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The Importance of Scheduling Operations on Parallel Machine Tools

We discuss the important problem of sequencing operations on a parallel machine tool.
Parallel machine tools are CNC machines that contain multiple spindles and multiple tooling
heads. Recent research has explored the development of automated process planning systems
for these machines. These process planning systems perform many tasks including feature
identification and extraction, selection of manufacturing method, determination of operation
sequence, and provide CNC programs to produce the parts. While previously published
research has explored other aspects of the process planning problem for these machines, little
work has been done investigating the operations sequencing problem. However, selecting the
proper operations sequence can have a significant impact on the time required to produce a

given part and therefore affect the overall effectiveness of the process planning system.

The operation sequencing problems that arise on parallel machine tools are different than
those found in the traditional sequencing and scheduling literature. The principal difference
it that there exists an opportunity to perform multiple operations simultaneously on a single
part. But the situation is complicated by the fact that only certain types of operations may
be performed simultaneously. For example, you cannot perform a turning operation and a
radial drilling operation at the same time. There is also the problem of determining the
order in which the turrets sliould visit the different spindle locations. We formulate these
sequencing problems and present two methodologies for solving them. The first approach
uses priority dispatching rules that are modified to reflect the unique problem characteristics

that arise for parallel machine tools. The second approach utilizes a genetic algorithm.



Abstract

We introduce unique scheduling problems that arise for multiple spindle machine tools. The
capability of these machines to perform simultaneous operations on one or more parts creates
constraints that are not found in the traditional scheduling literature. Two types of solution
methodologies are introduced for these problems. The first utilizes prio?ity dispatching rules
and a delay factor concept to enhance the quality of the developed solutions. The second
utilizes a genetic algorithm with a random keys encoding. The effectiveness of these methods

is demonstrated on test problems with comparisons to lower bounds.

1 Introduction to Parallel Machine Tools

Machining hardware advances drive changes in requirements for Computer-Aided Process
Planning (CAPP) systems. In order to gain the full benefit of improvements in hardware,
CAPP software must be developed that can exploit these improvements. Parallel Machine
Tools represent a relatively new development. A key difference between Parallel Machine
Tools and conventional CNC machines is that the former contains multiple spindles and can
hold multiple workpieces concurrently. A typical Parallel Machine Tool has one main spindle

and a number of subspindles that may not be identical to the main spindle.

To properly describe Parallel Machine Tools it is necessary to define some terms. We
retain the terminology introduced in [16]. A pa}‘t machining location (PML) refers to one
valid workholding location. The main spindle and subspindle(s) always represent valid PMLs.
However, with special fixturing, a turret on a machine tool can also be a valid PML. The

maximum number of parts that can be placed on a Parallel Machine Tool at one time is not



greater than the number of PMLs. A machining unit (MU) refers to a tool holding device.
Tool hdlding devices may hold a single tool or a turret containing multiple tools. Relative
motions between the machine tool on the MU and the workpiece held in the PML accomplish

the machining. Conventional machines have only one MU and one PML. Parallel Machine

Tools (PMTs) have N(> 1) PMLs and M(> 1) MUs.

CAPP for PMTs opens many areas for research including feature extractibn, collision
avoidance, user interfaces and operation sequencing. In this paper we analyze the operation
sequencing problem. Section 2 reviews the relevant literature concerning Parallel Machine
Tools. The specific operation sequencing problems that arise for Parallel Machine Tools
are presented in Section 3. Section 4 provides solution methodologies for these problems.

Section 5 presents computational results. Conclusions and future research are discussed in

Section 6.

2 Literature Review

Due to the presence of multiple PMLs and multiple MUs, Parallel Machine Tools offer new
challenges for operations control and process planning systems. Most of the existing process
planning and scheduling literature assumes that machines can process only one part at a
time and that only one operation can be performed on a part at any given time. However,

Parallel Machine Tools are not restricted to these assumptions.

The scheduling of operations on a Parallel Machine Tool has not received much attention
in the literature. Two papers that discuss process planning for Parallel Machine Tools, [16]
and [30], mention the importance of scheduling operations efficiently but do not discuss spe-
cific methodologies for achieving this goal. Some of the technological constraints of Parallel

Machine Tools and their impact on the operation scheduling problem are discussed in [17].



