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ABSTRACT

Primary attention is given to the calculation of time-relaxed probability
densities and associated correlation functions for particles moving through an
equilibrium assembly of like particles.

An integro-differential equation describing the temporal evolution of the
probability densities is obtained from the Liouville equation. In contrast to
the BBGKY hierarchy, the derived equation contains all the information neces-
sary for its solution; i.e., the kinetic equation for a reduced probability
density does not contain integrals over unknown higher order densities.

The kinetic equation for the one-particle density is studied in detail.
An expansion for the collision integral appearing in this equation is obtained
such that effects of interparticle forces are represented by terms of increas-
ingly higher order. Collision integral terms through the "fourth power of the
forces" are obtained explicitly.

Solution of the kinetic equation is obtained by an iteration procedure
in which the zeroth order terms are those which would be the only ones ap-
pearing were the assembly an ideal gas. Higher order terms are coupled with con-
stants which are, effectively, increasingly higher powers of the ratio of
potential to kinetic energy of the assembly.

The time-relaxed momentum density is obtained from the full probability
density by integrating over spatial coordinates. Corresponding expansions
are obtained, also, for some related correlation functions (e.g., the momen-
tum auto-correlation function).

An expansion for the "self" part of the spatial two-time density Gg(r,t),
is also found in direct correspondence with the expansion obtained for the full
p-space density. The general functional form of this expression is derived and
explicit evaluation is made of the low order terms of the expansion. By taking
Fourier transforms with respect to space and time, expressions are obtained for
the classical "scattering functions" for incoherent scattering of slow neutrons.
Corrections for the purpose of obtaining the proper gquantum mechanical scatter-
ing functions are discussed

Bogoliubov type equations are also investigated in order fto obtain kinetic
equations pertinent to a density expansion of the one particle probability
function. Methods previously developed for model systems interacting solely
through repulsive forces are extended to systems for which attractive terms
are also present in the interparticle potentials. The asymptotic collision
integrals present in the kinetic equation appear as coefficients of a double
expansion in £ and &€, where cis the density, and €is a coupling constant

ix



ABSTRACT (Concluded)

related to the ratio of potential to kinetic energies of the assembly. Ap-
proximate expressions for the two-particle probability density, consistent
with the assumptions employed in the derivation of the kinetic equation for
the one-particle density, are also derived.

Finally, investigation of the "distinct" part of the two-time spatial
density, Gg(r,t), is initiated. A relationship between the "convolution ap-
proximation" for Gg(r,t) and the superposition approximation for the two-
particle density 1s explicitly demonstrated.



CHAPTER I

INTRODUCTION

This investigation was undertaken with two goals in
mind. One was the expectation of obtaining a better under-
standing of the manner in which the cross section for
scattering of slow neutrons from matter is dependent upon
the detailed properties of the scattering medium. The other
was to study the possibilities of calculating, from first
principles, certain probablity densities arising in theories
of non-equilibrium statistical mechanics.. The emphasis in
this thesis probably falls upon the latter.

Specifically, major effort is directed towards the
derivation and subsequent solution of equations providing
the temporal evolution of conditional probability densitites
for locating particles moving within an equilibrium as-
sembly. A particular example of these functions is G(r,t),
the probability density for finding a particle in the

neighborhood of a point of confiquration space at time t,

conditioned upon the presence of a particle being located

at a different specified point at some specified earlier

time. This quantity is of particular interest and importance

because of its relation to the scattering‘cross-section.l
The work which follows is presented in subdivisions

of eight chapters. Chapter two is primarily a brief review

of various techniques employed in other studies of non-



equilibrium statistical mechanics where the goal is to obtain
kinetic equations from the Liouville equation. Included in
this section, also, is a statement of the relationship
between the neutron scattering cross-section and the time-
relaxed spatial density, G(r,t).

In chapter three, kinetic equations are obtained from

the Liouville equation to describe the temporal evolution

of reduced time-relaxed probability densities. Although

the work was inspired by a method used by Zwanzig2 in his

studies of the statistical mechanics of non-:quilibrium

systems, the equations obtained differ quite significantly

from any which have previously appeared in the literature.
The kinetic equation for the one-particle time-relaxed

density is further investigated in chapter four. Consider-

able effort is expended in obtaining pertinent expansions
for the collision integral appearing in the equation.

An iteration scheme for the solution of this equation
consistant with the expansion of the collision integral, is

developed in chapter five. The resulting expressions have

the form of expansions in terms related, roughly, to powers

of the ratio of potential to kinetic energies of the assembly.
From the full/ﬁL—space density, momentum densities and related
time-relaxed expectations and correlation functions are
obtained. Some brief remarks are made concerning the cal-
culation of the dielectric constant for partially ionized

gases.



In chapter six, major effort is expended in calculating

the "self" part of the time-relaxed spatial density, Gs(r,t).
Corresponding expressions for the incoherent part of the
neutron scattering cross-section are determined and comparison
is made with some expressions based upon various proposed
approximation schemes.** Relationships between Gs(r t)
(classical) and the exact quantum-mechanical cross-section
are stated.

The work of chapters 4-6 provides expressions for
conditional densities and related correlation functions which
are, essentially, expansions in inverse powers of the temperature,

As an alternative, in chapter seven Bogoliubov type kinetic

equations3 are developed to provide density expansions for
these quantities. Equations pertinent to the study of the
evolution of the time-relaxed densities are developed and,

by employing a double expansion, the Bogoliubov methods
originally developed for model systems interacting solely
through repulsive forces are extended to systems for which
attractive terms are also present in the interparticle
potentials. An approximation for the two particle probability
density is also obtained.

Chapter eight deals mainly with calculations of the

distinct part of the conditional spatial density, Gd(r,t),

*% o.g., the "Gaussian approximation" for determination of
scattering cross-sections.



and associated contributions to the neutron scattering cross-
section.

The main results of this study are summarized in chapter
nine.

Much of the material appearing on the following pages is
new, at least in detail, if not in basic concept The original
Zwanzig kinetic equations have been modified and extended
for the purpose of obtaining equations appropriate to this
particular non-equilibrium problem. Expansions of the col-
lision integrals appearing in these equations are also ob-
tained for the first time. The kinetic equations have been
developed without the imposition of frequently employed
approximations such as time smoothing or termination of a
hierarchy.

From the kinetic equations, expressions are obtained
for various probability densities and correlation functions,
These expressions are also new, although expansions for the
dielectric constant and the resulting functions which are
obtained from the correlation functions have already appeared
in similar form elsewhere. However, particularly for the
scattering functions it is felt that the discussion in this
thesis more clearly demonstrates the effect of variation in
temperature.

The studies of the Bogoliubov methods which appear in
chapter 7 are somewhat of a deviation from the main pattern

of this investigation. However, they are included because



they are an interesting continuation of the investigations
which have previously appeared in the literature. The ex-
tension of the theory to systems with attractive forces,
while requiring some new calculation, is quite straight-
forward. However, when one tries to obtain expressions for
the two particle densities, modifications are necessary be-
cause the usual BBGKY hierarchy (which underlies the theory)
does not apply here. After making necessary corrections,
expansions for the two particle time-relaxed density are
obtained consistent with assumptions used to obtain a kinetic
equation for the one-particle density

A major problem in the field of non-equilibrium statisti-
cal mechanics is that there are almost as many approaches
to a problem as there are researchers investigating it. This
chaos is probably more apparent than real, and the equivalerce
-of various theories is being quite rapidly elucidated.
The particular methods used in this thesis were chosen sim-
pPly because they seemed best for the particular problem
at hand. This point is discussed at greated length in the next
chapter.

Note that most of the calculations of this report fall
within the context of classical statistical mechanics. In
many studies of phenomena investigated by statistical
mechanics, classical theory has preceded and suggested an-
alogous quantum theories. Although quantum theories already

exist, explicit calculations are few; perhaps, in this sense,



the studies appearing here can be considered preliminary
to a more "basic" quantum calculation. However, it must be
pointed out that many physical phenomena of macroscopic nature
seem to be adequately represented by the classical theories,
and the calculations appearing in this study certainly have
meaning with relation to such investigations.

A limitation that should be acknowledged here is that,
mainly for calculational convenience, in chapter four
( and ff. ) is imposed the requirement that the internal
potential energy of the assembly is to be represented by
purely additive pair potentials. Furthermore, at various
points it is assumed that the medium is isotropic, As a
result, the investigation is restricted to a study of
fluid assemblies. These assumptions are commonly employed
in non-equilibrium studies of statistical mechanics 0f
course, it is to be expected that as our understanding
develops, extensions of the theory will be made to somewhat

more complicated systems.



CHAPTER 11
REVIEW

It is well known that the scattering cross-section for
neutrons is strongly dependent upon the dynamical behavior
of the scattering medium. For low energy neutrons (for which
s-wave scattering is predominant), for a system in which the
directions of nuclear spins are uncorrelated and where the
distribution of isotopic species is random, if one uses a
Fermi-pseudopotential > to represent neutron-nuclei inter-
actions, the first Born approximation provides the following

1,6,7
expression for the differential scattering cross-section: ' '

320 = 1 K'( a2 s (Rw +a? s, (K,w ) ... (2.1)
LT coh “coh e ane.
In the above,
0000 (2'2)
E = the energy of the incident neutron; E'= the energy

)
of the scattered neutron; K, and K’ are the associated wave-

d
coh " ainc.

are the (energy independent) coherent and incoherent scatter-

> -+
numbers; o = h'l(Eo -E'); K E(KO-KS; and, Q@

ing lengths, respectively.

For monatomic systems, the ''scattering functions" are

defined by: s
N ~ifwt = k°r ]
S optkow) = Jdk dt e G(r,t) ceoe  (2.3a)
and s
. =i[ wt=k°r ]
Sinc, (Ksw) = Idk at e G_(rst) ceoos  (2.3b)



G(r,t) and G4(r,t) are defined by:

S sy 00 (2.4a
G(r,t) = 1l/m < }) Jé(r+3k(0)-r') §(F'-4,(t) ) dB* > ( )
Ak ’
and =
» >
6 (r,t) = 1/n < XJMMJ-(O)-?') s(P -:5.3(1:) ) dr' > (2.4b)

N

n = the number of particles in the scattering assembly.
gk(O) and gj(t) are the positions of the kP nucleus at t ® 0,
and of the jth nucleus at time t, respectively.

The expectation values denoted by < ccocccooccs > are to
be taken with respect to the distribution of initial states
of the scattering system.

Thus, it is seen that the dependence of the cross-section
on the scattering medium is manifest through the G functions.
It is also to be noted that the G functions are determined
only by the properties of the scattering medium.

In the classical limit, these expressions have well
understood meaning:

cooc  (2,5a)

G(r,t) = the probability density for finding a particle
in the neighborhood of r at time t, given that there was a
particle at r = 0 at t = O0;

soco  (2.5b)

Gg(r,t) = the probability density for finding a particle

at r at time t, given that the same particle was at r = 0 at

t = 0.



It is quickly seen that, in the interpretation of classical

mechanics, 2.5a follows from 2.4a. Viz., by definition,

G(r,t)

n <Y J[d?“ [ 8B (0)-#) 6(F-3,(6) ) ] >
K

{—r -> > >
im ) Jdr“ < 8(7+q, (0)-F") 8(2'-4,(6) ) >
i
)

But, the classical joint expectation of any quantity,
< Jl(-Xt)JZCXO) > , 1is defined by
rof .. (2.6)
<3 (X% > = quojdx T 00 (%) £(X)) £t (X))
where J(X) is a function of the phase variable X E(il,..,is).
£(X,) is the probability density for X at t = 0; f(X;t|Xo) is
the conditional density for X @ t, given that at t = 0,X,.
Thus,

G{r,t)

L1}

> > > > > > > > -+ -+ >
l/nlggfdr” qukodqjtd(r+qk(0)~r')G(r'-qj(t) )f(qj’thko)fqug

r
1/n XZJdFv Jd&ko S(F+d (0)-F1) £(F [ ;1) 1/
A

where the integration has been performed over gj(t). It has
been noticed that, because the scattering system is assumed
to be in thermal equilibrium¥** fo(qko) =1/a , where ()

is the volume occupied by the assembly. Next, performing the

integration over r':

**Here, we assume also that the scattering system is isotropic.
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-> > > ->
G(r,t) = 1/n Ziquko fj,k( r+qk°[qk° st ) /9
+> > -+ >
But, f( r+q [qk st) = £(Cr |o5t) . Recognizing
(o] (o]
this, and summing over k and j after performing the integra-

tion over q

o
= gself . _ distinct )
G(r,t) = f;s<,k ( r[0; t ) + (n-1) R (rlo;t),
In the above equation, fieif (r |0;¢t) is the probability
1

density for finding the Kth designated particle in the neigh-
borhood of r, given that it was at r = 0 @ t = O fj’k(rlo;t)
1s the probability density for finding the jth particle at
r @ time t, given that the x th designated particle (j #k )
was located at r =0 @t =0.

Thus,

self

Gs(rgt) = f ( rIO; t ) 000000 (2,73)

Frequently, there is also defined:

) ** (2.7b)
Gd(rst} =z (n=1) fdlSt°( r|o; t ) 60000

**Anticipating, somewhat, we note that

G (r,0) = ¢ gz(r)
d , with g,(r) defined
by eqn. 4.19. . 1is the average density of th% assembly

¢ = (n-1)/ Q .
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A number of investigators have considered the possibility
of expressing the neutron scattering cross-section in terms
of the classical G functions given by 2.5 and 2.7. Of course;
the actual cross-section requires calculation of the quantum
function defined by 2.4. However, theories have been devisaf—ll

for the purpose of relating the exact cross section to

scattering functions, S(k, » ), determined from the 'classi-
cal' G functions. Clearly, there is some advantage to pro-
ceeding in this way, if for no other reason than to provide
the investigator of eqn. 2.4 an opportunity to utilize some
of the resultsvof the extensive inquiry already made into
similar problems which have been studied by the methods of
classical statistical mechanics.

However, the calculation of G(r,t) is just a part of
a much larger program. The problem is basically as follows.
Given the initial positions and momenta of a group of
classical particles which are a subset of a collection of
like particles, we wish to know the probability density for
finding the subset in the neighborhood of a given point in
their phase space at some later time. Furthermore, let it
be postulated that the complete collection is at thermal
equilibrium and has a canonical distribution of positions
and momenta in T -space.

Thus, we wish to find some way of calculating fs,s
(Xs;t|XS ) ** which, when multiplied by dxy...dxg, is the

**XS is the six-s dimensional vector, (xj,...,X ). X; is
the 6-dimensional vector, (gi,gi)a
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probability of finding particle #1 in a differential volume

element dx; about X,
time the particles were located at xy ,...
o

etc., at time t, given that at zero

,§so, fS,S(XS;t‘XSO)

is often referred to, in the following, as the conditional or

time-relaxed s-particle probability density.

But, how to calculate such quantities? All that is
really known is that the temporal dependence of the density
for the totality of particles in the assembly, n, is given

by the classical Liouville equation, viz.,

. - . (2.8)
%%n’n(xn,tlxso) L Hn(Xn), fn,n 1
Hn(Xn) is the total Hamiltonian for the system; fn’n(Xn;t[Xso)
is the n-particle probability density; the bracket notation

is the usual Poisson bracket, viz.,

[H;f£ 1 =3 (V,8.V £ _ -9V H.V £ ]
Mol rica o Pp ™R p; 93 Mem

One needs to obtain, from 2.8, a kinetic equation providing
the temporal evolution of the s-particle density of interest,
fS,S(XS; thso). Then, one must solve the equation'

The deduction of appropriate kinetic equations for
reduced densities is a central problem in non-equilibrium
statistical mechanics. Although most efforts have been di-
rected towards obtaining kinetic equations for '"distribution
fucntions'" other than the conditional densities of interest

here, it is pertinent and instructive to review some of the
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techniques empioyed in thcse studies as a prelude to calcu-
lations carried on later in this report.

A first advance in the general theory of non-equilibrium
statistical mechanics came with the deduction, -4 from the
Liouville equation, of a hierarchy of coupled integro-differ-
ential equations giving the evolution of many particle, reduced
distribution functions. This set of equations, often referred
to as the BBGKY hierarchy, provides the temporal evolution
of an (s-1) particle distribution function in terms of the

next highest, i.e., (s) particle distribution. Frequently, **

the set may be written as follows:

f - o = - > -»> ”-b .
%;S,S [ Hs’fsgs ] (n-s) des+ltz¢(qj qs+1)’ fs+l,s+l ]
a6 00CO0GOGD0 (2&9)

Unfortunately, this is an almost empty scheme, because to

th order distribution one must know, first,

determine the s
higher order distributions which are themselves to be deter-
mined from similarly open equations.

Of course, one might try to find some way of terminating
the chain of kinetic equations at low order. Commonly em-
ployed is the "superposition approximation', which consists
of assuming that the s +15% order distribution is propor-

tional to products of s order distributions. E.g., to termi-

nate the BBGKY hierarchy at second order, it is assumed that

%%, . .but, not always; ©f., appendix F.
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f3(x19x29x3) = f2(x1,x2)f2(xl,x3)f2(x2,x3)/fl(xl)f1(x2)f1(x3{

Unfortunately, the applicability of this approximation is

16
still controversial ; it is known that, for the equilib-

rium case, the superposition approximation fails to provide
the correct virial coefficients for a gas beyond the third

coefficient.l”’

Also, there is lacking in this theory a
logical prescription for demonstrating the progressively

18
more important contributions of higher order collisions R

an effect which is demonstrated in certain other theories.™”
For example, BogoliubovBllz, using an elegant functional
analysis, obtained a temporal equation for the one particle
distribution which not only contains terms involving higher
order collisions ad infinitum, but remarkably demonstrates
that the higher order collision effects are associated with
a power series expansion of the density. Unfortunately, the
kinetic equation is provided in a functional form which, al-
though formally correct, is in practise limiting in that many-
body determanistic mechanical problems must first be solved
before the theory is applicable to dense gases. However, the
Bogoliubov theory is of considerable help in understanding
the validity of commonly employed kinetic equations such as

3,20,21

the Vlasov and Boltzmann gas equations. Although

** On the other hand, it has been shown that the super-
position approximation can be used to terminate the BBGKY
hierarchy so lorng as one doesn’t demand information about
the distribution functions inconsistent WiEQ the order of
the approximaticn used in the termination.
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kinetic equations obtained by other methods from the basis
of the analysis of most of this report, Bogoliubov type equa-
tions are considered in some detail in chapter 7, below, **

Motivated by the success of theories of Brownian motion,
in which the detailed motion of a particle is replaced by a
sum of average motions over small periods of time, there have
been developed various theories for 'course grained" distri-
bution functions. Notable among these are the theories of
Kirkwood and his associates ## Important work has been
performed, using these theories, in obtaining expressions for
linear transport coefficients in dense fluids. The origins
and validity of the Boltzmann equation have also been clari-
fied to a great extent.

The distribution functions investigated by these methods

are '""time smoothed" functions,

™

fs,s(xs;t)

]

T
l/ri?p[dxs+ioooodxn fn n(Xn;tvb) .

defined for small but finite T . Unfortunately, when calcu-
lating the neutron scattering cross-sections the short time
behavior of the G-functions (eqn. 2.5) is quite important and

it is to be expected that course graining would introduce

**In addition to the great difficulty in obtaining solutions
to equations of this type, their derivation requires the im-
position of some restrictive assumptions concerning the func-
tional dependence of the bi%?er order distributions upon those
of lower order. (Hollinger<? has indicated that these
assumptions imply a lack of correlations between particles be-
fore collision, an assumption akin the Strosszahlansatz of
Boltzmann 18

##For an excellent review of Kirkwood's work and the subse-
quent work of Rice, et al., cf. Rice and Frisch. 23
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error. Also, the introduction of course-graining requires
approximation at the earliest step in the analysis; one would
prefer to defer making approximations until it is demonstrated
that no further progress is possible without them.

The same objections pertain to theories in which other
types of course graining (e.g., in phase space) are intro-
duced.

Prigogine and collaborator§%'?5'26have developed an
elegant scheme to obtain equations describing the temporal
behavior of systems close to equilibrium. Their scheme
involves a Fourier expansion in configuration space of the
general n-particle distribution function, after which the
temporal evolution of the expansion coefficients is investi-
gated. An elaborate diagram scheme, analogous to those used
in the quantum theory of fields, has been developed to expe-
dite evaluation of contributions to the kinetic equations
for coefficients; in effect, the BBGKY hierarchy is replaced
by a hierarchy in momentum space only. Unfortunately, this
work is not directly applicable to the study of short time
evolution of a distribution function differing significantly
from the equilibrium distribution. Although the Prigogine
methods could, undoubtedly, be modified so as to be applicable
to the study of such problems, the methods which are used
in this thesis for that purpose seem, at the outset, to be
somewhat simpler and are, for that reason, preferred.

It is interesting to note that the Prigogine methods
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and the Bogoliubov methods, while seemingly very different
and each involving a great deal of specialized difficult
analysis, have both been used to obtain an identical equa-
tion for the evolution of the one particle distribution
function for an ionized gas. 21,26

The schemes for obtaining kinetic equations, described
on the last few pages, have been applied to investigations
other than the calculation of the conditional probability
densities defined on p. 11, Relatively little attention
has been paid to the latter problem. An attempt to derive

integro-differential equations giving the temporal evolution

of, specifically, the conditional densities was made by

Vineyard. 7 Starting with the Liouville equation, he
derived a double set of equations (which reduce to a single
set for a stationary aséembly) analogous to the BBGKY hier-
archy of the usual non-equilibrium theory. But, as before,
there remains the problem of terminating the chain.

A phenomenological probabilistic calculation of time-
relaxed pair correlation functions has been performed for
dilute gases by Christov. 28 However, there is little clue
furnished concerning the actual calculation of the kernels
appearing in this theory. A knowledge of the latter is nec-
essary before application of the theory can be made.

Thus, the calculation of time-relaxed densities is
still very much an open question. Each of the methods

discussed above is in some way not appropriate to the task
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of obtaining kinetic equations applicable to this study. But,
we have not yet mentioned a procedure only relatively recently
suggested. By defining the projection operator,

Pr slﬂf‘[dqlawjﬁqn , and manipulating the Liouville equation

‘ 5,79

in a clever way, Zwanzig derived the following

equation for the one particle non-equilibrium momentum density:

£, R s(1-Pr)L
géﬂ,l(pl;t) = JdpQOOdpn(PrL st e (1-Pr)L fo’n(pl,o,,pn;tws) +
t(1=-Pr)L
+PrLe (1-Pr) £ (X ;o))° nk
n,n n

Although fo,l(Elst) is dependent upon the n-particle density,
fo,n(21’°°’2n;t)’ there is no dependence upon any unknown
spatial probability density. As such, this equation is already
an improvement over the BBGKY hierarchy. Also, the equation

is valid for all times and does not require course graining.

We find that similar equations are very useful in the
study of the conditional probability densities, fs,s(xs;tlxso);
Zwanzig's original suggestion for using projection operators
is amended and extended in the next chapter, providing the
equations we desire.

It is to be noted that Gg(r,t) may be calculated once
fl,l(xl ; t IXSO) is known. Gg4(r,t) may be similarly obtained
from f2,2(X19X25t leo)o

Although the major part of this report deals with the
derivation and solution of equations for probability densities,
considerable attention is paid, also, to obtaining expressions

for the cross-sections. It is necessary to point out that

#% I, is the Liouville operator, For definitions, see (3.4), below,
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expansions for the latter, similar to the ones obtained in
this report, have already been reported elsewhere.** Expres-
sions for the scattering functions (and their inverse spatial
fourier transforms) have been obtained in various forms of
perturbation series. A notable characteristic of these
expressions, however, is that they have been obtained without
first performing calculations for G(r,t).

On the other hand, one of the reasons for performing
both theoretical and experimental studies of neutron scat-
tering is the hope of better understanding the functional
form of the G-functions. Because we study these functions
directly, it is felt that the calculations presented in this
thesis contribute to such understanding beyond that afforded

by the expressions for the transforms of G(r,t). In addition,

the effects on the cross-section caused by varying the tem-
perature are perhaps better demonstrated by this theory.
Finally, it should be pointed out that the conditional
probability densities are of great significance if one
wishes to calculate transport coefficients. It is well
known23l3l’32that the linear transport coefficients can
be related to temporal integrals of appropriate time-relaxed
correlation functions. An example is the proportionality of
the dielectric constant to the Laplace transform of the
momentum auto-correlation function. Since this point is

elaborated upon in chapter five, we shall not discuss it

further here. 30 5
**For a review, cf., Nelkin or Schofield.



CHAPTER 3

DERIVATION OF KINETIC EQUATIONS

A central problem of irreversible statistical mechanics
has been the derivation of kinetic equations necessary for
the description of the temporal behavior of pertinent re-
duced probability densities. Here, this question is discus-
sed in detail for the particular case of time-relaxed proba-
bility densities in equilibrium assemblies. Interest in
these functions is not only intrinsic; as has been indicated
in the previous chapter, various quantities of physical im-
portance such as the linear transport coefficients and the
slow neutron scattering cross-section may be related to
temporal integrals of appropriate densities and correlation
functions.

Whereas major concern in the following is the derivation
of equations for time-relaxed densities in equilibrium sys-
tems, it is indicated that under certain conditions closely
related equations may be derived for probability densities
of a more general nature.

The method employed in the following investigation is an
extension of a procedure originally suggested by R. W. Zwanzig
in his studies of the approach to equilibrium.

Let it be agreed that

> . > (> > > > -
fn’n( qlsooo ’qnsﬁlsooo apn’tiqlosoooBQSOQPlONM9Pso ) =
0000(301)
= £ (X stlx )
n,n D So
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will represent the conditional probability density for find-

ing a specified isolated n-particle system in the neighborhood
of a point ('ﬁlnooﬂiﬂﬁl,”o,gn )an of r -space, at time t,

given that at t = 0, Xs= Xs o Xs designates a
o
point in a pertinent 6s dimensional reduced phase space.)
Marginal densities** are obtained from fn n( X ;t|XS )
n
o

’

in the following manner:

f (a oaa iD o«-x‘v stiX ) = EX) (302)
ab 1°°°° a,Pls ’Pb’ \ s,

t
=z dd Jdg:dp dp £ (X :t[X..)..
} J qa+l qn pb+l pn NyNn n’ l SO

is the marginal conditional density, with respect to

£« Xnﬂﬂxs ) ), for finding the set of position coor-
n,n )
dinates {gl,..., ga} and momentum coordinates {El""’Eb}
in the neighborhood of the point ( 91""’9a’El""’Eb)

of the appropriate reduced r -space, at time t, given

that at t = 0: X = X
s S5

It is noted that £ . > 0 and thatx&il..&i&@.&gb%@hﬁbﬁ\'X_so\zl
for all a,b.

