
data function evaluated at xj: d; = d(xj). Since all the function
spaces and all the processing operations are linear, matrix algebra
notation and the ideas of finite dimensional vector spaces are natural.

Functions defined on X will be written as column vectors:
(31) f= (fi) = (f(Xi)) =

The automorphisms of the symmetry are shufflings, or permu-
tations, of the points x; and can be represented as permutation matrices.
Each row and each column of a permutation matrix contains exactly one
entry with value 1, all other entries are 0. The permutation matrix A

corresponding to the automorphism a:x. —>xj has a 1 in the j-1 position.

i
The automorphism, a, transforms the function f(x) to the new

function f'(x) = f(x%*). In matrix notation, the permutation matrix A

transforms the vector f to the new vector f' = AT, the operation

being performed by matrix multiplication. A vector, s, is symmetric if

and only if:l

. This concept is meaningful since there always exist symmetric functions,

namely those functions all of whose components are equal.

-72-
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(3.2) s =As, for all A in G.

The following notation is adopted for convenience. If Xs

is equivalent to X3 under the symmetry.group G, write 1= j. The
equivalence class of X5 is written V3 and contains Hj members.

Let v Dbe the number of points in the unit cell space. Then the total
number of points in the X space is N = ; My

This type of data space can ariZi from a situation in which
an experiment is replicated p times, each replication producing v
data values. The signal v-tuple obtained at each trial should remain
the same from trial to trial, only the noise should vary. The unit
cell space has v points and each equivalence class has the same number,
u, of points, there being pv data points in all.

An example of such a space is the statistical problem of
estimating the mean of a multivariate, v-dimensional probability distri-
bution given up samples. The first moments, the means, correspond to
the unknown signal, while the central second moments, the covariances,
are known. Of course when the samples are uncorrelated, the best esti-
mate of the population mean must be the sample mean., The present formu-
lation includes, not only the case of correlated samples, but also the
case in which the data are derived by correlated samples from different
probability distributions.

O0f particular interest, 1s the case in which all the points
are equivalent, the case v = 1. The data space has | points and

the symmetry group is the "full symmetry group" on W items, the group
)

of all u x p permutation matrices.
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The Function Space and the Noise

The function space,?v, will be a vector space with as many
dimensions as there are points in X. Points in % are column vectors
and will be denoted by lower case letters: f represents the vector
(f5;) with components fj = f(xj). Linear transformations can be written

as finite sums:

(3.3) £1(x3) = 23 by f(Xj)
Using matrix notation, let H = (h.
(3.4) f' = H 1.

The prior knowledge of the noise is given by the covariance
function R(x3,%3) = E [n(x1) n*(x;)]. This, too, can be written in

). If n is

matrix notation, setting R = (rij)’ where r.. = R(xi,xJ

1J
2

the noise sample column vector:
(3.5) R = E[n n*]

The nolse process 1s known only by the first moments, which
are assumed to be zero, and the second moments, which are given by R.
The noise probability distribution thus may be approximated by the
"ellipse of concentration" (Cramér, 1946). A probability distribution
which is uniform inside this ellipse and zero outside has the same
first and second moments as the given noise process. The boundary of

the ellipse 1s the locus of points f that satisfy * R'l f =c,

2 In this chapter, the superscript asterisk denotes the operation of

conjugate transposition; n* 1s a row vector whose entries are the
complex conjugates of the elements of n.
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where R"l is the inverse of the covariance matrix and ¢ 1is a real
number whose value depends only on the number of dimensions in,§+.
Furthermore, the mean square nolse amplitude in the direction wu, where

4 is a vector of unit geometricd length, is E[nu* n,] = 1/(u* R ).
The desired notion of distance in the ?{ space 1s the geometric
distance divided by the mean noise amplitude in the direction the dis-
tance is measured. The unit of length in any direction is thus set equal
to the mean noise amplitude in that direction. Let £ be the geometric

length of the vector f, so that the unit vector in the f direction is

v = f/l. The desired distance notion is:

2 1 B % -1 |
Hfli% e () =L (4v) = £ L of,

The inner product in the 4 space 1s thus defined to be:

6 - B¢ &L £].
(3.6) (f,g)w E[g" R™* f]

The Transformations

The optimal processing operator can be derived directly from
the three conditions given at the end of the previous chapter. The
transformations from one function space to another arise so naturally,
though, and are so easily visualized in the finite dimensional case
that it is worth while considering this approach first.

In two dimensions, the functlon space may be illustrated by

the plane, as shown in Fig. 3.la. The coordinate axes for ﬁﬁ are Xy

3 The geometric norm is lu}g = u*u, the geometric inner product is
u-v = v¥u, the vector scalar product.
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and xp; the data space forms the basls for the function space. The
ellipse of concentration represents the noise process: the noise shown
is positively correlated between the two data space points. The points
p and q are geometrically farther apart than the points q and r.
In the @% space distance, though, the two distances should be equal
because the trend in the noise makes them equally hard to resolve.

The two points x; and xp are equivalent under the symmetry

group. The permutations are:

10 01

with the multiplication rules: A22 = T, A2’1 = Ay, A symmetric function
must have equal components, s(x;) = s(xp), so the symmetric vector s
must lie on the line xp = xq, the symmetric function subspace,xfn
Returning to the general finite-dimensional case, apply the
non-singular matrix T to the function space as a coordinate transfor-
mation, obtaining the space #'. The point f in ?V transforms to the
point f* 1in ?#' by the rule f' =T f. The covariance in ﬁy' is
given by R' = E[n'(n')¥] = E[(Tn)(Tn)*] = E[T(m")T¥] = TR T°. The
symmetric functions in 4£' are transforms of the symmetric functions in

-1 s', or

?%, so that s' 1is symmetric if and only if 7lgt =T
st =TATL s = A" s for all A in G, where A' 1is the transformed

permutation matrix. These rules can be summarized:

(3.7) (1) £ =7Tf

T R T

—~
no
~—r
=
H

(3) A" =T AT
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N

Since R 1s a positive definite matrix, there is a unitary
matrix V such that VR V' = D, where D 1is a real diagonal matrix
with positive entries. Thus V can be considered to be a coordinate
transformation, taking the ?% space to the new function space ‘%‘, which
diagonalizes the covariance. A unitary transformation preserves the
distance and inner product notions, (Vf,Vg) = (f,g). It is therefore
a "rigid body motion", the algebraic representation of a rotation or
reflection. Returning to the two-dimensional example, the transforma-
tion V rotates the coordinates until the ellipse of concentration has
its axes aligned with the coordinate axes (Fig. 3.1b). The covariance
matrix corresponding to such an ellipse is diagonal. Since distance is
preserved, the relations between Py, 43, and 1rq are the same as in.@%.
The symmetric function subspace is no longer the line with slope 1,
but must now be found from the transformed permutation matrices.

Since the covariance matrix R 1s assumed to be strictly
positive definite, the matrix D will have no zeroes along the diagonal --
in no direction 1s the noise amplitude zero. Geometrically, the area
inside the ellipse 1s not zero. By expanding the ellipse along some
coordinate axes and shrinking it along others, all the semi-axes can
be brbught to have unit length; the ellipse becomes a circle, and the
noise becomes white (Fig. 3.1c). 1In the general case, this change in
scale factors along the axes 1s provided by a diagonal transformation
matrix, specifically the matrix D—l/g. Applying D'l/2 as a trans-

formation to 4#1 gives the space €¥’. The covariance in.ﬂ¥’ is

b A matrix V is unitary if v o= vl
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-1/2 -1/2 % -1/2
R' =D Ry (D ) . But D is diagonal and positive, so D is

-1/2)* ) D-l/2.

. , -1/e - _-1/2
diagonal and real; (D Thus R' =D DD = TI.
The noise has been transformed to a white nolse process. The inner

product in ?4? thus has the white noilse or geometric form:

*

(3.8) (f',gg)?¢i = E[(g") fl.

In Fig. 3.lc, the distance between p' and g¢' 1is now equal to the
distance between g and r’,

The successive action of the transformations V and D'l/2
1s, in the notation of the previous chapter, the transformation T. In

the ‘' space:
* -
(3.9) f'=7f, RR=TRT =1I, A" =TAT L

Defining the inner product in ﬁy in terms of that in 4/':

(f,g%m

(fyg%?#

(7£,78) gy, = E [(Tg)*(T£)] = E[g*(T*T)f]

1\

E[g*Hf] R where H = T T.

*
Thus the associated linear operator for the inner product is H =TT,
This result is simply a restatement of Eq. 2.8, recognizing that the
representation of the adjoint of an operator is the conjugate transpose

of a matrix.

