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FOREWORD

This set of notes has been compiled with one primary objective in mind:
to provide, in one volume, a handy reference for a large number of the commonly-
used mathematical formulae, and to do so consistently with respect to notation,
definition and normalization. Many of us keep these results available to us in
an excessive number of references, in which notation or normalization varies,
or formulae are so spread out that they are difficult to find, and their use is
time~consuming.

Short explanations are included, with some examples, to serve two purposes:
first, to recall to the user some of the ideas which may have slipped his mind
-since his detalled study of the material; second, for those who have never
studied the material, to make its use at least plausible, and to help in his
study of references.

No claim can be made that all the results anyone ever uses are here, but
it is hoped that a sufficient quantity of material is included to make neces-
sary only infrequent use of other references, except for integral tables, etc.
for elementary work. Of course, the user may find it desirable to add some
pages of his own.

Finally, it is recommended that those unfamiliar with the theory at any
point not blindly apply the formulae herein, for this is risky business at

best; a text should be studied (and, of course, understqod) first.
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ORTHOGONAL FUNCTIONS

In general, orthogonal functions arise in the solution of certain
boundary-value problems. The use of the properties of orthogonal funections
may often greatly simplify and systematize the solution to such a problem,
in addition to providing a natural way of making approximate solutions.

Iet us first meke clear the concept of orthogonality. We begin at what
may seem an Improbable starting point.
Two vectors, é and B in a three-dimensional space are said to be "ortho-

gonal” if the dot (innmer) product A-B vanishes:

é"_]-): = AlBl + A2B2 + A5B5 = i\ AiBi = 0.
i=1
This 1s easily generalized to a space with more than three dimensions. In
an n-dimensional space the concept of orthogonality is unchanged, except

that then the sum 1s over n terms A;B;, and we have for orthogonality

n
_A_"E = A.lBl + AEBE + e A_an = El AiBi = 0.
1=
Now one may think of the components of a vector, Al, Ay, AB’ as the
values of a (real) function at three values of its argument; say A = f(rl),

A

p = f(rz), A5 = f(r5), or, in terms which will make our efforts here more

clear, A; = f(%i) (ry = 1y, 2o, r5). That is, r has the values ry, rp, rs,
and to get A;j, put r; in f(r).

We may now think of r as having any number, say n, possible values in
some range, so that f(r) evaluated at the various r's generates an n-
dimensional vector. The step to considering a function as an infinitely-
many-dimensional vector is now a natural one; we allow n to increase without
bound, r taking all values in its range.

Iet r have some range a4 r<b in which it takes on n values such that

r. - r,
J

-1 =Z§rj, and suppose two such n-dimensional vectors f(rj) and



o
g(r;) are thus generated. The inner product of f with g is generalized as

4

n

2 : f(I‘j) g(rj)Arja

J=1
Above, for A*B, rj takes on only the discrete values 1, 2, 3; so Ar is
always unity in this simple case. Now let us consider the case as n—>@&0,
r taking all values between a and b. The inner product, if it exists, is
then

n

lim Z f(r.) g(rJ.)ArJ_.

n-e J=1 J
With proper restrictions onArj (maxArj—? 0) and on the range of r(a%r£b),

this is just the limit occuring in the definition of the ordinary integral.

Thus we say that the inner product of f(r) with g(r), which is often denoted
(f,g), is

(f,2) =7f(r) g(r) a r.
Of course, the iange could be infinite.

This discussion constitutes the generalization of the dot, or inner,
product, to functions.

Iwo functions are then by definition orthogonal over the range a&rfb when

(56) = [0 6) ar =0

As we shall :ee, this definition is subject to generalization by the

inclusion of a "weight function" p(r), with which
b

(2,6) = [5(x) £(x) g(x) ar.
Here f and g aie said to be orthogonal "with respect to weight function p"
over the range a<r<b. The function p(r) may of course be unity.