As is well known, once the initial state fn n( X j0]x )
! n So
is specified, fn,n( X n;t [ xso) is determined for all time
by the Liouville equation. The latter may be written in

the following convenient form:
£ (X 3t{x ) = L £ X 3tiX 0000000 3.3
9 n’ [ So n,n( n’ ’ So) ( )

—1,n
at

*%¥ For a review of some of the concepts and terminology of
probability theory see appendix A, below.
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The Liouville operator appearing in eqn. 3.3 may be

expressed as the sum of three terms: L = Ldﬂjsz’With‘

n
> >
L ‘E-Z ¢ 0 v ¢ o000 (Soua)
(o] i=h%l qi

nn > > -> N

Losal §oava-gld v =¥ ) . (3.u)

23 #kdq, 3 Pj Pk

n .

L2 = X ag_[l] ° -V* co0o00Q (3.4C)
1 3qi Pj

To obtain 3.4a-3.4c, it is required that all forces be
assumed to be velocity independent. Also, the internal
potential energy is assumed to be well represented as the
sum of two-particle central force interactions.

In the above expressions, v({qi..qj‘ ) is the
potential between the ith and jth particles and U[i] is
the external potential acting upon the ith particle. It
has been assumed that all particles are alike.

Kinetic equations for the lower order (marginal) pro-
bability densities are obtained directly from the Liouville
equation. As has been mentioned in the previous chapters,
a quantity of special interest to us is the one-particle
time-relaxed function, fl,l( py.9,it IElo’glo ), defined
as the probability density for finding particle # 1 in
the neighborhood of the phase point ( d,:P; ) at time t,

given that it was at ( q; 'Ry ) at t = 0. Let us obtain
o "o

an equation describing the temporal evolution of this
function.

To obtain a kinetic equation for fl 1 it is convenient



23

to introduce the following operator. Define:
- . 6 6
@ = f eo o ’ oo 000 000 °
n{l( %, ,xn,0|xl ) J J d X, d xn (3.5)
where f (0) designates the probability density at
n[l

t = 0 for finding the n-1 particle subsystem in the neigh-
borhood of phase point ( - SVRRRER X ), given that the

coordinates of particle #l are x, = ( Py:9; ).

Note that, once given £ (( Xyseeanen ,Xx ;3 0 ), one
n,n -1 -n
easily finds fn|l by the relationship fn]l(o) = fn,n(O)/flij)
L]
where fl,l(o) = feeo dx2uwdx £ (0)

n  n,n
(unconditioned one-particle density.) Note, also, that @

is a projection operator; i.e.,

Gchn(X 3t) = @Fcn(xn;t) ,

i dx,...d f ° 30 = 1.
n since fu,j X2 Xn n[l(xz. gxng 'xl) 1l

Using 3.5, the following two identities are obtained

from the Liouville equation:

y o= Bufgr v -0 ) L (a6)

( 1‘@)%{11,11 = (1-8) L ( @fn’n +C1-8) £ ) .. (3.7

The second of these equations is easily solved (formally)

to yield:

oLt s(1-6)L _
( 1-0) fn,n = gds e (1-0)L fnll(o) fl’l(xl;t-s[x ) +

1,
et(l-@)L

+

(1-8 ) fn’n(Xn;O[xlo)

00000 (308)
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Placing (3.8) into (3.6), one obtains:

t
. = (1-@)L¢ 4. -
gg@fnmmn,qxlo)] @L[@fn’n] + [ arOLe (1-O)L £ (e-1) +

_ L
+ QL et(l ) (l*@)fn,éxn30|xlo) <o (3,9)

Let us at this point assume that there are no external fields**
How are the initial conditions specified? For the case

of interest (viz., a set of particles moving through an equi-

librium assembly of like particles) the initial condition

for the full n - particle density, conditioned upon the posi-

tions of a designated subset of s particles, is given by:

(X le ) =
np n S0

"
S R s 2y bRl s _
= € (ql:csqsiqs*’lwsqn e B;. i/2m -{_[,5(<~fr-2135(1>‘;--f}3
pA 3n/2  gls]
a, (2mmkT) f eqo(q1°’°’p80)
Here[ cQgocCcoo00 (3310)
Z = (49 ...dq e BV(ql’“’q‘n) eoooo (3511)
dn 1 n

and
e £k ) =
n eq No

¢ 0000 (3012)

glsd¢ p. ) :[dq. . ..dq dp.
eq 41,2 *Ps, :j s+1°° n s+l

= e 1

S
9§p2/
= 2m 'Bv(q o0 q )
(d ogdqn e 1,°°%%n

s e

=QW' . q

Uiryss/2 | st
dn

It is evident that we have assumed that the equilibrium

state of the assembly can be specified by a canonical

distribution.

The proof that (3.10) is correct is as follows.

Let x, = (g, Ei)

%% j.,e., set L2-= 0. This condition will be relaxed later.
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It is certainly true that f ( % ;O[X ) -ﬁd(x -X; ) .
n,n n 1‘!1 1 O
But, the quantities of interest here are of the form:
£ ( X 0 [Xx ) , i.e., the probability density for
n,n n So
finding the system in the neighborhood of X given the
n

exact position of the subset of particles #' s (1 + s)
and no knowledge of the positions of the other particles
except that the probability density for the entire system

is a canonical distribution.

We recognize the following relationship for conditional

probability densities:**

o

£ (xly) = f £ (x|y,z*) £ (z'|y) dz' .
X|Y _x[Y,z z|y
The generalization of this relationship leads us to the con-

clusion:

£ (X ,olx ) = ﬁ%éﬂ ﬁhff (X ,olx ) 3 (xs+l yooosX | X, ) .

n,n n " n,n n 0 no o
But, because Xon %o
fX[Y(xly) = £(X;Y)/£(X)
we have f (x 000 X = f[n] f[s:l X
eq( stlo’ ’xnol So) eq (Xno)/ eq( so)

Therefore:

£ (X 0[x )
N,n n So

fr > > >
= J de oo dX d(xl-xlo)oood(x X ) f[n](Xn )

s+lo No n Do eq "o
fESjZX )
eq S,
[(n]
= f (x oo ¢k X 00 X ) 6(3(' "X )
= eq—lo==szls % TE
f83(x Lo00x )
q lo’ ? o

**For proof of this statement refer to appendix A.
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In particular, as a special case of (3.10) :

- 8(q ) 83
f (X ;OI-)_{_ )= e Bv(ql,oo ,Qn ‘ez}:l 2m q ql P Pl )
n,n n 1o Zq 70 (§;E§$Tﬁ(n lLQ . (3.13)

n

Note how this differs from f (o) , the latter being given
n|l
by:

- p:2/
f (x2’ce,xn,olx ) = st(qi’QOQ’qn Pz 2m

n|1 z 7 (21rka)3(n~l)/2
% vee (3.18)

With these considerations in mind, however, the follow-

ing relationship is noted:

f (X 10 1x ) = f 'Y - 0 0 £ R
0 nn 0 1, n|l< 2t %30l ) Ey 0%, )
= f X .o x o e ¢ o
n’n( " !__lo) (3.15)
Thus, referring to equation 3.9, it is seen that the inho-

mogeneous term vanishes due to the fact that

( 1-6) fnm(xn;Oleo) = 0 . In this way, the

simplification of the kinetic equation has been initiated.

Further simplification ensues upon noting that:

@L@f _ » ""p' ccoo o (3(:16)
- = f .
n,n a1 Lot %1} f, 1(X1’tlx :
This statement is true because
1) 81 Q - > - >
L f =@ g .V @f = p’l
© n,n ( 7 ql) n,n fn 1 Coe ql) 1, l(xl’t[x )
which follows due to the fact that, in the limit
Q> w . Jdﬁ(nodq 1 yields boundary terms which
2 n 4
+0 for i # 1;
2y O C@s = if 2 0l
) 1 fo,n fn'l(x2’ X ,lelo )
is an even function of the variables (3, -4 ), i = 2,3,..,n.

This is due to the fact a typical contribution will be
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proportional to dazueda P ( [q ql' ye Efnll 1,1
which, in turn, will be equal to zero becaﬁée the inter-
molecular potential, under the assumptions already stated,
is an even function of the intermolecular coordinates
(hence, the forces are odd functions and the integration
is over an odd function.)*#*

Of course, these arguments are valid for any isolated
system for which the initial n-particle density is symmetric
in the interparticle coordinates. We need not concern our-
selves only with particles moving through equilibrium assem-
blies. Other non-equilibrium problems might be attacked this
way (e.g., upon the assumption of binary isotropic interac-
tions, (cf. 3.4b), an approximate kinetic equation from which
hydrodynamical transport equations might be deduced could be
obtained were the local flow velocity of the fluid a slowly
varying function of the configurational coordinates.) 1In
**It is true that for some of the particles, the effective
configurational integration space will not be symmetric be-
cause of proximity to the boundaries of the system. However,
as the following argument demonstrates, these particles give

a vanishingly small contribution.

Notice that, for the case of specific interest here,

> >
I dqzmdqn ?lz(qlqu) v ‘1(0) fl L C %,[dqQ F - vpl g2(q2-ql) fl,l
where @ js the Vohmm of the assembly. -q (cf.,also,
egqn. 4.19 & ff.) depends on the . deng But is not
strongly volume dependent in the limit @ +« . Thus, each
particle near the wall of the container contributes, at most,
a quantity of the order of 1/Q . However, it seems clear

that the number of such particles will be proportional to
the surface area of the container. For th%s reason the to-
tal contribution from these terms will aspé =

Thus, in the limit g+ o , n+® n/§ = ¢ = constant,
such contributions become vanishingly small.
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general, the full knowledge of the initial probability den-
sity will be unknown. On the other hand, at least fl,ﬁ xl;o )
must be known for the problem to have a meaning.
A good guess would have to be made for fnll(EZ""’§n7O|§l)'
Let us remember that to obtain the simplifications 3.15
and 3.16 the absence of external fields was required (cf.
p. 3-4). 1In the spirit of this derivation, non-zero ex-
ternal fields lead to difficulties: were we to choose the
projection operator to include the full initial condition,
ntl(O) would not b® symmetric in the interparticle coor-
dinates and 3.16 would not hold; ©n the other hand, were
we to retain the operator 3.5 with fnll(o) given by 3.14,
then 3.15 would not be valid.** In other words, 3.14 and
3.15 could not simultaneously be satisfied. This difficulty
can be circumvented by deriving a different set of equations
which, while satisfactorily describing systems with external
fields, are not nearly as convenient for solution as the one
we are here discussing (let us defer further examination of
this point for the time being. cf. egn. 3.28, below.)
As a result of 3.15 & 3.16, the kinetic equation for
¥¥ZEEESGgh it is true that if the external fields are not

rapidly varying functions of the configurational coordinates
the full fn|l(0) could be used and 3.16:2 would be satisfied

to a good degree of approximation. 3.15 would hold rigor-
ously. 3.16 would read:

- - -

LBt £ (0) (Prev. +au0™tv }f ;
R R LaGyitle )
1



29

fl,l( Pys 4y t| Elo' glo) may now be written
0900 (34:18)

- e o
of (x_:tix. ) + oy f =
1,110 RS- q; Ll
ot 1(1-O)L , .
=Q |dT L e (1-@)Lf 0) £ st
Jo ) nll() l,ixl’ Tlxlo)

In the above equation,

(3.19) é

-> -+
J dxzocoodxn

(In other words, Q . ¢ (0)@ and ¢ i;' ;tl? )=@ £ (X itw ))
n|l 1,11 1o n 1
np o
Further simplification of the terms appearing on the

right hand side of equation 3.18 is deferred until the next
chapter. We wish merely to demonstrate the structural form
of the equation. Notice that the left hand side is the usual
streaming operator, while on the r.h.s. there appears a com-
plicated collision operator which contains a 'memory' of the
evolution of the system from its initial state. In contrast
to the BBGKY hierarchy this kinetic equation does not re-
quire integration over any unknown temporal correlation
functions or densities of higher order. It will be seen
later that fl,l can be expressed in terms of static correla-
tion functions related to the initial full system density.
Whereas in practise these correlations are not necessarily
easily evaluated, in principle all the necessary information
is provided.

d dode ek ok dok ok

The above derivation is easily extended to study the

evolution of density functions for motion of groups of par-
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ticles. Suppose one desires a kinetic equation for the s-

particle probability density. Define:

1l
Then, as before, one obtains (cf. 3.15)

®5= f (xs+l”ooo ,Xn§0[x ’oo’xs) I..-des+l°aodxn ° 000 (3020)

Qe =2 (@ ; = -@of (=0 .

9
In anology to 3.16, we have:

S s
0.1.8s =f (oi{- S + 3. .Y E (1)
g, TR, ] TR 0B,
XX K] (3.21)
where
3. . = {6 - -V’ } 000D00O0BO00O000O000060000O0O0G0O (3022)
1,] Pi

3 This follows because

@ Q - ' - =
SLl an’n fnlsj[ dx oedx [52 Z D ]fnls(o) S
s
= fn's(o)( dxs+l°.dxn[52 Z‘?ik‘ﬁik +] 2/./v ]f f
\:XA 151 sy
= f (0) [5{ 2 v ¢ .j ] fs,s(t)
n|s e
A
[
where R 16 - by virtue of integra-
[dx L ) ) P 2 M =0

ps

tion ovér an odd function We' have, in the above argument,

. f
noticed that . _
J dxs+looodxn fn s(xs"'lgcoo,xn,olxl,xoo’xs) - l

As a result, the kinetic eqiation describing the evolution
of the s-particle density in the absence of external forces

is given by ceooocs (3.23)

EC vt U Veqer L R
CEe T e 1
@ t T(l"gs)L 6)
= - f tt-
S[dr Le (1 5)Lfn S(O) s,s(xs’t rlxso)
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In particular, for particles moving through an equilibrium

assembly:
E oo = e ) TE (py)
I P:
n|s an gs(ql,.,,qs) oy €q o1 ceoes (3.24)
where
s -BV(CI gcec s )
gs(ql’°°”qs) = 9 qus+l°°dqn SL-—-l "
Z o0 0 O L ]
Q. (3.25)
Also, c
f cx 'OX ) = Hs(*,,‘ . .6‘*—". X L]
S,S s’ | So =4 ql El)lo) (Pf plo) (3.26)

As has already been indicated, Gd(r,t) is related to

f (x,,x st |x. ,x. ). The latter quantity would be obtained
2,271 =2 —-l0 —20
from the eqn. 3.23 for which s = 2.

It has been already pointed out that whereas equations
3.23 and 3.18 are valid only in the absence of external forces,
by starting with different projection operators and perform-
ing analysis similar to 3.6 - 3.9 one can obtain kinetic equa-

tions pertinent to the more general case. Suppose we had

started with a projection operator:

f
- l > e 6 000C¢co00QQ0 (3027)
R

instead of that defined by 3.5. In a manner completely simi-

lar to that already used, one can show that the following equa-

tion is obtained for the s particle density:
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S s

a/ot + JRiV . V¥ yeXte ¥ 4 1 DM (K =
{ gml i E*éi i pg %EX q; 1] 13} s,éé’tlﬁg?

- T 1(1-Q)L
= QO 1 [dr e (1-Q)Lf (t-71) +
s Son cose (3.28)
@ t(1-Q)L
+9 1 e (1-Q) £ (xn,olx
O

In the above equation L is the complete Llouv1lle operator
given by 3.4a - 3.4c (i.e. external fields are allowed).
The other symbols appearing in 3.28 have the same meanings
as their prior definitions except that the initial value
term must now also demonstrate the presence of external
fields.**

The memory term of 3.28 can be simplified by noticing
that because momentum correlations specified independently
of distance between particles must be very small (for sys-
tems of many partlcles) it 1s not unreasonable to factor

f‘ (xl’”’; ’; l'”p ’)1nto Sllifl(p ) f (xs’t- Ixs° . In
particular, for a set of particles moving through an equi-

librium assembly,

“ 2
-B8ps/2m
o where - i 3/2
fn fs,s T Foq(py) foq(py) = e /(2qmkT)
**Aosumlng the uncondltloned n- partlcle density to be given
b ) tl -
-Veq -BLV(q_<oq )riuf )] w.;)ﬂé; with -8[v+Ju]
£ ) = e 1 ," x e i Nz (U = dq .o
R0 Z_(0o%) (2mmkT) /2 % 1
9n
then % “pg S
-B[V+)US* ] -B)mt AT |
fiq(X ) = e e 1 vid 8{X.=X:,) s
S P ik (ZmkT) n/2 —FSNR )
where n €1 °
»BZ -BLV + JUS*ty
f[sléx ) = 1 J dg  ...dq e .
1 S Zg —Emrs’s/z st1n
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This factorization closes equation 3.28 in that the
latter no longer contains unknown temporal probability den-
sities of higher order than fs s Setting the external forces

equal to zero would provide an equation equivalent to 3.23.

On the other hand, a posteriori, 3.23 rather than 3.28 is

more amenable to solution ( ...certainly true for the func-
tion most intimately studied, i.e., fl,l7 it should be true
in general since 3.23 does not contain an inhomogeneous
initial value term.)

However, it is to be noted in passing that 3.23, taken
with 3.28,provides an integral equation for fs,s( xs7t| xso).
With the external forces set equal to zero, the left hand
side of 3.28 is identical with the 1.h.s. of 3.23. Also,
the initial conditions for the two equations are equal.

Hence, the r.h. sides of the equations must also be equal.

For example, for £

1,1°
_ .t 1(1-0)1L
q Jd‘ Le 0L £ ) pGserley ) =
-8 Idr e Q-QL £ (p)F) (x)it-t[x) ) +
0 t(1-Q)L
+ Le (1-Qf_ (X 30]x.)
n,nn’ Tl

The last relationship is stated merely for the sake of
presenting a complete story. It is not important to the
continuation of this analysis; rather, in the next chapters,
3.18 will be the object of major attention.

Beforé proceeding with the further reduction and solu-

tion of 3.18, a few words should be said in comparison of
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the probability densities about which we are concerned
(cf., 3.1 and 3.2) with other non-equilibrium densities
and "distribution functions" which occur in similar studies
of non-equilibrium statistical mechanics.

The probability density functions defined by equation
3.2 are frequently referred to as "gpecific" densities be-

g g >
cause the arguments ( ql,mmq,qa,p "ooo,pb ) pertain to desig-

1
nated members of the assembly.*

Closely related are Bogoliubov's "distribution func-
tions"**, which are defined by: F(X ) E[dxluadx f (X 3t) o
s S ] s n n,n n

it is clear that they are related to our density functions

by: ¢ = .,‘1‘_ .
y £ (X stlx, ) 3 FS(XS,tIXro)

SO [e] Q
There also frequently appear in the literature the so-

called "generic distribution functions"*:

fgena(;

-
l’oo’xs;t) =

n! M > .
G-S)!deﬁ,ichxn fn ,I(]Xn;t) o

In this case, it is to be noted that the integral provides
the probability density for finding a particular ordered
act of particles with a given momentum and configuration
distribution, whereas the factor n!Qn-s); is the number
of ways ordered sets of s particles can be chosen without
replacement from an assembly of n particles.

The generic distribution functions are useful in studies

of systems possessing a symmetry or equivalence between par-

ticles. However, in our study, where attention is focused
—_— .. 33 27
*See, e.g.; Hill , p.182; Vineyard

3
**Bogoliubov , pPp. 2, 51.
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on particular groups of particles, they are of little per-
tinence.

Using the conditioned n-particle density defined by
3.1, one may obtain the conditional number density, n(;;t|g_l ),
defined as the expected number of particles in the neighbor-
hood of r at time t, given that particle designated #1 was
at q; at t = 0. In order to do so, one takes the expec-

N
tation of the density operator defined by N(Xn)E 2<K;;Ei)

i.e.,
nitld, ) s <Za(i~’-q’ > = [ak .t 26(?-3 3£, X stlg, )
(o]
- 2> ° o~ . 1 -
= qul fl’éq’l,tlé’lo)d @ d) +§Jd§ifl'gai,t|q1°)5(? )
- ielfér tia } + (n-1) fdlstlnft; tlﬁl )
'
where fl O(F;tﬁlo) is the probability density for find-
t B
ing a particle at r (configuration space) at time t, given
that it was located at g_l at t = 0 3 filgt“(? t|§ is

the probability density for finding a specified particle at
r at time t, averaged over = the initial position of the par-
ticle, given only that a different specified particle was
at a4, at £t = 0. It has been implicitly assumed that the
n-particle density is invariant upon permutation of the
indices 2,..... N

From the discussion of the preceding chapter, it is
seen that

n(F;tlo) = ;]1- <Y fd?v 5(fc+ak(o)-¥v)a(?'-aj(t).» = G(#,t)
AR
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. . . _ self
for a system composed of indentical partlcles.Gs-f ryt|0)

dist,
1,0
To relate to a more familiar case, had we taken the

and G4ér,t) = (n-1) £ (rit|o) .**

expectation of N(Xn} with respect to an n-particle proba-
bility density which is symmetric in the configuration
coordinates of all particles (rather than only 2,..... ,n

as per the previous example), we would have obtained

n{r,t) = fdxn fn,r(zxn;t) N(Xn) =n fl'Sr,t) . For example, for

a system in equilibrium, fl()= 1/ 9 . so that
9
n(r,t) =n/ Q= ¢ = the macroscopic density.
**Anticipating somewhat fself(a,l’ lql ) and
dlstlnct
fl g &1,t[ql may be explicitly calculated from
]
+
f (x_3t|x, Jand £ (X 3t|X ) b
1,1 1’ [ 1 $2 2’ | 20 y 2
-8PS/2m
]_f -> > >
£5¢ it = Jd dp £ 3t )
1,0 (43 Iql Podp, & S L P, sd, lplo.g,l
dlSto I g > > > .
£t (atley ) = fdxldpzdx%dp £ (58,10, £,( X 5tl%)
1l J > o q \ B(pio 2) ( d
=.--d.,xdpdxdpgq-q)ezM at; 94X, )
512 % % Lty 2 £238%y



CHAPTER IV

REDUCTION OF THE KINETIC EQUATION FOR
THE SINGLET DENSITY

It is shown in the preceding chapter how the Liouville
equation may be reduced in order to provide kinetic equa-
tions for various conditional (i.e., two-time) probability
densities. At first glance, the integro-differential equa-
tions so obtained seem to express the interaction between
the particles of interest and their surroundings in a very
concise form. Unfortunately, as closer examination of the
pertinent operators shows, the perturbations of the sur-
rounding medium (which are manifested in the collision in-
tegral) enter in a very complex way. To better understand
these effects, additional investigation of the integral
terms appearing in the equations is required.

In the following work, further consideration is given
to the equation describing the temporal evolution of the

one particle density, £ (51; t/_>gl ). Specifically, manip-

1,1
ulations are performed upon the coliision integral in order
to obtain expressions convenient for solution by an itera-
tion procedure later employed.

We consider a system without external forces. 1In this
case, the probability of finding a particle in the neighbor-
hood of (gl,gl) at time t, given that it was located at
(gl ’El) at time t = 0, is provided by the solution of equa-

o

O
tion 3,18 :

37
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(4.1)
. p . o000
%%1,1(3,1.:?1& 8,0 Elvvqlfl.l(al Byitlay Ry )
_-G [t -TL(1-8)
= JdT e L(1-9)L fnlixn) fl,iﬂi’za;t'T|34;243
o

with initial condition:

flsl<gls21s°lalo'21°> = 8(g)-g) ) 8(p -p; )

To reiterate, the terms appearing in egn. 4.1 have the fol-

lowing definitions:

@ = I dazoodand52oad§n 00000 (4,2a)

-Bv(a ’oo’-q> ) n
1 >
i,'\t'z(‘“\: e " TYf (Pi) coo0o0o00 (4.2b)
zq / Q v ©
n

Q= = [1( x )0 vooses  (4.20)

n

L is the Liouville operator defined previously by
eqn. 3.4 (except, of course, L2 =0.) It is to be remembered
that in this definition it has been assumed that the inter-
action between particles can be described as the sum of cen-
tral pair potentials.

Frequently, the six dimensional variable x shall ap-

pear in the following analysis to denote (g,p). Further,
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if ambiguity will not ensue, arguments of various functions

may not appear explicitly.

Note, also, that the 6-n dimensional vector has been
denoted by:

X = (x 00000000 9gX )
n mlﬁ ’_n

Let us focus our attention on the collision integral
of the kinetic equation. Making repeated use of the follow-
ing well-known® identity

W(1-9) 1L, (1-0) o =1'L, (1-9) T'L(1-)

e = e [ 1+ Jdr‘* e Ll(l-Q)e ]

0 oo (4,3)

the integral term of egn. 4.1 becomes.

_ & 1L (18)
I =Qldr. el L)L £ (X)) £, (x 3t=1_|x. ) +
1 1’ "L L,
[0)
_ 11,08 [ oer i (1) +7,L,(1-6)
+Qldr el dr.e 2 L (1-8)e LO-BILE ) (te1)
1 2 1 nF. 1
0 )
T,
‘G ’;T eleo(lus?)[ i =421.0<1-6>)L 0o @)e+r2Lo(l-@) )
e -
1 Jf 2 1
[v]
T -1.L.(1-0) +1,L (1-8)
x [dx e 3 L (1-8)e L(1-8)Lf f 51:-1 )
i 3 1 Wll 1
)
+ 0900000000000 00000ROOO0000O0ODDDO00RO00CO000000QOCO0OO0O0
0000000 (uﬂu)
*See, e.g., Van Hove 34 ,Bernard and Callen 3° . 4.3 can be

verified by noticing that it holds for 7= 0 and also, the
differentials re. T of both sides of the equation are equal.
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But, the integrals of (4.4) can be quickly simplified. To do

so, use is made of the following relationships.