They propose a procedure based on the idea of [12] for constructing feasible semi-active

schedules.

The traditional production scheduling and FMS literature fails to address the scheduling
problems that arise for Parallel Machine Tools due to the common assumption of serial op-
erations. However, some simplified versions of the Paralle]l Machine Tool scheduling problem

are similar to problems that have been considered in the literature. These similarities will

be noted in Section 3.

3 Scheduling Problem Definition

Scheduling operations on a PMT is complicated by four characteristics of the problem:
precedence constraints between the operations, mode restrictions, determination of PML for

each operation, and the assignment of tools to MUs. Each of these are now described in

more detail.

Precedence constraints arise for three reasons. The first involves geometric considerations.
Because machining operations remove volumes of material, some operations must necessarily
precede other operations. For example, a hole must be drilled before it can be reamed and
finished. The second source of precedence is tolerancing. It may be necessary for one feature
of a workpiece to be dimensioned off of another. For example, the location of a hole may
be determined relative to a finished face of the workpiece. In this case, it is necessary to
finish the face of the workpiece before drilling the hole to insure that the hole is properly
located. The third type of precedence results from manufacturing practice. Consider a part
which has a hole on a sloped face of a part. Manufacturing practice dictates that the hole
be drilled prior to the workpiece face being machined to a slope. Otherwise, the sloped face

results in increased drill bit slippage.



The operations performed on a PMT may be classified into three modes or categories
depending on the motion of the workpiece at a PML and the motion of the MUs that
are machining the workpiece. The three modes are defined as in [16]: turning - when the
workpiece is rotating and the MU is stationary; milling - when the part 1s stationary and
the MU is in motion, as in drilling or milling; contouring - when both the part and the
tool are in motion, as in contour-milling. Operations that require different modes cannot
be performed concurrently at the same PML due to technologi;:al limitations. For example,
it is not possible to perform a turning operation and a radial drilling operation (where the
drill bit enters the workpiece perpendicular to the axis of rotation) in parallel. The addition
of mode constraints results in additional complexities. The problem formulations presented
later in this section show how the number of disjunctive constraints increases when mode

constraints are included in a problem.

Because a PMT has multiple PMLs, it is necessary to determine the set of operations
that will be completed at each PML. Determining which operations to perform at each PML
will have a significant effect on the time required to complete the workpiece. For example,
a workpiece typically visits each PML only one time in order to provide a smooth material
flow. While parts could make return visits to a given PML, we assume this is not the case

for the remainder of this discussion.

The assignment of tools to MUs also has a significant effect upon the processing time for
a part. Only operations that have tools on different MUs can be performed in parallel since
only one of the tools (assuming a turret is used) on a MU can be accessed at any point in

time. The tool assignment problem alone is a rather difficult problem and will be explored

in future research.



We now present a detailed description of scheduling problems encountered on PMTs. We

begin by defining problem parameters, decision variables, and notation that are used in the

problem formulations and discussion. We also discuss assumptions that are common to all

of the problems investigated.

Problem Parameters

n

MU,

PML;

the number of operations in the process plan, € {1,2,...}

the operation number, € {1,2,...,n}

‘the mode of operation 1, € {1,2,3}

the jth immediate predecessor of operation ¢, € {1,2,...,n}

the set of all immediate predecessors of operation 1, € {1,2,...,n}
the processing time of operation 7, € R*

the number of MUs in a problem, € {1,2,...}

the number of PMLs in a problem, € {1,2,...}

a large positive number

the MU for operation 1, € {1,2,..., MUpaz}

the PML for operation 1, € {1,2,..., PM Ly}

Problem Decision Variables

C; the completion time of operation z, € R*



Additional Notation

1 <7 denotes that operation 7 must precede operation 7 but operation 7 1s
not necessarily the immediate predecessor of operation j.
2 < j in the final schedule, operation 2 completes before operation j begins

(i and 7 may not have a precedence relationship)

Assumptions

We list six assumptions concerning the problem discussed in this paper.
[. The MUs are continuously available.

