In this article we investigate an approach for simultaneously estimating cross-
lagged and cross-instantaneous causal influences in two-variable, multiwave,
linear panel models introduced by Greenberg et al. This approach requires obser-
vations over at least three time points and achieves identification by making
assumptions about the consistency of parameter values across the adjacent time
intervals 1-2 and 2-3. Our analysis demonstrates that multiwave models can be
identified by imposing consistency constraints of this sort. However, this is a
useful method only under a very restrictive set of empirical conditions.
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ocial scientists have been turning with increasing fre-

quency to the analysis of nonrecursive linear models to
study complex causal relationships among a set of variables.
Yet the stringent identification requirements of these models
have sometimes been troublesome. To identify an equation for
one of a set of reciprocally related endogenous variables, say X,
on the basis of cross-sectional data, one introduces instrumental
variables and specifies the partial regression coefficients for the
effects of these instruments on X (see, for example, Duncan,
1975; Namboodiri et al., 1975; Hanushek and Jackson, 1977).
The source of the trouble is that the analyst may lack the grounds
for specifying the values of these coefficients.

AUTHORS’ NOTE: Authors’ names are listed alphabetically. We gratefully
acknowledge the assistance of Clifford Broman, Roger Brown, and Mary Ann
Caballero in carrying out the simulations. Alfred Blumstein and Robert Hauser
motivated us to carry out this analysis by raising questions about the estimator.

SOCIOLOGICAL METHODS & RESEARCH, Vol. 10 No. 4, May 1982 435-451
© 1982 Sage Publications, Inc. 435

from the SAGE Socia Science Collections. All Rights Reserved.



436 SOCIOLOGICAL METHODS & RESEARCH

Duncan (1969) demonstrated that the identification problem
also arises in two-wave panel models by showing that the most
general two-way, two-variable panel model is not identified.
Assuming perfect measurement, ignoring common causes of the
observed scores X and Y. (where t represents time), and express-
ing the latter as deviations from their means, this model is

X:=biX; + oY + bsY2 +u [Ia]
Y, =diY: + do2 X + ds Xz + v, [1b]

where u and v are, respectively, the residuals of X; and Y,. The
six covariances among the observed scores can be expressed in
terms of the eight model parameters: three by, three d;, the co-
variance of X; and Y, here denoted by (X:Y1), and the residual
covariance (uv). It is impossible to solve uniquely for any of
these parameters other than the observed (X:Y) by manipulating
these equations, unless constraints are imposed on the solutions.

Several options for imposing such constraints are available.
The most commonly employed of these is to assume that one of
the coefficients in each pair (by, bs) and (d2, ds) is zero or some
other known value. A second option is to fix the ratios of two
sets of parameters, such as b,/b; and d>/ds or by/d; and bs/ds.
When appropriate control variables are available, a third option
is to use instrumental variable techniques to estimate the seven
coefficients (three bi, three di, and uv). This method requires
that one make the assumptions described above about the effects
of at least one of the instruments on each of the endogenous
variables X, and Y.

There are times when none of these approaches can be taken.
Substantive considerations may dictate that all lagged and
instantaneous cross-effects be kept free in the estimation, pre-
cluding the first and second options. Yet it might be impossible
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to find a theoretically defensible instrument, excluding the third
option as well.

In this article we review and examine critically a fourth option
for achieving identification proposed by Greenberg et al (1979)."
The method differs from more conventional strategies in two
ways. First, it requires observations for at least three time points.
Second, it achieves identification by making assumptions (1)
about the consistency of parameter values rather than about the
fixed values of any individual coefficients or else (2) about the
ratios of different coefficients. Since this consistency assumption
is usually plausible and is in some ways a weaker assumption
than those required in the other methods, identification by means
of this approach is quite attractive.

IDENTIFICATION BY MEANS OF
CONSISTENCY CONSTRAINTS

To illustrate the consistency approach, we consider a three-
wave generalization of the model defined by Equations 1aand 1b.
In this generalization, shown diagramatically in Figure 1, X;
and Y, are assumed to influence time 3 variables only through
the intervening variables X, and Y,.> With this assumption, the
structural equations are

X; = biX) + byY) + byYs + w [2a]
X3 = bsXz + bsYs + beYs + us [2b]
Y:=diY: + doXi + dsXo + 2 [2¢]
Y; = daYs + dsXz + dsXs + v [2d]

The correlation between time 1 variables is taken into account
but not subjected to causal analysis. The error terms u and v
are permitted to be correlated cross-sectionally, but not serially.