'rlLo(l-@) _ (—? (4.5)

o o000

Identity: @ e

- L (1-9) -
(Proof: Q.1° = Or 1+ T11,0(1.@) + li L, (1-8)Lo(1-8) +..]
21

But, because G‘\; i41 yields boundary terms

1

i
which » 0 as the volume of the system |, &> = |

=}

81,18 =C¢-2, ¥ ) (1-8) = - BV 8
w4 4

Also, since Q@ . G in turn implying @( -89 = o
= ’
it is clear that the identity holds.)

In a similar way, it is quickly seen that

-~ tL
@Lon(l‘@) =0 for’ n 20 ’ @e 0(1-0) = 00 00000000 (4'6)

As a consequence of (4.6) we have the following

Identlty: T Lo(l-@) T Lo 0000 (4.7)
e ? =Le? (1-6) +0 ]

(Proof:

T _Lo(1-9)
e 2

1 47,Lo(1-8) + %QQLO(l-@)LO(l-G) e

l + T L (l-o) + '?-L?)(l'e) + co00o0
2° EQ
T, L,

[ e 2 (1-8) +8]

q.e.d, )

Also, since 6> is a projection operator, ( )
° 00 l4‘08

TLO TLo
(1-9)8=0; 11Ol (18487 =L (1B (1O .
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Hence, in virtue of 4.5 - 4.8, the integral term (4.4) can

[r]

be written as an infinite series of terms I , the latter

being given by:

+
"’ (T "T3)Lo ( )L

7 S Qfar... far L e 2 300y e ERn T
A 1, r
0

¥-1

(T
©e0 00 L [e
1

-T )L T L

-1 7 1%9) 11 e ?(1-8) IL(1-O)Lf NERIACEN

0000 (u.g)

Let us continue with the simplification of (4.9).

Notice, in these expressions, the appearance of terms:
"BV(ql’oo’qn)v‘ >

(1-®)Lf (X ) £z (1-8)Le e (o) £,
njli'n’ "1,1°% 7/ L2 e 1
But, @Lle-’BV(ql,oo,qn) 30 pefause v(g;,---.g ) is an even

function of the spatial separations between particles,

whereas Ll is an odd function of these variables (see the

discussion following 3.15). Also,

> >

Bx,f X £ P = -Pl -

[ & ) = W (X )( 1 v )G;f ix ) = £ gx )14 v ) ] f 1,1 (t-1))
Hence,

(t-rl) =

(1-3)L fnlgxn) flsl

00000 (uOlo)

Lf (X f Py, -
= [ n{g n) + i+m; vql)] fl’st )

Finally, it is convenient to perform the following coordi-

nate transformation in (4.9). Let:

- -> > > .

which implies
(4.11b)

-> -> 0000

)
-> - >
N S vii\; Vg T Vg oiF 1
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The Jacobian of the transformation is unity.
Under this transformation, the operators appearing in

4.9 become
L(X ) -+ L(E) = LO(E) + Ll(E)
n

Q060000 (4.12)
where Lo( z ) and Ll( = ) are defined by:
3> > > s0oo0e
L() = - Yp,=py) ¥, - p.°¥
- _ > > > 1 % > -V>
L.(Z £ )=F,.08.)°(V_ =V + +f (&~ °o(V. -
18 }Eﬁ 1548V, <%0 7Z§V 385780 (Tpy )
t1

It is noted that fnrﬁ z) is not a function of g;-

It will be seen later that this is of some importance. In
fact, it is mainly for this reason that the transformation

4,11 is performed.

For example, under this transformation, the expression

given by 4.10 becomes
T = = + c
L) £ (5 ¢ 8, (3 ¢ g.xﬁqln £ (it lxg)

ot _ , (4.10)
=L (:) fnli:) fl,&il’tnrllilol cecoo

4.1
where Lt = Lt + ) (4.13)

and

¥ " (-> >
Lo (E) E bt X E’i%;zl)cv gi
3"
In summary, finally, the kinetic equation for fl 1

(x;7 t/x; ) may be written as:

17
o]
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> > 0
B [r] .
gt t el faEmite) = el g
. t (ti. (cvl *
Wlthl I[r] @( )Jd-r fd’[ ooo(dT L ( ) X 00000 (4.15)
L,2 )
(1 -T )L +(2)
x [e A - 39-6’( HIIL X
(1'3--11*)L°'r 8 (t r\Tr)L
X [ (l‘ ) X s000000XL
e B-(rpr (9 Lo 3
Lt

re = 1‘": = P,
* L le X-Tr(l-@)]L(-)L ()£ (%) £ fxpit Tllilo)

8 is the streaming operator (Taylor’'s series operator):

T
"6+ ev boo0 0 (4-16)
8 Z e %l d3

T

having the property that, when acting upon a function of
q,- Rl' and t:

& fen( 4,33t ) = fen ( Si-BiT/m;Bi;t ) cosee  (4.16a)

(z) is defined by:

o - > - (4- 17)
@(—) = sz2ooodgn[dpzooodpn 00000

there being obvious similar definitions for 6?(=)

(z)

and fn'l

Thus, it has been demonstrated how the collision inte-

gral may be expressed as an infinite series of integral

—— ‘ .

(13 &y N .
' =G JdTl LE) LTE) £ 80 £ st e )
0



44

operators. As shall be seen below, such arrangement (i.e.,
in series 4.15) expedites grouping the interaction terms
according to decreasing effect on the evolution of fl,l
(x, t/%; )
o

What, however, are the criteria for determining the
relative contribution of various terms in the collision
integral series? The identification of the necessary ex-
pansion parameters is, of course, one of the desired re-

sults of this study. In this regard, it can be asserted

a posteriori that further reduction of the interaction terms

will demonstrate the intrinsic importance of constants of

the following form:

!d£2”d5k g, (€008, )( 3__ (F, ) 3 BE) voue 2 V0(E ) )

ag 2 ag“‘;‘t 2 agmk* k v o (4.18)
2 k
where ¢(8)  is the pair potential energy expressed as a
function of the distance between particles and,
k=1 - WBV(E gcaga )
g (& seesf ) = @ (@ ..at e 2 'nm .o (4.19)
k 2 T K+l n

fdg oeooodg ewsv(£290c’5n)
2 n

The terms (4.18) are averages of derivatives of potentials,

weighted by the correlation functions gk( g 11 ) -

et K

In general, the latter are dependent in a complicated
way upon the density and strength of the intermolecular in-

3 has

teractions. Dependence upon the variables ¢ "

gr
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been determined only for a few very special cases.** However,

in the limit that the density * 0 and/or the temperature

5> oo

, the Iy are well approximated by

- v s s e !
gk = Qk‘le B (gz’ ’gk) [ XN RN (4.19)

‘Bv(g ;AO’E )
2 k
Jdiz.,dgk e

It may now be asserted that the criterion for grouping
terms according to interaction strength is that M, defined
as the sum of the differentiation indexes appearing in 4.18,
be the same for all members of the group. In other words,

defining

mj’i s e000000 (4‘20)

A

<, D~ 4o

=
i
5
PN S e IV S

it is asserted that all terms of the form 4.18 for which M
~1s the same are of equal 'strength'.

Perhaps this determination seems rather arbitrary. How-
ever, it is noticed that when the approximation 4.19' is valid,
simple partial integrations show the equivalence of the order

of magnitude of seemingly different expressions. For example,

* %%k

-B¢(E) -Bo (&)

f[ e Voce)e viey 1 a% = .-'BL. [a"s e v 2%e)
£ 3 3

/

(The factor of 1/ is always cancelled out when expectations
are taken, and is irrelevant to the present discussion.)

Also, for high temperatures, it is found that successively

- 33
**See, for example, Hill( ), p. 184 and ff.

*%% This is not true for coulomb forces.
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higher powers of M signify terms which are successively less
important in their contribution to the collision integral.
In effect, one is performing an expansion in a parameter
characterizing the ratio of the average potential energy

of the assembly to the average kinetic energy. Thus, the
zero'th contribution is a collection of terms for which

M “0¢ the first order correction is that for which M = 2:
the second order terms are those for which M = 4, etc.

All this will become clearer as we proceed.

At this point, some of the terms in the collision in-
tegral shall be explicitly evaluated. All those for which
M < 4 shall be obtained. Unfortunately, the ensuing anal-
ysis is necessarily lengthy and complicated; we endeavor
to present it as lucidly as possible.

First, consider the collision integral I ﬂq From 4.15:
.t
[l] - S = - + Bl = °
{0 N ES J;d'rl wo L g @5 el ) (4.20)

It 18 convenient to break the integral into two parts, fi]

and 1511, defined by:
-t

£ 2§ Jr:r L(DL, (2) £, 1(D) £ (D) . (4.20")
ot
121 -8 (o) J;dr LEDL(D) £),(8) £ (6-0) (420"
1f1) can be quickly simplified. §(z) %Ei yields
boundary terms in Z. , Wwhich are zero in the limit

1
that the volume of the assembly grows large, so that from
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4.20'a it is seen ghat:

[l]=~: :_I"+ 1': -
i 0 ¢z) [?1 [ L,(%) Elovql] Lo () n|1 148 £ (t )
But, for the same reason, S (EH@'(E):ﬂ”1(2)= 0 . Hence,

t
1[1] -@( )Jdr L ( )L, Yo £ (t- 1) Writing the explicit

|1 1,1
form of the Liouv111e operators:
1] @()r:( Z}:F (V-¥ )+ F G- (‘”)3 Bl £(t-0
= = T ot -V - .t -V - R . T
1 Jo VZ\ 13 Pi p) "Y1 3 Py Pj 57 Ll
But, because ;?j is an odd function in the variables 2%-§j
whereas f[l(E) is an even function in these variables
n
and, whereas G(z) V 3 o for k # 1:
Py
t
1[13 -6 J F. (£.). Y .) £ £ (t-1) .
(2 )odr[)zﬂ ;€89 %pl) (Bj_p_l) DEANOR A
Since all particles are alike, and because ((z )p £ =0

al1‘®
(because integration is over an odd function of ﬁj ), we

finally have: .

1] _ (2)
Il c X f:rl[

+ P1ov 3 fl ( il;t-rl[ilo ) (4.21)

P31 1

g{ o+

3
m

where

x? = 1n [dzg(a__ﬂclsl) : (4.22)

Qw }Q ag LN )

‘t

In a similar way, I[l] 6’( £) Jdr[Ll( )-pl v ]L (= )f |1 1,
m

( )fl &ts'r) =0 becaué‘e the @ inte-

&t -1)

But, G( )[pr JL()f al1

gration is over an odd function of the variables (g - 5)
The latter observation is a special case of the following

Lemma: If g Eé(E)ELl(E)L:(E)LI““oL LLf.. UL .. Jf | (3) is to

11°° ° n|1
be non-zero, then the integer representing the number of times
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that L1 terms appear when added to the integer signifying
the number of times Lo appears, must yield an even integer.
This restriction follows from the requirement that

integration act upon an even function of spatial variables.

Thus, (1] =— s J = 3 il - or,

-0 =0 AL (3 Ly(D) £ () 5 ()

finally, .

(13 _ . (2 J 2 F (e

Ty men o, faten el (4.23)
with

2 3 2
P s e BT (4.26)

co0oo0o0CQC

In summary, the first collision integral has been re-
duced to a form involving simple and well known operators,
viz: +

[1] _ (2)ra,.2 (2)g 2 ) (¢t- 4.25
I c IdT(X/m [3+p103b1] + n v pl) 1,&t 1) oo,( )
_ )

x‘23nd n(z) are defined by 4.22 and 4.24, respectively.

(c - n/ g = the average density.)
Now, consider the second collision integral. From 4.15,
it is seen that 1[2] can be written as the sum of two terms,

defined by:

t 7 t o,
[2a] _§ | Tobo (2) +
I =\ (=) %Tl LC)ITQ Ll e ’Z‘T L{Z)L (:)fnllfl’it-'rl)

2
[2b] -~ f* ’L' T2L°+ _1_ 000(4026)
= . 5 £, F, (t-

s L@ Jar, Jar, Lpe }ngQG( YL LT £ E) (teTy)

o o

90000 (u627)

Considering the first of these contributions, it is con-

venient to further designate
q
2 -
ib2al - lei[Qa] with

1:
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. +
I[ial = GerrldeTé LlemTzL(:&,Tz%LI fn[lfl,l(t-Tl) coese (4.28a)
o v
[2a] - G =T L:
I za z @[drlfdrz Le 2 - 2L oL.f ,l 1, L$t=1) cesos (4.28b)
DL o'c, o L'I‘
I[ga] = R }[dTleT2 Le 2 OA_ 2L Lf f [l 1, l(t-r ) eecese.  (4.28c)
- +
I[ia] = éj(drlj(dr,z Le 2 }_TleLlfnll 1, L1 veos (4.28d)

It is immediately obvious that T [21

is rather involved;
to continue with the reduction of the collision integrals,
we procede as follows.

Consider I eal (4.28a). The exponential operator

esz:-may‘Pe expanded
e 7% 114 T Ly (2) + %22L:(5)LZ(E) toaneeos (4.29)
so that IEa] =0152a]+11Eza]+2152aj*3lgza3+°"’ where
L a,
01523 z@err fdrz L ge Lorfr f ll 1 l(t 1) (4.30a)
o v
£ .\
1;[2a] EZ\errlerrz Ll(Tz)LI ?gstLOLI £ [l 1, (=) e (4.30b)
A
2q[2al] -§ [drl L (% 2yf LJr/g LoLY £ al1f1, 16T (4.30c)

3,[2a] _G 3yttt + _
I _Qfdrljdr Ll(;éQ )Ly Lg Lo X‘?IZJOLO fa1f1, 107 - (4.30d)

[v4 o

and so forth.
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Writing the Liouville operators explicitly, Oll.ma] is seen
to be: (2] SIS .
0.[2a =—‘ = _ g -+ °->
I @(-)Jdrljdr2(7iz i‘ij D;s + ) Pl le)g”z x
0 0O

x (-13,-3)°¥, -B,°¥ (-1, -5 )V, )£ t-1,)
M1 g q; i1 g Il 1,

However, since F, [E' -£js an odd function of the variable

> >
( £5-&; ), whereas fn 1 ( £ ) is an even function of this

variable, and whereas the Q@ operator integrates over these

variables, upon a little reflection it is seen that the only

OI [2a]

non-zero terms in 1
,

t
s 1

ol
X

are

-5

(I-F 1o pl)‘g_Tz(-%l‘, Q) L NEAS St

->

-'-
1& (-Baloﬁqi Lo fn'lfl’l(t-'tl)

m

But, ¢ (Plv) =3 g -7,» Hence, integrating over
2 m a 3t2 2

in the above equation yields

L
0152""] 6( )Idr Ll% (t-T )

Ly fnl1 11 4.31)
.3

." ©0000
~Q Jdrl Ll Lo ' f al1 1 l(1:--»1 )
)

Notice that the second term in

4.31 is just the negative of 11[1] as indicated at the top
of pg. 47 . It is thus logical to define a term 52 1
t
9 - Igqu OI§2a3 N E)) Ldrl[ 3, °$ R
(L (=) and B-Jl commute. ) s (8.32)

As we shall see, ) 1 is one of nine basic integrals into
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which the collision integral, to the fourth power of the
forces, shall be reduced.

The next step in the program is the reduction of the
contribution given by 4.30b: 111 F2d . Since it provides
an example of the increasing complexity of the arguments
required in this endeavor, this too is to be presented in
some detail. (However, rather than burden the reader with
details, only the results shall be supplied for the other
terms. If one is further interested, he may refer to ap-
pendix B  for some additional comments.)

Thus, upon writing the Liouville operators in explicit

form and after dropping some zero contributions:

o<,
1,02a], >0 3
I S(z )Jdr jdr (=1 )5 i u; ), Vpl(Cp =p,). ng] x
0 ©
l(s)/X-TZfl’l(t‘Tl) 000000 ('4033)
C Q(5)(-F (.02 (B3P M NNE : -
onsider © () P"CEJ)%;T (..Jrlﬁgj) fnll('")) The require
ment that @  act upon®an even function of = leaves

only the following non-zero terms:

Q(2) (-F ¢£.).5 ([P3.-P1 J3a + 3(Pj =PL ) 2(
S T B v —‘Y"“Jp'ﬂ"‘zlxag 352

1, m

+ 3(Pj"Py ) 2(Pj,~P1) 33 REANG)
3€ 8&
However, Q () must act upon an even function of ﬁj. Thus,

the above expression is:
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8 ¢=F (£.)] ((-30ps2p,2 - 3lp, 2+p,21)2°
8 JF L8] (¢-3py +p, 220y 3/9p) 3[pjx+plx])_§__ Lt

m
X
3,
+3p24p 20-1p; 2 2%+ 3(p2op, 2)(-1- )3
} ly lx- ag 35 ] l P1. _1:‘3; nll

=Qr ) (Campy +p,%1 3 +3lm+p,2D) 2° 4

m B Tf;l B X BE
b

3
+3(mtp A1+p) 3 ) 32 +3(mep, D (14p 0 2 )
R 1 A 13 3p123€ )“ll

Lk xy

Next, adding the similar contributions from Fy and F and
z

noting that:

Qr 2° (2) =Q(x) £ 2% £, .(2)
8£x3 gy n[l X SE3E2 n|1 etc.,
X zZ
we obtain for Ilt?‘a]:
.b "L. 00000(“034)
1rl2a} - _o/ 3x(“)Jdr Idr (-7, {3(3m+p?
1 = 3m+p )+Z(§g_np +p ) t-1_)
APV Al 115),91:2,51
t
(2,2 | > > 2 ( -
=3¢ x “***dr_[dr, (-1,)(2m(3+p_V )+2p2%+](p -p f t-T)
where the system constants are defined by
(s) _ f.3 4.35a)
x - jd g gz(g) a | ¢<£) 000000 (
13 X
and (2,2) [ 3 4
x %7 =|a 3 (4.35b)
J E g2(€) aE agz ¢(€) 00000
Xy
It is easily deconstrated that 111 2al is closely related
to 21 L2a]°

1
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Note that, in light of the Lemma 4.23, 4.30c can be

written: ,

2_[2a] o5
it LGJ [ar, L 2t /q -»P.laV it £
1 -1y

A 1J 2 1.52 q ll l l(t-r ) 00(4036)

But, integrate the above expression by parts to obtain:

t
2,[2a]_ J 2ttt 1.[2
I =(6c2) dr) L) 18lo Lo Lo Q. fnllfl’l(t-nl)) - IE al
Thus, logically, one defines a term consting of the sum of
111[2a2land 2Il Ral,

= 1.02a] | 2.[2a]
Qa_) Il A

( )t
- by
c_ X J drl

n

(3(3§+p1)+2(3_pl+p1)§_)8 lll(tt)

=3
m o 2 vy B 1 9p .
1y
(QQ)J' + + 2 > >
+3c, x °? dr_ 12 (2m(3+p vV )+2p +p2(p vV )=)p 8 ) £, (t-1
= A R lpl?:\li?;?i - LAY

i

However, further simplification is possible upon noting

4 2,2}
that XM =322 Thus, one obtains, finally
t ocooo(u 37)
:9 f =c x(” [ 2 (lSm + 5p +5mp V_ + P p £ (t-1 )
3 1l = 1351 = 1 -Pl p, P1f1 x ! 1,8

In this way, another of the 'basic' reductions of the
interaction integral has been accomplished.

Next, one considers 311[ga] . It is seen that this
term is proportional to system constants of the order of the
"sixth power of the forces'"; i.e., constants for which M, as

*For a proof, see appendix C.
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defined by 4.20, is equal to 6. Since we are here concerned
with calculating contritutions through the '"fourth power of the
forces'", only, it need not be evaluated.

In this spirit, all termscontributing to the second
order (M =4) contribution of the collision integral are
evaluated. In all cases, the resultant integral operators

are found to be of the general form:

s eoo (4038)
2 °
v Id'rl Op( Tl,pl,g _g‘_-z’ooo, _g__‘ 9 a 9o )g (t =T )
0 P1 Py S|

It is found that all non-zero terms to order M~ 4
are contained in the collision integrals (of 4.15) for
which r < 4. These terms are best expressed as the sum

of nine basic integral operators:

q
I = XQR + O( M6 ) 0000000000000 00® (4'39)
dex
where: ** \
t
& = cx(z} dt, ¢ 3 + S’ 03) £ (X st-1_|%, ) coooo (4.32)
1 Ol T ml pl 2“"(1 191 1 1 lo
L
= C‘\f\éz) JdT (Vz + ll VZ ) fl l(t-T ) 6o 0800 (4'40)
&2 o 1 p1 @ pliiqll.s\{""‘[.'l. » 1
F
(u4) 2 2 > 2+
= cX dr_ 1, (152+5p + Smp. .V + p%p,.V ) tT)
Qs w Jo1g TF 1T FrRy llplgtlla
o t e 0000 (u’os")
(usxx)j 2 2 2
= dr. 12 (-20 + 10m ( V2 4+ 1.V ) +16 T80 4
Ny w3 : 1 3 3% P1 wtPpdy Tt lql

2(y2 2 C T (13T 2 ® 3
+ (v T.¥ ) up (1-p -1 p ) f (t-19)
P Sy TRy e Ry )X» L

co0o0o00 (4038)

*% Additional details & typical calculations are to be found
in Appendix B,
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The system constant x(“’x") is defined in table 4-1,

below.

t co0oo0o00 (4042)

= st\f".xx}Jdr 12((5m + Pj)(svl +4 192 ) 4+ 20 +
m +%>2 §B-v>3+-vbl%mgl%l—>—v>+v++))
+44p + 41p +2(p )“+4(p,V p TV +p1V pV } )} £(t-1)
31P) 7ld 1P le’lmqlmqpl’ﬁl.l
t
>

,xx; ->
+_c_3x{g’xx'»dr rz(m(3V2 +4TV2 ) + 12 + lOpl$ +_8_151V ) /9 f(t-1)
q -

2!

f
5 1,1

1

>

m ‘'S 2 B P1%m P91 P) 3m Ll
{2,XY} Pb > > > >

e 20 ar 1?(Camp]) (324 W12 J4645p V4 2p V4
m 7 B Pr1amam%y 1P 7t 9y

2

v ;;7) ))Q-r fl’l(t-'r).

322 [ 2( 19003 >3 3200
+c x 2oyy |dt 12(18+9 V +3(3 ¥ )2+21p ¥ +2 (BV PV +pV pv )
3 o 2 R TR N AT quzx
© "f\\‘Lk-t)
+c X fdr 2(33+2057_+14137 + 33V )242t(BY BV 4p¥ pv )Y (o)
q p -t \

T
m33102 PTam 4 P 3m p q

co0o0c0CO0QCO (4.43)

Cxyx) £ 2 292 2 )
f =cVv dtt9vVe +41V<S +41V f. (t=1)
CQ51’1 m % U7 PiEm2 4 WPy /g"T 1,1
t
Jd'rfévz +21 V2 +81V2 41 D
VP w 4 wP1% Em

(x,y)
+_<_:_ vy
m i

V. (V2 $qv2 )+
. 19" Py P19y
—)

>
+p V. (3V2 +41v2 41292 )}y £ (t-1)
Pp Pim Pim2 9 )S-T L1

-+ >
tc ¥ dr 12(-4v2 +p V_ (6V2 +141V2  +112v2 ) +
2 3*11’12 Py 3mpl<}.1‘3'ﬁ2q1
+2 14V + p V_ (492 +7 V2 ) f. (t-1)
; Fmd w19 Py 3 Piy X'T l,i
(4)
jdr 12(592 +4192  -12y2 +pV (v2+2172 -172v2 )+
7 P1L FPla1;2%; P PEHPAIG2A

+ 17 (2 v 202 ) Jorfy, (20
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t
¢
- _o2,(2) 5.
f = -c“y Jdtr [3+RV ] x0{3+EV +2T1 psV_ 1+
VQ71”l > 2 mml me 13m21ql

(2.2 2 202
+ V<4 +51V +214V f t-1
n “T[v2 45T olq; 2 }))&_T 1’1( )

Py gmPlaigm2 4y
veee  (B.uB)
t
(4,%xx) (W) , ) ) -
clu tc. uw ] Jdr TRIAVE +31V +51 V4 )+
/3 (3) L T ST

J\ 8flyl

#7V2  (3v2 45792 431292 )] Q£ (t-1)
w P19 Py Zm P10y T2 ql A1
(x,x)  (4) (t 292
vel¥,  +c¥ 1 [at 12(9v2 (9+3p.V_ +1p ¥ ) +
! ) 72 P lppqt q1
w1 1P12m11um2q1 1P17" % 31

oo 000 ( u.us )

Finally: £ ceasaos (4.46)

(2) 2y +
W £ = -2 de 2(n V2 [ x (3tp V +2Tp )+
1,1 Py m 1P1m iy
+n(2)(V2+ 51\72 + 21292 )]
P1 3m P191 3m2 91
(2) (2) - (2)
n 192 [x (_3+3 3p _3_35 V )+n (V247172 +312v2)]]x
am P19 199 Tm1 9 P i P9 1p29;

) % )

The system constants appearing in cp through JK are
defined in table 4-1, which appears on page 60.

It is unfortunate that things get so complicated so
quickly. In effect, we have expanded the collision integral
operator in a power series related to the relative strength

of internal interactions (i.e., a series similar to an inverse

temperature expansion): Jﬁi_and 'Rl are the first order
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terms in the expansion; JK3 through o& 9 constitute the
second order term. It is apparent that it would be an
extremely tedious task to obtain the third order terms of
this expansion.

However, one can make remarks concerning the general
form of the higher order terms, even if analytic complexity
precludes specific evaluation. The expansion of the inte-

gral term (4.15) may be written figuratively as:

t
f
s % .o (4.47)
T =W dt O D 3V 1V ) £ (t-1) o
[2] i P (pl, RN ’Qnr 1,1
P L > > >
+ dr 2 opl2d(p sV sV ) £ (t-1)
M[u] JD -2"! p (pl’ pl"n'; ql 2 =T lgl
f't [3] > > >
+ dt 1% 0 (p 3V 3tV ) £f. (t=1)
N[G] J Fg P Pl, Pl",’n’ ql 2""[ 191
0
+ 0000000000000 O0
- ¢
/ = [k] 3> > >
= Zm[zkj jdr £ 2-2) Op  (py3V 51V, )3 £ (t=1)
kear (2k=2)1 Pim% 2-T 1,1

where "W\ [szare system constants for which M = 2k (cf. dis-
cussion following 4.20.)