From Eq. 3.9, T R T' = I. Therefore, R = T™H(T¥)71 and

(3.10) (f,g) = E[g" rR° £].
4

The optimal signal processing operation in ﬁ¥" is found by
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projecting the data point d' orthogonally to the symmetric function
subspace xg“, as shown in Fig. 3.1lc. This projection is most easily
performed by rotating the coordinate axes once more so that the symmetric
function subspace lies oriented with the coordinate axes. 1In Fig. 3.1d,
the rotation brings xf" to lie on the horizontal axis. Rotating the
covariance circle leaves it a circle -- the noise remains white.

In the general case, suppose the unit cell space consists of
v points. The symmetric function subspace is then v-dimensional. A
unitary transformation U will rotate the coordinates untillg " lies
along the first v coordinates in the new space f". The symmetric
functions are those vectors whose coordinates are all zero after the
filrst v,

The projection operation in ﬁ¥” consists of retaining the

first v coordinates of the data vector, setting the remainder to zero:

A

(3.11) s" = P" 4", where P" = (p”ij) is given by
l,1=Jgv
p"i.: 0, 1=3>v
J 0, i #3

It is easily verified that P" 1is idempotent and self-adjoint.
The existence of the transformation U 1s guaranteed by a
theorem in van der Waerden (1955; v. II, p. 13M) which can be rephrased

in the present notation:

Given an inner product operator (f,g)y. = g*R'lf and a
self-adjoint operator P: (f,Pgly = (Pf,g)# , there
exists a coordinate transformation UT sgch that if

" = UT f, g”*= UT g, then (f",g")gn = g"" £" and
(f,Pg)y = g" P"f", where P" 1is a diagonal matrix
whose diagonal entries are the eigenvalues of P.
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The eigenvalues of a projection operator must be either zero
or one, by the idempotency condition, and the eigenvalue one has multi-
plicity equal to the dimension of the symmetric function subspace, by
the idempotency gggé condition. The operator P" of the theorem is
the desired projection operator in the ﬁ%” plane. For simplicity, in

our formulation of the A"

space, the non-zero entries on the diagonal
of P" preceded the zero entries. This theorem proves the existence
of the solution. The uniqueness proof follows that in Lemma 2.3.
The projection operation in the Y space is found by transforming

the data to 4", performing the projection with P", then retransforming

the solution back to 4+;

(3.12) S=paq, where P=Tt U P U

The P" operator in ’#” is symmetric, idempotent on J ", and self-adjoint

by construction. It is now verified that the P operator in ?ﬁ also

1

satisfies these conditions. Note that P" = UTPT™iU™! from Eq. 3.12.

L1 -1 -1 |

Symmetry. -- A" = UA'U ~ = UTAT "U ~, By the symmetry of P", P" = A"P"
for ail A" 1in G. Then UTPT™IU™l = (urar~tu~t)(urer~lul) or

P =AP for all A in G.

Tdempotency on :J -- ps = T-iulpturs = rolytlpts = rolutdst = s,
Self-adjointness. -- Note, first, that R™T = T'r, U* = ut, (%)L =

(71y%, and P"* = P". Then PR = TYUP"*(u-h)*(T-1)*r*r = r¥UTPrUT.

1 -1i-1 =1

p = t¥pr-ly~lerur = Tfuletur = TYUTPMUT. Thus PIRTE

-1

Also, R™ = R P.

(£,Pg)y = F [g"P*R71r] = B [g"R71Pr] = (Pf,g)y .
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B. The Processing Solution

Obtaining the Solution

In practice, it is easier to find a matrix that is simultaneously
symmetricg‘ idempotent on ,5, and self-adjoint, than to find the transfor-
mations U and T. The equations which must be solved can be expressed

in matrix form:

(3.13) symmetry: AP=P, for all A in G
idempotency on ;8: Ps=s, for all s in ,J
self-adjointness: PR= (PR =R P

Since A 1is a permutation matrix, it is unitary. Thus if A
is in G, Al = A% 45 also in G and A*P = P. By self-adjointness,
then:

PR = RP* = R(A*P) = RP*A = PRA, for all A in G.
By symmetry, PR = APR, for all A in G, proving:
(3.14) If C=PR, then AC =C = CA, for all A in G.
The elements of C are therefore symmetric in both subscripts:
(3.15) C = (cij), where cjy = cyrg0 for 1EL', §=j,

and there are only ve different coefficients to be determined.

Since the projection operator P can be obtained from C:

(3.16) P =CRZ

2 In the sense that AP =P for all A in G.



-83-

it, too, has only Ve linearly independent entries.

Define a series of "standard" symmetric functions, si, such
that the function s' has value 1 on all points equivalent to x4
and value O on all other points. These v standard functions form

a basis for J.

(3.17) st = (Si(Xj)) = { L= for i =1,2,...,v

0, 1% ]

The ildempotency condition for P requires st =p si, for all

i. Applying Eq. 3.16 expresses this condition in terms of the C matrix:
(3.18) st = crtst for i=1,...

Allowing for the symmetry requirement, Eg. 3.15, for the coefficients of
C, each value of 1 1in Eq. 3.18 yields v linearly independent equa-
tions. In all, then, Eq. 3.18 expresses the ve equations needed to
determine the Ve different elements of C. The matrix P 1is then
found by applying Eq. 3.16.

In addition to solving these v2 simultaneous linear equa-
tions, this solution requires inverting the N x N covariance matrix.
A shorter procedure involves expressing ldempotency in terms of P

directly:

.1 = vy = ' for 1 =1,...,v
(3 9) Ry le' {O, 5 #J ) s

For each value of 1, Eq. 3.19 expresses v conditions on the Py

so each row of P has only N-v 1independent elements. Because of

7

the symmetry condition, for 1 =1', P has only v distinct

Pij = Pi'j

rows. There are v(N-v) coefficients left to be determined for P.



_8l-

These may be found by applying Eq. 3.1k and 3.15. 1In fact, the solution
deccmposes 1nto the solution of v separate sets of N-v equations
which can be chosen to have the same (N-v)x(N-v) kernel. The entire
solution is then reduced to inverting one (N-v)x(N-v) matrix, a signi-
ficant saving in computational effort.

As an example, let X]EX3, Xp=EX). Applying the symmetry

and idempotency requirements to P reduces it to only four coefficients:

a,p, 1-a, -B

¥, -y, 1-8
.,20 P — ) ) )
(3 ) Q, 5: l—Oé, "B

7,0, -7, 1-5

Obtaining C from Eq. 3.1% and applying Eq. 3.15 reduces the problem

of finding these coefficients to the solution of the two sets of

equations:
o R - R y Ry - Rhl—g
(3 ) [B:I ’:R3l|. - R32 ] d R)-FLI- - R)-I-E_!
R11-R72-Rq7+R Rnr+ =R);1 =Rn~+R
where M = ['ll 1379317733 21 -th1-Rp3 M3—]
BBy -Raptha), Roo =Ry p-Ro) +Ry,

All four coefficients in P may be found by inverting the
single 2x2 matrix M. It is interesting to note that M is the

covarilance matrix of the noise differences.

(3.22) M = [jE[lnl’n3l2] E[(HZ'nu)(nl—n3)*]
E[(nl—n3)(n2_nu>*] E[|n2—n412]

Full Symmetry

If all the N data points are equivalent, the symmetry is the

full symmetry group on N elements. The unit cell space has only one
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point and the symmetric function subspace is one-dimensional. There is
little computational difference between the short and the long solutions,
but the latter can be expressed rather simply, involving the computation
of a single constant.

The matrix C = PR must have all its entries equal, by Eq.
3.15. Writing J for the NxN matrix with all elements equal to one:
¢ =cJ. oOnce R' is determined, the constant ¢ 1s the only para-

meter left to compute. Equation 3.18 then becomes:

1 11. .1 1
1 11. .1 1
= c R‘l
1 11, 1 1

This equation can be solved to glve
c= (s Rt = (2t )t

where sl is the vector with all N components equal to one. The

reciprocal of ¢ 1s the sum of all the entries in the Rl matrix.
Applying Egq. 3.16:
-1 1, 1% -1
J R s (s R
(3.23) p- LR . & L,

s rl st (sl* R'l) st

since J = st s* (¢f. Grenander and Rosenblatt, 1957). The coefficients

of P can be written:

Kk .

The contribution of the j-th data value to the signal estimate is the
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ratio of the sum of the elements in the j-th column of the inverse
covariance matrix to the sum of all the elements in the inverse covar-
iance matrix.