II. There i1s no preemption of operations.

III. Processing times are known in advance.

IV. Operations have been assigned to PMLs.

V. Tools are previously assigned to MUs and there i1s no duplicate tooling.

VI. The objective is to minimize the makespan.

Assuming the MUs are continuously available eliminates the need to consider MU break-
downs. The solution procedures given in Section 4 can be modified to account for these
breakdowns. However, the data sets tested did not contain MU breakdown information.
Not permitting preemptions reflects the technological constraints of many metal cutting op-
erations. Once an operation is started it should proceed to its completion in order to produce
a better finish and to reduce tool wear. Assuming known processing times for each oper-
ation eliminates any processing time interactions that may exist, due to shared machining

parameters, between simultaneously scheduled operations. Assuming that tools are already



assigned to turrets and that there are no duplicate tools implies that each operation must be
completed by a specific MU. Assumptions III, IV, and V will be relaxed in future work. The
makespan objective is reasonable for the PMT scheduling problem since it has few inventory
or due time implications. In the PMT scheduling problem, the objective is to get parts off
of the machine as quickly as possible in order to make the machine available for other parts.

This corresponds to minimizing the makespan for the process plan.

If we also assume that there are no mode conflicts, we obtain a simplified problem denoted
P(1). This problem is a generalization of the job shop scheduling problem which has been
demonstrated to be NP-hard [11]. It has the same structure as a resource-constrained project
scheduling problem (RCPSP). Each operation in P(1) corresponds to an activity in a RCPSP
that requires one unit of a renewable resource with total availability of one unit. MUs in P(1)
correspond to resources in the RCPSP problem. The precedence constraints are common to
both problems. While the problem structure is the same, the time horizon for many RCPSP
applications is quite different than for P(1). The RCPSP is often found in project scheduling
contexts where activity durations may be hours, days, or weeks while the activity times are
usually seconds for the PMT operation scheduling problem. However, the RCPSP can also

be applied to job shop settings where the activity times would be of the same order as those

found in P(1).

The RCPSP has been studied extensively over the last 30 years. Optimal solution pro-
cedures for the RCPSP have been proposed by [3], [6], [9], and [26]. All of these procedures
utilize a branch-and-bound solution methodology. The approaches differ in their choice of
branching rules and in their methods for determining lower bounds. Due to the computa-
tional requirements of these branch-and-bound algorithms, none of them have been utilized

to solve problems with more than 50 activities. Most of the problems tested contain 30



activities or less. Heuristics have been proposed by [5], [10], [15], [22], [28], [4], [7], and [27].
All of these efforts are based on determining priority rules to choose which activity should
be scheduled next subject to the precedence constraints. Many of these methods utilize cal-

culations from the Critical Path Method (CPM). We will build on some of these heuristics

to develop approaches for more complicated variations of the problem.

Although P(1) is equivalent to problems that have been previously studied in the lit-
erature, this is not true for more complicated PMT problem variations. Introducing mode
constraints into the problem results in a problem that, to the best of our knowledge, has

only been previously addressed in [17]. This problem can be formulated as the following

mathematical program:



Math Program P(2)

Min Cma:r
Cma:ZCi \7,'1:-:1,2,...,7'),
OiZCp.',j'*'ti Vi=1,2,...,n ar_ldeg,jEPg

Cizt;+0j+M(—$gj) Vi,jz1,2,...,n9MUizMUj,iyéjandj7“

and 7 £1

C]'th-{-o,'-i-M(:L',']‘—l) Vi,j:1,2,...,n9MUg=MUj,i7éja,ndj7€i

and j A1
Ci >0 Vi=1,2,...,n
Ci>t;+Cj+ M (—yi;) Vi,7=1,2,...,n 3 MU; # MUj,,® £ 7,
J £ 1,m; #m;, and PML; = PML;
C; >t +Ci+ M (yi;—1) Vi,5=1,2,...,n 35 MU; # MUj,1 47,
j A 1,m; #mj, and PML; = PML;
1 ife<y

Yij =
0 otherwise

(1.1)
(1.2)

(1.3)

(1.4)

(1.5)
(2.1)

(2.2)

Constraint (1.2) ensures that each operation does not begin prior to the completion of

its predecessors. The disjunctive constraints (1.3) and (1.4) insure that each MU performs

at most one operation at any given time. These disjunctive constraints are similar to those

presented in the formulation of the job shop scheduling problem (see [1]).

The disjunctive constraints (2.1) and (2.2) insure that only operations with the same

machine mode can be scheduled concurrently. These constraints separate P(1) and P(2).

We now propose heuristic solutions approaches to problem P(2).



