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ABSTRACT
This paper presents a simplified model and method for finding the deflection char-
acteristics of stacked cardboard boxes, provided the load-deflection characteristic of
the box is known. A computer program, based on this model, allows the stability of
stacked boxes to be investigated and to indicate the limits to the height of the stack and
box parameters required to prevent stack toppling.

INTRODUCTION

ORREGATED CARDBOARD BOXES OR CARTONS ARE USED AS SHIPPING
Ccontainers and protective covers for a wide variety of products. In order
to provide sufficient strength for stacking, the boxes often consist of a com-
posite structure, as shown in Figure 1. Four vertical wood corner posts, glued
to cardboard strips, are inserted at the corners of the carton. These L-shaped
wood strips take the major portion of the stacking load and are stabilized by
the cardboard strips and the carton walls [1].

The stacking characteristics of the boxes are important because storage
space is often best utilized if the boxes are stacked one atop the other. The
vertical deflection of the cartons is determined by the weight and stiffness of
the cartons; the lateral deflection is determined by these same factors plus the
location of the center of gravity of the carton and its contents. If the center of
gravity is not in the geometric center of the box, then the stack has a tendency
to ““lean’’ or deflect laterally. Then as the height of the stack is increased the
lateral deflection increases until the center of gravity of the top-most carton
falls outside the base of the bottom carton and stack becomes unstable and
topples.

The stiffness of the carton, or its load-deflection characteristic, is a func-
tion of the carton design and fabrication techniques. Also moisture and aging
tend to reduce the load-deflection characteristics of the carton.
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Figure 1. Typical composite carton.

ANALYSIS

The corregated cardboard box, with corner posts, when sealed and con-
taining the product, represents a complex, composite structure. Little data is
available concerning the interactions among the various elements of this com-
posite structure. In order to arrive at engineering answers, simplifying
assumptions must be made. First, the entire load is carred by the four iden-
tical corner posts. The load-deflection characteristic, which could be found
experimentally by loading the box between two parallel flat plates, is divided
equally among the four corner posts. Further, the bottom and top surfaces of
the box always remain plane and the corner posts are always normal to the
bottom surface.

Consider the first or bottom box placed on the ‘‘floor’’—a perfectly flat,
horizontal plane; no deflections of either the upper or lower surfaces occur,
since the weight of the product is carried directly into the floor via the bottom
surface. The second box is placed atop the first box and the weight of the
second box produces axial loading of the four corner posts of the bottom
box. If the center of gravity is not in the center of the box cross section, then
the posts have different loads and correspondingly different deflections; now
the top surface of the bottom box is no longer parallel to the floor. Conse-
quently the top edges of the second box are no longer directly above the
bottom edges of the box, the two-box stack has deflected and is no longer ver-
tical.

Adding a third box, atop the second, produces loads and deflections in the
corner posts of the second box, as well as additional loads and deflections of
the posts of the first or bottom box.

The loads and reactions on a typical box are shown in Figure 2. The loads,
which are applied to the upper surface of the box, result from the reactions of
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Figure 2. Isometric ot box loads and reactions.

the corner posts of the box directly above and also from the weight of the box
directly above. A plan view of the box is shown in Figure 3.

The reaction R3 is found by taking the sum of the moments about the
lower 1-2 box edge.

R3 =[_R4(X4L - Xu_) + WT - PX+ F, (XIU - XIL) + F, (qu - XZL)
+ F (X — XIL) + Fo (X — XZL)]/(XJL - XIL) (I)

The reaction R, is found by taking the sum of the moments about the lower
1-3 box edge

R, =[-RuYs — Ys)*+ WT - PY+F, (Yo — Yu)+ Fi (Yoo — Yu)
+ FJ (YJU - YJL) + F4 (Y4u - YJL)]/(YZL - YlL) (2)

The reaction R, is found from the sum of the vertical forces,

Ri=WT+F,+F,+F,+F —-(R,+R,+ R, (3)

j 2
LOWER SURFACE
Figure 3. Plan view of upper and lower surfaces of box.
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The reaction of the fourth corner post, R,, must be found using the following
iterative process: (a) assume a value for R,; solve for R,, R;, and R; using the
eqns. (1), and (2) and (3). (b) Find the deflections of the three corner posts
using their reactions and the load-deflection characteristic. (c) Find the equa-
tion of the plane which contains the upper points of posts 1, 2 and 3. (d) Find
the upper point of post 4 which lies in this plane and (e) use the deflection be-
tween the lower and upper points of post 4 to find the reactive R, load from
the load-deflection characteristic. Compare this calculated value of R, with
the assumed value of R, and repeat the calculation until the two values con-
verge. The equations for steps (¢) and (d) are given in the appendix.