In the two-dimensional case, the solution becomes:

(3.25) p_ lreemrer)dy + (r1-rip)da

M1 -02 - Y1 + o2

Estimating the Noilse

Some interesting properties of the solution can be derived from
Eq. 3.19 without explicitly solving for P. The estimate of the i-th

signal value can be written, in general:
A
(3.26) S(x;) =84 = Zypiy d(xj)

The estimate of the signal at X5 depends on all the data values. The
coefficient pjjy is the weight of the contribution of d(xj) to the
estimate of s(xi).

Grouping the data into equivalence classes, Eq. 3.26 becomes:

A
(3.27) Si = Z4Pij d5 * xRy di + .

The first term on the right is summed over the u; points in the equi-
valence class of x;. The first summation is the contribution of the
data values as measured at points equivalent to the estimate point:

the contribution of "relevant" data values. The remaining summations
are each over a separate equivalence class. They represent the contri-
bution of points not equivalent to the estimate point: the contribution

of "irrelevant' data values.
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Equation 3.19 states that the sum of the weights, Pj 5 in
the first summation is 1, the sum of the weights in each other summation
is 0. 1In particular, if x5 1s an isolated singular point of the data
space, being invariant under all the automorphisms, the equivalence class

Yo contains only the one element x This datum value makes no contri-

o
bution to the estimate of any signal value other than s(xg).

The question arises: why should any irrelevant data value
contribute at all to the estimate? The answer, of course, is that the
irrelevant signal does not. The noise at the irrelevant point is cor-
related with the noise on the desired signal, though, and knowing this
noise value aids in removing the noise obscuring the signal. But the
noise values, "uncontaminated" by the irrelevant signals, are not known.
If the data at two equivalent points are subtracted, the signal will
cancel out, leaving the noise difference. These noise differences are
used in making the estimate. The datum at an isolated point cannot
contribute to the estimate because the noise cannot be separated from
the signal.

The contribution of these noise differences 1s 1llustrated by
rewriting Eq. 3.27 in terms of the signal and noise separately.

Because of the constraints of Eq. 3.19, the signal term in all the

summations after the first disappears:

A
Si = S5 -+ ijlJ nj + kaik l'lk + .

The dependence of the estimate on the noise differences is tacitly con-
tained in the constraints on the weights. This dependence may be

emphasized:
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=s8; +n;: + Z.p:.(ns-n. ) + =

i+ 0y j ij( i s kPik(“k'nko) .

where X3 is any point in the equivalence class yjy, Xko any point
in yy, ete. Since sy + njo = d(xjo), the problem can be restated:
The signal s; 1s estimated by the data value d(xjo). The coeffi-
cients P; 3 are then chosen, under the constraints of Egq. 3.19, to
best cancel out the noise njo with the remaining noise differences.
The presence of the irrelevant data does not automatically
lead to an improvement in the estimate. Even though the noise at
points xp and x,+ may be correlated with the noise at X5, the
noise difference (ny-ny:) may be uncorrelated with nj.- In this
case, the knowledge of the data at irrelevant points is, in fact, irrele-
vant to the signal estimate.
In the four point example (EQ. 3.20) the estimate Ql depends
on all four data values. If the nolse difference is uncorrelated
between equivalence classes, the matrix M, the covariance of the noise

differences, becomes diagonal, as seen from Eq. 3.22. The solution

then reduces to
@l =dd; + (1-a) dg
which is the solution to the two-point problem, given by Egq. 3.25.

C. ©Special Covarilance Matrices

The "trivial" Solution

In this section, two special types of noise processes are

considered. In these cases, not only are the irrelevant data values
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indeed irrelevant, but all the relevant data are weighted equally. The
estimate of s; 1s Just the arithmetic mean of the data at the relevant
points:
(3.28) s; = (I/wg) T ag

i'=1
where by is the number of points in the equivalence class of X5 .
This solution will be called the "trivial" solution, since it seems to

ignore all the information about the inter-relationships between the

noilse samples.

Symmetric Noise

The noise process 1s symmetric if the properties of the noise
process are invariant under all the automorphisms of the symmetry group.
For our purposes, only the first two moments of the noise process are
considered, so a weaker condition is sufficient. The noise process is

"wide sense" symmetric if the covariance function satisfies:
R(x%, (x')®) = R(x,x') for all a 1in G.

In matrix terms, R =E [n n*], so the symmetry requirement becomes:
a a * * ¥ * . .
R(x%,(x')®) = E [(An)(An)"] = E [Ann"A"] = ARA”. The noise process is

wide sense symmetric if and only if:6

3.2 R=ARA", for all A in Q.
9 s

The self-adjoint property can then be expanded:

Since the permutation matrices, A, are unitary, the white noise process,
R = I, 1s wide sense symmetric,
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PR = R P¥

P ARA*= ARA* P¥ for all A in G.

By symmetry, AP = A and Pa* = (ap)* = P* 5o
AP ARA® = ARA* P¥A¥
PAR = RA'P"
(PA)R = R(aP)*

Thus the matrix PA 1is self-adjoint. PA is symmetric since

A(PA) = APA = PA for all A in G. PA is also idempotent on o,
since (PA)s = P(As) = Ps = s. Therefore PA 1is a solution to the
processing problem. Since P 1is the unique solution, PA =P for

all A in G, so that p.

_ D o= s
ij = pij' for j #J'. Thus all the summands

in the sum of Bg. 3.19 are egual:

J
Z s 21 = Mo .« . = . .
R TR T o n

The solution is therefore the trivial one of Eq. 3.28.

A special case of symmetric noise is the statistical problem
arising by taking uncorrelated samples from a single multivariate pro-
bability distribution. Let each sample produce v data values. The
v X v covariance matrix Rv describes the relationships between the
noise in any one sample. Since different samples are assumed uncor-

related, the total covariance matrix is simply:

R 0. .07
v
0O Ry. . 0
R= | °
Lo O R,
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where O vrepresents a v x v Dblock of zeroes. Since the covariance
matrix R is symmetric, the solution is the "trivial" one: given
uncorrelated samples from a multivariate probability distribution, the
sample mean vector 1s the best estimate of the distribution mean vector

in the sense of minimizing mean square error. This estimate is unbiased.

Stationary Noise

The concept of stationarity is meaningless unless the data
space is a topological group. It will thus be considered in full detail
in a later chapter. Because this type of noise does lead to the "trivial"
processing, and because it can be discussed with the mathematical struc-
ture that has already been developed, it will be considered briefly.

The finite data space, x; for i = 0,1,...N-1, is now assumed

to form a group by defining addition: x. + x. =

i 3 Xi+j’ where the summa-

tion on the subscripts i1s taken modulo N. 1In essence, this means that

X, 1s "adjacent" to X1 Just as x, 1is adjacent to xq.

o)

The noise process 1s stationary if the joint probability distri-

bution of n. and n; depends only on the difference 1-j. The condi-

1 J
tion of "wide sense" stationarity is sufficient for our purposes: the

noise is wide sense stationary if the covariance function R(xi,xj)

depends only on the difference 1-j. In matrix terms: R = (ri

TO, rl, r2, rN_l
rl*: Tor T1s 'y-2
% 1175 Tos TY-3

; * *
| Tyep 2Nzt 0 o
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Each row of R 1is identical to the row above, but shifted one unit to
the right. The topological group structure means that an entry shifted
off the right end re-appears on the left. Such a matrix is called a
"circulant," with elgenvalues Aj end eigenfunctions ¢j given by

(Marcus, 1960):

P5 R =125 95,
where Aj = Xy Ry exp(Enijk/N), i? = -1
and ¢5 = (1,exp(2nij/N), exp(4nij/N), . . . , exp[2(N-1)xij/N])

Since the eigenfunctions and eigenvalues are known, the trans-
formations V and D are easily found. The matrix V is the matrix
whose Jj-th row is the j-th eigenfunction. The matrix D 1is the
diagonal matrix whose j-th diagonal entry is the j-th eigenvalue. V 1is
given by:

vV = (¢j,k), where ¢j,k = exp(2nijk/N)
The transformation g = V f becomes:
g5 = Iy dy exp(2nijk/N).

The j-th coefficient of g is exactly the coefficient of the j-th term
in the Fourier expansion of f. 1In fact, the eigenfunction xj is the
J-th coefficient in the power spectral density function of the noise.
The mathematical manipulations we have created reduce to the Fourier
transform when the problem is specialized enough for Fourier analysis
to apply!