Notice the manner in which the powers of T in the inte-
grals increase directly with increasing powers of M. Terms in
the Op[k] which do not contain derivatives re.spatial coor-
dinates do not contain the time 1t explicitly. Spatial terms
in the operators appear only as powers of derivatives re q;

furthermore, every derivative term in 9 is always coupled

with a factor ( t/m).
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It is to be noticed that the expansions for probability
densities and correlation functions to be obtained in the
following chapters will not be power series in the usual
sense. There is no simple parameter available for an expansion;
rather, expressions will contain the complicated parameters
of the type defined by eqn. 4.20.

Systems to which the analysis will be applied must be
chosen judiciously. Actually, we wish to apply these calcu-
lations to assemblies for which interparticle forces are
characterized by a hard repelling core plus short range at-
tracting well ( cf. fig. 5.2, p.T" ., below.) In this case
the system constants are roughly proportional to powsrs of

o, where E£o is the depth of the potential well.

On the other hand, application of these expansions for
studying plasmas will, in many cases, be quite unsatisfactory
This is because, for the special case of a purely repulsiva
potential, the system constants are proportional to successively

higher powers of the reciprocal of the appropriate coupling

constant.

1) (4%, %)
For example, consider the system constants Yf and Y\

(cf. table 4.1), evaluated for a repulsive coulomb potential,

-b)

(P )~ +§/ . If one approximates gn ( by ﬁz Y& &lg;_,_

¥ y W) : \F | fdlp e CAp)
(elFSLY\ .

Thus, rather than becoming progressively smaller, the system

it is quite easily shown that

constants grow larger for high temperatures.
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Even so, this does not necessarily preclude the employment
of these expansions to study particular aspects of ionized
media. For example, if one calculates the dielectric constant
of a partially ionized gas, it is found that successive terms
are actually related ( to a close approximation ) by 0<L; ‘m(e‘C)

g
where W is the frequency of the incident radiation, and C
is the density of electrons, HenCe, a useful expression is
obtained at high frequencies, for which the expansion is
strongly convergent. This point is examined in greater detail
at the end of the next chapter.

For systems with more complex force laws, it is quite
difficult to determine the exact relationships between system
constants of sucessively higher order. Suppose we mgke the
following approximation for %g\F) ( corresponding to an
infinitely strong repulsive core) .

o f(m 4N,

200 = ( 4.48)
Then, for example, L‘M @) = g(ﬁs Cy“) f‘@\q‘/\&’%{ C\m(ﬂ(—rﬁ‘:\ 4 G{Sg)
V\ "

where Eo is the depth of the attractive potential well. Thus
in expansions for the slow nautron scattering cross-sections
( c¢cf. chapter 6, below), where it is necessary to compare,
e.g., kjcerms proportional to Wt\ with those proportional to
'z, 3 %)

/ék, , one finds that the pertinent expansion

parameter is effectively F>8°
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Table 4-1: Definitions of system constants appearing in the
collision integral expansion.
f (uxx)
2 = [P leh 22 oCleD) sti g (£) 32p TF(E)2
;2 362 3L x
3
™ : Jd e g, lle)) 3t o) (uxy) 3
3L} Jd £ g,(8) az¢ T (£)2
\ y
N T NG 3 oe) Gy ¢
’ 3EZD! ag Y = Jd £ g, (€) az¢ FF
f5§§} - 2, 22 %y 35 Y
X - [q3 £ g,(8) 32¢ 3%
SR [ T4 S Jda %, 8,(625) 2 ¢k§§’TE“TQ
{3§§ _ [.,3 2
= |d% g.(&)
X |a%¢ g, (_5?)
X
B Jd3a g, ( 2% .?)2 ) T,
2 e b= | g,e) FIO
y 2 X
x $43 ¢ Id £,a%.g, (£,155) 220(6)226(5 )
(3) 3
8&2 353
X X
u z Id £ g,(8) ?:?ET’FY £)
(2} f3 2
n = [d75 g €CEY T (E)
jr e, u() Ida dE. g (E.,E.) FIEVCF(E )2
() %(3) 273 %3 727780 " 720 3
R 6) F (6) 32 F (&)
J SET
f
n (4xy) = Jd3s g, (8) F(8) 22 F (£)
aa

Relationships between system constants:

a) X(u) _ 3)((2,2)
(uxx) (xy,xp  (uxy)

b) ¥ = 2Y + ¥
(uxx) '

cl n = 3n(uxy)

N x{3§§}= B, B
(uxx) (uxy)

e) u = 3u

(see appendix C for proof).



CHAPTER V
SOLUTION OF THE KINETIC EQUATION FOR £, , ( gc_l;tl X )
b . (o)
MOMENTUM DENSITIES AND CORRELATION FUNCTIONS

In the previous chapter, considerable effort was
expended in obtaining an expansion for the collision integral
which appears in the evolutionary equation for fl,l( §l;tl§10).
These expressions are a necessary preliminary for ob-
taining a solution of the kinetic equation. An iteration
procedure for that purpose, consistent with the expansion
of the collision integral, is developed in the following
analysis.

It is frequently fruitful to study the properties of
dense gases or liquids at high temperatures by extension of
theories appropriate to a study of dilute gases. It is some-
what in this spirit that we here attempt to obtain ex-
pansions for fl,l( gl;ti§1o ) and related densities and
correlation functions. Thus, let us search for an iteration
solution to equation (4.1) ( the kinetic equation for fl,l )

having the form

. - ¢lo] [1] (2]
fl,l( Xl,t|xlo ) = fl,l + fl,l + fl,l 4 ceceoe

o0
- [i]
= 1f0y
1':1'

0
where fg 1 is the expression to be obtained were the assembly
?
1] 2
an ideal gas, and g; , g ! , etc., represent successively

1 1,1
higher order corrections due to the fact that there are

61
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interactions between the members of the assembly. This
scheme requires that the Eka contain successively higher
powers of a small parameter characterizing the importance
of the interactions; the parameters appropriate to this
task are those already introduced in the previous chapter
(cf. eqn. 4.18 ff.)

It might be said that this procedure resembles the
Enskog solution to the Boltzmann equation** except, of
course, the ¥i§§?;nis an expansion about the equilibrium
density, f“(Qﬂmd'3£2 , whereas the zero'th order term
in our case is a time dependent six dimensional delta
function in u-space.,

It is evident that the zero'th term of the solution

for £ is given by:

1,1
[o] [o]
af + 3 f = 0 0000000000 (502)
-5?11 m lll
[o]

with the initial condition: lﬁoy-é b<~x ) The effects

£1,1%
of collisions are absent from this equation.

The first correction is obtained by solving the follow-
ing kinetic equation:

vosso (5.3)

5¢L1] > > 1] ol [0]
atl 1t %1 Vqlfl 1 glcf ) +4} (f]

i
= ¢ |dr [ )él\(3+; Vo) +nu‘kV2 +'c\72 ) ] fEO](t 1)
L m 1P Py mw P19 »8” 1,1

(1]

with initial condition £ (xl,o) z0 for all P> gl, Similarly

*%  Enskog 36
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the second order correction is provided by:

[2] + ‘* v f[2] - s o0 e . (5.4)

at1 1 1 q 1,1 [l] - , ] '
1 0
¢ 1,0 AL )tw(f

[2] foed
with initial condition  f1,1(¥1,00% 0

, and so forth.

These kinetic equations may be solved by taking Fourier-
Laplace transforms and then inverting the resulting expres-
sions.

The Laplace transform, taken with respect to t, has

the following definition:
hrd =st

Idt a(t) e ceeee  (5.5)

o

i

{ et ]

For our purposes, the Fourier transform is defined by

+ik°q
?Tc,[ g(&l) ]z (_1_ a2 m j d32i'l g(El) e o, (5.6)
2m Q

which, by the (Plancherel) Fourier Integral theorem con-

verges in the mean to L) +ii031

£ jd3 g(q ) e
o0 q
(3?73/ 1

It is quickly seen that, in accord with these defini-

X

tions,

> >
0] -ikeq
”S'Srf[ = e oy §(P_-p; ) veasoo (5.7)
1,1 (2n)3/2 (s-ik°py) 1 %
m

Inversion of the transform provides

[0] +

faGpstl® ) = 8@ g By 86 -5, ) veeses (5:8)
Lot
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which, of course, would be the only term in the expansion
were the system an ideal gas.

Similarly, for the first order correction, we obtain

from 5.3:
(1] _ «-1 + [o] [o] (5.9)
£ = (f (f
11 3 Sdkp T, D4,
m

The explicit evaluation of this term is made considerably

easier by noticing that

g [0]( t-1) = fgog( t) (5.10)

80000060000 0060600
-7 1,1

so that (referring to 4.32, 4.40) veees (5.11)

Q (f[OJ) + Q00 = el (V2 4t v2 )+ RNaep.v )1£00(e)
21,1 1 P w P Ty

i.e., the integration in the collision integral becomes
merely a simple integration of a polynomial in T

Consider a typical calculation with 5.11 and 5.9. One

has
54 tv2 fgoic ) = 72 A&tfg‘”(r) =v2 1, 8(-p)
Py P1 o1 P1 TG "'"I'k""‘p" ) 175
= (31( (-ik/m)2 - u(-ik/m)° V + v2 )&p p
(s-ik°p;)* (s- 1k Py 73P1 (5 1E°pl Lo
m
Therefore*
°§4{f£__i.~__f§gtvz f[o] t) = t2( £26Pv2 s9(t) -2t7 §L.¥ 0, 6P+
(s-ik'p;) F 4 3 1
m
2 Py
P - > ,-* o q =s(2 G_} =+
5 = 6(pl plo) 9 6 (t) —6(ql qlo %lt) 000080600 (5012)
E3

{1

M(n+l)/ Dt = nz/sn"l 51 = 0,15240000
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In this way it is straight-forward determined that:
(1] - (5.13)
fll(il’t‘zc—lo) ©000000CO0O0O0
(0 s%)02 Por T 6T sPer? 6Pv2 s3(1)] +
Pr m ql pl l&m 1

+ 170 3s%eP- -2t8%3 Vg 6q+6q(t)p v P71 )
m 3m 1 1Py

Proceding as before, one might calculate the explicit

expressions for ff?i. Unfortunately, the expressions are
b

found to be very lengthy and complicated** On the other hand,

many dynamical quantities may be obtained without having full

** That this is so is guickly demonstrated when investigating
the contribution to fl 1 due only to the first two terms of
the r.h.s. of 5.4.

From 4.40,4.32, and 5.13:

4t
1 2
(-Rl(fgl%) +VQ2(f[ ] = ¢ JdT( [V‘,ﬁ— ‘,c‘ XL I3+?ﬁ79ﬂ3 X
0

x(t=1)2( n [63(t-1)V26P(t-1) V 630 P4 ( t@§?69v2sq-]+
2 pl m 1 p1 Lm d;
*x [36P6%(t=1)- 2(t=1)5ppr aq+aqplv 1)
3 m 9 P
€

- {dr (ﬁtvz + 192 ]+ lﬁ[3+p v x
I 1 W% W 1P
<=0 %( 1 L6072 P 6T, Pa(e-n)2ePe2 Sl

2 1 = 9 Py

Peliey —n(+or)aP 0,32 F &P
ksa 83(t) -20e-)6P3 ¥ o+ plvp sP1 )

3 om l 1

(footnote continued on bottom of next page. . .)
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knowledge of f. _(x.; t |[X, ). Thus, rather than oppress the
1,1'% 51

)
reader with a detailed accounting of the second term, f 21

1,1’
we procede to calculate the dynamical quantities of prim;ry
interest by methods which circumvent the complete calculation
of the wu-space density. The remainder of this chapter con-
cerns the calculation of momentum space densities and asso-
ciated expectation values and correlation functions. Speci-
fically, we shall obtain: &( Elgtlglo) , the momentum time-
relaxed density; <p,(t) [p,(0)> , which is the expected
value of the momentum at time t, given the value of the momen-
tum at t =0; < 5l(t)°51(0) > the momentum autocorrelation
function; and, < Pl}({O)pl}((tl)pl)((tQ)plit:a) > , which is a four-
time momentum correlation function to be related to the neu-

tron scattering cross-sections in a later chapter.

(footnote continued from previous page)

= %3 (n (2)v§ w3 T 1)(nDrstv2 st W 6P 4

3 1m 1lpy Pp i Py
"\)4:\ %
+3 26Pv2 597 + §P [36%6P4s9p T 6P-187 95" +
oom2 4 m 1P 7 %
y 2
wlt 2 (1 DsM2 Pt 6% ope 7 6P2 697 4
12 qul 1 5wy P e 4
: . > >
+ X'Tas%P+o%p T oP-g toPp ¥ aq]) :
m 1 lSm

It is apparent that these contributions to the inhomogeneous
term of 5.4 are discouragingly laSklng in simplicity. The
corresponding contributions to due to these terms are
found to be yet more involved. }t is clear, however, that
with a little work they may be obtained in the same manner
as used to determine 5.13.
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In chapter VI, consideration will be given to similar
calculations of spatial densities and correlation functions,
Proceding with this program, it is clear from the dis-

cussions of chapter III that the momentum time-relaxed den-

sity may be obtained from f t | 3] ) by integrating
)

1,10%3
over configurational coordinates. The probability density
for finding particle #1 with momentum in the neighborhood of
Py, at time t, given that at t= 0 the particle had momentum
Py is defined by:

0

(5.14)

00000

*(pystlp;) = jdaqldaql £ (xstlxg DE, (qy] py )

where feqﬁhbigio)is the equilibrium probability density for

finding the particle located at q; » given that it has momen-
o)

tum py . Of course, in an isolated homogeneous system,

feq(glo\ glo) is independent of 210; in fact, it is given by

feq(ilolﬁ,]_o) g , where @ = vyolume of the
system.

Thus,

]
—
Se—y
[s ¥
w
e
OHQ,.
[fa]
Hh
wo
[ad
x

@(Rlstlglo) - covoocos  (5.14")

Let us expand ¢ in a series in direct correspondence

with the iteration series for fl 1° Thus,
o0
[il (5.15)
Q(Rﬂ_;tlglo) = X ] (gl;tl‘&lo) 000000000

120
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where
[i] {i]

. = 3. 43 .
o (Rl’t 'P"lo) -% Jd ql;i 9, flgl(il,tlilo) ceees (5,16)

In this way, using 5.16 and referring to 5.8, it is im-
mediately found that the zero'th order (ideal gas) term for

the momentum density is:

@[0]( tlp ) = & | (5.17)
B"l’ Rlo = B:l“Rlo 6000000000

Similarly, referring next to 5.13, because spatial integrations
of the spatial gradients of delta functions which appear in
5.13 provide zero boundary terms,** the first order correc-

tion is quickly seen to be:

(1] (o]
2. (2) > >
o (pystlpy ) = o [n v§1+%(233+plvpl)]¢ (pystlpy )
e0o000 (5018)

In principle, one might calculate the higher Ofgfr cor-

o

rections in this manner. Observe, however, that could

have been calculated directly from equation 5.3. If, in that
equation, the configuration space integration is performed on

both sides of the equations, one obtains:

f
_ [0] (03, 4 .
20 = 1 Jdoy do LD w005 ) ] veeee (5.19)
= ¢ Idt (%('2)[3-}51%1] +n(2)V;l)5(gl‘glo) o
which clearly has the solution given by 5.18.##

In the same way, the contributions to ¢[Z%p tlp ) are
11

e e 37 °
%% See, e.g., Arsac , Schwartz
(ol
## Since, as initial condition for 5.19, we know that ¢ (0) = 0
for all P;,9;-



69

determined directly from 5.4. For example, the contribution

1
due to éblffgti)‘%92<fggi) is found to be:
t 9, (5.20)
ol L Jdt Jdr [n92 42343 917 (-1, 07 6 B, )
el 1) Ry TR S 17P1,
_o2.h8 Lo 2 ), > 2 I
Tt 7vp + % c3+pl‘v”pl) 1 8, -py )

The other parts of the inhomogeneous term of 5.4 have been
found by this procedure and the results are tabulated on

the next page.
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Table 5-1: Second order terms of momentum density

Collision term Corresponding term of ¢ (plﬂﬂpl)
(o]
(1] (1] (o]
CQ (£, ) +\) (£, ) 2 n(2)V2 + x(213+p Vo) ] L
11,1 522 1,1 > P, = 1p,
[o] (o]
L (u) 2
c&(f ) ct [ 15m + Sp +5mp$ +p p-V' ]J¢
3 1,1 i3 3 1 'g°1lp; "171P
(o] Lol
J e ) ot n{#¥) 10+5072 +1p292 -3 ¥ (1 ¥ )] o
b1l o SEPL 3L 5L (1P
(o] [o]
N (E ) ct' (HXX)[S v2 +p2v2 420+m3 V4237 )21 0+
57 1,1 = 2 p, "1 1P 1P
20m {3 } Bl 1 3 ro} 1
+ x ¥ [3mv? +12+108, v lo " +
{2xy} [Rs! 1Py (0]
2%y [3(2m+p 2yg2 +645p.V_ +3(p.V_ ) 210 4
{% } S 1 P1 [0} P1
L [18+9E vV o+3pV )20 o+
(%) ; °1 +13Pl 2 Lol
+ 2um x(3) [ 331-20pl pl+ 3(pl pl) ] ¢
<& ( [o] 4 (4xx) \ (4xy) , )
£ ) et [ V2 + ¥ (6V +3p v_ov2)
6 1,1 2t L Gyl LPLPL (o]
( ) +Y, (= uvpl+splvplvpl) ]o +
4 (4 2 2 [o]
vt [ svy + (V. )v2 1o o
Zim () P 1Py py
(o] (o]
(£ ) _2et (g2 3 ] (2) e (2)v2 8
éQ7 1,1 %E; x L Py p, %% ( Py pl) +n l]

(continued on next page)
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Table 5.1 (cont'd)

[2] »
Collision term Corresponding term of ° (Plgthﬁm)
y  (bxx) (4xx) N (o]
JQ (fl l) ct [w vZ2v2 +y V2 (9+43p V_) 10 +
8 *s 25 P1P1 @ Py 1P
st 3 u(M)v2 g2 4 y(B) g2 (9+3p.V_ ) ] @EOJ
Ty (3; Pl P '-'( 3) P l Pl

fol [0]
2.4 (2),, (2) [ 2 (2)2
£ - v 34DV v2 ] ¢
S of 1,1 --;ut "y L X (3+p, pl) tn pl]

We are now in a position to notice that, referring to

the kinetic equation for £ had we earlier replaced the

1,1°
complete collision integral by the first correction term, i.e.,

had the kinetic equation for the full f been approximated

1,1
by
¢ (2)
af. _ +p .V £ = cjd XD v A ) + 0292 41 v2 )1 E(t-1)
selsl B L0 ' m 1P Pim P 118 ¥

then only the first term in table 5.1 would have appeared as
21, .
the contribution to ¢ (Eifﬂgdo) . This would have been in

error, for not only would we have overlooked the other terms

o[23

comprising but, as is seen by this more rigorous calcu-

lation, the terms predicted by an approximate kinetic equation

[2]
do not even appear; {&E(ﬁnj) Q (ﬁlljmontributions are exactly
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0
cancelled by {‘,Q,,I(fg i)+é?g(fgoi)} contributions!! It is

suspected that examination of the higher order terms of
@(;lﬁﬂgio) would lead to similar conclusions. Thus, it is

to be construed that one must be very cautious when deducing

information from an incomplete kinetic equation; truncation

of a kinetic equation for a probability density or distribu-

tion function. F, precludes determination of the functional

form of F to higher order than the order of the truncation.

It is now easy to calculate associated expressions for
< El(t)lﬁl(o) >, the expected value of the momentum of a par-
ticle at t, given that the particle's initial momentum was

P - By definition,
0

> > - r3 -»> -> > 0000000 (5-21)
< Pl(t) ‘Pl(O) > = Jd pl P, @(pl;t[plo)

It has already been demonstrated that the terms appearing

m n

in  ®(} ,t‘pl are of the form pl i—-n <S(pl pl )

Appealing to the definition, 5.21, it 1s no%iced that only
those terms of ¢ for which m 2 n-1 contribute to

< ﬁl(t)lﬁi(o) > . This simplifies matters considerably

and, by a straightforward calculation, one obtains:
(2)

<Bpfto) > = py -2 [P T4 vevrese (5.22)
° 2m
1ry
( c2xgg;plo + c[(2(Lx #ly ”)-ggp? ) N\)pl
b (o9 2 §

=X plo plo] +

+of t6, and terms of "sixth power of the forces" )]o
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Next, let us use 5.22 to calculate the auto-correlation
> ‘ ->
function, < pl(t)o pl(O) >
The momentum auto-correlation function is defined by

(_)( _)( 0000(5023)
p,(t),p,(0) )

p 1 1

10

f
-> > 3 3 > >
<p (t)'p (0) > J d°p.d°p €p .p, )f
1 Pl Plo Pl Pl Plo b
1

or, alternatively, (recognizing that the system of interest
is an equilibrium assembly): 9
=B
-> e - 3 3 > > 72i > o
< pl(t) pl(O) >z fd plg pl(pl plo) e 4m-o <I’(Pl,tlpj_c) oo {5.24)

(2™mkT )%

However, it is clear that from the latter expression:

““B 000000 (5-24')
> g - 3 Qmpo -> e -»>

<pl€t) pl£0)> jd Py ?2nka)3/2 P, < Pl(t)| P, >

Thus, referring to 5.22, the following iteration is obtained

for < p.(t)°p.(0)> :
1 1 *

. 2 (5.25)
< E (t) S (0)> =<p2> 1l- ct2x( ) +
1 1 o eq. Er
d W0 ) k)
+ c2tux(4) +££‘4 [5#‘)‘)=_5.)( +XL1,¢¥ +2x 9 1 +..
Tim2 (3) Top2 B 2
In the above expression 2 3 2 TR/ 4o
’ <p<> = 3m/B = Jd
po eq B Po po %W)3/2

the momentum auto-correlation function for an ideal gas.

It has already been noted by other investigators** that,

as an approximation, the momentum auto-correlation function

may be represented by an exponential function, viz.,

2
. =At4/2 .26
< i»’lmoslw) > 2 3m/B e (5.26)

39 40
*%e.g., Rice , De Gennes



74

with

(2) (5.26")

X pegcoce oo

=1 el

This expression is exact to o(t% and the "second power of
the forces.'" Furthermore, it satisfies the requirement that

correlations vanish for long times, i.e.,

/ -
Lim < ;l(t)ogl(o) > = 0 coooo 502/)

1t

We should like to suggest here, however, that if one can
seriously accept 5.26 as an approximation to 5.25, then the

following observations are, at the least, of equal merit.

(4)

It is not unreasonable to approximate X hy
572 (3)
X 2) . Certainly, in the hlgh temgerature limit
-Bo(€) TUMERLAARIAY
. 836 £.)- € s 840 og )=
where g2(£) Q e«ge‘ g)and Tiks S 3'E %€
==g2(az)g2(£3) , except for a small region of hyper-
space for which |g2==g3| < r*, r* being of the order of
a molecular radius. In addition, unless |g [<px and
2
|€31<r* . 32¢(g2) 32¢(53)=() so that integration over
much of the eiﬁluded’%egion of hyperspace provides zero con-
(u)
tribution to X(3) , anyhow Thus:
2
“BV(E, o8, g (520 2 3(E5) 5.28
MO szd ol e 2oL 'é‘g‘f 7wz 21, . (5.28)
(3)
3 3 =BV(52,€ )
Id EciE 3@
(;Q(m\ -p@s DQ\‘ﬂ D(Q(“Q —1
= Q0 J& )[3“*»« a%“ =X

In light of 5028, it is noticed that the term of order
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(ct? xm)z which actually occurs in < p,(t)°p,(0) > is the

m
third term in a Taylor's series expansion of cos( _c_xm*cz)l/2

3

m
rather than being the appropriate term of the series expansion

of 5.26. For very dense systems, for which as a first approx-

imation one may neglect terms of o(ct™) compared with
terms  o{c?tD) , one obtains only the cosine term, viz.,
coeese (5-29)
5l(t)°gl(0) > = cos AL/ 2

This result is satisfying in that it demonstrates the exis-
tence of negative correlations, necessarily present in all
dense systems. It is certainly unsatisfactory, however, in
that the condition expressed by 5.27 is not fulfilled.

Most likely, for moderately dense systems, the momentum
auto-correlation function has a functional form intermediate
between 5.26 and 5.29. For liquids, < ;l(t)ogl(o) >  proba-
ably has, in a rough way, the form of a damped oscillation
(cf. fig 5-1.) However, 5.25 does not contain enough infor-
mation to demonstrate this hypothesis explicitly.

For example, suppose one tries to fit 5.25 to a damped

cosine, e.g.,

N N 2 +Bt"
< pl(t)°pl(0)> =  cosA™ “t e 0oeo (5.30)
where
X 14y
lye) Y 60 B G
Bzc _[5n fEX\‘%%)+X e 1 L,..(5.30")
Tom? B

The expression given by 5.30 is exact through the fourth power

of the forces. But, unfortunately, B 1is a positive quantity.
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Thus; while (5.30) is an acceptable approximation to 5.25 for
short times, it cannot be correct in general. The determina-
tion of the functional form of < glhﬂ’;lﬂﬂ > for longer times
requires an expansion to higher powers of the interaction para-

meters.

>

F‘zos

>
AN

Fig. 5-1: Momentum auto-correlation functions

Are A and B actually positive constants, as has been
asserted?

The model two-particle potentials for which this expo-
sition is valid are typically of the form sketched in fig.
5.2; they are characterized by a steep repelling core plus
attracting well, the latter falling to zero in a distance
of the order of the molecular radius. In figure 5.2, the
potentialanditsfirst two derivatives are plotted as a func-

tion of P |, the intermolecular separation distance.
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Fig. 5-2: Typical inter-

molecular potential

i

o

Fig. 5-3: Typical static pair correlation function
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Consider the first of the constants, A, defined by

(2)
X

5.26'. Using spherical coordinate, we can express as:

Qo
(2). f 3 : 2 » :
x 'z |a% g (&)3 %(5) = 47 jdp 02 g (p) [ 323 + 293¢ ]
J S I 3 ‘0 2 37 0 3p

From figures 5.2 & 5.3 it is apparent that x(2) is posi-

tive. The positive portion of 32¢ is greater than the
3p°
negative; furthermore, g2(p) is greatest over the same range

as is éfg positive. Similarly, the positive part of

ap
%i seems to exceed its negative contribution to the
9p :
integral.