Concentrating on the equations for X, and X3, we note that
there are six regression coefficients to be estimated. By taking
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covariances of Equation 2a with X; and then with Y,, we obtain
two normal equations that can be used in the estimation of these
parameters. By repeating the procedure for Equation 2b using
X, and Y;, we obtain two additional normal equations.

We cannot similarly use Y3 to identify Equation 2b because
the reciprocal influence between X3 and Y3 implies that Y3 cannot
have a vanishing correlation with us.” For the same reason,
neither Y2 nor Y3 can be used to help identify Equation 2a.

Seemingly, we should be able to derive an additional two
normal equations by taking the covariances of Equation 2b with
X, and Y, as these variables are not correlated with u;. Indeed,
one can do this, and the equations so obtained are valid. The
trouble is that they contain no new information beyond what
is already contained in the other four normal equations. To see
why this is so, note that Equations 2a and 2c can be solved to
yield “reduced-form” equations that express X, and Y, in terms
of Xi, Y1, and the disturbance terms u, and v,. It follows that the
normal equations derived by using X; and Y, as instruments
will be linear combinations of those derived by using X; and Y.

With six parameters and four normal equations that can be
used to estimate them, two additional pieces of information are
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needed if a unique solution is to be found. In this respect, we are
in the same position as when we considered the two-wave, two-
variable model. However, we now have an option for identifying
the model that we did not have in the two-wave case. Instead of
assuming that certain parameters have known numerical values,
we can assume that certain effects remain constant over the
period between the first and third waves, a fairly weak assump-
tion.* In the notation of the model, any two of the following
three consistency conditions

bi = ba, b, = bs, bs = b [3]

will reduce the number of independent parameters to be esti-
mated sufficiently to allow the remaining parameters to be
identified. If all three conditions are imposed simultaneously, the
model will be overidentified.

To see that the imposition of two of these constraints does
indeed enable one to obtain unique solutions for the coefficients,
suppose that b, = bs and bs = bs. The four normal equations
become

X,X,)=b, +b,(X,Y,)+b5(X,Y,) [4a]
(Y, X;)=b,(X,Y,) D, +b,(Y,Y,) [4b]
(X, X5)= b,(X,Y,;) +b;(X,Y;5) + b, [4c]
Y, X;)= b, +b,(Y,Y;) +b,(X,Y,). [4d]

Solutions for the parameters by, b, b3, and bs take the form
b; = det(B;)/det(B), [5]

where B is the coefficient matrix of the four normal equations
[4a-4d], B; is the matrix derived from B by replacing the j"" column
of B with the column of moments [(X;X2), (YiX2), (X:X3),
(Y2X3)], and det symbolizes the determinant. The solutions given
by Equation 5 are unique as long as det (B) is nonzero.
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IDENTIFICATION PROBLEMS OF THE
CONSISTENCY APPROACH

By direct computation of the determinants in Equation 5 we
find for the model under consideration,

det(B) = [(X,X5) — (X, X )] + [(X; Y, ) (X, Y,)
— (X, Y,) (X5Y,)] + (X, X,) (X, Y,)?
= (X X) (X Y )]+ [(XY) (X3 Y) (X, Y, )
= (X, YD) (XY (X, Y,) f6]

and
det(B,) = [(Y,Y,) (Y, X;) — (Y, Y) (Y, X,)]

(X X)X Y ) (Y, Y5) = (X Y) (YY)
X Y)Y X)) (X, Y,) = (Y, X5) (X, Y )]
(YY) (X X3) = (X X))]

(X Y DX X)) (X, Y5) = (X, X5) (X, Y))]

(Y X)X, Y2) = (X, Y5)] (7]

The other three det(B;) have the same general form as Equation 7.