Only the function f(r) = O, a%r€b is orthogonal to itself. In general
we denote the inner product of a function with itself as

(£, £) = jf(rg) dr = sz,
a

and call it the norm of the function.
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Orthogonal sets may or may not possess two other properties, normality

and completeness. A set of orthogonal functions gtk.(u)§ is said to be

normal or orthonormal if Ni =1 for all i.

A set of functions {Ui (u)} orthogonal on the interval ul& u € ug is
complete if there exists no other function orthogonal to all the T on the

same interval, with respect to the same weight function, if one is involved.

Importance of Orthogonal Functions

The importance of orthogonal sets in mathematical physics may perhaps
be indicated by further considerations of their analogs, orthogonal coord-
nate vectors. It is true that any N-dimensional vector may be defined in
terms of its components along N coordinates, provided that no more than two
of the reference coordinates are coplanar. But if the reference coordinates
are orthogonal, e.g., Cartesian coordinates, the equations take a particularly
simple form. The situation is somewhat similar when it is desired to expand
a function in terms of a set of other functions -- it is much simpler if the
set is orthogonal.

Completeness is another important property. It is apparent that no two
reference axes will suffice for the definition of a vector in 3-dimensional
space. The set of two references axes 1s not complete in ordinary space,
gince a third coordinate can be added which is orthogonal to both of them.
Addition of this coordinate makes the set complete. The situation with
orthogonal functions is exactly analogous. Some authors define a complete
set as a set in terms of which any other function defined on the same interval
can be expressed.

Some more common sets of orthogonal functions are the sines and cosines,
Bessel functions, Legendre polynomials, associated Legendre functions,
spherical harmonics, Laguerre and Hermite polynomials; operational properties

of which are listed in these notes.
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Generation of Orthogonal Functions

In the mathematical formulation of physical problems, one often en-
counters partial differential equations or integro-differential equations
(which contain not only derivatives of functiors but also integrals of
functions), with which are associated a set of boundary conditions. If
the equation and its boundary conditions are such as to be "separable" in
one of the variables, one may attempt to apply the method of "separation
of variables".

Suppose we (admittedly rather abstractly) represent our equation

@51?(11, Vy, Wy one g =0
where@?% is an operator involving the variables u, v, w,..., applied to the
function F(u,v,z. ..). For example,$§§might be something like

e
j’uzf U+ L' Klww') dw' +An°
so that when is applied to a function F the equation appears
695/‘,? F+y‘/’+ /k(ww’)/:/a w//w +AF

The process of separatlon proceeds as follows. One attempts to find
a variable, say[(, such that if it is assumed that F(u,v,w,...) may be
written

F(u,v,w) U((A) ¢/ﬂ'w ----)

then the equation

S5Ff= @5 ) bwl=o

can be written

Z(fUm)g & § 0w wit

Here ,ZL is an operator involving only Q , and Ils an operator involving

only U 2J-..- Returning to the example, assume
)

F(u v w)= Uuy @ w)
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SiFf= @ SUups- !
- 204 ) v L9 +ﬁ( (') oo

¢a&4. + ol + AZU@*U/KZMU 49/0'40/440—0

“We can, in this case, 1f U¢ #0, divide by ”f to get
2
(/ c{ ” +?I+ Z/((ww')¢(mu)c€w + A'=0

which can be rearranged
2 e
0/ :([Mz v"A“"Z‘——-j /uw,w)¢/”“))/‘u

as we wished. 1In this case the separatlon has been successful, for on

then

the left are functions of w only, while on the right stand only functions
of v and w. Now suppose we were to vary u, fixing v and w. Then the
right side would not change since it does not involve u, and is therefore

a constant. We therefore state this fact

u ;U F N° _/{ = - - _./K(ww')ﬁmw)/w

where/u}m a constant, called the "separation constant" We may choose
it at our discretion. We now have two equations, where only one existed
. 2
before: d U ( z 2) -
du
/
) l) =
(r+u’)@ +/ /ww)%/ww dw'=0
In order to effect a solutlon using this method, not only the equation,

but also the boundary conditions must be separable. Back in the example, say

the boundary conditions are

~ (u, g)w) =0
JF _
Ja (Y2, gw)= F (., Yw)

Introducing our assumption as to the form of ¥, that is,

Flu gw)=Utw)Plvw)
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ese become U(a‘) ¢/7)l- w) =0
¢(v,w)f7{% (etz) = @ W)Ul a2

Forﬁo, we can divide by¢ to get
Yi,)= o
:’{% (az)'; 0(461)

which are separated; they do not involve 7 and &/.