This argument is most secure in the high temperature

- (K‘ﬁ) Pl
limit, where g2(5) =ﬂ€('> /XQ‘(,LP(C;:2 . Then, simple integra-
tion provides the relationship x(2) =&#2) where
2

n(Z)EJd% 82(6) FXZES (see table 4-1,p.60 ). The latter

is obviously a positive quantity. In general,
3 ~ - -
X = Id g gz(i) 3¢ 3 = gn ™ , where ¢ is a ficti-
3Ex &x -8 4(8)

tious potential defined by g (&) = e (see fig. 5.3.)

We see that ¢ has essentially the same form as ¢ n(2)

most likely is a good approximation of a2

Since x(2)is positive, it follows that A is also a
positive quantity.

The second constant, B, defined by 5.30', may be analyzed
in the same way. Let us first consider it in the high temper-

-pes - i)

ature limit. In this case, replacing g2(£) by Qe /X&we
the following useful relationships between system constants

(cf. table 4-1) may be obtained.
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Previously, it has been shown that, in limit T

b

(2) (2) cooeo (5.31)
X =fn

In addition, it is easy to show:

46000 (SOBZa,b)
) 2y (4yxx) . x(2,2) - Bn(u,xy)
AREE & (o) ‘P(“’xy)+2wﬁ"y’xy)=6u("’xy),.(5.33a,b)
{2xx} (uxx) (uxx) {2xx} (4xy) (uxy)
2xx B2u  -n 3 XY =Y -oq ; ...(5.34a,b,c,)
3 {%xg} (xy,xy) (uxy)
”BW -n
XX 2 (4xy) (uxy)

so0co (5-34d)

Not all of these relationships are needed here but, as they
are useful in the discussion appearing in the next chapter,
they are included at this time. Here, 1let 5.32a be used to

obtain

X seeos (5.35
pec 28, , B (5.35)

l2m2

Certainly, then, in the high temperature limit, because

{Bxx} and X{%}

are both positive constants (cf. table
4-1), B must be a positive quantity. The same conclusion is
probably valid at lower temperatures.

Before concluding this chapter, let brief consideration

be given to the determination of multiple-time auto-correlation
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functions(i.e., time-relaxed correlation functions for more
than two times.) Aside from satisfaction of our curiosity,
these quantities are of interest because they may be related
in certain approximations to neutron scattering cross-section¥¥*
(see chapter VI.)

Specifically, consider the four-time auto-correlation

function: sooo (5,36)

(
: 3 3
< p,(t Ip,(tdp.(t )p.(t) > = Jd Poood P [P oobPy J 8P 5t 3003Pastyn)
1, 0P "17P1 F2"Py T : 3P0 °P3 ° Thyo 3°°3

i.e. the joint expectation of the xth component of the momen-

tum of a particle at to,tl,tz,t3. s (Eostoiﬁ,lstl‘ilzst2523’t3)
is the joint probability density for finding a specified par-

ticle with momentum 13'3 at t =t P At t =t

NERR
In principle, a multiple time correlation function could

be obtained by summing over the probability measure of all
initial states consistent with the desired subsequent behavior

of the system; i.e.,

£(X 5to3 oeo 3 Xgot ) = fd{f'o(xn)]
So r r X s X (to)=X gooooogx (t )=X -
Ny s So s r s,

Or, one might integrate over all disregarded coordinates of
a total system multiple-time correlation function, determined

from solution of eqns. of motion, viz.,

f(xsogto, o0 gxsgtr‘) - dxnooooo dxnr (Xnogto,oo, nrg’tr -

r
L., 1% ~(t.- -(t=t\L
= [ax iiwdx Rex ) s(x. ~em(F1mtodly ), s(x " (W)
joom, n "', n, ng n, o

*%A, Rahman, et a1,4l
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Unfortunately, these two schemes are useless for actual cal-
culation of reduced multiple time correlation functions, ex-
cept in very special (and trivial) cases. What is required
is an equation akin to the Liouville equation but, as yet,
such an equation remains unknown.
However, it is noticed that q’(go’to;"“;;y%) =
= 05,5ty [Byet,iB) st 3By aty) X 0Byt [B1 5B 4t 0) X
(5 1at [Pty x93 ,t )
If one now makes a Markoffian assumption, viz., that the
probability of finding a particle with specific momentum at
a later time is a function only of the momentum of the par-
ticle at t = 0, and not of the momentum of the particle at
preceding times, then
vooenss (5.37)
< plito)plitl)plit2)pl(t3) > z
=Id30o«d53 (7 Py P2 P ] *(yt,mt,[p,)

> > > >
X®(p2,t2~tl|pl)XQ(plstl~tolpo)

It can be seen from the memory term of 3.18 that fl,l
(§1;t| §10) is not strictly Markoffian (the kinetic equation
involves integration over the previous history of the system.)
However, it can be shown** that the system is Markoffian in
momentum space for all except very short times (of the order

of a 'collision time'); furthermore, 5.37, being an expecta-

tion value, in some sense averages over the errors introduced
¥ Prigogine 24
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by assuming the Markoffian decomposition. In regard to the
last point, it has been shown that for the calculation of
many transport coefficients, rigorous expressions are obtained
even after replacement of non-markoffian kinetic equations
by approximate Markoffian equations.**

Referring to 5.17, 5.18, the approximate expression
(5.37) is given by:

< plito)plitlipl(t )pl(t ) > = s0000000  (5,38)

= *000 3 00 6-’
Idpo @, [p, -op, I ( 63

2 > 2 S 2 +
Py B,) 8(3,-8)) 8B -B)

3

-B,)8(B - -2v23v 8(B-B) +
+ 6(33 p2)6(p 1);it t )°[n p; %‘( +31 pl)J P 3

+ 83 p )c(t )22 £ (3+P V )16(5 =3 )6(3 »p ) +
3252 1 Pim 1P

+oclty-t) 20w 724 X <3+f5 v )18(5,-B )5(3 )6(5 -3 )+
o 2 P1m 1p 2 170

+ o("fourth power in the forces") ] H
<t <t <t
(to t, t2 3)

(2), (2)

Upon making the high temperature assumption, n =X /B |
a straight-forward calculation provides
< pl(t )pl(t )pl(t )pl(t ) > = (5.39)
2 (2) 2 2 2 2
= am® (4ex © [ -t2 + 2t t = 7t + 8t t, -7t +2t .t -t ]
B2 >m 3 32 32 3 2 3 1 12 o
+00000000000 )
= 3m2 expecx( )[ t3 -2t t2+7t§ 8t2tl+7ti 2tlt +t ]
B2 n 343273253 °

¥ e.g. Balescu *2



83
3M€46L is the value to be obtained were the assembly an
ideal gas.

We shall return to 5.39 at the end of the next chapter,
when considering approximations to the slow neutron scatter-
ing cross-section.

Finally, let us emphasize the appearance of secular
terms in the expansions obtained for momentum densities and
correlation functions. The presence of terms which increase with
time is a basic deficiency of this exposition, resulting
from the particular method chosen to solve the kinetic equation
On the other hand, the expressions for densities and correlation
functions thus obtained are useful in that they are exact for
short times. As such, they serve as checks for any approximate
splutions to the kinetic equation.

In addition, in spite of these difficulties, the expansions
obtained for momentum densities and correlation functions are
often useful for the calculation of various transport coef-
ficients. For example, it is known that the dielectric constant
for an ionized assembly can be related to the Laplace trans-

31,32

form of the momentum auto-correlation function Upon

assuming a linear relationship for the current produced by an

external electric field of frequency W , the dielectric

de %
constant is found to be given by

o "(.)\‘\-'\,w\‘t/ "o - 5
L) = 4 +4T Q Jarn &&he Ss ei% <‘?\‘L°’°Rm> 5.4)
%CNJ NFO 4 VEm M

*% .. also here assuming a zero external magnetic field. Egn.
5.40 can be tmodified for more general relationships between
current and applied fields.
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The summation is over all charge carriers of the ass:mbly,

Let us apply 5.40 to calculate the dielectric constant
for a weakly ionized gas. Assuming that, due to the heavier mass
of the ions, one need only consider the contribution to the

current due to the electrons, we obtain

%UOF GW?/ “ e s (5-41)

In the above equation, £, is the density of electrons, We
o, D)
is the electron mass, and < PO P 7z is the momentum auto-
correlation function for electrons. To obtain 5.41 we have
also neglected electron-ion interactions.
Neglecting, also, electron-electron interactions, from

5.25 and 5.41 one obtains:

@

. Ut Xe- .
Ew) l*‘—*ﬂ;x1+‘2§e°+@ﬁwﬁ*“5k(54”
WMo W 'Wle_VQy o
@

o ig the fraction of the atoms which are ionized . >(e-o

is defined similarly to previous definitions:

i 2 s -
7<e-o 8&$ 4 (539__&?3;0 \\\\ (5.43)

394

i

where (Qewks\ is the interaction between electrons and

neutral atoms; %16) is probably well approximated by

—66@-0

03"@\3 QLe 0, (5.44)

(8s e
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In the next chapter corresponding expansions will be
obtained for spatial time-relaxed densities. Secular terms
also appear in those expansions. However, the expansions
are not simple time expansions but are a sort of asymptotic
expansion. In this form they are quite useful for calculating
the scattering function; the secular terms in G (r,t) are
not an impediment to taking the double Fourier transforms

necessary for obtaining S(k,w ).



CHAPTER VI
DETERMINATION OF Gs(r,t)

As has been discussed in some detail in chapter 2,
there is a close connection between the space-time corre-
lation function, G(r,t), and the slow neutron scattering
cross section. Primarily because of our interest in the
latter, in this chapter attempts are made at calculation
of Gs(r,t), the 'self' part of the correlation function,
which is related to the incoherent part of the cross section.

As a continuation of the work of the preceding two
chapters, Gs(r,t) (classical) is calculated through the
'fourth power of the forces'; i.e., an expression is ob-
tained for GS which contains all terms for which M (as de-
fined by 4.20) iS € 4. Corresponding expressions for the
incoherent scattering function are then derived from the
expressions for Gs(r,t)° As is demonstrated, below, the
cross section may be expressed as a sum of terms, each of
which becomes successively more important as the tempera-
ture of the scattering system is lowered.

The question of the calculation of the 'distinct' part
of the space-time correlation function, Gd’ is deferred to
chapter 8, below,

Just as for the case of the momentum density discussed
in the previous chapter, an expansion for Gs(r,t) may te
found in direct correspondence with the expansion obtained

for f1 lﬁ&&; t | X, ). G (r,t) is defined as the conditional

3 R {} L

86
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probability density for finding a specified particle in the
neighborhood of configuration phase point €i+ r at time t,

[e]
given that at t =0 the same particle was at ﬁl . Since the
o

systems to which this investigation pertain are isotropic,
GS does not depend on ai ; furthermore, Gs(r,t) is a function
only of the absolute value of r.

Hence,

2
r r -Bp,/2m N
Ja%, a%, & £ (P s3)1P5t] 3,8, ) (6.1)

ZmkD 2 1,1 P Lo nesaoo

G {r,t)
s

with

. .-BP /2m ['] > ->
Giﬂ(r,t) = Id3pljd3po e o £ (p oritlpy,0) ... (6.2)
(2mkT)3/2 1l

Hence, from 5.8,

G[ol(r,t)
s

-Bp,/2m

3 3 o > > > >

Jd ) Id Po € 8(r-p.t}s(p_-p,) (6.3)
1S PO Zommea/2 ] 1 Po

-mar2/2t2
(mB/2Wt2)3/2 mgr/ ’

1}

which is the result for an ideal gas.
The first order correction, i.e., that through the

'second power of the forces', may be obtained from 5.13:

> Jd a” T-——)-ssp T f (sl ) (6.4)
G~ = pj Po X3t .
S 2.“»ka /2 ll l, -4 ©000000

Integrating by parts re. py

ct Jd pljd3 e'Bp /2m { ‘“ p[v2 §%+tv2 §%4t2v25934 g“apt-ztﬁ-ﬁl]aq}
2 (k) /2 mPd ip2d m 3w

U

-8pg/2m 1%\72

dp, e ‘ §(3.-q_-Pot/m)
2I (ZmmkT) ¥ 2 "p P°.S 1 e e

4 Po m
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Again, integrating by parts:

2 (2) 2 (2) 2 ol
=ct  ( Bn " [mBr°-31~-1x"“[mBr" =31 )G “(r,t)
2 Lm K3 3 t2 S
Finally:
(1] = apt (2) (2) 2 »[0]
Gt*fr,t) = ct_ ( n - X ) Ve GLtYVd(p,t)
S -QTH,Q ',I _3—§ r s 0co0o00o0 (6°5)
(2) (2)
At high temperatures, n "= x/g , so that
f
tm ¢t e = o1 ot ({2 02 6l cevenns (830
Tow S wme BT

However, one could have obtained 6.5 directly from the

] i]
Ji1 (5.3). 1In general, the f[l are

kinetic equation for f 11
to be found from a kinetic equation of the form

With f[i](t=0) =0

(i1 _ 41 _ it [i] P
o g4 1 3 s=FY 1 Jooitp et 8P
the solution [s-1k°p;] fs”4§P1]3 3 SA_VJkJ
m b LY

having

m

o

ki
The Opj are derivative operators on - Thence:

2
s QBPQ/Zm - Py
il I 3 I 3 ?‘ i i] > >
G-"nv |dpy |d D, e i 1 XOE. 1 8(P1=P,)
S o 1 'rz"mkrrs 3/2 Es“'i£°pl] 3 ] Esg,l’kop'l"]kj 1 Fo
m
If one next integrates by parts re. Ry s he can immediately

and easily perform the integration over P, yielding:

2
clil Nstp e=6p1/2m it Joplil 3 .
s 1 okt >/ 2 T-ikp, 0% 3 °  Ts-ikpyd
m m
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As an illustration, let us apply this procedure to a

calculation leading to 6.5. It has previously been shown

that
(11,5, o (11 _
§f1 1t El°vql fl’l = cossss (5.3)
(2) o2 2 (2 o]
= ct{n [V +t V J+x 33+ 1) £:77(t)
( P17 Py w1 Pl) 1yl
[1] -
1 l(pl’q 30} =0
Thus 1] /2m 157
A S [dsp] /25 (n¢2¢ ~( lkal)] +
s mekﬁ3 Fs- 13]2 1 el
[s- l§p13
2 -
¥ i()[ :Eﬁiurj ) -
m [_s-ikp]2 [S"l_}f_ Pl}
( Bp2/2m m i
. 3 1 (2) 4,2 (2) 3> > >
= ¢|d"p, e v X EpV])G(q-qo- t)
J4%r, a2y w9 2 §ola 17% R
= ct’ (}p(z)a 1x (2}8) V2 G[OJ(r t) as before.
2m2 4 3 Kz
In this way the complete calculation of fl 1 may be
circumvented but the second correction to G may still be
[»3 Lj
obtained. We start with the kinetic equation for flzl :
(2 > 2 21 _ [11.%, 01 [21 i
%%1 1 ‘21 vq fl 1 E91+£E]f i@kf ; (x 30)2 0 ,..(5.4)

whereeQ]_'ng are defined by 4.32, 4.37, 4.40-46. Corres-

ponding to each of the&i will be a contribution to GEZ]

H

Consider, for example, the contribution due to QﬂﬂgE)f[lJQ

From 4.32 and 4.40:
t

[11 (22, - g2 (2)

+N, ) d [V TV I+ [3+ [7 ] £, (t-1) .

RIS f tn gy L 9] g BT TR (60 (6.6)
0
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Thus, since 9 is present in the integral only as derivatives,

except in fl,l :
t 1]?3 T 111
’ !
q CRVALH (i Jdr (D02 sr(-ixV e Pram i 3e ™ Fie-0
2 o P1 =p = L
Next, taking the Laplace transform and using the convolution
theorem:
'§§( +0 yel1d - cz(n(Q)[V2 1 - kY 1 ]
Ql 2 11 P1Ts= i_p] plls-ﬂ_gp]2
- _
e A g1
m ip lls-l_p] 1,1
Finally, referring to 5.13:
(11 _
Wa@pe’ - R (I )
2{‘(2)( 2 (1k/m) v
=c”|n (v2 1 -ik¥ (3 5
PiTs-T5p) FETT T T N f“]
. ok 2
+ éf&@ﬂ (([3+pv 1.1 )(3( an 3(‘lm¥P]) + _3?5 ) +
m pﬂ3'£93 téﬁhp] L I7
> 2 ? T)
#v2 1 mlkV ~1X°Pl )) +
PITT TE'
)
-.kop )
x, " (([3+p, 7] 1)@, 0y _ - 2 ikeny ))]m»p )
m? l[][s»%krli] [ ™ 1t

Now, utilize the procedure described on the bottom oﬁzpage

q2)

6-4. For example, the contribution due to the X term

is (after integrating by parts twice)

2 .
Jdap ~Bp7/2m 1 ﬁz(ﬂlk p1y, 3 = \ ikpy/m jﬂ
1 Z2nka 3/2 [s 1k lu [s-i lp ] [s- lk le
qu /2m
3 1 > > >
« |d%p ( (pﬁ)t(pov )) 8(q.-q -p,t)
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« t2( t’~|~ v2 V2 + 7 Vr. ) [0]

(r,t)
Toom?82 * T 3ooms

where, in the last step, use has been made of table 6-1 of

Appendix E . 1In this way, it is determined that the total

contribution to Gsz(r,t) due to (@Jf?vz)fgli is
' )

(D 82rg ¢4 v2 v2] -

C2]
G-“’due to +) = ¢
s l 2 m28280m 82 r 0o0ceo0o0o0 (6'8)

.t.
2

\
At era ) 2v2 21 t2 V2] +
me 280m~R 40 mp T

+ X(25 [1 % 2 y24 7 t° v
me 90 m“R

As another example, consider the contribution due to

(ol (o] [0]
E 3f1 1 . Again remembering that )& fl L (t-1) = 1 l(1;) ,

and referring to 4.37, it it quickly seen that

(o]
A o f = ct” X (lSm + 5p_ + Smp.°V_  +p p ] £ (t)
431, G NSO SR MRSt ) 1,1
Thus, the contribution to G32 is
s »Bp2/2m -1
ey () [ 43 1
=cy Jd 1€ 3/2 r_g_
“ms (2™TmkT) So1k is~1k Pl
(»){ .3 ’Bpilzm (£2 (24 pDp 3 ) 6(3.—a
=ex d’p t” (Cxp+p9p V) 8(q,-q -p,t)
mS J lZ2mnkT53/2 5!m E 1°1 Py 17 ml

so that we finally have
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G [21(r’t) = CO0O0ODOOO0ODOBO00O0D0000O00O0D0 (609)
s due to(_\_3 1)y
=ttt V224 1t vz )s [Oj(r,t)
"m? 2 60 m28° 6 mB

One procedes to calculate the contributions due to
%A ——*Vgﬁ in the same way. However, rather than perform

each calculation separately, since many of the terms in
the collision integrals occur more than once, it is conven-
ient to make a table (see appendix E, table II) in which are
listed these terms and their corresponding contributions to
GJQ]. Then, after performing the 1  integration in the
collision integrals, one can read off the contributions to

GSQ? One finds:

[2] 00 0DOODO0ODOO0OO00O0CO00O0O00O0 (6'10)
(r’t} <g -
due to € uxx)
b - 4 b4 2 g2 2 .2 .[0]
=en L, it el G

m 2 36m“B )

G[2](r t) _ 000000000000 &0O0O00O0 (6'11)
2 - -
g
due tol) . (uxx) o
m2 2 Fem2p2 * %Tms T S
XX
cxiEXX}E? (¢ v2 92 + 7¢° 2 (0]
m2 2 36m282 TOTOBoms GO M(r,t)+
{(5%7 1
m2 7 20 mB
(4)
+ X(3) £(i2 v2 V2 + 13 t2 v2)e oL (r,t)
m2 2 36m 82 T80mE
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(uxx)

Bu

B[~t2 V2 - ¢t

(6.12)

o0 ceCe0C0C0D000

(6.13)

¢ 06 0000CCO6O6060CO

4 v2 v2]) GiO](r,t)

40mB r 353m282 rr

(6.14)

€00 000060060

(4xx)

¥ (ryt) +
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Yt v2v2) 6

192m
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000000000 COO0CO

v2y2]+ n® gt
T ST Toom2p?

(o]
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4 202
B[-1 t v2y2] x
168m2 82 rr
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Upon adding these contributions (6.8 - 6.15) one obtains

for the total second order correction to Gs(r,t):

G[zl(r,t) = (6.16)
S
2.4 (TTV22 ;.4 2027 4 3(2) (2 2921} 0]
= ¢t (n' /B¢ [-t V2V2] + B[ t v2v ])
E'm'?(?ﬁ? o 210111282
2.4 2,(4) 10wl ), (W)t y2yp2
re's, (CEEM-108Y e X053 18, o7 *
2m 64 (3) 84 36 ? B (4041 31 vz) G[O]( )
+[-B¥V*/+13x t r,t
oot 1500 mp T S
(uxx) (uxx) (uxx) (4xx) 4
ve th (In_ -x__ __{_aﬁlsw +82u J_g? JTRVE
7m? 18 608 36  2m 192(§()
(uxx) (uxx) X2} (3% uxy UXX
+[n 5~, +*£? {3 §+SW - gy 1
2 68 60 2o 60 6
[0]
X %B-VI‘ ) (I‘,t)
-Bé
At high temperatures, where gd”e , one may make use of
the relationships 5.30 - 5.33, also noting that 3%%3% -
Y 2 .
=8 wf3§ Xé:; - QTET , so that:
60000000000 00CO (6'17)
[Ql(rgt) =
Lim 2
2.4 12)2 b 2 o2 21,0
Too = o2t x02%([23 t. v2 V2 + 1 t V21)G (r,t) +
“Zn> gaomB2 * ¥ Tsws © S
(4xx)  (uxx)
4 2 b og2p2
+et. ([ n  +8% 1t +
w2 S0 1728 w282 '
(uxx) (uxx) axy} (ny)
+[13n -8 + +BY
60 60 20 B0

292 [o
x %EYP ) GS ar,t)

On the other hand, as a result of equations 6.3, 6.5, and

6.16, the general form of an expansion for Gs(r,t) appears:

s (r,t)
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(6.18)
(v 1]
» [ ] [O] 0000000000 O0CEC
6 (r,t) = Z 2n D" 6 (R,t)
ne

where

> 1/2 » [0l 3/2 ‘R2/2 6.1

R ={mg) r Gs (Ryt) = (mg/2mt2) M”o( +19)

t

The Dgn] are purely differential operators in R and are not
explicit functions of t. The differential order of Dgn]
is <2n .

From 6.18 one can determine that the '"intermediate

scattering function' (classical) is of the form

2,2 (6.20)
"t k /MB oo coocoe0o00
RK,t) = e 7 e wirde u 12
"o Tme)

where the wﬁm% %} l/2) are polynomials in tk/(mg)l/2
m,)
corresponding to th% D[n]

and contain terms of even power
of tk/(mg)1/2 less or equal to than 2n . For example
winl ’“-t2k2 corresponds to the differential opera-
/mB P P

tor D[n] mvﬁ

R

It is now easy to obtain an inverse temperature expan-
sion for the classical approximation to the incoherent scat-

tering function pertinent to slow-neutron scattering cross-

section. We have:

Cl -iwt 3 -ik"r’ 006000CO0D0OQCO (6021)
ln; (kyw)s 1 Idlt e Id re G:l‘?(r,t)
27
s . 2,297 w
o  —iwt w  ~Liwt+k“t“]
=1 fdt e tézgi;(k,t) = [dt e 2 " Te2hlnd g 1/2)
21 ° 27 n=o mg).™
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so that, from 6.3, 6.5, and 6.19:

CI rm ‘(iwt+k2£’2) 2 @ ’L\ooooooooooo (6022)
st (k,w) = 1 Jdte 201 - ct(Bn - X7) + o(e) +...]
inc ry = T =
hi o 2m 4 3
mgu? il
st -
=1 e 2k de ™ [1- ck2 (T+imw “(gﬁfl Xi}) +004]
21 ‘o w8 kZ & 3
_mBw?
= ams R 8,(3-10mpu? + m?82u") (Bn” - X2) +..]
Sk 2 2k K2 kT g 3

Thus, in the high temperature limit:
(6.22')

mswz 00000000 Q@000% 00

s?;c(k,w) = Q mg e 2k2 [ 1+ 8 _,(3-10mBy2+mg2u* P
2mk 24k k k

+ terms in the'"fourth power of the forces" +.,..]

However, there yet remains the task of correcting 6.22 so
as to take into account the basic quantum nature of neutron
scattering processes. Rosenbaum* has investigated quantum

corrections to the classical scattering function and has

found%:
Bhw/2 =-RH%k2/8m cl e, (6.23)
Sinch,w) = e e [ Sinc(k,w) +
=m8w2
+en2p2 x(2) B e 2?2 (1~m238 + 2k28) + o(N)+..]
48 2mmk k 8m

43
*Rosenbaum, thesis - especially eqn. 5.45;% Rewritten to our
notation.
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Thus, using 6.22', one can express the exact scattering func-

tion at high temperature as:

Bhw/2 -BhZ%k2/em ~-mBw?/2k? (6.24)
S‘ (k’(ﬂ) - mB e e e X © 600039 A
inc '2'.,?](2
x [ 1+ chcz)(B-lOmbz + m282w™*) A (k,w,B) +
24k 2 k2 K 2

+ terms of o(®*,e") ..... ]

In the above equation, 8,,(k,0,8) describes the quantum cor-
rection to the second term in the scattering function and

would be unity if no correction were necessary. Explicitly,

6.
1-w?mB + h2k28 co000an (6.25)
B (k,u,8) = | 1+ gn%k? k2 o

2 2m 3= 10mBw<+m<B<w”

K2 K

Rosenbaum's analysis has not been explicitly developed
beyond the statement given by 6.23, above. But, it can be
surmised that the exact scattering function can probably be
expressed as a sum of terms, each proportional to one of the

system constants which we have already defined; i.e.,

Bhw/2 -Bh2k2/8m

cl 2
Sinc(k,w) = e e L Sinc(k,w) + al(k,h,m)x( ) +
+ a (k,ﬁ,w)x(u) + ... etc. J
The same system constants which demonstrate the deviation

cl.
of Sinc(kew) from that for an ideal gas are also intimately

involved in expressing the intrinsic quantum nature of the
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scattering process (cf., 6.24, 6.25). In general, one cannot
separate the '"quantum effects' in the cross-section from con-
tributions due to interactions between particles.