These five determinants are made up of sums of terms, each of
which is a difference of covariances or products of covariances
that vary in time but not in time lag. It follows that all the deter-
minants will vanish when the system described by these equations
is in equilibrium. By equilibrium, we mean that the observed
moments do not depend on time, only on the lag between vari-
ables. At equilibrium then, (X;X;) = (X2X3) = (XiXw1), (X1Y2) =
(X2Y3) = (X:Yw1), and so on.” Systems of causal relations are
not always in equilibrium, but when they are, Equation 5 is not
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defined, and the consistency approach breaks down. Unique
solutions for Equations 4a-4d cannot be obtained, and as a
result, Equations 2a-2d are underidentified. .

Since the consistency approach depends critically on whether
the system is in equilibrium, it is important to know two things:
first, under what conditions equilibrium will be reached; and,
second, how the parameter estimates behave as the system
approaches equilibrium.

APPROACH TO EQUILIBRIUM

The likelihood of finding a system that meets these require-
ments is a function of two factors: (1) the frequency with which
new sets of structural relations are known to take hold of this
system in the real world, shifting it from an old equilibrium or
an old pattern of change to a new pattern (which may or may not
be approaching equilibrium) and (2) the speed with which this
new set of structural relations approaches equilibrium.

The first of these influences will, of course, vary from one
substantive situation to another. It is possible to make some
general statements, though, about the speed with which equi-
librium is approached, for systems that do approach equilibrium.
Consider the structural equations

X = biXe1 + Y + b3Y( + uy,

Yo =diYer + doXeog + daXo + vy,
and for the sake of simplicity, assume that u, and v, are uncorre-
lated. It is a tedious but straightforward exercise in algebra to
show that®

(Xth) = [(b3 + d3 + ble + bzdl)

+ (bid + badz) (X1 Y-1)]/(1 + bads).
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This equation has the general form
P| = h + gPl-l- [8]

The most general solution of this recursion formula is (Goldberg,
1958: 63-67):

Po=h/(1-g)+[Po-h/(1-glg (g#1)

(g=1
= Py + ht. &
When the parameter
g= (bid; + bzdz)/(l + bids) [9]

is greater than one in magnitude, or equal to one, the solution
does not approach equilibrium, but explodes as t increases
without limit.” Thus the solution converges toward the equi-
librium value

(XxYx) = (b3 + d3 + bidz + bad1) /(1 + bsds — bid; = bad2)

only if the absolute value of g is strictly less than I.
It follows directly from the recursion relation from P, = (X,Y)
that

AX YY) = gAXe1Ye1). [10]

We can see from this expression just how g affects the approach
to equilibrium. When g is small, each increment will be much
smaller than the preceding increment, and the system will
approach equilibrium rapidly, while if g is close to but less
than 1, the system will approach equilibrium slowly. It follows
from Equation 9 that the approach to equilibrium will be slow
when the product of the stability coefficients bid, is large, when
the cross-lagged effects of b, and d. are the same sign and large,
and when the cross-instantaneous effects b; and d; are the
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opposite sign and large. Approach to equilibrium will be fastest
when the product of the stability coefficients is small, when the
cross-lagged effects are the opposite sign and large, and when
the cross-instantaneous effects are the same sign and large.

By iterating Equation 10, we see that A(X.Y.) = g'A(XiY)).
To get an idea of what this means for the approach to equi-
librium, we consider two models. In the first, the parameters are
bi=.3,by=.2,b3=-2,d,=.3,d,=-.2, and d; = .2; we assume
that the initial cross-sectional correlation is (X;X;) = -.9. For
this model, g is approximately .05, and it is apparent that after
one time unit, (X.Y:) will be very close to its equilibrium value
of 0. In the second model, b; = 9,b,=.1,bs=-.1,d1=.9,d, =1,
and d; = .1, and we again assume the initial cross-sectional cor-
relation to be -.9. Here g is approximately .81, and the approach
to equilibrium will be slow; after 10 time units have elapsed, the
cross-sectional correlation will be .717, still some distance from
the equilibrium correlation .947. More generally, the time T in
which the time-dependent term in the expression for P, in Equa-
tion 8 is reduced in magnitude to a given fraction of its value at
time 0 is proportional to the reciprocal of the natural logarithm
of g.