Continuing with the solution, assume the symmetry to be full,

&

so that all the points are equivalent. A function is symmetric if and
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only if it is a constant. Therefore its spectrum consists only of the
"DC term." The signal subspace in either ?il or in %' is already
aligned along the j = O axis. The processing therefore consists of
computing the transform of the data, ignoring all terms except the zero
frequency term, then retransforming. This procedure, of course, is

exactly the "trivial" processing of Eq. 3.28.



CHAPTER IV

REPLICATED DATA SPACES

A. The Processing Problem

Reduction to the Finite Case

In this chapter, the data are assumed to be derived from a
series of replicated experiments. Each trial produces a data function,
rather than the single datum value of Chapter III. The symmetry is
assumed to be full -- the signal function is identical from trial to
trial. The first part of this chapter shows how this replicated data
problem reduces to the problem of the finite data space, so that the
solution involves the inversion of a finite matrix or the solution of
a finite number of simultaneous linear equations. In contrast with the
previous chapter, the matrices will have functions, rather than numbers,
as entries. The simultaneous equations will be linear integral, rather
than algebraic, equations.

The data space for this type of data is illustrated in Fig.
2.1. The data obtained from the i-th trial are a function defined on
the space X;. This space is a "building block" for X, X =Ui X5
Under the symmetry group, each X; 1is equivalent to every other Xj
and also to the unit cell space Y. Any point x in X must be
located in one of the building blocks, x = y; for some y in Y,

1 <N. Any function f(x) defined over X can thus be represented as
a series of functions, each defined over a separate block:
f(x) = f(y;) = £5(y), y € ¥, 1 = 1,2,...,N. This series of functions

can be written as a column vector:

_9h_



f=(f;(y)) =

Two points x and x' in X are equivalent if and only if
x =y; and x' = R equivalent points can differ only in their sub-
scripts. The automorphisms of the symmetry group permute the subscripts.
In the vector notation, the permuted function f'(x) = £(x*) has the same
components as f(x), but in different order. Thus f' = A f, where A
is an NxN permutation matrix as in Chapter III. The symmetric

functions are those with equal components:

(k1) f e if and only if f;(y) = fj(y) for all y € Y; i,j =
1,...,N.

In order to proceed with the machinery of Chapter III, it is
necessary to represent transformations of coordinates and linear
operators as matrices with functions as entries. The operators that
will be needed include the transformations V,T, and U; the projection
operators P and P", and the linear operators associated with the
inner product notion, R-l and R. The permutation matrix A 1s also
an example of such an operator matrix.

Consider a linear transformation, represented by the integral

operator h(x,x') as in Chapter II.

(k.2) £t (x) =L/; hix,x") £(x") dx'

Writing x as y; and noting that the integral over X can be broken

down into a sum of integrals, each over a subspace Xi:
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N
f'(yy) = ﬁ( h(yg,x') £f(x') ax'
J=17 "3
The variable of integration, x', in each integral is limited to one
subspace, so the integral can be rewritten:

N
' (y;) = & fh(Y-,Y'-)f(Y'-)dY'
1 L dy YT J

The kernel function h(yi,y'j) is now broken up into a series of

functions:
(4.3) h(yi,v'y) = hyy(v,v')

so that the transformation becomes:
N
—_ 1 !
£'(y;) = = J; hys(v,y") (') ay'
J=1
This result is formally similar to Eq. 3.3, but rather than multiply the
datum value f(xj) by the constant hij as in Eq. 3.3, the data function

f(y'j) is composed with the function hij(y,y'):

(k1) hij * fj =b/; hij(y;y') fj(y') ay’

The operator matrix H can now be defined as the matrix of
functions hij(y,y') as given in Eg. 4.3. The transformation of

Eq. 4.2 becomes:
f'=H T

where the multiplication of elements is given by the composition of

Eq. 4.b.



_97_

In general, the multiplication of two matrices is given by the
rule: If U = (uij) and V = (vij), the product UV =W = (Wij) is

given by:

(+.5) Vi T % Uik ¥ Vg

where ;¥ V3 =b/; uik(y,y”) ij(y”,y') dy".

In order to extend this definition to include the product of a matrix
with a vector or the scalar product of two vectors, the definition of

composition is extended to include:

As an illustration of these composition methods using the

matrix notation, consider the desired inner product notation:

(f,g), =EB[g" R £].

%

This can be written out in full as:

* -1
(f,g) = X E[g; * R; * f.]

() 1j J

]

i,J
* -1 1 ! 1
2y Eles 0) Ryy “(ny') £3G)] ay ay
i,J

N % -1
Elg (x) R (x,x') £(x')] dx dx'
i?ju/;ih/xj g (x X,X X X

fx Ble*(x) R l(x,x) £(x')] dx ax!
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Thus the matrix notation for the inner product corresponds exactly with
the integral formulation of Chapter II. Note that the asterisk has been
used in three different senses in these equations: as a superscript on
a constant or a function it denotes complex conjugation; as a superscript
on a vector it denotes conjugate transposition; and as an operation
between two functions it denotes composition. These usages are always
distinguished by the context.

In order to utilize fully the matrix methods of Chapter III,
the matrix entries, the operator functions, must form a field of char-
acteristic not equal to 2 (van der Waerden, 1955; v. 1T, p. 128).

Three conditions must therefore be satisfied by the operator functions:

(1) There must be an identity function, Iij’ with the property that

Ijj % £f3=f1 and fj * Iy = fy for all functions fj, fj. (2) Each
operator hij must have an inverse, hij'l, such that hij * hjk'l =
hij_l * hye = Ijx. And(3) it must not be the case that hyj * hyp = Tiy

for all operator functions h.

Condition (3) is automatically satisfied if the data values
can be numbers other than zero and one -- the processing techniques do
not necessarily apply to binary data. Condition (2), the existence of
inverses, need not apply if we are satisfied merely with writing down
the set of simultaneous linear equations that the processing operator
must satisfy. The techniques involved in actually solving the equations
will not be discussed here.

Condition (1), the existence of the identity function, cannot
be dismissed so easily. In fact, the entries of the permutation matrix

A are the operators Ojk and Ijk’ not the numbers O and 1. The
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issue of the identity function was avoided by defining symmetric functions
in Eq. 4.1 without reference to the permutation matrices. The required
identity is the delta function, widely used in signal theory even

though mathematically it is not a function. Rigor may be maintained,

for the present purposes, by including the identity operator as a possible
entry in the operator matrices. Thus the operator matrix H has, as
entries, the function of Eq. 4.3 or the identity operator. Matrix multi-
plication is given by the rule in Eg. 4.5 except in the case of the
ldentity operator, when the properties given above in condition (1) are
used. The identity operator need occur only in the operator matrices.

The function vectors (the signal, the noise, the observed data, and the
estimated signal) never contain the identity as an entry. Although the
idempotency condition in Chapter III was expressed with the aid of the
"standard" symmetric functions (Eq. 3.17) which contain these identity
operators as elements, the ildempotency condition in this chapter can be

expressed in other terms.

The Solution

The optimal processing operator is an operator matrix, P,

which must satisfy the three conditions:

(L.6) symmetry : AP=P, forall A in G
idempotency on yj : Ps=s, forall s in J
self-adjolntness: PR =RP¥

The symmetry requirement is satisfied by setting Pij = Pitj for all

i,1'. Since full symmetry is assumed, only one estimate is needed

and the first subscript can be dropped, the processing operator matrix

reducing to a single row:
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In order to avoid inverting the R matrix, the "short" solu-
tion is used, following Eq. 3.19. The solution is thus expressed in
terms of N-1 simultaneous linear equations. Since these equations
involve the composition operator, they are integral equations. The

idempotency condition, Eq. 3.19, becomes:
(L.8) T
that is, £y py* £f=1f =1, for all f in N.
By Eq. 3.14, the matrix C = P R has all its entries equal:
(4.9) Zj P, * Tig = C = c(y,y'), k=1,...,N.
Since it 1s not necessary to compute the function ¢, set:
©=ZyPytra

so that Eq. 4.9 reduces to:

N
(k.10) I py* <rjk - rjl> =0, k=2,...,N,
J=1
N
Equation 4.8 can be rewritten: py =1I - ,Z2pj’ so that Eq. 4.10 becomes:
J:
N
-ngj * (rgx - ry1) = -y * (T - Tpp)
J:
N
== (g -rpp) 4 j§2Pj * (ryy - r1p)
N
(l{».ll) .ngj * (rll-rlk~rjl+rjk) = (I‘ll-rlk), k = 2’...,N-
J:
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Equations 4.8 and 4.11 give the N equations necessary to determine the
N entries of the processing vector. Since all rows of the matrix P

are identical, the processing operator P 1s completely determined.