By the process of separation of variables we have, from the original
equation involving u, v, w generated a new set of equations, some of which
(those involving u) are a complete problem.

2

L. v (e pt)y= o

Vetuy=o0 | :7% (2)=Vtets)

(rr2t) @+ [ K () Pl 0) dw’'= 0
This was our objective in applying the method of separation of variables.
The process may be repeated on the remaining equation or performed on
another variable.

Now if, after separation, the u- equation can be put in the form

(1) %ﬁ[r(u) %—EJ i [Q(H)ﬂxp (u)] U=0

and the boundary conditions in the form

Il
o

alU(ul) + a‘QU' (ul) + alU(ue) + QQUT (uE)

1l
@]

(2) fo1U(w;) + boU" (uy) + By UCup) + BRU' (uy)

where a's, b's, a's, and B's are constants (some may be zero) then the system
of differential equation and boundary conditions is called a "Sturm-Liouville*
system". It will be noted that the Sturm-Liouville system is very general,
and includes many important equations as special cases, for example the wave

equation with those boundary conditions which are commonly applied.

*
pronounced ILEE-oo-vil, NOT LOO-i-vil.
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This system under quite general conditions generates a complete set
of orthogonal functions, one for each of an infinite, discrete set of values
of the parameter p. One finds the values of p, called "eigenvalues', for
which solutions exist, and the solution functions corresponding to these
eigenvalues, called "eigenfunctions'. If the eigenvalues are M /‘2) 12
and the corresponding eigenfunctions are Uj (u_)er (W,..., then in general
the functions are orthogonal over the range L(l to llg, with respect to weight

function p(l), that is,

u;
(3) 5
. p() U; (W) U;Wdu = N By,
Here Bij is the Kronecker delta, and p() is the same as in equation (1).

One must take care to find all possible eigenvalues (when the equation
and boundary conditions are written exactly as in (1) and (2) they are all
real). When all eigenvalues are found, the set of eigenfunctions is com-
plete, and any function reasonably well behaved between l(l and L{E may be
represented in terms of them. Say we seek an expansion of a function f(()

in terms of our eigenfunctions,

W = 2 5,0, W

i
where f; are a set of constants. Multiply on the right and left by ’Ujp W)

and integrate with respect to Y in the range t{l to L(E

Uz /A
fpw 0, () W - 72’ P U, (@ 1,03 aue
oy ul

u

wl
As a consequence of the orthogonality of the U, («)'s, defined in equation (3)

(L) UJ. () u; (L aw

this becomes

Tt - o
=L i3 By £N;

I
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We solve then for the fJ's;

Up
1 , 1
£ =1 fp(ug 0,0 160 aw = T (0,1).
J a J

In order to justify the switching of the order of summation and integration
here, and to guarantee the existence of (U,,f), we usually require that

(W) be absolutely integrable, i.e.,
/2

] f() dw exists.
1

u,
It is to be noted that the outline of procedure above requires the

solution of an ordinary differential equation, perhaps not an easy task,

but one hopes not as difficult as the problem of solving the partial differ-
ential equation. Very often the eigenfunctions which fit a given problem
are known, and so this process can be bypassed.

Different sets of eigenfunctions have different sets of operational
properties, that is, sets of relationships between members, which may be
found useful.

We note in conclusion that sets of orthogonal functions are generated
by other means than by Sturm-Liouville systems; by sets of differential
equations and boundary conditions which are not of Sturm-Liouville type,
and by integral equations, to mention two.