Computer Program

The analysis is readily implemented on the digital computer. Essentially the
program consists of two nested iterative loops. The inner post loop is called
the ‘‘box loop’’ and represents the solutions for the loads and deflections for
a single box within the stack. The outer loop is the ‘‘stack loop’’ which calls
the box loop repeatedly until the loads and deflections of each box in the
stack are evaluated. The convergence criterion for the box loop is that the dif-
ference between the assumed and calculated values of R, must be less than
0.2% of the total reactive load on the posts. The convergence criterion for the
stack loop is that the difference between successive calculations of the lateral
deflection of the topmost box must be less than 2% of the previous deflection
value.

The organization of the program can be outlined using a simple example.
Suppose that a stack totaling 4 boxes is to be examined. First calculations are
made for a two-box stack until convergence of the post reaction load and also
the deflection of the upper edge of the second box is reached. Then another
box is added, producing a three-box stack. Again the reactions of the corners
of the second box and the first box are found, and the deflection of the upper
edge of the third box is determined. Finally the fourth box is added to the
stack, the calculations are repeated to determine the reactions on the posts of
the third, second and first boxes and the deflection of the upper edge of the
fourth box is found. The topple condition is reached whenever the center of
gravity of the topmost box falls outside the base of the bottom box.

RESULTS AND DISCUSSION

Computer runs were made using the data sets shown in Table 1. Nominal
or reference values were chosen to be representative of a typical carton;
width, 20 in; depth, 20 in; height 30 in; weight 100 Ibf, and with the c.g.
located in a plane 15 in. above the bottom of the carton. For each data set the
c.g. location in the y direction was held constant at 10 in. while the c.g. loca-
tion in the x direction was varied in 1 in. increments from the edge of the box.
Two load-deflection characteristics for the box and posts were used, linear
and nonlinear, as shown in Figure 4. The stiffness or spring constant of the
linear characteristic was 3200 Ibf/in. For the nonlinear characteristic the load



158 R.B. KELLER AND B.A. HIEMSTRA

Table 1. Summary of Data Sets.

No. of
Set No. WT HT w SF boxes Comment
1 100 30 15 1. 6 nominal
2 100 30 15 0.5 6 0.5 SF
3 100 30 15 0.2 6 0.2 SF
4 100 30 15 0.1 6 0.1 SF
5 200 30 15 2. 6 2WT, 2SF
6 50 30 15 1. 6 0.5 WT
7 50 30 156 05 6 0.5 WT, 0.5 SF
8 100 15 15 1.0 6 0.5 HT
9 100 15 15 05 6 0.6 HT, 0.5 SF
10 100 60 15 1.0 6 2 HT
1 100 60 15 2. 6 2 HT, 2SF
12 100 30 0 1.0 6 W =0
13 100 30 30 1.0 6 ZW = 30
14 100 30 15 1.0 7 7 boxes
15 100 30 15 1.0 5 5 boxes
(
er
BSer
=4,
=l
< T
S -2f e
0 / i . L i
0 2 4 6 RS t

DEFLECTICN IN
Figure 4. Load-deflection characteristics used in the data sets, linear and nonlinear.

was assumed to be proportional to the square of the deflection and was ad-
justed such that the lateral deflection of the upper edge of the top box was
equal to that produced by the linear characteristic using the nominal data set
with the c.g. 4 inches from the edge of the box.

Additional runs were made to determine the limits of allowable c.g. loca-
tion before toppling occurred, using the nominal condition and c.g. heights
of 0, 15, and 30 in. and using the linear force-deflection characteristic.

Results for the data sets of Table 1 are shown in Figures 5 and 6 for the
linear and non-linear load-deflection characteristics, respectively. The lateral
deflection of the upper edge of the topmost box is plotted as a function of the
distance of the c.g. from the center of the box. In all cases, as the c.g. is
moved outward from the center of the box, the deflection of the top box edge
increases until topple occurs. If the height, or weight, or number of boxes is
reduced, additional c.g. movement is required to produce toppling. Con-
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Figure 5. Lateral deflection of the top box as function of c.g. location using the linear load-
deflection characteristic. Encircled numbers correspond to the data sets of Table 1.
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Figure 6. Lateral deflection of the top box as a function of c.g. location using the nonlinear load-
deflection characteristic. Encircled numbers correspond to the data sets of Table 1.

versely, reducing the load-deflection characteristic, or increasing the number
of boxes, or the height of the boxes reduces the allowable excursion of the
c.g. Doubling the weight and doubling the load-deflection characteristic or
stiffness gave a c.g. movement vs. deflection curve which was nearly identical
with the nominal condition. A similar result occurred when the weight and
the stiffness were both halved. When the c.g. was raised to the top of the box
the allowable c.g. movement was only slightly reduced; a similar small in-
crease in stability was observed when the c.g. was lowered to the bottom of
the box.