B. Wiener Multivariate Smoothing

The Dummy Signal

The Wiener filtering problem is derived under the assumption
that the signal, as well as the noise, is a sample function from a
random process. The data space is assumed to be the real line, all
functions being functions of time, t. The signal is assumed to have
zero mean, E [s(t)] =0, for all t, and the signal covariance is known:
Rg(t,t") = E [s(t)s*(t')]. The covariance between the signal and each
noise term is known: Rsni(t,t') =k [s(t)nﬁ(t‘)], as well as the noise
covariance: Rninj =F [ni(t)nj*(t')]. Finally, it is assumed that the
N data functions, dy, 1 = 1,...,N, are given and that each is the sum
of a particular signal sample function and the corresponding noise
sample: d;(t) = s(t) + nj(t).

The problem is the same as the symmetric function problem:
find a processing operator that produces, from the data, the best esti-
mate of the signal in the sense of minimizing the mean square error.
The solution can be obtained as the solution to an N+1 dimensional
symmetric function problem. Define the "noise" function ngy to be
the negative of the random signal: ng(t) = - s(t). The remaining N
noise terms, n;(t), in the symmetric function problem are equal to the
corresponding N noise terms of the Wiener problem. Define a "dummy"

signal function s4(t) and N+1 dummy data functions: £(t) = s;(t)

+n3(t), 1i=0,1,...,N. The noise covariance matrix will be



-102-

(N+1)-dimensional, R = (rij), 1,3 = 0,1,...,N:

(u.lQ) roo(t,t') = Rs(t,t')
roj(t;t') = - Rsnj(t)t')
I‘ij(t,t') = Rninj(t,t')

The negative sign in the definition of roj is due to the fact that the
noise n, is the negative of the random signal.

The solution to this N+1 dimensional symmetric function
problem is the solution of the N equations given in Eq. H.ll, where
now the summation index runs from Jj = 1 to N, and the special role of
subscript 1 is replaced with subscript O:

N
(h.13) ps * (roo'rok'rjo+rjk) = (TooTor)s K =1,...,N.

J=1

Assume that the solution has been obtained, so that:

A N
- % T,
Sa T 2Py Ty
J=0
' - f the best estimate of is A.o=f -8, = 8
Slnce I’lo = o - Sd’ e es estlmate o no 1S no = 1o - Sd = no + Sd - Sd'
. N
no=no+sd- ZOPJ* (sd+nj)
J:

By Eq. 4.8, Z3 Pj * s4 = 84, 5o that the dummy signal cancels out,

leaving:
ﬁ =n g p. ¥ n
o o 520 J J
N
Again using Eg. 4.8, write p,=I- 3 Pj, SO that:
J=1
A N
no=no-po~)(—no- Epj*nj
Jj=1
N

1l

n, = Ny + I Py * (nO - nj)
J=1



Therefore the solution for the Wiener multivariate smoothing problem,
given in Eq. 4.14, is obtained by solving the symmetric function
problem Eg. 4.13.

Define two new covariance functions, the data covariance
Rdjdk(t,t') - E [dj(t)dk*(t').j and the signal-to-data covariance

Ryq, (6,') = B [s(t)a;" ()],

E [(s+nj)(s+nk)*] = E [ss” + snk*+ njs* + njnk*]

Ry.
dadk

I
j=v

S + RSl’lk + Rl’ljS + annk

* * ¥
and Rde = E [s(s+nj) 1 =E [ss + SN ] =Rg + RSnj

Using the covariance functions defined in Eq. M.l2, Equations
4.13 reduce to:
N

(h.l5) .lej * Rdjdk = RSdk) k = l,...,N
J:

as the equations determining the Wiener smoothing filter.

The Augmented Function Space

The Wiener multivariate smoothing problem may also be expressed
in terms of the function space of the symmetric function problem, with
out the introduction of a dummy deterministic signal. In order to
develop the relation between the two problems, they must both be

expressed in the same language.
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In the symmetric function problem, the function space 7# is an
N-dimensional vector space.l The N data functions determine the data
point d in this space. The assumption of full symmetry determines the
symmetric function subspace xf -- the line passing through the origin

with the equation:

(k.16) X: = X

i hE i, =1,2,...,N

The actual noise sample vector n has coefficients n; = di - 8.

Since nj - dj = nj - dy = s, this noise vector must lie on the noise

line £

(4.17) X: - ds = x5 - d

i i J J? 1,3 =12,...,N

This noise line is the line that passes through the data point and is
parallel to *J (Fig. 4.1). By Eq. 2.15, the problem of finding the
point S in zf closest to d -- that is, minimizing H%-d” -- 1s equi-
valent to finding the point in iﬁl closest to the origin -- that is,
minimizing ”%H = Hd-Q“. This point is found by projecting the origin
orthogonally to the linegirl(Fig. 4.1), according to the inner product
notion in ﬁﬁ.

The Weiner problem involves the random signal process as well
as the N random noise processes. The space ﬁyis thus augmented by
the signal process, obtaining the N+1 dimensional vector space 7¥a'
The inner product and distance notions in ﬁ¥a are given by the aug-

mented (N+1)x(N+1) matrix Ry, defined in Eq. L4.12. A point in ?Va

1 over the ring of functions, f(y).
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/

Figure 4.1. The Symmetric Function Subspace and the Noise Line.
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1s determined only when the signal value s, as well as the N noise
values n;, are known -- N+1 coordinates in all. Since the observed
data provide only N values, dij = s + ny, the data are not sufficient

to fix a data point in ﬁ¢a' They do determine a line, though, the data

line id:

(4.18) X, +x] =dy, i=1,2,...,N

where x, 1s the signal axis.

The signal point s, 1in

a 5 8lven by the actual signal

value and the N noise samples, must lie on this data line. The Wiener
problem is to find the point ga in ?%a that lies closest to the actual
signal point s,, using the notion of distance in 1¥a‘ This problem is
equivalent, by an argument similar to that in Chapter II, to finding
the point Mth(i which lies closest to the origin. Thus the signal
estimate %a is found by projecting the origin orthogonally to the data
line,
The above discussion may be summarized as follows:
The symmetric function smoothing problem is equi-
valent to projecting the origin orthogonally onto the
nolse line i-n in QF, the notion of orthogonality being
derived from the noise covariance R.
The Wiener smoothing problem is equivalent to project-
ing the origin orthogonally onto the data line & 4 in B,

the notion of orthogonality being derived from the aug-
mented covariance R

a
These two problems are related by the fact that:

The noise line JLn is the geometric projection of the
data line {4 in 45 to the subspace '#_

The proof of this statement is simple. A point on id has coordinates,

by Equation 4.18: (xg,d1-%g,...,dy-Xo). The geometric projection of
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this point to the ?f space is found merely by dropping the x, coor-
dinate: (-,dj-xg,dp-Xg,...,dy-X,), where x, is a constant. The
coordinates of this point obviously satisfy Eq. 4.17, the equation of

the line i '



CHAPTER V

TOPOLOGICAL GROUP DATA SPACES

A. Data Processing on Groups

Topological Groups

If the data space forms a topological group, the powerful
techniques of Fourier analysis can be used to describe the data proces-
sing operations. In this chapter, the data space will be assumed to
be a locally compact, Abelian group. For simplicity, the data functions
are assumed to be real.

A topological group is a topological space whose elements
form a group. Thus, two points x1 and Xxp 1n the space can be

added: x3 = x7 + xp. This addition must be continuous -- loosely

speaking, if one of the addends is changed slightly, the sum is changed
slightly. There must be a zero element, O, so that x + 0 =0 + x = x,
for all x iIn X. Finally, there must be negatives, so that x + (-x)
= (-x) + x = 0. The group is Abelian, or commutative, if x + x'
=x' + x, for all x, x' in X. The condition of local compactness is
a type of "finiteness" condition -- finite-dimensional spaces are
locally compact.

The data space usually considered is the real line, the data
being a function of time. 1In practice, the data cannot extend over an
infinite duration, so the data space is really a finite line segment,
which is not a group. 1In order to maintain group structure, the ends

of the segment are joined to make a circle. The dataare thus, in

effect, defined over the whole real line as a periodic function, one

-108-
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period being the interval of observation.

The data space considered in optical data processing is usually
the two-dimensional plane, again a topological group. Here, too, the
data do not actually extend over an infinite region. The actual data
function is extended over the whole plane by defining it to be zero
outside the region of observation.