On the other hand, referring to 6.25, it is seen that
for small momentum and energy transfer, 4,(k,u,8) =1
Thus, under these conditions, quantum corrections to the
scattering function are much less significant than the nor-
mal corrections due to interactions between particles (at
least, to an order of the '"fourth power of the forces.'") Of
course, the fundamental quantum correction manifest in the

fw/2 -ph%k?/8m

multiplicative factors,e e , remains; however,
the quantum interference effects demonstrated by 4 (k,w,8)

2

may be neglected if BR2k2 << 1 . If this require-
2m

ment is met, the A-C-R-Z prescriptionﬁz, viz.,
. Bhw/2 -gh%kZjem . (6.26)

S. (k,w) = e e S.” (k,w) peoeees

inc inc
is probably valid. For high momentum and energy transfer
quantum interference terms are comparable to interaction
terms and 6.26 must be employed with care.

Equations 6.22-6.24 suggest that it may be feasible
to measure the temperature dependence and magnitudes of

(3 ll \J
the basic system constants [ Bn)=»ﬁi ]

4 3
The measured values could eventually serve as a check on

o

values yet to be determined by direct calculation from
postulated interparticle forces. In addition, though,

many physical phenomena are probably adequately described
%% Aamodt, Case, Rosenbaum, Zweifel &
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by theories for which the basic parameters are the system
constants, rather than the forces, so that there is suffi-
cient reason to ottain information about these constants
for their own sake.

In measuring the M= 2 system constants, as demonstrated
by eqns. 6.22 & 6,22', it would be desirable to scatter neu-
trons from a high pressure gas at very high temperature,
studying neutrons which have experienced a low net momentum
and energy transfer with the bombarded system. Under these
circumstances, the second order term in 6.24 is a small cor-
rection to the zero'th, and the fourth and higher terms may
be neglected. Quantum effects would not be too important,
but they could be calculated. One would measure Sincﬂww)
at constant X and « , as a function of  T¢P8 .

Of course, 6.24 is related to the incoherent part of
the scattering cross-section, only. Hence, these last re-
marks are conditional upon the possibility of determining
the temperature dependence of the coherent part of the cross-
section also. This point shall be considered in chapter 8,
where determination of Gd(r,t) is discussed.

At this time, let us return to consideration of (clas-
sical) Gs(r,t). From equations 6.3 & 6.5,

sevcoocasa  (6,27)

_ i (A (O] 2 u [0]
= 1 = 0000
Gs(r,t) L1+ g; ( 2 és ) Vr + o(et) ] GS (r,t)
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But,
~mBr2/2t2
Ggol(rm = (m/2mt2)%/2 o Ceeeeses. (6.28)
(t2/2mg) v2 R ok
= e r §(r)

1]

->
[1+t292 4+t v29v24+  ...1 &)
2ng ¥ TmZg2 T T

Q

As a consequence, one might wish to represent Gs(r,t) for

short times as:
-mBr2/2W2(t)

G (r,t) = (mB/2mW2(t) )3/2 N (6.29)
S
with
W(t) - t2[l+£2(§£m,x_p?) ] ©coooo0o0o0 (6.30)
m m 3

'.?’,tz[l’“s;tix(Z)]

The higher the temperature, and/or the lower the density,
the better is this representation.
For consistency, let Gs(r,t) be calculated according to

the "Gaussian approximation",@@ If an ansatz is made to im-

pose a Gaussian form on Gs(r,t), then it has been shown that

- -r2/2u?(t)
6 (eyt) £ [2m2(n) 1777 e o (6.31)

mg 3 -mBr?/2¢2
**One notices that the Fourier transforms ofL-\2 e and

2nt
2 2 +
§65/2m8) Vi 5(r) are identical, so that the functions

themselves must be equal.

@@ 10 9
See, e.g., Vineyard , Schofield
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where 1
w2(t) = 2 fdt' (t-t') <v(0)=v(t')> (6.32)
2 .

26 8¢080DO0

(8]

Reference to eqn. 5.25 demonstrates

W) L 20 e ) D o) 4 ] (6.33)
mB l2m o060 e 080

i.e., for short times, the Gaussian approximation provides

the correct expression for Gg(r,t).** This result is well
known; it is also known that the Gaussian approximation does
not hold for intermediate times. Here, however, it is expli-
citly demonstrated that the higher the temperature, the better
is the approximation and the longer will be the interval for

which it is wvalid.

41
Rahman et al. have indicated how the Gaussian approx-

imation may be improved upon, and have suggested

-0 0000000 (6034)
clo— - 21’1
A $han = e [k v (1)

L )

where t 4
v () = [ftl [ft2 v, (t)) v, (t))> coosooos  (6.35)
t ¢, t.
v,(t) = {&tl jdt2 oo Idtu <vk(t4)ooookatl)> -
S 0 - LIy (o) 17

2
and so forth.

Calculating Yy and Y, from 5.25 and 5.39, 6.34 provides

**Assuming, of course, that the correct expansion for
Vd d@ﬁﬁﬁf£7 is 'used, as per 5.25.
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(at high temperature):

o k20e2 (1-et2(D) 4,7 +k*et® x{P+..T Kby
Jin;(k,t) e 2m8 12m e 8m BZ.I-BQ e ?ooo

1- k22 oty P2 et oy (P14 1 T4
2mg  2umZg 8mZR2 “mog< 48 288

+ terms o(tseo), o(t8e?), o(e*), etCooosoonos

ceooo0 (6036)

On the other hand, from the exact calculation, 6.20 and 6.5,

it is found that

-k2t2/2mB . (6.37)
clo _ (2) 4 600060 -
°2 . (kyt) = e [ 1+ ct* + o(e?) ..]
ine Egaég
= 1-k2%t2 4+ ct“x(z)k2 + k'*t* - k“ctsx(z)[l 1 +
2mg  2Lm2B gmZB3 "mog? [}

+ terms o(tseo), o(t8e2), o(e"), etCovoons

2
Comparing 6.37 with 6.36, it is seen that the k"t%é ) terms
do not agree; the imposition of the Markoffian assumption in
calculating the four-time momentum correlation function is

probably the source of error.



CHAPTER VII

BOGOLIUBOV FORMULATION; EXPANSIONS IN DENSITY

In the previous chapters, an investigation has been
performed to obtain expansions for conditional probability
densities and associated time-relaxed correlation functions.
As it turns out, however, the resulting expressions demon-~
strate, only, the successively higher order contributions of
the interparticle forces; 1t is not clear from the preceding
work how one might also arrange the terms of the expansions
to observe effects due primarily to changes in the average
density of particles.

In the work that follows, below, a kinetic equation is

derived for f in which the terms of the col-

1,1 (3“-15t!510)
lislon 1ntegral are arranged not only according to lncreas-
ing powers of the interaction between particles, but in
powers of the average density, as well. As such, this work
follows closely that of Bogoliubov, ’ who studied the more
usual case of a system which 1s totally symmetric under inter-
change of particles.**

Bogoliubov considered models with repulsive interactions

only, searching for an asymptotic kinetic equation for fl,l

of the form:
>0
of ; = )" 7.1
o) el ) “Z\c A (1) SUURURURURE 0%

**The system of interest here is not, because attention is
focussed on specific members of the assembly.

103
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A, was found to be the streaming operator;fAl is closely
related to binary collisions; A2, ternary collisions, etc.
The denser the system, the more important are the effects
of multiple collisions.

In the following derivation the more usual systems,
in which attractive forces are also important, are con-
sidered. Hence, also needed is a parameter with which to
characterize the effects of the attractive forces. The
van der Waals theory for the equilibrium equation of state 44
suggests choosing ec for this purpose. ¢ 1s designated as
a coupling parameter for the attractive forces which appear
in the Hamiltonian, measuring the importance of the attract-
ive potential energy relative to the average kinetic energy
of the particles.** It is typlcally proportional to the
depth of the potential well, divided by kT.

Hence, rather than in Eq. (7.1), our asymptotic col-
lision integrals willl appear as coefficients of a double
expansion, in ¢ and ec

Bogoliubov makes yet another important assumption,
which 1s the essence of hlis approach to the problem. He
assumes that after a very short time, of the order of the
time during which two particles are close enough to inter-
act (i.e., the "collision time"), all correlations between
particles are destroyed. From that time onward, the tem -
pral dependence of the densities, fs,s(51’°" §S;t), for
s> 1, is assumed to be only implicit : the higher order

--v
* % Specifically, —Iov -V £ (x4:t).
1 ql 1,171
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densities are time independent functionals of fl,l(xl;t)
and depend on the time only through the change of fl,l with
time.

Bogoliubov considers dilute, non-crystalline
systems characterized by purely repelling forces. Hence, his
assumption is plausible because, by virtue of the latter
characteristic, 1f two particles were to interact they would
always move away from each other. After a short time it
would be impossible to specify, with anything more than a
very small probability, which molecules might have interacted
to give rise to the dynamical state in which the partlcles
are found. Hence, higher order correlations are being
destroyed too cquickly to be of importance in the gross evolu-
tion of the distribution functions.

As an extension of this argument, it 1s assumed that

at
In the case of systems with attractive forces 1t is

of) 1 is also dependent on the time in this way.

harder to find a plausible argument to justify the assump-

tion. The great difficulty here is that, due to the forces

of attraction, particles can be trapped in each others'

force fields and correlations would persist for longer periods

of time. However, if the systems are not too dense, the

frequency of occurrence of these arrangements will be very low,
In accord with these remarks, perform the following

expansions:
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8050

tl 1 l,t[x ) = A(fl = J1c"(ec)n Ay (2

sl wmweg

y eee7.2)

’
3 =1" 1,1

and, for s22,

£ s stx) R zzc (ec)” fo s(X if

. llcil;t‘ilo) )ooooo (7’3)

As has already been discussed in Chapter 2 (and, also,
Appendix 7-2) the Liouville equation may be transformed
into a set of coupled differential equations (the BBGKY
hierarchy) which provide the temporal evolution of the
reduced probabllity density functions for specified sets
of particles in the assembly. The hierarchy may be written

in the following form (having singled out for attention only

* ¥
one particle of the assembly) :

:i ’gx ,t[x ) + [ H - e 1f s °

(7.4)

>
= - 50: f + cIdx

a (X ,tlx
s,s s+l[ s s¢ JOf Y0s+l

s+l,s5+1
1Ss<<n,

The operators appearing in the equation have the followlng

wjj

definitions: o7

**At the end of thischapter,in preparation for studying G
which 18 related to a probability density oondltionag upon
the initial positions of two particles, a different form of
the hilerarchy is employed'T—ée, also, Appendix 7.2).

##Relating to the notation of the preceding chapters, it 1s
seen that L =.4t1and Ll = o - e02 (see next page.)
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R >
H =) B v ;3 6 =V 7 3¢ (v -v, )
S q o % m=rije’ p. P,
2 \43 qi 1 ]
9
> >
N TI V- )5 0] =0d=0;
¢4 9q;1] i 73
R S
r > N > -
2 0) 3., (V. - Vp,) 3¢ V - Vp.)
s J . =i p' . . 1
' 11 Bqll:‘ i J Nﬂl ﬁilj Pi J

¢(k%fqﬂﬁs the two particle interaction potential energy,
and has been broken into two terms, ¢r and ¢a , which repre-
sents respectively, the repulsive and attractive terms. ¢
is a positive constant; 95 is the absolute value of the
attractive part of the potential.

As 1n the earlier parts of this study, it is being
assumed that the interaction between particles is adequately
represented by two-body, additive, potentials each consist-
ing of a strong repulsive core and weak short-range attractive
"tail". ¢ is the average density of the assembly.

Placing 7.2 and 7.3 into the BBGKY hierarchy (7.4) with

8 = 1, and equating coefficients of powers of the expansion

parameters, one finds: coocoseo (7.5)
a) A, _ = (x)3t) 3 b) A_ afax NS AEE W
0,0 = 7y l 14%15%) m,n J 1 2 2 172,42 i
for myn >1
- m-~l,0 - a n-1
c) Am,o Qfdx2 o (x 2) f292 3 d) Ao,n— dex ) (x ) f2’2 .
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Also, for s 2> 2:

af (X ;f X = &f o of = ¢6f A(x £,
sedeifaln) * fa T gRe M)
1,1 1,1
o000 (7'6)

20
= n H °
ICHED Am,ﬁ*’fl,l) %%8,5
M0 WL l,l

Define Dy n as the operator which takes the partial deriva-

tive with respect to time according to the chain rule, and

then replaces %éiélby Am,n' In other words,
D = (38 3 ) vevees (T27)
m,n g?l o '3"{1,1 3F + A
"1‘ '5-{1,1 m’n
Hence,
RL . (7.8)
3f = c(ec)® D f (X 3£ ) voees \T-
37595 m{{\:‘ myn S,s S° 1,1

In this way, using Equations (7.8) and (7.2) in the BBGKY
hierarchy for s > 2, and then equating coefficients of powers
of the expansion parameters, the following equation

18 derived.

£ M0

_aor sl . =
o0fs,e t ¢ B0 f’s‘"s(xs,fl,llxlo)

T -p 4N a n " m=p ,n-
= ZD FPsh ZD =9 _ ZZD groreimq
?:‘P,O S¢S %_J 0, S48 P:l‘?zlp’q S8
_ 7.9)
a In+l‘ n"l - m“'l n a m n_'l oonoo(
-0 f r 9 - 9
S S,8 +Q}fcms-flt(bs fs+l,s+l % fs+1.,s+l:l °
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Equations (7.9) and (7.5) are the basis for obtaining
the asymptotic evolutionary equations which we are seeking.
However, before we can proceed it is necessary to impose

some boundary conditions on the f To this end, in the

8,s"

spirit of Bogoliubov, assume that:

r
ii:»g -(-i)[ fs’s(XS;)Xi_]r'%l’l(xl;t[xlo)) ; . covsses (7.10
. N -jf,'lfl(xl)_ﬂ :?*T)flui) 1=0
N is the reduced "kinetlc operator’ for an s-body
reduced dynamical problem which involves only the repulsive
part of the forces. The definition of this operator is that
when acting on the coordinates of a particle at time zero, it
transforms the phase space position of the particle to that
which it would have at time t were it acted upon by only the

repulsive part of the forces of the other particles.

r
Hence, /& ishKXso) = A&XS) where A(XS) is the solution
of r
IMX )= [H -0 7] AMX) R
3‘.‘{ s [ S s
A(Xso) being any arbitrary function of the coor%}nates
-(H_-0_ )t
r(. s
of the s-dimensional phase space, 1'9-5&5:) = e S .

Condition 7.10 corresponds, in a physical sense, to the
weakening of correlations when the interacting particles
move far away, in space-time, from the region of interaction.
The full meaning of the assertion is far from clear, but, as

Uhlenbeck says, "it works . " * Hollinger22 has indicated

* %

1
Uhlenbeck 8 p. 47.
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that this assumption is equivalent to the Strosszahlansatz,
implying the lack of correlations before a collision takes
place.

In any event, (7.10) implies, after equating coefficilents

of powers of the expansion parameters:

™(s) 0,0 (1) _
T4 ,& Tfs :S(Xs’ A +Tfl l) -
( ) (l) S (l) [ N 3 N N ) (7'118')
' llm ; Ly, 1rﬂ‘ srin,1%;)]

and
. (S)fmsn (1) -
iﬁlr 3 £ (x50 ) = 0,
formorn %0 seves (7.11D)
It is now possible to obtain expliclt representations
for the A which make up the collision terms 1n the evolu-

m,n

tionary equation for f1 ;. In Equation (7.9), let m =n = O.
3

In this case, the equation reads:

¢ fl l) + L H, - 9 ] fs’ °C 3£, ;) =0

o °s. 71,1

¢ 00000 (7'12)

However, this equation, which holds for fl,l’ is equally

valid for ’g(ml 1+ Noting that,
)
t1

D ’O( ’A(l)f ) - ( Gfo'o . %(l) )

0,0 S,S It +T3=1,1
501 ot of +A
51,1 T 0p o {7.13)
= ref.7.5a = = H \”f §£°
1,1 3-8
H 1T ’&fl 1
so that, because &(l)- , We can write

oo, . ¢4
o,o s,s( b %fl l - if-sss( ’/xﬂfl,l)

3T (7.13Db)

Go0cocoe
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Equation (7.12) becomes:

r 0,0, | 1 _
( d/dT - [ Hs-es ] ) fs’s( ’B""{fl’l) - O s e0 06000000 (7’14)

This equation has the formal solution,

’o( ’z,’, l l) = ii) fo’ ( fl l) 0eseec0s000000 (7'15)

r
Multiplying 7.15 by ‘8_(51 the equation yields:
T

040 (S) o
SV Dot o ’3+111 vessnscanaes (7.152)

Since the left hand side of the above equation does not
depend on T, the right hand side may be evaluated at any
value of T which 1s convenient. For this purpose, let 1+

so that in virtue of Equation (7.11a):

O,

fg.sC sf g(s)[gﬂfl (rystley )(\ pefp %) ] .o (7.16)

O,n

How about expressions for fg 5 ? From (7.9):
2

D £f7 4 H_-0 } f

0,0 5,5 $,8

n:\oooooeooooo(rr 17)

-nfdx $2£2071 jp_ £

= -0 f1,,n -1
- s+l's S+l,S+l - 0, S,8
=

S7s,S

In general, for equations of the form

- r oln = - .
Dy ofe s( £ 1)+ [H=07 1 £072 b ( 3f

l,l) coooo(7.18)

it is noticed that, upon letting fl 1 ‘g+11 1 and by

virtue of
-[ H -0F fo W e = _ Py 1® o n 1
( ST [ H O L ( X+ 1, l = ( _gr [H -0 ]),8 -;fs :s xfl,l

3 (s ) ¢
=980 1977 €056 9k D

t1 37
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that (7.18) becomes r

—— -T 98

(s) r(s) £0s0 - o (. 4
ey (; j Y ws(’%fu)

This has the solution:

(s) o,n(‘2 fogn( E ) - I;Tq r'(s) v (3 4 ¢ )
l S, 1,1 ,X--r' s ’Xﬂ' 1,1 °
0
Using (7.11b), we obtain finally:
i r
£990, - ¢ o¢s) Q)
,S(,fl’l) + Jd'( X"TV w ( +T ¢ l l) @a00000 (7-19)
o
In this way, Equation (7.17) has the solution:
fo,n
( fl,l)
r n"’q eoo0o000o0 (7.20)
(S) Os a N~ l
+ Qfdxs+l¢af ot jf )} dr
In particular, for s = 2, n = 1:
£, 2( f1,0°
w L
r 0000 7 20a)
=10 €s) o/, a_l,o ac0,0 (
Jg_,r (01552560, £1,1040 5,5 + Qde 0531309, 50 )
AY}
Similarly,
.f -
s, G 1,1)

00000000000 (7-21)

oD
A
= [¢F(s) =P 50
lﬂ-r g;bp,of:,s - Q,fdxsﬂ ¥ s+l( 3+r 1, 1 ) dr

and, in particular:

1,0 . -
£5,2 (“1’x2’f1.1) N

o0 (7.21&)
= | 0,0 r .0, .
= ’LMS)( Dy, 0f o Xﬂl R Idx ?,(x,) fg,‘;( ,anl’l)) dt
Finally, using Equations (7.2), (7.5), (7.20), and (7.21),

the kinetic equation can be written as:
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> >

3. . +R1o V. E .= eI (x.3t) + 2T (x.3t) +
-a-t-l,l ql 1,1 1 =1’ 9 =1° e (7'22)

+o(ca) + o8 0000
where,
f r

r r
Qldx [¢ -t (2) J1,1 .
} x2[_l(x2) eél(x2)3/g-®d/&*&9 fl,l(xl’t[xlo)fl,l(xz

Iléxl;t} )

¢9 000 e (7023)

Iz(xl;t) = anxzwi(xz)-wi(xz)] x ceeees (7.2u4)

[~ =]
Yoy o

x J &([Dl’a eno’l]fz:-rjdxang-w:)fg’foca;jifl’l) +
+E0365 "5 &fl,l;) ax

It is clear how one would proceed were he interested i1n

obtaining higher order terms.

Equation (7.22) might now be solved for fl,l(§13t‘£1o)-
Of course, these may be illusory hopes, for it is noticed
that successively higher order collision integrals contain
within them solutions to many-body mechanical problems of
correspondingly higher order. The latter, themselves, have
unfortunately never been solved except in the most trivial
cases. Truly, this is a serious limitation to the scheme,
and it is one reason why the methods used earlier in this
dissertation have been preferred.

However, let us extend this investigation in prepara-
tion for work which follows in the next chapter. Suppose,
now, that instead of focussing attention, initially, on
only one particle, we specify the initial positions in phase
space of two of the particles. 1In this case, the proper form

of the BBGKY hierarchy is not (7.4), but rather (see #P-T):
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31:1 l(xl,t[x ,x2o) + Hlexl) fl’l(xl;t[ ) =
00000800 (7'258')

Idx [0192 ¢1 2] 2, 2(xl,x ,tlxlgx2 Y+

r a
+(n=2) de3[¢l’3-e¢l.3]f2’2(xl,x3;tl)

t H f % H = s000e¢ 02
atl» %y [x 20) + l(xz) l’l(xz.t[) (7.25Db)
- a [ ]
- delwl . ¢l’2]f2’2(xl,x2,t|xlo ,x2°)+
a .
+{n-2) de [¢2 3 -ed, 3]f (x2,x3,t|)
of { -0F =
W’s+ [Hs s ]fs,s ©C00000000COCOOC (7.250)
- a a
= 'eesfs,s + (n-s) ldx +l e¢ ] fs+l,s+l
(s 223 (1,2}5{8} ) .

Now, let us make the assumption, analogous to (7.3),
that f (X _; t1x, » X )is not an explicit function of the
s,s'"s =1ls =2,
time; rather, is functionally dependent on both
11 (%33 tlxl , xgo) and £y ) (%3 tlx1 , Xgo) and changes
*% %
with time as the latter change. Thus, one performs an

expansion:

(7.26)
on
Ez "(ec)” fm @X l 1% fl l(x2) )

WMz w0

fs’s(Xs;tlxl WX, )

* *
..but, we do not assume explicit dependence upon a two

partlicle density. As such, this assumption might be re-
garded as a "superposition approximation."
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Also assume:

00,0
- m n .
1 l(xl,t|x %, ) Zg o (ee)” Ay ((x)3F,(x)) ) (7.27a)

Ed,l(%;t'i]_o’x } = Z.i cm(_Ec)n A (x_;f (52) )

3t =20 oo myn =2° 1 o000 (7‘27b)

Inserting (7.27a) into (7.25a) and eguating coefficients of
expansion parameters, one obtalins exactly the same set of
functions for the A rl(xl; f14 (xl) as obtalned previously
2 - k) -
* ¥
(Eq. (7.5), above). Also, from (7.27b) and (7.25b), a
similar set is obtained for A(x,; £ -(x,)).
=2 1,1 =2
Continuing as before, one obtains the same equations

as (7.8) and (7.9), except that, now, D must be inter-

m,n

preted as follows:

D = [ § o (x ) + 6 .of (x,) 1
m 3F l 1l s —] 172
& f1 1% at of 1 Lk et o (7.28)
with: zf l(xl) +A ,n(xl) bf 5}9 %J‘(x )

The boundary conditions (7.10) and (7.11) are unchanged.
Similarly, with minor modification, Eq. (7.15a,7.20,7.21) follow,
except that one must keep in mind the new definition of Dm,n'
For illustration, let us now write down some expliclt terms
of the expanslon for f2 o Immediately, one obtalns:
020(xl,x2,t|xl g ) =

XZ )&”( ) fx) £ (x 5t1%, OF, G st]x, )
Xy 0%, X ji X &xl,t 2 lﬁrQ’t 2, oo '7_29)

2

* % .
However, to do so, one neglects the first integrals occurring

on the right hand sides of Equations (7.25a,b) as compared
with the second.
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To obtain the terms providing the first order density
correction we must calculate f; g + fo ]2' , as provided by

(7.20a) and (7.21a). To this end, consider

4
0,0 4
#D 1 E (X3 4f ( X £ =
(262,17 2,2(’(2"g 1,14%1), ﬂl,l(xz) )

. 0,0, ¢¢
%g_“(,%f 1<x>3’f]9(x))o X,ﬁll(xl) :

1l
+T l,\“i‘ ’ 900000 (7'30)
+ (’coo) 4 BXJIf (x )
RO 1
Ty
s gt(fl’l(xl) AJ'(xl g ECHE
X ( + EAO 1
But, Ntf14(X ’
" ot z\-‘V A1'o\’<1,n‘+€P\o.i

00 . () Mot
. <,§l%fl,1<xl>,}+’fl,l<x2) = D0 (o ppEy )
L, ) 4 IJX () mpstlxy xy ) x

[Xt’kx ) 4 (x )incx ) xytlxg ax, ) (7.31)
134 °

20 L

Thus, by (.E4b) and (E.4c) of Appendix E

000000 (7032)

i 1 7,
?.' oG gfl . l)x IRCAREIAER) RCRER AT

r
@ i >
[SL«5X1’X2)X;ifl)] X,
O b >

) [E:}xl,x2))+°(°x2)] X,

NV Ny
n

1]

0000C0COCO0O
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Thus, (7.20) becomes:

0,0

+ (s
[Dy,0* p,1] f292(’3ﬂ'fl,l vos)
> > 1 >
= ( 28(Z.-x.) :
( (Zl xl)’x+1fl,1(z2’tix2 ) x
1 a,:0,0 .
820 [ 070k i )-co 2380000y 1436 100000 o

+( QG(Z -x )X Z,5tx, R

+lll

1 r ’
X/X+I<X2) [dx3[¢l(x2,x3) g¢a]f2 2( LN l 1xq)e0) ))

©c000C0C0CO0OCOO (7034)

Proceeding in a similar way in the calculation of the
other terms appearing in (7.24), it is found that the density

correction of first order is given by:

4]
Fo
2€X

1
f oo 00000 =

1,171
(e a} ce0o0o0o0 (7035)

= Q f ‘2f2+1<x1)2 (x,) *

2

e d , r‘fa ’
ilx.a(z =X )f CZ2’tIX2O) de [(b (xl’XS)Jf (xl’xa’fl,l"} +

-
+5 . r+a . .
(z,- xz)flslﬁzl,tlxzo) XA ARSI TPRPRE S
f
=0 <I>
de [ (xl,x x,) f 3(x19x2,x3 fl l(xl) fl 1(%,) )1

gj@ (x5%,) | 8(2)2 Eacz‘l-'il)fl 1(2 ;t|x2°)

and ¢r+a

2
gdtq dt,

”etcn Same as above, only with <1>
replaced by <I>l and <I>2,respect1.vely°
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It is interesting to note that upon assuming that
particles move independently of each other, (7.35) is
identically zero.