4 Heuristic Solution Procedure Methodologies

We limit the solution methodologies that we propose for this problem to heuristic methods
for two reasons. First, the addition of constraints (2.1) and (2.2) significantly increases
the number of (0,1) variables in P(2) relative to P(1). Due to the large number of (0, 1)
variables that would be present, even in a problem with only a few operations, we are not
optimistic about the prospects of implementing a bré.nch-a.nd-bound algorithm for P(2).
Second, heuristic rules are developed for problem P(2) that can be extended, in future work,
to include the additional complexities that result from relaxing assumptions III, IV, and V.
We investigate two types of heuristic procedures. The first uses priority dispatching rules
that are modified to account for the problem structure of P(2). The second is a genetic

algorithm that utilizes the random keys encoding.

4.1 Priority Rule Heuristic

Priority dispatching rules have been applied to a number of different scheduling problems
(see [23] and [19]). As discussed in Section 3, several dispatching rules have been applied
to problem P(1). Because problem P(2) has some similarities to problem P(1), priority
dispatching rules that had worked well on problem P(1) were selected for testing on these
problems. A total of 16 different priority rules from [22] were tested. For a given problem
instance, each priority rule is used to construct a schedule and the final schedule is the best
of the 16. To explain the different priority rules it is necessary to define some additional
notation:
Si The set of all operations that are successors of operation <.

PW; Positional Weight of operation 1, PW; = 37y ¢s. t.

The 16 priority rules shown in Table 1 were tested on P(2) type problems and the results

are shown in Table 3. The poor performance 1s not surprising since these rules do not consider

10



the concept of modes. To improve performance, these rules were modified to account for the

problem structures found in P(2). In P(2) only operations that have the same mode can be

scheduled in parallel so it is desirable to create a schedule that exploits this fact. This was

accomplished using a delay amount similar to the one used for job shop scheduling in [20].

The underlying idea is to shift operations in the schedule such that operations with the same

mode are scheduled in parallel.

10.
11.
12.

13.

14.
15.

16.

. Shortest Processing Time (SPT)

Longest Processing Time (LPT)

Most Immediate Successors (MIS)

Least Immediate Successors (LIS)

Most Total Successors (MTS)

Least Total Successors (LTS)

Longest Path Following (LPF)

Greatest Positional Weight (GPW)

Least Positional Weight (LPW)

Greatest Proportional Positional Weight (GPPW), GPPW; = 5%"-‘

First Come First Serve (FCFS)

Earliest Finish Time (EFT), EFT; = EFTy, +t,.

Latest Start Time (LST), LST; = %%,-Z{LSTj - t;} for all ¢ such thatS; # 0,
else LST; = %a:f{LFTi} for all ¢ such that S; = 0.

Latest Finish Time (LFT), LFT; = LST, +1,.

Minimum Slack Time (MST), MST, = LST, - EST;, where EST; = EFT; — t,.

Least Float per Successor (LFS), LFS; = L_ST.IE_II‘E_S_T_}

Table 1: Priority Rules

Two methods are used to determine how much to delay an operation, one using integer

delay factors and one using real valued delay factors. The first method sets the delay amount

11



equal to an integer ranging from 1 to 100. This method is denoted DELINT. A range of
1 to 100 was selected because 100 represents the largest possible processing time for an
operation in the test data sets. The second method uses a delay factor that is a real number
from the set {0.01, 0.02, 0.03 ..., 1.00}. This method is denoted DELREAL. The delay
factor is multiplied by an operation’s processing time to determine the delay amount. For
both methods, if ‘ES.; +t; < delay amount + nezt mode change then operation ¢ precedes
operation 4. Thus, while operation 4 has the best priority value it is not necessarily the next

operation scheduled.