When the data space is a locally compact Abelian group, the
function space ﬁ%—can be transformed -- using the Fouriler transform --
to the new space G*F, The function f(x) is transformed into the
function F(w), the Fourier transform of f(x). The transformed
variable w forms a topological group W, the dual group of X.

The unit cell space Y 1is the quotient space X/G (cf.
Definition 2.8). If the symmetry group G 1s a normal subgroup of X,
the unit cell space is also a topological group and the functions on
Y -- the symmetric functions -- will have Fourier transforms. The
transformed variable will form the topological group £, the dual
group of Y. The transformed symmetric function space can be embedded
in the transformed function space 4¥F since the group § 1is a sub-
group, as well as a subspace, of W. Specifically,  is the "anni-

1 of G in W. The symmetric functions in Q+F are precisely

hilator"
those functions® F(w) such that F(w) = 0 for w ¢ Q. Thus the
coordinate system of@%F is aligned with the symmetric function subspace.

The data processing operator can be represented as the

integral:

1
Pontrjagin, 1939; Theorem 3k4.

® Rudin, 1962; Theorems 2.7.2, 2.7.k.



(5-1) ) = [ plox) ate) ax

In the notation of the previous chapter (Eq. L4.L4), the estimated data
function is the composition of the processing operator with the data:
8= p ¥ d. Since the data are assumed to be real, Parseval's theorem

provides that:

(5.2) %(w) =;/; P(w,w') D(w') dw'

where P(w,w') 1is the "two-dimensional" transform of p(x,x'), the
result of transforming each variable separately. The processing opera-
tion inAG%, is again a composition. Under two special conditions --
first, if the data space X 1s compact, and second, if the processing
operator is translation invariant -- Eq. 5.2 represents a significant
simplification over Eq. 5.1L.

If the data space is a compact topological group, its dual

group is discrete.d The integral in Eg. 5.2 becomes a summation:

(5.3) Qj = i Psx Dk

where the ij and Dk are complex numbers. The transformed space %%F
now has a well-defined identity function:
1, =k
(5.4) Lig = { e
Jk 0, j #k
that satisfies fj = Ty Ijk fx. This condition is explored further in
the final part of this chapter.

3 Pontrjagin, 1939; Theorem 31.
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An important subclass of processing operations has the property
of being translation invariant. If P 1is a translation invariant
operator and g(x) = P[d(x)], then B(x + Xy) = Pld(x + x5)]. In signal
theory, the corresponding condition is time-invariance -- the processing
operation is independent of the time of occurrence of the signal. The
optical data processing technique of Cutrona, et al., (1960) is transla-

tion invariant. A translation invariant operator has the property that
(5.5) p(x,x") = p(x-x")

and the composition integral of Eg. 5.1 becomes the convolution integral:J+
(5.6) 2(x) :j; p(x-x') d(x') dx'

In the transform plane, the processing operator is not the composition

of Eq. 5.2, but has a multiplicative form:5
(5.7)
where P(w) 1is the transform of p(x). The identity function is simply
(5.8) I(w) =1, for all w in W

and the inverse of F(w) is 1/F(w).

Data Space Structure and Symmetry

In order to utilize fully the advantages of the Fourier trans-

form, both the data space and the unit cell space have to be topological

b Rudin, 1962; Theorem 3.8.k.

” Rudin, 1962; Theorem 3.8.3.
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groups. The symmetry group must therefore be compatible with the group
structure of the data space. In this section, it will be proved that
the only symmetry compatible with any topological group is pure transla-
tional symmetry. In a pure translation group, all the automorphisms
have the form: x® = x + 02,

The points x and x' are equivalent under the symmetry

group (written x & x') if there is an automorphism,a,in G such that

17
x' = x8 (cf, Def. 2.7). 1In order for the symmetry group to be compatible

with the group structure of the data space, the automorphisms of G

must preserve addition:
(5.9) (x + x") % x* +x'?, (x)%= -

It follows that the equivalence class of zero, the set of all points of
the form 0%, is a subgroup of X, the "kernel" of the symmetry group.
The unit cell space Y is the set of equivalence classes of
X. Algebraically, Y 1is a homomorphic image of X. Thus Y can be
written Y = X/K, where K, the kernel of the homomorphism, is the
kernel of the symmetry group. In order for Y to be a group, equi-
valent points can differ only by an element in the kernel: x= x'

implies x - x' & 0.

|

If Y 1is to be a group, the addition of equivalence classes
must be well-defined. Thus if x7= x7' and =xp= xp', then
X) +XpEX] Ot X

These two conditions, which must hold if Y is to be a topo-
logical group, are each equivalent to the condition that the symmetry

group be purely translational.
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Theorem 5.1: The following statements are equivalent:
(1) x;= x7" and xp = xp' implies xj+xp = x7'+xp'
(2) If x=x', then x-x'= O

(3) The symmetry group is a pure translation group.

Proof: (1) implies (2): Let x; =x, xp =xp' = -x', x1' =x'. If

x = x' then xy= x7', soby (1), xy#xp = x-x"= x"+xp' = x'-x' = 0.

(2) implies (3): The function f(x) = x%-x is a continuous
function of x, since addition and subtraction, as well as the automor-
phisms of the symmetry group, are continuous. But x®= x, so by (2),
f(x) = x*x= 0, Since G 1is a discrete group, the kernel K 1is a
discrete set. Thus f(x) 1is a continuous function with discrete values
and is therefore a constant. Since f(0) = 0%-0 = 0%, f(x) = 0® for all

x, or x% =x + 0% The same argument applies for each a, so that the

symmetry group is pure translational.

(3) implies (1): x;=x;' implies x;' = xla for some a in G.
Hence by (3), xl* =X+ 0%. similarly Xp = Xo' implies xp' = xp + oP

for some b in G. Then x7' + xp' =x7 + xp + (0% + Ob)gg x] + Xo.

B. Special Processing Solutions

The "trivial" Solution

In the case of a finite data space, the processing solution
became a "trivial" averaging operator when the covariance function was
either symmetric or stationary. These results are now extended to more
general data spaces.

Assume the symmetry group is finite, of order p. The trivial
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processing technique is defined to be the operation:
a.
(5.10) 8(x) = (1/w) s a(x?t)
1

where the summation is over the whole symmetry group. In operator ter-
minology, the automorphism a:x — x® becomes the operator A:f(x) — f£(x?).
Definition 5.1. The trivial processing operator is
Py = (1/u) 21 Ay, summing over the symmetry group.

Note that P, 1is symmetric and idempotent on o, and that P.* = P,.

In particular, if R = I, then P_ 1is the optimal processing operator.

t
If P 1is the optimal processing operator, then P Pt[f] = Pt[f],
since Pt[f] is a symmetric function. That is, P P, = P,.
Lemma 5.1, If PA=P for all A in G, then P 1is
the trivial processing operator Pt'
Proof: P Py =P (1/n) 5; Ay = (1/u) 24 PA; = (1/u) Z; P, by the hypo-

thesis., Thus P Py =P. But P Py =Py, proving that P = P..

In terms of integral operators, the condition of the lemma is that
p(x,x'®) = p(x,x'), for all a in G.

The noise process is defined to be wide-sense symmetric if
the covariance function is invariant under all automorphisms in G:
R(x%,x'?) = R(x,x'). In operator terminology:

Definition 5.2. The nolse process is wide-sense sym-

metric if A R A¥ = R, for all A in G.

As in the finite case, the optimal processing operator for symmetric

nolse is the trivial one:



-115-

Theorem 5.2. If the noise process is wide-sense sym-
metric, the optimal processing operator is jo

Proof: P, 1s symmetric and ldempotent quf, as noted above. Also:

PR = (1/u) TyAR = (1/k) Ty (AyRA;DA; = (L/m) 4R Ay = R Py, Since
Py = Pt*, PtR = R PE*, so Py 1s also self-adjoint. Thus it is the
solution to the processing equations, and is the optimal operator.

The above results are valid for general data spaces -- they
do not require topological group structure. Now suppose that the data
space and the unit cell spaces are both topological groups. If the

processing operator is translation invariant, then P(x,x') = P(x-x').

Theorem 5.3. If both X and Y are topological groups
and the processing operator i1s translation invariant,
then the optimal processing operator 1s Pt'

Proof: If P is translation invariant, then P(x,x'a) = P(x-x'a).

) a

But if Y is a group, then by Theorem 5.1, x'® = x' + 0%, so P(x,x'?)

b

I

P(x-x'-0%). But -0%= (-0)® = 0%, so that -0 = 0° for some b in

¢ and x-0% = x+0° = x°. Thus P(x,x'?) = P(Xb—x') = P(xb,x')° Since

b

P is symmetric, P(x°,x') = P(x,x'). Therefore P(x,x'®) = P(x,x').