Thus, according to the approximations already described,
a density expansion of fg,g(gl, X5 t‘§1o’ 520) is provided
oy

[L01 (1]

2,2 Wi olc?) vuunas (7.26)

f st X =
2’2(X2,t‘ 2,)

with fp 5 and fl,2 given by (7.29) and (7.35), respectively.
Clearly, however, things are quite labyrinthine. But, some
useful information is obtained from this work; further

reference to these equations is made at the end of the next

chapter.



CHAPTER VIII

CALCULATIONS OF Gy (r,t)

In the preceding chapters, primary interest has been
the derivation and solution of equations providing the
evolution of the one particle conditional density,
f1,1(§13 tl&lo). Unfortunately, it has been seen that the
requlred analysis is discouragingly complicated.

Yet, even greater complication is involved in the
calculation of a two particle density, fg,_2 (EJ’EQ;t|§1O’£QO)'

Properly, one would start with Equation (2.23), with s = 2:

P t[x 1 + J o+ v -V

X Ei + E? +v °(szvp2)) f2’2 =
t I(l‘m@2)L ©00O0CQC (8.1)

= 62 [fr Le (le;)LfnliO}fz,z(t-T)

The collision integral would be expanded using methods

31:

similar to those used in Chapter 4; iteration solutions
would be subsequently obtained as has been done in Chapter 5.
In this way, the zero'th term in the expansion would

be taken as the solution of

>
(as3t + 2_;v + V. ¢ (v v )} £L0 X3t X, ) = 0
A m i ql 12 2 2 2’ coooe (8'2)
with
[0] R > >
£ X - -
(X ,OIX2 Gtxl xlo) 6(x2 x2°) o

i.e., to zero'th order, one considers two particles to be
moving independently of the other particles of the assembly;

however, they are influenced by thelr mutual force fleld.

119
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Thus, the first step in the program would be the
solution of (8.2). But, difficulties are immedlately ap-
parent because, 1in general, such solution remains unknown.

Suppose, however, we wish to calculate Gy(r,t), de-

fined by**:
Gd(rst) E 0000000 (803)
[a ( Eearea) |
Zc|dp dp,.dp.dp,.dq.dq,. g (q »d, ) e W™ b "% f (X,3t]X
' 21 72 %172 e 2 2
;b 2% o 2 lo k?.f \¢ng 2,2 o

where g, (qlo, 4o ) is defined as in Equation (4.19). In
o 707 Tego
this case it 1s not unreasonable to resort to a form of

'superposition' approximation, viz., assume

. 8.4
10) fliﬁg,tif?o) osoaos (OoH)

He

X 3t]x £ (x_ 3
’2( 2,t[ 20) cg_l,t[i
1,1

At least for short times, 1t i1s to be expected that
Gg(r,t) will not be much affected by such a simplification;
close orbits, i.e., those for which (8.4) is not a good
approximation, contribute relatively little to the calcula-
tion of (8.3) because of the presence of the weighting
factor, gg(gl » 4o ), appearing in the integral.
0 0
Hence, by (5.8), (5.12) and (8.4):

. ) 1] 42 P1sP2
2 gitlt, ) 15 (1)632(1)6P16P2 4 vores (8.5)

ret2n{2 (g 5‘11(v2+v2)57’ 57*tcv% 6%, " d“a‘qu §4Vp 6% 6™ &) +
7 + 287 aft(\%%vi-’-)a‘*'s‘?” )

4m
+ct2x(2)(6€ﬁ P& & 2t(617‘72~ 59'57”5"%5%*3 55 gi+ 8" SHpV+py ) 8PeP> )
2 3m P p1.
+ terms ofe") ..... (

*Xor. Chapter 2, above.
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Consider, e.g., the zero'th term of Gy, defined by:

[a] ( -B(p%+p2 )
6 (r,t) =c|dp,dp, dx dp,dq, &,(a;,d, ) 1" 2 §91(¢)592(¢) sP16P2
d J 1552571 2% TommiT
-mB(q,-q,)2/2t2
2,2 (8.6)
da, g,(a)5q, )(m8 3/2 ¢ ° vees (O
2,821 91392, 152 5]
2t 2mpT
But, as before, notice that [3?%23 = 2™ ()
Thus,
(o3 j -(t2/mp)vz
G lrst) = c dq2°g2(ql;q2°) e 6(q20~q2)
-(t2/2mB)v2 )
- 2 - (8.61)
ce gz(qlqu) ccesss
-(t2/2mB)v2
=ce r g2(r) .

Next, consider

(] 5 5 f -8(p1+3 )
G (r,t) = ¢'t° |dp dp dx. dp dq e 2m ° (q sq, ) X
d 7 % 12 M2, iy 1572

P
g"z)[a L(t)s 2€t) (72 472 35 L6 2
P; Py
PV OLEGOCR2OPOCORP OO ¢]+

m

P,d, P, a
+ x P08 % 2126 26 2(t) - cevueiensin] }

( see eqn. 8.5, above, for detail )

g2 08CLCOCO D QDU

OGS 0C0O0O0C PG ESLHE OO0 T D (897)
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Integrate by parts re. jof and Jo3 to obtain:

[%J : w f wB(pl+p2 )/2m
G (r,t) = ¢"t° |dq.dq_dp,.d X
4$r L9500 2 kalT AR AR
(2) (2
<[ (T2 v2) oy 251 voep, V1 80
y lo p2o 3m ° plo ° p2°
2
20 [ -B(pl:pg )/2m
= ¢t |dq,.dq dp.d e o ( X
L Jda,da,dp,0p; S A
9 q q
x [ ' - D 30 8302 ym -6 1 8 He) § X(n)
4m 3m ° o

Further reduction yilelds,

(1]

o2y (2)_ 2)
GAr,t) =c"t [ n X( ] jdq dq g (q Q, )(V24v2 ) x
d ™2 & 38 27172 172" q; q,
fo] (o]
x G - t)G -
r fol S(ql qlg ) S(q2 ngt)
But qul Vél Gs(ql’qlébields zero boundary terms; thus,

(1] 2 4 (t2/2mB) v2
6 oyt = ctn [P xPyv2e T g (r)

2m L" 38 r 2 ceo00o00 (8.7')

Hence, at least for the first two terms,

(1] ) + v2 N
Gd(r,tl = zt2n Dgn] e R g ( Rt/(m8)1/2)
“:° 2 00006000 (8!8)

1
where the DR = are identical to those defined previously in

the study of Gg (cf., Eq. (6.18). In fact, because
jd%lk i\cr %1%%\ O for all j 2 1, upon reflection it is

seen that (8.8) is true for all terms in the series.



123

Thus, re-writing (6.18) and combining with (8.8), the
following result is obtained for the complete G(r,t):
2

1, 5.2 ] "R el Rt s
G (r,t) = Yt DIE“ e G (rpgl/2b 0) .eeen (8.9)

Mz2Q

where
G(r,0) = &(r) + c g (r)
2 OOQ'QGQD'.OOCQ (8.10>
The expression given by (8.9) is formally identical to

10
; convolution approximation.'™ Thus, it is seen

Vineyard's
that the basilis for the latter is to be found in the assump-
tion of superposition, (8.4).

One may now calculate the coherent scattering function.

A calculation similar to the one leading to (6.22) provides:

cl. -mBw2/2k2 -
S (k,aw) =\\mB 'e [l1+c g2(k,w) ] =
coh. 21k 2

@)
x [ 1+cB (3-10mBw?+m2%w"1[ Bn - ifh +o(e*).sea] (8.11)

2k “ k< k* 4 3

Hence, a propos the discussion on p. 6-12 concerning
the measurement of system constants, it 1s now apparent how
a proper measurement of the scattering cross sections will
provide the desired information. For fixed momentum and

energy transfer:

2
gggg vt %coh Scoh(k’w) * %ne Sinc(k’w) :

N

00000 (8012)
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-mBw?/2k 2 . 7
" i me e (e . ( ltcg (k +
72 coh g2( s0) ) Q’incc 1~
x [ 1+ cB (3-10mBu?+ m282u")( Bne - 0 BE
2k 2 %z X" T 3

-~

gg(k,“) 1s the Fourier transform of g,(r), and can be
determined from x-ray scattering data.45'46'47

Of course, (8.12) is incomplete in that quantum
effects are not included. Unfortunately, the counterpart of
Rosenbaum's analysis43 for the incoherent scattering
function 1s not available and the quantum corrections to
the coherent scattering function are uncertain. It has

* *
been suggested that the basic correction is that pre-

viously noted, viz.,

Bhw/2 -BB2k2/8m

S(k,w)= e e [ SCl°

(k,w) + o(h2) +,,1 °°° (8.13)

However, a term by term analysis for Seoh. is not avail-
able (see (6.22) and ff. ). But, it is suspected that, as
before, for small momentum and energy changes, quantum
effects are small when compared with contributions to the
scattering functions due to forces between particles.

Can anything more be saild about the approximation
made in determining Gg(r,t), 1.e., about the 'superposition

approximation', (8.4)? Let us, for the moment, refer to the

* 11

*
Singwi, K.S., and Sjolander, A.
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zero'th term in the density expansion obtained in the pre-

vious chapter:
000000 (7 29)

, _ @)
£y 2%yt ) = A2 g )A(x )g(x )£ (x pitlE )E : x5 lx, )

100
The action of the kinetic operators is made clear if one

notes that, acting upon any arbitrary function of Xg:

4
,g+t(xl) °°°Zg*q§xs) F(Xgst) = soeees  (B.14)
=F(—>++T+.oooo a++—> -)‘t
Hence, 4 ﬁi Py " %sT’ps’ )
r
(s) 3 4
X 0 000 3 s =
A nT’( s)g'%xl) 2+’L(xs) F(Xs,t)
00000000 (8‘15)
@ 6) @\ S sy,
=F( q+12 p ,moo,)‘q +T,3 gg 3t)
1
HMON
Note that ‘P’S’)(XS) Elim,& P, is the momentum which
T+
the ith particle has before the occurrence of the inter-

action which results in the configuration {Xs} at time t.
In other words, §§S)(X§)is the constant momentum which the
ith particle has when it is infinitely far removed from the
other particles before collision; it is compatible with the
state Xs at t, which is obtained through the reduced s-body

mechanical interaction
YS) A QN

Similarly, (X )=1im( ) q, +¢x P, )is the position at
> _1q, -1
which the ith particle would have been found at time t if
»>(S
it had proceeded from infinity with momentum P; %Xs)but
that as a result of the s-body interaction it is at gy,

instead.
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Referring to the two particle density described by

(7.26), for almost all pairs of particles: §ﬁx2)= 31;310%)==§

-+ >

> >
QX)) = q, 3 and,P (X)) =p

2%
2 When this is the case, terms

in the density expansion of order higher than the zero'th

are zero. Thus, for most pairs,

f2’2(X2;t[X20) = fl’l(fi;tlgio) fl,l(iQ;tlﬁQo)



CHAPTER IX

SUMMARY AND COMMENTARY

The main object of this thesis has been the calcula-
tion of time-relaxed probability densities and associated
correlation functions for particles moving through an
equillibrium assembly of like particles.

First, an integro-differential equation (218 )
describing the temporal evolution of the probability
densities was obtained from the Liouville equation. The
equation is generally valid for large systems, providing
there are no external fields acting on the assembly. It
was assumed that the interaction between particles can be
represented by additive central force potentials, and that
the equilibrium probabllity density for the total assembly
is a canonical distribution. ©No other assumptions were
required for the derivation of the kinetic equation. In
contrast to the BBGKY hierarchy, the derived equation con-
tains all the information necessary for its solution; i.e.,
the kinetic equation for a reduced probabllity density does
not contain integrals over unknown higher order densitiles.

Particular attention was given the kinetic equation
for the one-particle density. By manipulating the collision

integral appearing in that equation, the latter was put in

the form 2 [j]
Af. _(x,3t]x )+E{7) f =Zt}\ = I
tﬁulb —’ - -
el 1= IS T g T, o eoo0eo (9.1)

127
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(il
where the Jl successlvely demonstrate higher order perturba-
tions to the evolution of f; 1 due to the internal potential
3
energy of the assembly. These terms may be written, figura-

tively, in the following functional form:

°§M Jt (2k-2) 1,
L= dv 1__ op (p,3Vp 3 1V )0 £ _(t-1)
k:i [2k] 0 (2k=2)! 1 pl m 4 ,Q-T 1,1 00 (9.2)

It is apparent that the collision integral contains a

"memory", i.e., it is necessary to integrate over the past
. . k1l 5
. 18 the streaming operator; Op (p_;V ;:yq )
lmHl
are mixed differential operators in p; and g,. The constants

history of f4 1 X
3

“(YLEZk]are of the form:

\)
b3

1)) w
A€ _...dE (€ 500 a ™ vaene 3% 9.3
2 2k

L [2k3m I

where ¢ is the interparticle potential and g2k(52w°°°s€2k)
is related to the 2k-particle equilibrium correlation
function (see 4.18, and 4.19).

It is noticed that these constants are equilibrium
constants, i.e., derivatives of interparticle potentials
averaged over equilibrium static correlation functions.
Regarding spatial integration over interparticle potentials,
there is no need to introduce any arbitrary cut-off pro-
cedures into this analysis. At small interparticle distances,
oy Bpoeeeoesbny ) decreases to zero faster than do the

derivatives of the potenti%}% diverge. On the other hand,

%%,,,.Wwith the condition, 2 Xm. . =2k
Jei
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although for large values of ( & > 1,

greceoesto )0 Epyp
the derivatives of the potential fall off to zero fast
enough for the integral to converge. The latter is true
even for potentials of the form ¢(p) v /o, because we are
integrating over derivatives of the potential rather than
the potential itself (cf. 9.3).°"

Collision integral terms through the "fourth power
of the forces" have been obtained explicitly.

The kinetic equation has been solved by an iteration

procedure:

(o] [1] [2]

£ . =f +f _+f_ _+ o(eb
1,1~ 1,1 1,17 T1,1 (e®)

600000 (9_4)

where ff?% would be the only term in the expansion were
the system an ideal gas. ff}% is a first correction to
account for the presence of forces between particles and is
proportional to system constants of the type"W%[2] (cf. 9.3);
fff% is a second correction and 1s proportional to system
constants of the type\N\[uf etec.

The time-relaxed momentum density is obtained from
the full density, (9.4), by integrating over spatial coordi-
nates. Some related correlation functions are also investi-
gated. Most interesting, however, is the demonstration by
an explicit example that calculations based upon a truncated

kinetic equation (i.e., an equation similar to (9.1), but

one which contains only a finite set ofcjtj] ) will be
@

**FOI" Q(F)Nl/ﬁ . 'X = 0.
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incorrect if carried to an order of expansion parameters
(the '\V\ ) greater than the order of the approximation
made for %ﬁg collision integral.

The latter would be a trite observation were 1€ not
that much effort is expended on the solutlon of kinetic
equations which are similarly only approximations. Both
the Boltzmann gas equation and the Vlasov equation are of

3,21 There is undoubtedly some

the latter category.
point to investigating whether intrinsic limitations exist
regarding the information to be obtained from solution

of such equations.

Like the momentum density, an expansion for Gg(r,t)
is found in direct correspondence with the expansion ob-
tained for fl,l (51;t|§10). As a consequence of the prior
ordering of the terms appearing in fj 1, Gs(r,t) is ex-
pressed as a series of terms which are successively less

important at high temperatures. The expansion for the

latter may be written as:

_ Y. .2 _[n] 0]
G_(r,t) 1'\};‘,ant D" 6. (R, 1) (9.5)

or, alternatively,

w77
- n n 2 R ,
Gs(er) y\z.‘oan DR e 6(R) 0000000 (9°5 )
where R = (mg/t))™"“r G, (R,t) = (mg/2mt2)x e and the D

are purely differential operators in R (i.e., they are not
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explicity functions of t). Here, too, terms in the expan-
sion are obtained to the "fourth power of the forces”" (i.e.,
the second order correction to an ideal gas calculation.)

The expansions for Ggq(r,t) have been obtained in a
form demonstrating the temperature dependence of fl’l(glgqilo).
They are, roughly, expansions 1n the ratio of potential to
kinetic energy of the assembly. On the other hand, they are
not expansions in the time, per se.

By taking Fourier transforms of Gg, first with respect
to the spatial variable and then also the time variable,
one can obtailn the classical approximations to, respectively,
the "intermediate scattering function" and the "scattering
function" for incoherent scattering of slow neutrons. For
these, one obtalns series in direct correspondence with the
expansions for Gs(r,t), Here, too, the temperature depend-
ence of these quantities is of particular interest.

Whereas 1t is true that various similar expansions have

already been obtained for these transformed quantities, 9,30

it is believed that the temperature dependence of the latter

is more surely and explicitly demonstrated by this exposition.

An additional benefit of proceeding as we have is that,

because the functional form of Gs(r,t) has been demonstrated

by our calculations, the task of deducing meaningful infor-

mation about Gg(r,t) from the transforms is probably simplified
Of course, if one is seriously interested in calculating

scattering cross sections, he must find some way of relating
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the classical scattering functions to the correct scatter-
ing functions which are defined within the context of
quantum mechanics. Some of the schemes which have been
proposed for this purpose were examined in Chapter six.

It was concluded that they are probably valid if applied
to cross-section calculations for low momentum and energy
transfer, but they must otherwise be applied with care.
The equation giving the correct scattering function is

typically of the form:

Bhw/2 ~BhZk2/8m

Sinc,kow) = e e (552 (kyu,8)+ B2 (ky0,8)+ B*A (k108) +..)

00000 @ (996)

where the {A;} are functions of k, w and also the system

constants given by (9.3). But, Sfi;dl(k,m) has also been
obtalned as an expansion in system constants. Comparison
of all terms appearing in (9.6) which are proportional to
system constants of typeWN\[zlshows that ﬁ2A20gw,B) can

Cl°(k,w,8) only if

be neglected when compared with S
k and ware small; Eq. (9.6) is correct for all k and w,

but to apply it in general, one should retain all terms i1n

the expansion in ﬁ consistent with the expansion for SiléSk,),

The approximation,

Bhw/2 -Bh2k2/8m el
Sinc(.k,(ﬂ) 2 e e ( 90)) 000000 (9.7)

lCo

is correct only for k, @ small or B-l very large. If

iic0<W’3) is known to a given order in system constants,
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then to obtain the exact cross section in a meaningful
way, one must also know a large number of the ({ Ai}a

Is there any point to obtaining G(r,t) if one is
interested only in a calculation of the cross section?

The latter is defined in terms of the scattering function,
whereas G(r,t) has been introduced primarily to aild in
relating the scattering process to the internal motion of
the scattering system. To obtain the expansions obtained
in this thesis, it might be easier to calculate the
scattering functions from their basic definitions, rather
than from G(r,t) .

Suppose, on the other hand, that one chcoses a model
Hamiltonian for the scattering system for the purpose of
simplifying the calculations. Even if in this case the
scattering function is calculated directly from 1ts quantum
mechanical definition, it must be acknowledged that clas-
sical considerations enter into the calculation. The
choice of the model Hamiltonian is almost always deter-
mined from some prior knowledge about the gross motions of
particles in such model systems and, in fact, the arguments
used to justify such Hamiltonlans are usually classical con-
cepts. For example, one refers to a particle moving within
a cluster of particles or, a particle trapped in a potential
well or, a particle diffusing according to the Langevin

equation, and so forth.

* ¥
Remember that here, however, G(r,t) was of primary interest;

the cross section calculation was ancillary.
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In addition to examination of expansions in powers of
the forces, investigation was made of the derivation of

equations pertinent to density expansions of f Bogoliubov

1,1°

type kinetic equations were derived for £ which, in contrast

1,1
to earlier derivations, are valid for systems for which inter-
particle forces contain attractive as well as repelling terms.

Finally, Gd(r,t) was derived from a superposition
approximation for the two-particle probability density,
lo'&?o) . It was pointed out that this

approximation is equivalent to Vineyard's '"convolution

£, (x5, 0tlx

approximation for G(r,t).

Certainly, there are still some incomplete aspects of
this research. For example, an H-theorem has not yet been
established for the kinetic equations derived in chapter 3.
The proof of such a theorem would be of great importance
because of the general applicability of these equations.

Then, too, there is the question of the secular terms
appearing in the expressions obtained for the solutions to
the kinetic equation ( i.e., the time-relaxed densities. )
These expansions have been useful for the calculation of
certain quantities pertinent to this investigation. Further-
more, they are the exact expressions for short times that
any approximate solution must satisfy. However, they are
clearly unsatisfactory for extension over the entire time
scale, and other procedures should be investigated for solution

of the kinetic equations. In this regard, it might be fruitful



135

to employ methods recently introduced by Frieman48 and his
collaborators.

Also, it might be interesting to investigate the deriva-
tion of the equations of hydrodynamics after starting with
similar kinetic equations for a more general one-particle
distribution. Whereas we have been particularly interested,
here, in studying the temporal evolution of probability den-
sities for particles moving through an equilibrium assembly,
analogous kinetic equations for distribution functions could
bé obtained for many other non-equilibrium problems. In fact,
one. can even obtain kinetic equations to provide time-

relaxed correlation functions directly.**

Another task yet to be performed is a more complete
investigation of the "system constants" appearing in these
expansions. Can prescriptions be devised for their calculation
similar to the diagram theories invented for the evaluation of
equilibrium distribution functions?

Let us conclude by pointing out that these calculations
are, in a broad sense, only preliminary. The equilibrium and

quasi-equilibrium (stationary state) properties of matter have

**  Por example, for the momentum auto-correlation function,

T(e) = B (0) By (£) > . TR )
Mg = LOLATTE) *88&“0@ L G-8)L AR T )
o )

where éE&km&;’fbﬂézéwgio)(—):.ﬁiox ; @ : A(/‘W\Q— ; and,
P\LXM\ S \/4?11>9% . (:M,« (X—M:O \?&_o) .
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been well studied, and we are cognizant of the great successes
which have been achieved in these areas. Even more exciting,
though, is the thought that recent investigation into non-
equilibrium problems is just the beginning of a similarly
fruitful period of investigation into a more extensive but

less well understood class of natural phenomena.



APPENDIX A
NOTES ON PROBABILITY THEORY**

1. THE NOTION OF RANDOM VARIABLES, DENSITIES, AND

DISTRIBUTIONS

Consider a collection of entities (''sample space'), S, complete in
the sense that all possible varieties of any pertinent property or set of
properties possessed by the members of the collection are represented
by some subset of S (albeit a set of measure zero, if necessary).
A.1 Definition: A property X(-), is a '"function defined on the space S
"if to every member s of S there is a real number, denoted by X(s),
which is called the value of the function X at s.

e.g., Consider a set of cows, C, and consider the pertinent
property to be the color of the eyes of the individual cows. If,
for example, the number 1 is assigned to the property: blue
eyes, 24y red eyes, 34¥ green eyes, etc., then eye-color

(E(:)) is a function defined on the space C.

A.2 Definition: A property, X(-), is said to be a random variable

if it is a real valued function defined on a sample space on whose sub-
sets a probability function ’/“'Pr(u) , has been defined. The probability
function (measure) is an a priori 'weight' assigned to the members of S.

This notion will become more familiar, below.

""Ref: Parzan 49, Feller, 90 Doob-51

This presentation is similar to the discussion found in Parzan's
book, and is included as an aid for those readers who might be unfamiliar
with some of the terminology used in the main text, above.

137
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A.3 _I?_(_efinition: The probability function PrX(ﬂ) of a random variable
X is a set function defined for every set of real numbers. Its value is
the '""probability that X is in B''.

The probability measure of X, PrX(-) , is obtained from a proba-
bility function/M,Pr(-) , defined on the sample space, by summing up the

measure of all subsets of S such that X(s) = B. i.e.,

/\Dng@) = ’&\ie%} :AMP\XQ"%XKMQ‘%-Q = S &/UP%(S\
S:Xe)1eB

e.g., If we assigne equal measure M_ (-), to each cow in our
sample space, C. then Prg(-) is the problé.bility measure for a
given eye-color = M(s: E = given eyecolor) = Ng/N, where
Ng = the number of cows having a given eyecolor, N = the total
number of members of the sample space.

However, the choice of the basic probability measure is not
unique. It is an a priori assignment, postulated for any given
problem in accord with the relevant Logic. For example,
with reference to the sample space C, one might have chosen
the probability measure to be proportional to the weight of the
cows involved. In this case, Prg(:), also, would be propor-
tional to the weight of the cows having a given eyecolor.

A.4 Axioms: For a measure to be a probability measure, it must
satisfy the following axioms of probability theory:

Ax. 1: M r(s)?_O for every subset s€S. (As a consequence,
PrX(-)ZO for every event.)

Ax. 2: & dlp o =1 (= SW&V«X&X\ =1 ) .

ms\auu.,g

Ax. 3: For subsets S1 and S2 of S:

ey =\ 4 stS&M &y 43NS -0
‘S\\)SLMV\ &51}"@\ < o ) \Q 4.(\ 2

P2
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A.5 Definition: A random variable X(:) is discrete if PrX(-) isP0

for at most a denumerably infinite number of points, x, and if

E ‘Pégq= I. pX(x) is the probability that the observed value of the
P
random variable X will be equal to x.

A.6 Definition: The values x of a discrete r.v. for which PrX(x) >0

are called probability mass points.

A7 Ee_fir_l_lii(_)_tl A random variable is continuous if it possesses no
probability mass points.

For a continuous r.v., the question, '""what is the probability
that X = x? ' has no meaning. Rather, one must ask: '""What is the
probability that X is within the range B, i.e., what is prX(B)? "

PrX(B) can be obtained from a function fX(X} by integrating the

latter (in the Lebesgue sense) over all points x€B, i.e.,

/?AXK%\ :/\‘)Axi_‘ﬁ S A %1 = \G&_XQ‘)&%

(Note: g-*bt\ = g &MP&S) )|
seS:¥rn

A.8 Definition: fX(x), defined in the above manner, is called the

probability density function of the random variable X.