The algorithm in Table 2 describes how rules 1 to 16 were modified to incorporate the
concept of delay amounts. Let J represent the set of schedulable operations (those with
no unscheduled predecessors) and K the set of unschedulable operations. The first step is
to select a priority rule, calculate the priority value, p;, for each operation I, and initialize
J and K. The second step is to schedule the first operation. Select the operation, o*, in
J that has the maximum p value and schedule it. Set current mode, a variable indicating
the mode at the current point in time of the schedule builder, to the mode of operation o*.
Set next mode change time to the completion time of 0*. Find all the operations in K that
became schedulable due to scheduling o* and move them from K to J. The third step is
repeated until all the operations are scheduled. Step 3.1 selects the operation, o*, in J with
the maximum p value. If the mode of 0* equals the current mode, schedule o*. Otherwise,
search J, based on the p; values, for operations with the same mode as current mode. If
there exists an operation, 2, such that its earliest start time, ES;, plus its processing time, ;,
is less than or equal to the delay amount plus nezt mode change then set o* = 7. Note that
operation ¢ does not have to require the same MU as o* in order to consider scheduling it

prior to o*. Upon determining o* = 1, find all the operations in K that became schedulable

12



due to scheduling 0* and remove them from K and place them in J. If J # 0, repeat step 3.
1. Initialization. Select priority rule and calculate p; values. Initialize J and K.

2. Schedule the first operation. o* = Argmaz{p;}, current mode = my:,
ieJ

nezt mode change = C,e, update J and K to reflect scheduling o*.

3. Schedule subsequent operations.

3.1 o* = Argmaz{p;}
€
3.2 Determine if o* will be the next operation scheduled.

3.2.1 If my» = current mode, schedule o*.

3.2.2 Else, search J, based on the p; values, for operations with m; = current mode. If
there exists an operation, 7, such that ES;+t; < delay amount +nezt mode change
then set o* =1

3.3 Schedule o* and update J and K.
3.4 If J # 0, return to 3.

Table 2: Algorithm for Heuristic Priority Procedure

Because the priority values and resulting schedules are fast to calculate, it is possible to
check all 100 values for a given priority rule in less than 1 second of cpu time. Therefore,

the entire ranges from 1 to 100 for DELINT and 0.01 to 1.00 for DELREAL are tested in

the heuristic procedure.

4.2 Genetic Algorithm Solution Methodology

A genetic algorithm is proposed that utilizes the random keys encoding introduced in [2] and
applied to general scheduling problems in [21]. Genetic algorithms (GAs) were introduced
by [14] as a method for modeling complex systems. GAs apply concepts from biological
evolution to a mathematical context. The general idea is to start with randomly generated
solutions and, implementing a “survival-of-the-fittest” strategy, evolve good solutions. See

[13] [8], or [18] for details on GAs.

There have been several previous research efforts to apply GAs to sequencing and schedul-

13



ing problems and several different problem encodings have been suggested (see [20] for de-
tails). The problem and heuristic space methods of [24] and [25], and the random keys
method of [21] have shown substantial promise. Both approaches attack scheduling prob-
lems (though not the same ones) via genetic algorithms that use a multiple space approach.
However, the approaches differ in that the search philosophy is different, the spaces searched
are different, and schedule construction routines are different. We selected the random keys
encoding based on our previous success in modeling scheduling problems containing a high

degree of complexity [21].

The random keys representation encodes a solution with random numbers. These values
are used as sort keys to decode the solution. The chromosome is interpreted in the fitness

evaluation routine in a way that avoids feasibility problems.

It was necessary to make modifications to the general random keys genetic algorithm
in order to apply it to P(2). The precedence constraints between operations are captured
by maintaining a sorted list of random keys where the sort list only contains the random
keys for the operations that are currently schedulable based on the precedence relationships.
Additionally, the structure of the precedence graph is utilized to bias the random keys in a
manner similar to [20]. The goal of biasing is to improve the GA’s rate of convergence by
guiding the GA to regions of the chromosome space that are likely to map to schedules with

good makespan values.

An important part of any GA is the mechanism for determining the fitness of different
chromosomes. In the context of scheduling problems, we refer to this mechanism as a schedule
builder. The schedule builder maps chromosomes of random keys to schedules of operations.

The schedule builder begins by using the sorted random keys sequence to determine the

14



order for placing operations into the schedule. The schedule is constructed in a manner that

moves forward in time and insures that no precedence, MU usage, or mode constraints are

violated.

Initially, the GA for P(2) utilized a schedule builder that explored the set of semi-active
SEhedules (as defined in [1]). An optimal schedule exists within the set of semi-active based
on a proof in [1] that only requires minor modifications to account for the concept of modes.
However, the mode constraints in P(2) result in a large number of semi-active schedules.
Therefore, the schedule builder was modified to incorporate left-shifts that result in the GA

searching only a subset of the set of semi-active schedules.