It can be shown without difficulty that the parameter g, which
governs the approach of the correlation (X.Y,) to equilibrium,
also governs the approach to equilibrium of the correlations
(XiXi-1), (YiYe1), (XiYe1), and (Y Xi-1); thus the results sum-
marized above for the correlation (X.Y:-1) hold equally well for
the entire system of equations.

BEHAVIOR OF THE PARAMETER ESTIMATES
AS EQUILIBRIUM IS APPROACHED

We have demonstrated so far that Equation 5 yields unbiased
estimates of b; and d; when the matrix B is not in equilibrium.
When equilibrium is reached, though, the model parameters are
not identified. But what about the transition? Intuitively, we
know that the difference terms making up the estimator approach
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zero as the system approaches equilibrium. Yet this does not
occur abruptly. As the system comes closer and closer to equi-
librium the parameter estimates become more and more in-
efficient.

To ground this intuitive reasoning, we carried out a series of
simulations. In each simulation we began with a “true” structural
model, generated the observed correlation matrix among the
variables in the model over a very long period of time,* and then
attempted to recover the underlying structure from this matrix
at different points as the system approached equilibrium.

Table 1 shows the parameters for 36 simulated systems. Four
sets of stability coefficients (b, di) were used. For each of these,
nine sets of cross-coefficients (b, bs, d2, d3) were used. Together,
these cover a range of stabilities from .3 to.7 and a range of cross-
coefficients from -.4 to .4.

Beginning with the arbitrary assumption that (X;X;) = -.9,
three-wave correlation matrices for times 1-3, 2-4, 3-5, 4-6, and
5-7 were analyzed for each of the 36 models. The LISREL 1V
program (Joreskog and Sorbom, 1977) was used to impose the
consistency conditions given in Equation 3 and to obtain
maximum-likelihood estimates of the underlying model pa-
rameters and their standard errors.

The LISREL solutions clearly demonstrated two results antici-
pated from analytic investigation: (1) that the estimator will
reproduce the underlying parameters without bias as long as the
system is not extremely close to equilibrium and (2) that the
standard errors of the parameter estimates increase dramati-
cally as we move from the times 1-3 matrix to the equilibrium
matrix.

Table 2 illustrates these features with a detailed example from
one of the simulated models. The value of g in this model is
approximately .11. The first row presents the parameters of the
underlying model. The remaining rows display the parameter
estimates and their standard errors for each successive three-
wave correlation matrix. (Standard errors were computed on the
assumption that n = 1000.) The final column contains the value
of the exogenous correlation (X.Y,), witht = 1, 2, 3, 4, 5.
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TABLE 1
Values of the Stability and Cross-Effect Coefficients Used in the
Thirty-Six (four stabilities by nine cross-effects) Simulations

Stabilities by dq
1 .3 .3
2 .5 .5
3 .7 7
4 .3 7

Cross-Effects by b3 dy dj
1 1 .1 1 1
2 1 -.1 -.1 1
3 1 .1 1 -.1
4 2 .2 2 2
5 2 -.2 -.2 2
6 2 .2 2 -.2
7 4 A A 4
8 4 -.4 -4 4
9 4 L4 b -.4

We see that the true score parameters are reproduced exactly
for this model in the times 1-3 and 2-4 matrices. However, in
subsequent iterations, as the correlation (X.Y:) gets close to its
equilibrium value, the estimates become wildly discrepant from
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TABLE 2
Detailed Results of Applying the Consistency Approach
to the First Five Iteractions of a Simulated Matrix®

hl hz h% dl dy d3 XeYe
True Score Parameters .5 L4 -4 .5 -4 Wb
Parameter Estimates Times 1-3 .500 L400 -.400 .500 -.400 L400 .900
Standard Errors .028 057 .092 .023 .040 .059 .004
Parameter Estimates Times 2-4 .500 .400 -.400 .500 ~-.400 L4400 ~.N96
Standard Errors .128 419 735 .123 L4600 L703 .037
Parameter Estimates Times 3-5 .520 .335 -.287 .519 -.336 .287 -.010
Standard Errors X X X X X X X
Parameter Estimates Times 4-6 .620 .004 .296 .620 -.004 -.296 .007
Standard Errors X X X X X X X
Parameter Estimates Times 5-7 .620 .004 .296 .620 -.004 -.296 .000
Standard Errors X X X X X X X

1. The model is (X;Y;) =—.9,b; =.5,by = .4, b3 =—4,d; = .5,d, =—.4,d3 = .4,

x indicates that standard error exceeds 1.0.

the true values. This happens even though the mode! is formally
identified in all five iterations.