Use of Orthogonal Functilons

Let us consider a linear partial differential equation outlining the
elimination of one variable from the equation. Under rather general con-
ditions, we may expend F in an infinite series of orthagonal functions
which we assume known;

F(u,v,w,...) = £ (VoW,ean) U; (u)
i=0
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where Wo
) = 1 [ v, G du
oy
The formula for the coefficient fi follows immediately from multiplying
the first equation by p) Uy (U) and integrating. Iet the original
partial differential equation be represented abstractly.
@ Flu,V,Wwyeor) = S(u,v,w,...)
where @ is a linear differential operator and @F merely represents that
part of the differential equation that involves F. Assume F to be expanded
in a series in f£,U;; multiply the equation by p(LL)UJ, (W) and integrate over U

from {4 to U.
1 2

@F = s
@2; £5U; = S

LLE u2
jp(a) U (W @:fiUidazj Sp(a)UJ W dee = szsj (vyw,..n)
1

w1
where u‘2

Sj = S(u,vyw,y...) p(l[_)UJ. (w) dau
Uy
so that
@

8(u,v,Wy...) = E SJUJ_.

d
Now, by using the operational properties of the Ui's , one reduces the
equations (an infinite set, one for each i) to a set in the f‘i‘s and si's.
The particular steps taken depend upon the exact nature of the operator @
and the set of equations may be coupled, i.e., f's with geveral indices may
appear in the same equation (for example, f, 10 fi f;,1). These equations
do not involve derivatives with respect to variable &, and we have gained

in this respect. But we have to contend with the infinite set of equations.
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All is not lost at this point, for, as it turns out, the series for F,
(called a generalized Fourier series because of the manner in which the
coefficients of Ui's are chosen in the expansion for F), is the most rapidly
convergent series possible in the Ui’s. Thus solving for only the coefficients
of the leading terms in the series may enable us to obtain a satisfactory
approximation to F. Also, very often, we are interested only in one or two
of the fi's on physical or other grounds.

Operational Properties of Some Common Sets of Orthogonal Functions

There follow now a few pages on which are outlined, rather concisely,
some basic operational properties of some commonly occuring sets of ortho-
gonal functions. The familiar set of sines and cosines used in the con-
struction of Fourier series is included as an example. These lists of
properties contained in these notes are by no means complete, though they
may suffice for the solution of many problems. The references listed with
each section give detailed derivations, more extensive lists of properties,
more discussions of the method and its limitations, or examples of the use
of orthogonal functions. It is recommended that one unfamiliar with these
functions read in some of these references, in order to avoid the pitfalls
of using mathematics beyond the realm of its applicability. These notes
have been assembled mainly for reference. Of special interest may be the
tables in Margenau and Murphy, page 254, which lists twelve special cases
of the Sturm-Liouville equation with the name of the orthogonal set which
satisfies each one.

I. Fourier Series, Range -f< x& L

A. Boundary Value Problem satisfied by sines and cosines:
d°r + k2

dx2

f = 0 (k real)

£-0) = (@), (L) = £(4)
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B. Orthogonal Set

. n
sin 9_32(_ s COS ,_.TL’}E
2

for fJ£ x g@, n=0,1,2,...

C. Expansion in Fourler Series
F(x) = 8 4 E ( cos nyrx + by, sin n;:x\
n=1 2 /

where

2

o
]

F(x) cos 51_3_1_)5 dx n=0,1,2...

L
£

-2
n = f sin ngrx dx n=1,2,.

D. Normallzatlon Factors:

¥ cos N2n sin = f) n=1,2,...