The leﬁ-shift concept uses a delay factor in a manner similar to the heuristic priority pro-
cedure described in Table 2. The number of left-shifts investigated is controlled dynamically
by the GA. Each operation now has two genes - one containing the random key and one con-
taining a delay factor that has a real value between 0 and 1. The initial operation sequence
is based on the sorted random key values of the operations. The schedule builder moves
forward in time inserting operations. However, if scheduling operation ¢ next results in a
change of mode and creates idle time on MU; a search is made of the remaining schedulable
operations to see if any of them have the same mode as the current mode. Any operations
that satisfy these criteria are placed in the set §. We then search §, based on the random
key values for each operation j € §, for any 7 where ES; +t; < delayfactor; xt; + ES;. If
there exists an operation, j*, that satisfies this criteria then j* becomes the next operation
to schedule in place of operation :. In this way left-shifts attempt to maximize the number
of operations that can be performed in parallel. The subset of the set of semi-active sched-
ules that the GA searches using left-shifts still contains the set of active schedules and the

following theorem can be proven.

15



Theorem 1 There exists a set with nonzero measure in the chromosome space that maps,

using the schedule builder that includes delay factors, to an optimal schedule.

Proof: Similar to that of Lemma 3 and Lemma 4 in [20] with minor modifications to account

for the mode constraints.

This theorem demonstrates the validity of building schedules using left-shifts because the
GA search space still contains an optimal region. Utilizing leﬁ-sﬁz'fts leads to an improvement
in both the quality of solutions found and the rate of convergence for the RKGA. The left-
shift concept could be modified to insure that the GA only investigates the set of active
schedules but it 1s a very computationally intensive task to explore all global left-shifts and

insure that a given schedule is an active schedule.

5 Parallel Machine Tool Computational Results

Computational testing was conducted on problem P(2). Data sets were randomly generated
that represent the types of parts that are machined on parallel machine tools. An investiga-
tion of the types of parts that are manufactured using PMT’s has been conducted by [30] and
[29]. Using this information we randomly generated 10 different data sets for three different
sizes of problems for a total of 30 data sets. Problem sizes of 50, 75, and 100 operations were
tested because these represent a reasonable range on the number of operations required to
complete a part. Operatiéns were assigned modes in a manner that reflects the operation
to mode distribution found in parts actually made on PMTs [29]. Typically, there are more
turning operations early in the precedence network and more milling and contouring later
in the precedence network. The tools needed for each operation were randomly assigned to

the MUs.

The presence of the mode constraints makes this problem different from most scheduling

16



problems presented in the literature. With the exception of the heuristic of [17], there are
no existing solution methods with which to compare. Therefore, the solutions found by the
two heuristic procedures are compared against each other, the procedure of [17], and lower

bounds. Values of the best known solution are also presented for each problem instance.

Two lower bounds exist for P(2). LB, represents the longest path in the network. LB; =
JLJU ag:{LFT,-}. LB, seldom represents the tightest bound but is simple to compute and could
be useful for some precedence networks. LB, utilizes more problem structure and considers
the fact that each MU has a fixed amount of time that it must operate in each of the three
modes. Let f;; represent the sum of the processing times of all the operations that have a
mode of type ¢ and require MU;. There is a minimum amount of time that the PMT must

spend in each mode 1, call this o,

Q; = Maz {,3,']'} 1= 1,2,3.

3=1,2,..MUmaz

Then LB; = oy + a3 + as. The lower bound for the problem is set to the maximum of LB,

and LB,.

The first heuristic methodology tested is the method described in Section 4 that is based
on priority rules. The first priority rule implementation, PRIO1, uses the 16 priority rules
described in Section 4 as they are applied to resource constrained project scheduling problems
- no modifications are made to account for the mode constraints. The results of Table 3 show
that this method performs poorly. The second implementation, PRIO2, utilizes the priority
rules in conjunction with delay factors as described in the algorithm found in Table 2. Recall
that this method determines 16 schedules, each using a different priority rule, and then selects
the best of the 16. This method works significantly better as indicated in Table 3. Across

the 30 test problems, the average deviation from the lower bound is 3.2% and from the best

17



known solution is 2.2%. PRIO2 only requires a few seconds of cpu time on a Sun Sparc 20.