Note that fX(x) is never negative.

e.g., An example of a probability density function is the
normalized neutron density, f(E) = n(E)/n (such that ,/;, fe&)yde
is the prob. that the energy of a neutron, chosen at random from
the assembly, is in the range E'.)
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A.9 Definition: The distribution function of a random variable, X,

denoted by F_(.) is defined by

X

xX
V,‘Q‘\ z Wixex]= \ S dx!

- 00

T = N

(In the case of a discrete r.v., gFots. x'ax
But, if integration is taken in the Lebesgue sense, then

X
- \
b = S_wixu‘»&x
where, for the discrete case:

Note that FX(X) is continuous if X is a continuous random
variable but it possesses step distontinuities if X is a discrete
r.v.)

e.g., If the probability that X = x

0 if xixo
FX(X) =

lif x>x
o)

o is 1, then

a DAY

Also, since fX(x) = &; FX(X), thus fX(x) = % (x—xo)

It is seen that F_ (x) is a never decreasing function of x;
X 300
F(-o = 0; F (+ 00 =1; Xf(x)dx = 1.
-0
2. MULTIVARIATE DISTRIBUTIONS AND DENSITIES, JOINTLY
DISTRIBUTED r.v.'s

A .10 Definition: Two or more random variables can be defined simul-

taneously on the same sample space. In such a case, the random
variables are said to be "jointly distributed".
Consider, for example, the particular case of two random variables,

X1 and XZ. In analogy to the previous discussion, one has
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PrXI,XZ(B) =/upr (s in s:{xl(s), xz(s)]e B)

for the joint probability function. It is the cumulative measure of all
points s € S such that the two dimensional phase point, (X;(s), Xz(s))
associated with each s is within the set B.

A.ll _D_S_f_inition: The joint distribution function of the random variables

Xl and X2 is defined by:

FXl’ Xz(xl, xp) = /upr\seS: (le_xl, Xzixz)’g =

Pr (Xl <xp, X2 < x3)

Notice that

lim F (x,,x.) = 0; similarly bw ©. =0
XXy 12 KXy ’
'ﬁl_q-eo "(’.—7—00
Also, fom v -1
CPRETORRY SN ’
K9+ o0

A.12 Definition: Similarly, Liw T leixd) =;1("»\is the marginal
- Ky~ o0 Y'.Y':- 2 -

distribution function of the random variable X2 corresponding to the

joint distribution FXl Xy (A similar definition holds for JAM‘ \-—K X.i‘;’&h‘\’
’ x-;-VOO AL N

A .13 Definition: In the case of continuous random variables,

! 1 ! 1
PrXl % (B) = && in’XZ (x4, x2) dxl dXZ
» 72 B

where le’XZ(Xl ,xZ) = "joint probability density"
Note that fX1 ’XZ > 0 for all (X1 ,XZ) , and that le ,XZ(XI ,xz) =
%
)

— Fyx . X (x,,x,).
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A.14 Definition: The marginal probability density function of the

random variable X1 corresponding to the joint distribution Fy  is

O 1
‘Kx\b‘l\ = & &X’ xzb‘\."?-) &"1
- !
It is seen that
X, *I-‘ + 0
\:x}"" = & g)‘}%}\&'ﬁl —_Se&x“ de',, 'CX x(x X3 )
S S 2eo R

Remarks similar to these for discrete r.v.'s follow in an
obvious way. Also, generalizations to multivariate distributions of
dimension greater than 2 are easy and shall not be mentioned here.
3. INDEPENDENT RANDOM VARIABLES

Let X, and X, be jointly distributed, with individual (marginal)

2
densities Fy and FXZ, respectively, and joint distribution FX1 <.
1 12
A .15 Definition: X1 and X2 are independent if Prine B1 , Xze Bza() =

Pr ine Bl.g X Pr%XZ (S Bz.g i.e., if there is no dependence between

the values taken on jointly by Xl and XZD

As a consequence, for independent random variables,

F (xl,x

= F, (x;) ° F_, (x
Xl’XZ 1

2‘) % X, and, f (x

) s » X
2 XX,

5) = le(Xl)an (x

)
5 2

1

e.g., The space occupancies of the particles of an ideal gas
are mutually independent. Indeed, we have ‘: ('ﬁ\‘“)'xt) - ﬂg Lx‘)
for the ideal gas. ¥ T P
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4. CONDITIONAL PROBABILITIES AND CONDITIONAL DENSITIES,ETC.
A .16 Definition: For discrete random variables, given two properties,
A & B, defined on the same probability space, the conditional probability

of property A, given the property B, is defined as:

Agaiel - | 7 S/ HRastzo
VW\&&S\,N& “\& ¥ (\_%1 =0

For continuous r.v.'s, the above definition is going to lead to
difficulty since, if we try to define Pr\A\X} = Pr{aRY/PriX],
trouble arises because Pr SX = x‘()= 0. Instead:

A.17 Definition: The conditional probability distribution, P_jA\X = x{,

for continuous variables, is defined by:

SG?/\,(A\X‘-)(')&VKQL\\ EYNKXYQA‘(‘XXle\:
:/Mp,\i%%\(t‘nel\,)(me@g - S ‘Q/UVAS)

sS:Xore \ X&EQ
- &BV\»W\K%‘X et dy
xoo
Note that ?\i(\i = \’PN\A\XWK&YXM . Furthermore, if A and X are
- oD
independent, /\),LCU\\XX’_ ?,\3\ A'g and the above equation is trivially

satisfied.

A .18 Definition: The conditional distribution function of Y, given X,

is defined by: F (y/x) = Pr S‘Yéy X = xg‘ Consequently,

Y X
x
Pixee Nenl 2§ b = |0 AR
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A.19 Definition: The conditional probability-density function of the

random variable Y, given the random variable X, is defined by:

fY\X(y\x) z -E-VKFY\X(x\y)., We are thus led to the important relation:

£yxtr = qﬁx,Y(x,y)/QX(x)

Proof:
In H,fht of A.19: Z :,‘\( X\X‘»Vb\\ﬁ\ A QL) Next, differentiating
1 D)
re y: 5;)\% cxc( = xacg( = Q‘(\" g'xb‘\ “ cb%&.

Also consider:
4 00
EX\\(“\\"&\ = 805. “Y‘%Kx \V\\’g\ QZ\\(\’)@\ \y) &%\

Proof:
The "conditional probability" of realizing an event A, given that
Y =y', Z = z', is defined by the following relationship.
iR Ak (8L = ] RN 185 )
=\\taney, Nx REYLETN

\*W‘d\x Bl vOmGR T8
But, if B is such that\l~ea ¢ £ 4300) ,'then 9, { <L \NtYewl-=

:V«S\Rsk\(gg\k where B' = range of Y. Thus,

+d0
et e = | R At 91 g )

Now, suppose that B' is the range (\'.ao‘\.& and A is the event ok Xg;;.ﬂs
within the range A = S\‘-—,O\’\c. z) We thus find the following relationship

for probability dlstrlbutlon functions:

% (¥,~Q \% \6 3 Lx‘ \Q‘(‘gc\»;es‘)‘w\w_a(:\\:‘ ) =0 "4"\\("\‘?”%‘1,
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If we next take derivatives re x, y w M;
)
\ \
i) = |88 Ll g & )

where fx b"\‘\\’&;\.‘: ¢ (34\\1"6\ — conditional probability density.
XY,

Hence, since fX Y(x,y) = fX Y(X\Y) . fY(Y) ) =/

+ o0
Q”‘X k“‘\")\ = &_w s"‘\‘("t \'X\\\’);\ QZ\\(Q')&\\\Q\ &%\ ) ﬁ'/,e,(Q,

5. EXPECTATIONS

Given a function of the random variable x: g(x).

A.20 Definition: The expected value of g(x), with regard to the distri-

bution F (x) is defined as:
E&%@& <%7 chbc)&t ) '& %mQ Qﬂ&oc

Alternatively:

Q> = \\ %“‘h*‘i‘&*&x %\ AR o 08 A5 ()
Similarly, if h(x,y) is a function of the random Va.rlables X,Y:

S - 2\_\'\\% \5\\ \\ Wk VQ&CM(L‘L\V)\ \\ \’\k" ‘))&b(v"s\&"‘&g
\\ Weti) €y Oty B AT oy

Notice, if h(x,y) = hl(x) : hZ(Y)’ and if x and y are independent:

{hix,y)S> =<hl> - < h, 7



APPENDIX B

REDUCTION OF COLLISION INTEGRALS

As noted in the main text, upon expanding the collision integral

according to 4.15, one finds it convenient to write:

Rl el Y 26 4 _(2e]
TTNT™ e T T
=1

according to the definitions:
] -

t 1
T ‘:QX 8&1 \.4e /8 Lols xmfmgm

el - T, 4.’(1\0 _
1 z Q\&T\& o, Lie /g-u LoLl g-w\li‘{"l\i%’-/("\ )

t

T,
&«\&fc e /9 Lebe G b

<
-
Yo
\

£ Ty
SN T W E R AT

In addition, expand

et bl y \m 2 \’lc.\
TV

\\\\\

with o
t T, -8 \\ax \m LEN} LB k)
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Qe - (E (T (ol
1 =Q &o&t\\o&(m Lie /g-m, L E C"‘ LJC'), -

.. (B.

B.2a)

2b)

B.2c)

B.2d)

. (B.

2¢)

B.4a)
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t A ' '
P Sl L L

Xw— %&&(&ML %\\ \ Lo /g Lole im&”\{ )

—_ - - (B.4c)

(B. 4b)

e @1
’X‘/&, combines with one of the terms of 1 to provide the'basic'
T\Q&\ 2 \')—M

collision integral term Q,&( are shown
to yield &’b , defined by 4.37.

The other of the nine terms (QL’ c e Qq ), defined by equations
(4.32), (4.37),(4.40 - 4.46), are obtained in the same way. The follow-
ing is an abbreviated exposition of the procedure by which these terms

are obtained.

One expands

1, F - @5
with § 1
26 -
: 8 \RM&@ WO, LOLE RN, e
o (B.6a)
4 2V _ t T -
7, =8 X&;c\\c% L’%\\\\‘Lt }).@Lohk&1‘\4(’;)?;”@@)
0 T ) (B.6b)
2 a1l v 2
L 28 )aedEN LU LT, ke
o (B.6c)
etc.

It is then found that (cf., Eq. (4. 40) (4.41)
\'Y\ \l&’\
0,=71, o (B.7)



148

Similarly, expand

el _ 3\ el QA1
’LW Bl T +1
—— -~ --=  (B.9)
TR - ; \{g S U AT,
/l BN go T \&’C Ly e )S‘H 13\13& L\ Q«« i‘\k‘\ (B.10a)
R WY SO, S G o0 A ¥ L
1 ’,’%\5 \& Sg’( Lﬁ,e/ /&( @\‘1@’ ATB\'\'*'(M\\(“(L(‘)
v S _ (B.10b)
b AN aE

> v
&/C:z,\-\ e 9_5 e 82(5\_\_ i,\“(\‘“\&-(b

Q ,\’tr’(g)
~-- -- ~ (B.10c)
/K&@\ t @ CRAN PN \
L =8\ {see By Legy L MC\\L <)
'(.1 '5
_____ (B.10d)
Then, (cf., (4.42)
_ el o el 4 5l
3»5: 3*\4*%, -~ - . (B.11)
’5' e &)"‘.’"\ W 3(\‘
where n, is obtained from (B.2c) by an obvious definition. /f\i
(o) e
and L’il are obtained from the expansion for /’L’L , viz.,
T?M o_.\3al 4 _E&’s&\
1’» * (B.12)
where o3l — JC& <y X
- v TN
L= Seiliang Ly Lebitn

~(6t) =t (B.13a)

-
- -
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k FC 1
AN | '
11 = &1)&?.&?’%)‘3{3 X
‘iﬁf‘ L, \.0,2@ b A LLds (B.13D)

‘\"cs\_\ }-('t 4 \- \-o X \. L\-‘g ‘(:m\'l.&t\kt’ ‘{!

etc.
For&(a(cg.él.éﬁ) we have:
& (2&1 oIBeA 41%4 ... (B.19)
1 a4l o_1341 (34
where § is obtained from a.n expansion of B.2d. I;_ and 1/,(7_
3]
follow from an expansxon of T’ , defined by:
f ,‘ T “C‘L (T—\. ’L&)LO ’(,5‘-0
= X 89% \-13 ﬁ( m\-i /2 LHQ‘,\J &‘«) (B.15)
Similarly, defining (cf. B.10b):
t 1.
40 Bl X
T E—@ AP WA N SL) L K“\.fc@ |
(To1s) - B.16)
“\L-1s b -
we have 4 bl 10..Bb1
3\'] = T'z, al
UG (B.17)
Finally, PN o V3l goo fuad
‘5{8: Ig, £ l\f -+ ’L
vt (B.18)

- e e e e - (B.19)
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with , ) 3 ¥ &
T7: B) halid  LOLL, L
o 5 T .. (B.20)
9,40 :rv/(d ; & &t XL
=N ! g(fx"'-s) ety )L /8 qu\.\.‘;\‘“ nk"
«« 0 (B.21)
0,9,0 ‘LH’] _
172 B, S&tq}Lym, L e
%\‘\" Lv\\\ “\%-’(\)
e .. (B.22)

All terms to Q(iq) are included in VQL’—V ¢Qq o

Let us conclude by performing as an example, one of the partial
integrations somewhat more obscure than those provided in the text

(cf. Eq. 4.38 ff. ). Consider,

\'scqo \m i} T
TS S b, L

which is to be compared with

@C \&r_ S&\“‘ Li'%_uzt;) x(t 1 )\‘)&qk— qwﬁg\\\gn& ‘\

Notice that E \_ \-\‘\“g ,Where \U \(h% \__ -\'2 ":\\‘_.‘,%‘—v

-y %'
so that

onp 743 _ @S&‘ g&’t L LtsallL o ily AL L),

Integrate by parts over ([q and then Lg,

o A ‘@X&‘ & (ML\\«% :\ %L S
PT (i &w\)ﬁ U @‘\DL K\\\\ *h\\k LX

9,00 (’4“:!
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Next, integrate by parts over 'CZ,

090 (‘I"J I = -7
1 zegé&c,fL.[L,ﬂgz Y\Jmhﬂ.;gﬂ W8
<
G +- / ‘(ﬁ‘“ %14, L L)

,Q\&{\& L ¢ T 2 >,
o { 2 T'z_ /c'l.\.\\.L‘ ‘\'fw\i Y\L'V%‘ L'.‘-%L‘ {“:\M' i,'_‘,
’t“ — _?
+ 2 (¢-%. .9V X
EAERCRYT A L, L)
But, as can be easily verified, the last terms is just the negative of

el 20 e u n . n
IS X ‘X_ . Thus, we define one of the 'basic' collision integrals

(B.18). (34) 3 4o
A S P L
ot
ﬁeg&’c v XLM" - E\,_Vs L, +% L’tf‘;w
o ™ Al ﬁ’

RTINS EAR)

i $



APPENDIX C

RELATIONSHIPS BETWEEN SYSTEM CONSTANTS

o 1)

We shall prove that X —3X ; it is expeditious to evaluate

these coefficients in spherical coordinates. Thus,

(Ch

X E\&?‘? O&K\\\)z%:“@(\\\\:
o 8 O
: \‘“( S&GS&V y‘stw»x
BL\L;)‘PL \‘\ BLQ \%ﬁ\‘\lsﬂe \(l‘) Q 1)*-
R 9 B‘Q 3
L\ i‘j ;P 3,;4

Hence, since X = %Qm@ ’ W:P%@%e - 732/?(»340 p

X \*’" \2{ SBQ "SM\Q 4§ *i ) (O{% Qentol+
g)”@ Sim
F Y .

_\.3/}) D—'LQ 11— l"}m @ (9—\-3»«“(() OD\*@-L +

\Qmeii smcme] +

‘1//& 3-/’)1%\ Q v lsm Qesne -1 14

12913\ et g +sw“cvcm‘*@1\§

Next, performing the 1ntegrat10n overQ—Band(Q one obtains
N 3 ¢
“‘“?M PA 5950
P7y .

_(c.19
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In the same way, one shows:
X Y:Q WP TR
\S Or })CB’(/P) )/»\*7) ‘;/31, . (C.2)
It is quite straightforward to show the validity of the other relation-
ships stated on page 4-20. Their proofs are essentially no different

from the one here described.



APPENDIX D
CALCULATIONAL AIDS TO CHAPTER 6

Table D-1: Some Useful Integrals
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Table D-2: Contributions to GgZ) (r,t)

Term in Collsn
Integral

Correspondin§ Contribution
to G(S ) (r,t)
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Term in Collsn
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Corresponding Contribution

Integral l to Gg (r,t)
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APPENDIX E

THE FUNCTIONAL CALCULUS

In the derivation of kinetic equations appearing in Chapter 7,
notions of the functional calculus play an important role. For this
reason it is probably helpful to consider some aspects of functionals
and their derivatives.

1. ""Z is a functional of the function x(t) in the interval (a,b) when it
depends on all the values taken on by x(t) when t varies in the interval
(a,b). W *F Thus, the functional is a generalization of the concept of a
function of many variables.

Ordinarily, one writes a function of the parameters o, (5, NNNNNN
in the following form: Z(«,(,....). Changing the notation, Z can also
be written as: Z(u g, Ug s .}). Now, suppose the set %"\L,L)'\LF’ ___'ls
is a continuous set of infinitely many points in the interval (a,b). The
set of variables Xuo(‘\x Q,,.“..@ can be represented by the function u(t),

Y
t€ (a,b). In this way, Z is a functional of u(t), and is written as Z( “(2\) !
Similarly, one can consider quantities which are functionals of more
than one function, say, u(t) and v(t) and which are, also, functions of
parameters AT PYRRE Such a functional might be written in the follow-

ing form:

F(yl, Vo ,H\u(t), V(t)))‘

afs
b

;PVolterra, 52 Chapter 1, Section 1.
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2. With regard to derivatives, too, the theory of the calculus of
functionals is a direct generalization of the theory of the calculus of
functions of many independent variables. For ordinary functions, the

Qi
partial derivative ——— is related to the total differential through

5\1{
af - E}; C,\\l\ . In the theory of functionals, the summation becomes
v oy
the integral, S g\: %’\L(x} dx:QS %.S V\}?‘\ &X and leads to the
é’\k\x\ iy

following definition: Aok t ‘.“\t\ “i] , defined as the first derivative
of the functional F with respect to the function u(t) at the point 4, is

determined by the following relationship:

b
S o u&\;sh\mdi £\ e - Fiu] 1
y ¢+0 3
Y
(o) A
1oL S\LWY\

Another definition, involving somewhat more rigor, is stated as
follows. In the neighborhood of a value %, let y(x) be given a continuous

increment © (x) which does not change sign, and such that |8(x)| £ £

for xo-h< x < X +h and ©(x) = 0 for x otherwise. Form the limit %V_
- = b

where AF = Fly(x) +9(x)] - Fly(®] and 0 - S O (x) dx. If g—{- <M
o

and if QE approaches (uniformly) a limit as® and h approach zero in an
arbitrary manner, then the limit is defined as the functional derivative
of F [y(x)] at the point x: F'iy(x; Xo-l . Hence, the definition is

analogous to the definition of the ordinary partial derivative:

** ipid., chapt.I, sec. II.
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A R TR N \ (lys... Merh V\“\ flu, ) ’X
du,  hwo © o W
We note that F' [y(x);xo] is a functional of y(x) and X -
3. In general, by applying successively the rule for =— to the
1 ul
| S ?
functionals G = y v v ., etc., one can show, as

X\W’b\\ %\Lk\rz\\%\kk o)

a logical consequence, that the appropriate defining relationship for the

nth functional derivative of F is:

& m o)+ fﬂ\@ﬂm :

AL
wh 1 \
(M
: S S S S ITCTE AR INCARCA L AR
o G "
4, Let us now make use of the definition of the functional derivative

to derive some relations which shall be useful in the ensuing discussion.
a) Suppose F [u] = Sa(x) u(x) dx. They\AF F [ux\+ Q’Y\( X)
“Flu)] = 53 a (x) ‘{\(x) dx + Gki_m) so that the definition,

L. w5, &

Nf\ &" implies: —}- = alx) .
Y0

K‘-"\L ) \\kb-\

b) Suppose Flul = u(y). Therefore, :Y-\L*EV\-\‘E&M =Y\/\"B\:&%’ x\"‘“&".
€ Ul

%¥ %\)\(\,)\ - g}&l‘b\&(‘,

o) Swe) NI

Hence,
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c) Product Differential Rule for Functionals:
Suppose F = A[u(x)] - B [u(x)] , where A and B are both
regular homogeneous functionals of degree l**, viz., Alu®)] =

:Xa(x) u(x) dx and B {u(x)]= Sb(y) u(y) dy. In this case,

AV = Flureqn1-Fiul = %\M“&%\X\uuﬂﬂ]pﬂ\mw HnY - “L‘&My
=€ X\ QQx) \Ok\mh\m \)\va)w\ﬂ‘ambc\-l CM&X rolEhy .
- eg\ Lo g Gkvzg)\%ﬂh\wwx‘%)&*&x roeh |

ST S AR
g_\k ~- %\)\I = % ‘_ GEQ‘\\D&V}\‘\' O-LVB\\OQ)(\] U.(\,)\d,‘x -

= SA) giug ¢ w2

%u W
qed.

°

d) Suppose FnY_u(xﬂ is a regular homogeneous functional of

degree n, i.e., FnYu(x)] = g Sa(xl, ceeax ) ulx) . Lu(x ) dx, . .dxn

and, in addition, the kernel a (x1 s e e e ,xn) is symmetric with respect

to permutation of its n variables.

Then, AF, = F. L uren1-F, (wl = i& \O.(m \cv\\&\f\u\u(m\ \«Lx«.\\

RESERRVICANRY RN PR W
& &t @&aabtc, - ,X.M\\Wl}‘(\’uk’\(\ ,‘&(% \&‘ &4‘ /E&mi )

>=‘*A functional of the form: ' ¢®
Fala®l = X@ && \J«\wt,\..m\%a RTCAT I o Ty

is called a regular homogeneous functional of degree n.
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Hence, due to the symmetric property of the kernel, a, the first func-
tional derivative is

N

&____ e V\\\.v&&L'X-’l,.~_X»\\'\Kk'\(-m\\»\)xk%m\&ﬁtk\,_&/ﬁm .
M)

Repeated differentiation yields, for the sth functional derivative:

S_
S V. _ oWt

- ¢ T - \\&bc XWX Y 5
%u&x-\..~xu\%5\ QNS\)L h " ) %ﬂ\ wlx \&"‘wl. &"‘M

e,



APPENDIX F

THE BBGKY HIERARCHY

By successive integration over the coordinates of the particles
of the assembly, the Liouville equation can be transformed into a
hierarchy of coupled integro-differential equations, each of which pro-
vides the temporal evolution of the s particle probability density in terms
of the s + 15t density.

For an isolated system for which the internal potential energy
can be considered to be the sum of two-body interactions, the Liouville

equation may be written as:

B_;_;““ = i\—\:*%f;‘-p&)‘ b\q(m\'v\-\ . (F.D

where \)‘ 6_\)\/3 is the Hamiltonian of motion and f_i k-Q
LL)

is the internal potential energy of the assembly. Let the n-particle
density be designated as &-\M\Xw',k\ ’_(.&o\ , as a reminder that the sys-
tem is symmetric under interchange of designation of any pair of

particles, except a pair in which one of the members is particle num-

st afe
3%

ber 1.

Integrate the Liouville equation over the coordinates Xer1’ Xy

One obtains:

""In other words, all particles of the assembly are assumed to be of the
same type; however, by focusing attention on particle #1], the initial
probability &,  (€." n\xm\ 1s not symmetric under 1nterchange of the
variable xj with any other xy. On the other hand, \(\MKXM ,0\“40\

is invariant under interchange of the designation of all other particles;
" MQXM'\*'\*io\ will therefore have a similar symmetry.
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o Ss
Bg‘s&kz"!*’h—“\ - K.\‘\ﬁ "ii (Q«'\ ) ‘Cs‘s\ +
) - vy

3 (F.2)

LR P B AL SRATAY |

o (R

where st\zﬁ‘\.\’\iao\ is defined by Eq. (3.2) of the text. To derive

Eq. (F.2) we have noted that &\ &(3«, &Q\ \ LQ\& y gmm\ =0
and that, also, \&C‘V\ \_ ?:Aw\" S_,“‘,“’\ =0,

Now, because of the symmetry properties of f n ( Xn; t\xl )
T o

oy
H

the previous equation yields the hierarchy:
%%
s o
)E.Eﬁkgs ;\'\Ma\ - \, \\5 * i/l, \Q\\ \‘ g.s’;,/& =
)J(( /LL») .
_ o, (FL3)
=\, L 20 S

On the other hand, suppose we had specified the initial positions

of two of the particles. Then, in contrast to the usual form of the

equations of the hierarchy (F.3), the following set would be obtained:
- D - -

BQ‘.‘(G?L')‘\'\:(?%J*-I.O\‘\' r\\ ‘q Q k’;“,{\’aoil\,»:

—_ ' AA c‘- () '

St

- - = - =
:&ML\Q‘;,Q—i‘lh.‘x,»;h\x.o‘x,.h X e rae
+ k’\/\—l\ &&13 ‘_@\."3 o\ R‘L"L k\“:‘7\:;2'5‘\‘\/\ ;z‘“ i" 0\1
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§_&‘\\&¢1.‘&\xo.x,o\ . '%%” C b\ =
ot r~

= \&‘\ WO (O -\ D ] ., (F.4b)

.‘.k‘V\"'L \\&,‘.3 ‘.LQ‘L“I, * &1‘1L:71.,i3 3 ‘k« \\z’co‘;);o\ 1

3L (K Rk o g2 0
_é_:s S, \ X - R' \AS B 2{3& LQ{\' ) Qsﬁ(gs‘,& \\(w'\(zo\’l pe

=(w-9) \&&“\K %z“'Q;‘s“‘St kx,*"\-\,\%w.%w (F.4c)
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Both sets, (F.3) and (F.4) are pertinent to the main text of this

analysis.
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