By Lemma 5.1, P = P,.

The condition of wide-sense stationarity for the noise, given
in Chapter III, is simply the condition that the covariance function be

translation invariant.

Definition 5.3. The noise process is wide-sense station-
ary if the covariance function is translation invariant.

Theorem 5.4, If both X and Y are topological groups
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and the noise process is wide-sense stationary, then

the optimal processing operator is Pt'
Proof: By hypothesis, R(x,x') = R(x-x'). Then R(x%x'?) = R(x®*-x'?).
But if both X and Y are topological groups, x®* = x + 0% and x'2
=x' + 0% sox® - x'® =x - x'. Thus the covariance function is sym-

metric and, by Theorem 5.2, the processing operator is P..

Replicated Data

Suppose now that the data space is obtained through a repli-
cated experiment, as in Chapter IV, and that the building block, the
data space of each trial, is a topological group. An example is the
case when each trial produces a function of time as data. The entries
in the matrices and vectors of Chapter IV are all functions defined
over Y, so that they have Fourier transforms. If the noise process is
wide-sense stationary within each trial, the processing operator within
a trial is translation invariant: pj(y,y') = pj(y-y’) (See Eq. L.T7).
The composition operation involved in matrix multiplication of the
transforms (Eq. 4.5) can be replaced by simple multiplication of the
transforms (Eg. 5.7), so that the matrix entries form a field. The

matrices can thus be ilnverted and the processing solution can be

obtained in closed form.

Processing on Compact Groups

Assume that the data space X 1s a compact topological group,
that the unit cell space is a group, and that the symmetry group is of
finite order, p. The dual space W of X 1s discrete. The space W

can be thought of as a transformed data space, the transformed functions
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being functions over W. The transformed symmetric functions are defined
over the dual group £ of Y, which is a subgroup of index p in W.

The space Q = Q, and its cosets @, 1 =1,...,u-1 form a type of
"building block" structure for W: W =|); Q;. Since W is discrete,
the Q35 are disjoint. Furthermore, each {3 has the same algebraic

and geometric structure as Qoo Following a procedure analogous to

that in the previous chapter, write the function F(w) as a column

vector:
— -
Fo (o)
Fy ()
(5.11) Pa) =(050) = |
_FH—l (‘DL

where each Fj is a function over Qj' The symmetric functions are
those for which Fj(w) =0, J # 0.
The linear transformations and operators are defined as matrices
whose entries are functions of two variables, just as in Chapter IV:
H = (ij(w,w‘)). Matrix multiplication involves the composition of Hj

with Fj’ but because Q 1is discrete, the composition integral becomes

the summation:
(5.12) Ho. ¥ F. =2 H..(o,0") F

The identity operator is well-defined:

1 . ' 1, w =
(5 3) iJ(w)w ) - O, 0374(1)"

If F' =P F, then in order for P to be symmetric, F';
must be zero for 1 # 0: P.., =0 for 1 # 0. Only the top row of the

i

P matrix 1s non-zero. Idempotency on JF~ requires that
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OO*SO

I

i Poi*¥8S; =P

5 Poj * 53 So» SO that P =1

oo+ Finally, self-adjoint-

ness requires that P R = C be symmetric in both variables (cf. Eq. 3.1k),
so that X4 POi * Rij = Coj = 0, for % O. The optimal processing
operator can then be written:

A h-1
(5.14) So = Do+ I Poj * Dj
i=1
where the Poj must satisfy the equations:

-1

1 . % v = =
:29) jil Foj ™ Rk Rok

If the matrix entries form a field so that functions have

1

inverses, the solution may be obtained very simply: P = C R ~. Since
. . N -1 B -1
Cij =Ounless 1 =3 =0, Poj =Co *R 0j° But P, = Coo * R 00
= I, 50 that Cgq = (R_loo)—l, and :
-1 -1 -1
(5.16) Pos = (R 7o0) 7 * R o3

Processing Example

Let the signal be a periodic function of the real line, with
period X The data is observed for, say, three cycles -- over an
interval of length J(o = 3 Xg5. Any function defined on an interval of

length X, can be written as the Fourier series:
(5.17) f(x) = Z F(w) exp (iwW _x), where W = 2n/X_

The function F(w), defined for integral w, is the transform of f(x).

F(w) can be written as the vector (Fj(w)), Jj=0,.,2, where

(5.18) Fj(w) =FQB3w + j).
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The symmetric functions have period X4, so they have the

series form:
(5.19) s(x) = Z S(w) exp (iwWyx), where wy = 2x/x,

Since wy = 3W,, the variable w can be written as 3w:

(5.20) s(x) = S(3W) exp (L3x).

Writing S(w) as a vector gives Sy(w) = 8(3w), and Sy(w) = Sp(w) = 0,
as expected.
Let the noise be white, for simplicity, but let it be time-

varying so that its amplitude will fade in and out:
(5.21) R(x,x") = (1 + cos Wyx) &(x - x')
The covariance function R has the Fourier series representation:

(5.22) R(x,x') = Z%W,R(w,w‘) exp (1wl x) exp (-iw'W x')

1, w'-w = 0
{.1/2, lwt-wl= 1
1

0, |w'-w|>

where R(w,w')

Writing R in matrix form, R = (Rjk), where Rjk(w,w’) = R(3wt+j, 3w'+k)

gives:

1, =o'
(5.23) Foo =By1 = Rop =1 =14 444

/2, o=
for = Rio = Rio =Ry = (/2T =1 " s

{11/2, o = 1+

0, otherwise

R02

. 1/2, o' = l+w
20 © L 0, otherwise
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To solve the processing equations, it may be noted that the
entries in the covariance matrix are all translation invariant:

Rjk(w,w*) = Rjk(w—w“)o Thus they have Fourier transforms which combine

multiplicatively, and inverses can be found. The matrix R can be
inverted and the solution found from Eq. 5.16,

I, I/2, 1/2
I/2, I, I/e
L'/e,1/2, 1

R

Il

where L 1s the Rpp function interpreted as an operator, L' the
Rog function.

31, L-2I, I-2L

R - = L'-2I, YI-LL',L-21
21+(1/2) (1+L" )-LL" I-2L',L'-2I, 3I
sc that POl = L2l 5 PO2 - I-2L , glving the processing formula:
31 31
ﬂ A i
(5.24) 8o = Dy + (1/3)(Ryp-21)*D; + (1/3)(I-2Ry,)*Ds

The same result is obtained by solving the two simultaneous equations
given in Eq. 5.15, without inverting R.
Writing out the compositions indicated in Eg. 5.24, using the

rute of Egq. 5.12 with the values of R02 in Eq. 5.23, gives:

8o = Do) - (2/3) Dy(w) + (1/3) Dy (w-1)

+ (1/3) Do(w) - (2/3) Dy(w-1)

Rewriting according to Eg. 5.18 gives:

(5.25) S(aw) = D(30) - (2/3) D(3w+L) + D(3u-1)

+ (1/3) D(3w+2) + D(3w-2)
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Using standard Fourier transform techniques, it is easily verified that:
(5.26) §(x) = w(x) d(x) + w(x+xg) d(x+xg) + w(x+2x,) d(x+2x,)
where w(x) 1s a weighting function given by

(5.27) w(x)

Il

(2/9)(cos 2w x - 2 cos W x + 3/2)

(2 cos Wox - l) 2
3

The value of the estimate at any point x 1is the welighted average

it

of the data at the three equivalent points, x, x+x,, and x+2x,. Since
the noise is uncorrelated between points, "irrelevant" data values do
not enter into the estimate. The sum of the weights adds to one, as is
required of an idempotent estimate. The trivial processing technique
is given by Eq. 5.26, using the weighting function W (x) = 1/3. Both
the trivial weighting and the optimal weighting functions are shown in
Fig. 5.1.

The optimal weighting function weights the noise heavily when
the noise amplitude (given by Eg. 5.21) is small. Note that the noise
is zero for x = 3xo/2, so the data at that point is taken as the signal
estimate. Thus the equivalent points x = x./2 and x = 5x,/2 are
assigned weight zero. The smallest weight is not necessarily assigned

to the points with the greatest noise: x = 0 and x = 3xq.



-122-

0.0 Y Y T T 1
x /2 X 3xo/2 ZXO 5xo/2 3xo =

Figure 5.1. The Weighting Functions in the Processing Example.