Best RKGAl RKGA2

Problem LB | Known | PRIO1 | PRIO2 | LDB | Min. | Avg. | Max. | Min. | Avg. | Max.
50.1 1112 | 1164 1754 1191 | 1191 | 1164 | 1165 | 1169 | 1164 | 1166 | 1169
50.2 1097 | 1097 1743 1139 | 1139 | 1115 | 1122 | 1126 | 1115 | 1117 | 1124
50.3 1117 | 1166 1655 1179 | 1179 | 1166 | 1167 | 1174 | 1166 | 1166 | 1166
50.4 1078 | 1104 1810 1144 | 1223 | 1112 | 1131 | 1147 | 1121 { 1121 | 1122
50.5 1230 | 1230 1790 1271 | 1304 | 1230 | 1230 | 1230 | 1230 | 1230 | 1230
50.6 1156 | 1165 1686 1178 | 1208 | 1165 | 1166 | 1169 | 1165 | 1166 | 1178
50.7 1108 | 1108 1608 1122 | 1122 | 1108 | 1108 | 1108 | 1108 | 1108 | 1108
50.8 1089 | 1089 1838 1129 | 1215 | 1089 | 1095 | 1103 | 1093 | 1099 | 1102
50.9 1147 | 1149 1921 1217 | 1217 | 1149 | 1149 | 1149 | 1149 | 1150 | 1158
50.10 1515 | 1515 2122 1515 | 1536 | 1523 | 1531 | 1532 | 1515 | 1515 | 1515
75.1 1707 | 1707 2965 1803 | 1809 | 1707 | 1708 | 1721 | 1707 | 1707 | 1708
75.2 1670 | 1739 2573 1761 | 1841 | 1756 | 1758 | 1760 | 1754 | 1755 | 1755
75.3 1651 | 1654 2716 1693 | 1693 | 1680 | 1680 | 1680 | 1680 | 1680 | 1680
75.4 1758 | 1758 2944 1761 | 1818 | 1758 | 1759 | 1762 | 1758 | 1758 | 1758
75.5 1995 | 1995 2854 1995 | 1995 | 1995 | 1995 | 1995 | 1995 | 1995 | 1995
75.6 1567 | 1567 3077 1636 | 1706 | 1588 | 1603 | 1637 | 1567 | 1573 | 1588
75.7 1920 | 1994 2926 1994 | 2001 | 1994 | 1994 | 1994 | 1994 | 1994 | 1994
75.8 1872 1883 3191 1905 1911 | 1897 | 1935 | 1965 | 1888 | 1891 | 1891
75.9 1444 1444 2504 1463 1561 | 1444 | 1446 | 1452 | 1444 | 1444 | 1444
75.10 1934 | 1951 3029 1967 | 2041 | 1962 | 1992 | 2037 | 1955 | 1962 | 1967
100.1 2129 | 2157 3449 2304 | 2306 | 2179 | 2272 | 2323 | 2175 | 2217 | 2281
100.2 2123 | 2198 3650 2214 | 2214 | 2198 | 2201 | 2209 | 2198 | 2200 | 2214
100.3 1985 | 1997 3928 2073 | 2215 | 2037 | 2085 | 2103 | 2000 { 2012 | 2022
100.4 1745 1761 3281 1810 1902 | 1822 | 1845 | 1873 | 1761 | 1798 | 1795
100.5 2259 | 2259 3695 2269 | 2605 | 2259 | 2260 | 2269 | 2259 | 2259 | 2259
100.6 2160 2209 4043 2244 2292 | 2210 | 2224 | 2249 | 2216 | 2223 | 2235
100.7 2184 | 2187 3917 2292 | 2325 | 2216 | 2221 | 2232 | 2187 | 2206 | 2223
100.8 1992 | 2014 3608 2083 | 2083 | 2025 | 2044 | 2070 | 2024 | 2054 | 2072
100.9 2438 | 2438 4175 2451 | 2481 | 2438 | 2445 | 2458 | 2438 | 2445 | 2451
100.10 2253 | 2253 3523 2253 | 2253 | 2253 | 2253 | 2254 | 2253 | 2253 | 2253
Avg. Dev. LB 66.5 3.2 5.7 1.6 | 2.3 3.0 1.3 1.6 2.0
Avg. Dev. BK 64.8 2.2 4.6 0.6 1.2 2.0 0.2 | 0.6 1.0

Table 3: P(2) PMT Test Problem Results.