We also see that the standard errors increase substantially
from the first to second iteration, even though the parameter
estimates themselves remain constant. The increase is particularly
dramatic for the cross-coefficients, where standard errors change
from between .057 and .092 in the first iteration to between .400
and .735 in the second. While all standard errors are less than
half their associated parameters in the first iteration, they all
exceed their parameters by the second iteration. By the third
iteration, all standard errors exceed 1.0.

The results for the other 35 models considered are very much
like those for this illustrative case. In most cases, the parameter
estimates perfectly reproduce the true parameter values initially,
but deteriorate as equilibrium is approached. Variations among
the models appear primarily in the speed with which the deterio-
ration occurs.
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TABLE 3
Number of Iterations (from a maximum of five) for Which All
Model Parameters are at Least Twice Their Standard Errors*

Stabilities

b;=.3 by=.5 blj'7 bli.3

d1=.3 d1=.5 (11—.7 dl—.7
Cross Effects
Magnitude = .1
by b3 dp dj
+ o+ o+ + 0 0 0 0
+ - -+ 0 0 0 0
+ 4+ 4+ - 0 0 0 0
Magnitude = .2
b2 b3 d2 dg
+ + + + 0 0 0** 2%%
+ - - 4+ 0 0 0 Y
+ + + - 0 0 2 0
Magnitude = .4
boy b3 d2 d3
+ + + + Q%% O** O** 0**
+ - - 4+ 1 1 1 0
+ + + - 1 2 3 3

*Standard errors are based on the assumption that n = 1000.
**|ndicates that the model exploded (that is, it was not approaching equilibrium)
during the interactive calculation of the correlation matrix.
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Table 3 presents summary results for all 36 models, recording
the number of iterations for which standard errors of all pa-
rameters are less than half the parameter values.” These results
are discouraging. They suggest that except for systems that
approach equilibrium only very slowly, and that have moderately
large cross-effects, parameter estimates will be too imprecise
for the consistency approach to be of practical value. This will
be true even when observations are collected immediately after
an external shock has placed the system very far from equi-
librium. In less optimal conditions, the situation would be even
worse."

Only where the stability coefficients are quite high, then, will
the consistency approach be practically useful. And even here
its usefulness will be limited to times that are fairly close to the
time when the new set of structural equations first took hold.
For most problems it will not be possible to obtain observations
that meet this criterion, and identification via this approach
will not be possible.

CONCLUSION

In practice, we have no way short of estimating the consistency
model to determine if the observed data are too close to equi-
librium, or moving too rapidly toward equilibrium, for the
approach to be used.'' The simulations show quite clearly,
though, that the approach can be used in practice only under a
very restricted set of circumstances. Consequently, the researcher
who believes that it is necessary to distinguish empirically be-
tween lagged and instantaneous cross-coefficients in a panel
model'? should, whenever possible, consider the availability of
theoretically justifiable instrumental variables. When these are
available, it is possible to identify all three b;’s and all three d;’s
even when the system is at equilibrium. Furthermore, the stan-
dard errors of these estimates will almost certainly be lower than
those parameters estimated via the consistency approach, even
when the latter can be used.
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NOTES

1. Land and Felson (1978) have described a method for “partial identification”
which is not reviewed here. In this approach, bounds are placed on the parameter esti-
mates by imposing theoretically generated inequality constraints on the parameters.

2. When this assumption cannot be made, two other approaches are possible: First,
if X, is assumed to influence both X3 and Y3, the consistency assumptions obviously will
not hold over the two time intervals 1-2 and 2-3. However, they would still hold over the
intervals 2-3 and 3-4, controlling X, and X; in the respective prediction equations. There-
fore, the same approach can be used in a case of this sort, but more than three waves of
data are required. Second, if X, influences X; or Y3, but not both, the model can be identi-
fied by using X; as an instrumental variable.