BIBLIOGRAPHY

Agrawal, Hari Om, J. W. Kent, and D. M. MacKay. 1965. Rotation Technique
in Electron Microscopy of Viruses. Science 148: 638-6k0.

Almeida, June D. 1963. A Classification of Virus Particles Based on Morpho-
logy. Can. Med. Ass. J. 89:787-798.

Aronszajn, N. 1950. Theory of Reproducing Kernels. Amer. Math. Soc., Trans.
68:337-kok.

Bendat, Julius S. 1957. Optimum Filters for Independent Measurements of
Two Related Perturbed Messages. Inst. Radio Eng., Trans. Circult Theory
CT-h:1hk-19.

Berger, J.E., C. Richard Zobel, and P. E. Engler. 1966. Laser as Light
Source for Optical Diffractometers; Fourier Analysis of Electron Micro-
graphs. Science 153:168-169.

Buerger, M.J. 1956. Elementary Crystallography. Wiley, N. Y.

Capon, Jack. 1965. Hilbert Space Methods for Detection Theory and Pattern
Recognition. Inst. Electrical Electronics Eng., Trans. Information Theory

11:2h7-259.

Caspar, D.L.D. and A. Klug. 1962, Physical Principles in the Construction
of Regular Viruses. Cold Spring Harbor Symp. Quant. Biol. gz:l—ZM.

Cochran, W., F.H.C. Crick, and V. Vand. 1952. The Structure of Synthe-
tic Polypeptides. I. The Transform of Atoms on a Helix. Acta Cryst.
5:581-586.

Cramér, Harald. 1946. Mathematical Methods of Statistics. Princeton
University Press, Princeton.

Cramér, Harald, 1951. A Contribution to the Theory of Stochastic Processes,
p. 329 to 339. In Jerzy Neyman ed. Proc. Second Berkeley Symp. Math. Stat.
and Prob.

Crick, F.H.C. and J. D. Watson. 1956. Structure of Small Viruses. Nature
177 :473-475.

Crick, F.H.C. and J. D. Watson. 1957. Virus Structure: General Prin-
ciples, p. 5 to 13. In G.E.W. Wolstenholme and E.C.P. Millar eds. The
Nature of Viruses. Churchill, London.

Cutrona, L.J., E. N. Leith, C. J. Palermo, and L. J. Porcello. 1960.
Optical Data Processing and Filtering Systems. Inst. Radio Eng., Trans.
Information Theory IT-6:386-400.

Davenport, Wilbur B., Jr. and William L. Root. 1958. An Introduction to
the Theory of Random Signals and Noise. McGraw-Hill, N.Y.

-123-



-12k.

Doob, J. L. 1953. Stochastic Processes. Wiley, N. Y.

Friedrichs, K. O. 1960. Spectral Theory of Operators in Hilbert Space.
New York University, Institute of Mathematical Sciences. (copyright,
K. 0. Friedrichs, 1961).

Grenander, Ulf, and Murray Rosenblatt. 1957. Statistical Analysis of
Stationary Time Series. Wiley, N. Y.

Hall, Marshall, Jr. 1959. Theory of Groups. Macmillan, N. Y.

Halmos, Paul, R. 1957. Introduction to Hilbert Space and the Theory
of Spectral Multiplicity. 2d ed. Chelsea Publishing Company, N. Y.

Heerden, P. J. van. 1963. Theory of Optical Information Storage in
Solids. Appl. Optics 2:393-400.

Heidenreich, Robert D. 1964, Fundamentals of Transmission Electron
Microscopy. Interscience, Wiley, N. Y.

Horne, R. W. 1963. The Structure of Viruses. Sci. Amer. 208:48-56.

Horne, R. W. 1964. Electron Microscopy of Viruses. Sci. Progress

52:525-542,

Horne, R. W. and P. Wildy. 1963. Virus Structure Revealed by Negative
Staining. Advances Virus Res. 10:101-170.

Hosaka, Yasuhiro. 1965. A Criterion for Evaluating the Number of
Capsomeres of Icosahedral Capsids. Biochim. Biophys. Acta 104:261-273.

Howatson, A. F. 1965. Structure of Viruses of the Papilloma-Polyoma
Type. J. Mol. Biol. 13:959-960.

Karhunen, Kari. 19M7. ﬁber Lineare Methoden in der Wahrscheinlichkeits-
rechnung. Ann. Acad. Sci. Fennicae (Suomalaisen Tiedeakatemian
Toimituksia) I. Math.-Phys. 37:79pp.

Kawata, Tatsuo. 1965. Fourier Analysis of Nonstationary Stochastic
Processes. Amer. Math. Soc., Trans. 118:276-302.

Klein, E. and G. Langner. 1963. Relations Between Granularity, Graininess
and the Wiener-Spectrum of the Density Deviations. J. Phot. Sci. 11:
177-185.

Klug, A. and J. E. Berger. 1964. An Optical Method for the Analysis of
Periodicities in Electron Micrographs, and Some Observations on the
Mechanism of Negative Staining. J. Mol. Biol. 10:565-569.

Klug, A. and J. T. Finch. 1965. Structure of Viruses of the Papilloma-
Polyoma Type. J. Mol. Biol. 13:961-962.



-125-

Kozma, Adam and David Lee Kelly. 1965. Spatial Filtering for Detection
of Signals Submerged in Noise. Appl. Optics. 4:387-392.

Loéve, Michel. 1960. Probability Theory. Van Nostrand, Princeton.

Marcus, Marvin. 1960. Basic Theorems in Matrix Theory. National Bureau
of Standards Applied Mathematics Series - 57. U.S. Govermment Printing
Office, Washington, D. C.

Markham, Roy, Simon Frey, and G. J. Hills. 1963. Methods for the
Enhancement of Image Detail and Accentuation of Structure in Electron
Microscopy. Virology 20:88-102.

Middleton, David. 1960. An Introduction to Statistical Communication
Theory. McGraw-Hill, N. Y.

Murray, F. J. 1941. An Introduction to Linear Transformations in Hilbert
Space. Princeton University Press, Princeton.

Norman, Richard S. 1966. Rotation Technique in Radially Symmetric
Electron Micrographs: Mathematical Analysis. Science 152:1238-12309,

Parzen, Emanuel. 1961. An Approach to Time Series Analysis. Ann.
Math. Stat. 32:951-989.

Parzen, Emanuel. 1962. Extraction and Detection Problems and Reproducing
Kernel Hilbert Spaces. J. Soc. Ind. Appl. Math., Control Series A
1:35-62,

Pontrjagin, L. 1939. Topological Groups. (trans. Emma Lehmer) Princeton
University Press, Princeton.

Rosenblatt, Murray. 1962. Random Processes. Oxford University Press,
N. Y.

Rudin, Walter. 1962. Fourier Analysis on Groups. Interscience, Wiley,
N. Y.

Stewart, R. M. and R. J. Parks. 1957. Degenerate Solutions and an
Algebraic Approach to the Multiple-Input Linear Filter Design Problem.
Inst. Radio Eng., Trans. Circuit Theory CT-4:10-1L,.

Thiry, H. 1963. Power Spectrum of Granularity as Determined by Diffraction.
J. Phot. Sci. 11:69-77.

Upatnieks, Juris and Emmet N. Leith. 1964, Lensless, Three-dimensional
Photography by Wavefront Reconstruction. J. Opt. Soc. Amer. 2&:579—580=

Valentine, R. C. and N. G. Wrigley. 1964. Graininess in the Photo-
graphic Recording of Electron Microscope Images. Nature §9§:713—715.



UNIVERSITY OF MICHIGAN

mg

901

Waerden, B. L. van der. 1955. Algebra. 3rd ed. of Moderne Algebra.
Springer-Verlag, Berlin. 2 vols.

Weyl, Hermann. 1952. Symmetry. Princeton University Press. Princeton.

Wiener, N. 1949. The Interpolation, Extrapolation, and Smoothing of
Stationary Time Signals. Wiley, N. Y.

Wiener, N. and P. Masani. 1957. Multivariate Stochastic Processes. I.
The Regularity Condition. Acta Math. 98:111-150.

Wiener, N. and P. Masani. 1958. Multivariate Stochastic Processes. II.
The Linear Predictor. Acta Math. 99:93-137.

Williems, M. G., A. F. Howatson, and J. D. Almeida. 1961. Morphological
Characterization of the Virus of the Human Common Wart (verruca vulgaris).

Nature 139:895-897.

Zadeh, Lotfi A., and John R. Ragazzini. 1950. An Extension of Wiener's
Theory of Prediction. J. Appl. Phys. 21:645-655.