The second heuristic consists of the method in [17] modified to accommodate our slightly
different problem structure. This method inserts one job at a time into the schedule. At
each step of the algorithm the set of schedulable operations is analyzed to determine which
operations to schedule next. Three different priority rules are used to select the next job

from the set of schedulable operations. The first rule gives top priority to the operation with
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the most work remaining where work remaining equals the operation’s processing time plus
the sum of the processing times of all its successors. The second rule schedules operations
based on MU utilization and seeks to schedule the MU with the most remaining work. The
third rule seeks to minimize mode changes. The algorithm is run using each of the three
different rules and the minimum makespan schedule of the three is the final schedule. The
algorithm requires only a few seconds of cpu time on a Sun Sparc 20. The results for this
method are displayed in the column headed LDB in Table 3. Across the thirty test problems
the average deviation from the lower bound is 5.7% and from the best know solution is 4.6%.

LDB does not perform as well as the heuristic PRIO2.

The third heuristic methodology tested is the GA method described in Section 4.2. The
following parameter values were used (see [21] for definitions): a population size of 312,
a maximum of 150 generations, 15 clones, 36 immigrants, 54 mutation chromosomes, a
mutation rate of 0.5 and range of 0.5, crossover probability of 0.7, and tournament selection
with ¢ = 2. Each problem was solved 10 times using a different initial random number seed.
The first implementation, RKGA1, uses the RKGA described in Section 4.2. Table 3 shows
the minimum, average, and maximum over the 10 seeds. Across all of the problems the
average deviation from the lower bound was 2.3% and from the best known solution was
1.2%. The average computation times for the 50, 75, and 100 operation problems are 37, 65,

and 100 seconds respectively on a Sun Sparc 20.

A second GA implementation, RKGA2, combines PRIO2 with the RKGA. This method
“seeded” the RKGA with the best solution found by PRIO2. In this context, seeded means
that one chromosome in the initial population received random key values that corresponded
to the operation finish times for the best solution found by PRIO2. This seeded chromosome

affected the GA search because it could be selected for crossover in subsequent generations.
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The results for this method are shown in Table 3. The results are 0.6% better, on average,
than RKGA1l. This method required less computation time on average, 36, 64, and 88

seconds respectively on the three problem instances, because it solves some of the instances

optimally in only a few seconds.

For P(2) the proposed heuristic methods found good solutions. The priority rule heuristic
found solutions that were on average less than 3% a.bove the lower bound and 2% above the
best known solution. The combination of the priority rule heuristic and the RKGA found
reduced these values to less than 2% and 1% respectively. Overall, the combination of the
priority rule heuristics and GA methods found good solutions in a reésonable amount of

computation time.

6 Conclusions and Further Research

In this paper we introduce some of the unique scheduling problems that arise for Parallel
Machine Tools. The capability of these machines to perform simultaneous operations on
single and multiple parts creates constraints that are not found in other problems discussed
in the literature. Two types of solution methodologies are introduced for these problems.
The first utilizes priority dispatching rules and utilizes a delay factor concept in order to
enhance the quality of the developed solutions. The second utilizes a genetic algorithm
based on the random keys encoding. Computational tests are presented for several example
problems. The priority rule based heuristic finds good solutions to the example problems.
The average deviation from the lower bound is less than 3% and bests [17], the only algorithm
in the literature. An advantage of the priority rule based heuristic is that it requires little

computation time. The RKGA finds better solutions than the priority rule heuristic as
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the solutions found are within 2% of the lower bound on average for P(2). However, this
method does require more computation time than the priority rule heuristic method. The

computation times are small enough that it is still possible to use this method for real-time

control.

In future research, we will explore several problem extensions to P(2). The first exten-
sion relaxes assumption IV of Section 3— operations have already been assigned to PMLs.
This creates another level of decisions in the model but should only require minor changes
in the genetic algorithm model. The second is relaxing assumption III of Section 3 — pro-
cessing times are deterministic. Because operations performed in parallel share machining
parameters, ’;~he processing times of operations will depend on the sequence of the operations.
Relaxing this assumption significantly increases the complexity of the model but also makes

the model more realistic. The third extension will be to include the assignment of tooling

to turrets in the model.
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