3. Note that in Equation 2d, Y; contains a term in Xs. If the expression for X3 given
in Equation 2b is substituted into Equation 2d, it will be found that Y; is proportional to
u;. Hence it cannot be uncorrelated with us.

4. In fact, any relationship that determined some parameters in terms of others
would reduce the number of parameters to be estimated. Our discussion will be limited
to this case, which is the simplest and easiest for purposes of computation given the
limitations of existing computer programs; however, the generalization poses no con-
ceptual difficulties.

5. In some of the literature, a system is defined to be in equilibrium only if each
variable remains at a constant value or is stable under small displacements. This is a
more stringent definition: Some systems that are in equilibrium under our definition
will not be stable under this second definition. For further discussion, see Goldberg
(1958: 169-184).

6. The derivation of this equation is given in a technical appendix available from
the authors on request. A more general discussion of equilibrium time can be found in
Heise (1975: 227-231).

7. Some structural systems have parameters such that covariances do not eventually
stabilize at finite equilibrium values. Instead, they oscillate without any damping or
explode. Oscillation without damping occurs when g = -1. Here each increment AX, is
followed by an increment AX.+1 of equal magnitude but opposite sign. Explosion, corre-
sponding to values of g that are greater than or equal to 1, or strictly less than -1, implies
values of AX, that increase in magnitude without any finite limit. A situation of this kind
cannot prevail indefinitely. When it is encountered, one may infer that the equations are
being extrapolated beyond their range of validity. Either the correct equation contains
nonlinear terms that prevent covariances from growing geometrically or the parameters
themselves do not remain constant over time. Rather, the system responds to a variable
or a relationship that has increased beyond a certain point by changing the structural
parameters in a manner that reduces the magnitude of the variable or relationship.

8. The recursion relations given in the technical appendix (see Note 6) were used to
generate sets of three-wave correlation matrices for the variables X, Y, Xw1, Y1, X2,
Y2 (t=1,2,3...). We continued generating matrices for a particular model until corre-
lations in the 4 X 4 submatrix X,, Y., Xu1, Y1 were identical to three decimal places to the
corresponding elements in the 4 X 4 submatrix Xu1, Y, X2, Y. If more than five three-
wave matrices were generated by this procedure for a particular model, we submitted
only the first five and the final matrices to analysis.
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9. Detailed results of these simulations are available from the authors on request.

10. Even more discouraging is the fact that these results ignore measurement error.
In more realistic applications, the difference terms in Equation 5 will become dominated
by error as the true score covariances approach equilibrium.

11. Lest our finding that structural equations typically reach equilibrium very rapidly
be taken as an endorsement of static analyses or equilibrium models of society, we point
out that the conclusion is a theoretical one, not an empirical one. It is based on the
premises that (1) the system of variables under study is isolated from external shocks
and (2) the system approaches equilibrium. Neither of these assumptions is necessarily
valid empirically.

12. The importance of distinguishing instantaneous from lagged cross-coefficients
would seem to be greatest in situations where the signs of the two effects are opposite, for
in this case the two terms will tend to sum to zero. However, it can be important to dis-
tinguish the two effects even when they are of the same sign. Suppose that an instan-
taneous effect is present but a lagged effect is not, and the estimation is carried out on the
assumption that the cross-effect is lagged but not instantaneous. It can be shown (Green-
berg and Kessler, 1981) that in this circumstance, the estimate of the cross-coefficient can
have the wrong sign. One can determine quickly whether this possibility need be of
concern by carrying out the estimation on the assumption that only lagged effects are
present, and again on the assumption that only instantaneous effects are present. If the
signs of the estimates are the same, the sign will be unbiased under either assumption,
though the magnitude of the parameter may be in error in the model that is misspecified.
If the signs of the estimates are opposite, one will be wrong. In the absence of a priori
information about the correct lag, a multiwave model will have to be considered to avoid
the risk of estimating a cross-coefficient with the wrong sign.
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