When the runs for the non-linear characteristic are examined, the general
trends found for the linear case are repeated, except that for parameter excur-
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Figure 7. Lateral and vertical deflections of post 1 of the top box for the linear and nonlinear load-
deflection characteristics for data set 1.

sions which reduce the load or the force-deflection characteristic, the increase
in the stability limits is not quite as large as was the case for the linear char-
acteristic. Conversely, for those runs for which the loads were increased, or
the stiffness reduced, the stability limits are slightly larger than for the linear
case. These results are consistent, in that the local stiffness of the non-linear
characteristic increases with increasing load or deflection and decreases with
decreasing load or deflection.

Figure 7 shows the lateral and vertical deflection for each box for the two
linear and non-linear force-deflection characteristics. While the lateral deflec-
tions are nearly identical (recall that the non-linear characteristic was chosen
such that the lateral deflection of the top box was the same as for the linear
characteristic), the vertical deflections are not. The reduced stiffness of the
non-linear characteristic at reduced loads results in increased deflection at
each box level.

The allowable ranges of c.g. locations for stability is shown in Figure 8 for
the nominal data set for c¢.g. heights of 0, 15, and 30 inches. The unevenness
of the contours is probably caused by a combination of the assumptions used
in the model, along with the convergence errors.

SYMBOLS
F force applied to top of post
HT height of box
PX distance of weight of upper box from 1-3 edge of bottom
surface of lower box
PY distance of weight of upper box from 1-2 edge of bottom

surface of lower box
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Figure 8. Allowable lateral c.g. locations for ¢.g. at bottom, middle, and top of box. (Data sets
12, 1, and 13, respectively)

R reactive load at bottom of post

SF ratio of actual to nominal load-deflection characteristics
WT weight of box and contents
X,Y,Z coordinate axes
XwW x-direction ¢.g. location from geometric center of box
Yw y-direction c.g. location from geometric center of box
VA z-direction c.g. location from bottom of box

Subscripts
L lower surface
U upper surface

1,2,3,4 box corners
CONCLUSION

A model for determining the deflection and stability characteristics of
stacked boxes has been developed and programmed on the digital computer.
This program was used to investigate the deflection and stability char-
acteristics for a typical composite box using both linear and nonlinear deflec-
tion characteristics. Results and trends appear reasonable and indicate that
the model is valid and useful.
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APPENDIX

1. Find a point x,, y,, z; which is a distance d along a normal from the point
Xo, Yo, 20. The line is normal to the plane Ax + By + Cz + D = 0 which con-
tains the point xo, Yo, Zo.

The distance of a point above a plane is [2]

g=Ax B+ Cu+D

VA*+ B*+ C*

Using the equation of a line through these two points and along the normal to
the plane

Xt 7 X VTV T2

A B C
yields
[ANVA*+ B*+ C*— D+ B(B/Cz,—y) + A(A/C 20 — Xo)]
Iy =
A* B?
C[E:;'i‘-c-z'l' 1]

W=B/C [z, ~ 2] + yo
X, =A/D [z, — 2] + X0

2. Find the equation of a plane containing 3 non-collinear points. In matrix
form, the equation is

X y r
X, B4 2

X2 V2 22

~ N~ N

X3 Vs 23
Expanding and collecting terms gives

Ax+By+Cz+D=0
where
A= VI)t b —yJ+ru—»
B=z,00=X)+ 22(xs—Xx) + 2 (x, — x2)
C=yi(xs—x) ty:(x; —x3) + ys(x2 = x1)
D = x, (¥323 — ¥:22) + X2 (123 — Ys2) + X3 (Y22 — NiZ2)
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3. Locate the fourth vertex of a parallelogram in a plane which is determined
by the vertices 1, 2 and 3.

Writing the equation for point 4’ which is on the line which connects
points 2 and 3

X' mXe Y W

X3 — X2 Vi~ )2 FA T 41

Since point 4’ is equidistance between points 2 and 3, then

X' =(x2+ Xx3)/2
Yo' =(y2+yy)/2
' =(22+2)/2

Also since point 4’ is equidistant between point 1 and 4, point 4 is written as

Xs =Xt X3 — X,
Ya=ntys—y
L=tz —-2z