EQ;

E. Orthonormal Set

o'
1

i

n
2
No cos

il

1 3 1 cos nux , 1
‘2,2 U L |7 L

F. Fourier Series, range 0% x &€ L.

One may wish to expand a function defined on an interval 0 €x €1, in
a Fourier series. One may choose at his discretion either of two ways, ex-
panding either in a series of sines or one of cosines. The sine- series
expansion yields an odd function, the cosine- series an even function, when
the series is considered as a continuation of the function outside the
range 0 € x £ L. An "odd function" is one such that F(x) = -F(-x), an

"even function" such that F(x) = F(-x), as below.
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‘-D- —— e,
r\/ L X L
0dd Function Even Function

Of course, either series represents the function on the interval 04 x £ L.

Note that on this range eitherg,sin n;rxi or 51, cos nnx% n=1,2y..., 1is
L L

a complete set, thus the two possible expansions.

G. Expansion in "Half-Range" Series

@D
F(x) = ag a, Cos nxx
z n=1 L
or @
F(x) = Z b sin nax,
n=1 A
whe
re L
a, = 2 IF(X) cos nxx dx, ~n = 0,1,2,...
L J L
. ,
b, = 2 ( F(x) sin nmx dx, n=12,...
L L

o

H. Comment on Expansions of "0dd" and "Even" Functions in Full-Renge Series

Consider the coefficients in a full-range expansion for an even function,

i.e., F(x) such that F(x) = F(-x)

L
a, = i/F(x)cos% dx =
L 2
-2
° L2
i):(F(x) cos nmx dx + F(x) cos nmgx dx
2
2| ), ) 2
putting -x for x in the first integral,
o 2
= 1] [F(-x) cos -nmx (-dx) + F(x) cos nmx dx
Y/ 2 2

2



-13-

use F(-x) = F(x), cos (— nxx ): cos nmx, and switch order of integration

w3 £
[ 2 2
= 1 fF(x) cos nmx dx + fF(X) cos nyx dx
2 | L o L
a, = 2 {ﬁ(x) cos nmx dax £ O in general.
L |’
= o
b, = 1 jF(x) sin npx dx
L

/-2 £
nx

2
1 F‘(x) dx + /F(X) sin nyx dx
AR £ L

it

in

w0

put -x for x, in first integral,

o £
1 {F(-X) sin -npx (-dx) + /F(x) sin nyx dx

H

21% L o A
use F(x) = F(-x), sin(-p_n_gc_)z -sin ngx, and switch order of integrations.
N £ V4 P
= 1 -fF(x) sin npx ax + /F(x) sin nmx dx
2| % A 5 2
=0 all n = 1,2,...

Thus, the coefficients of the sine terms in the full range expansion of an
even function are all zero; the cosine coefficients do not, of course,
vanish for all n.

‘he situation is much the same with respect to coefricients in the full
range expansion of odd functions, except that in this case it is the co-
efficients of the cosine terms which vanish, for n = 0,1,2...

II. Legendre Polynomials (Range -1 £x £ 1)

A. Generating Funttion

o0

L2

B(xy) = 1 D3 P ()
(1 - 2xy + y2)H/E =0

1 azH y=0
L 24 Jv 4
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B. Recurrence Relations

1. (4 +1) 1?2‘+1(X) - 24+ 1) x B, (x) +[i _l(x) =0

2. iv_l(x) - Pie(x) + xPi_l (x) =0

C. Differential Equation Satisfied by P, (x)

1. L -x)PB" (x) -2xP (x)+ J/ P+ 1) lje(x) =0 (f an integer)

2 2

Very often x = cos &.

2. Normal Form

aI’

9% L pf+1) A -B)+1 B =0
2 72 2

ox (1 - x%)

D. Rodrigues's Formula
Y Y/

Pyx) = 1_ a x% - 1)
g W2

2
E. Normalizing Factor

Norm of Pﬂ(x) is

1
Nj =£(P£(X) ¥ ax = 2

290+ 1

F. Orthogonality

1
2
J () By (x) ax = B,

where S&Ql is the Kronecker delta, defined Eielr= 51,[ F,e/

G. Expansion in Legendre Polynomials

Any function f(x) which is defined over the range -1 < x €1, and
which is absolutely integrable over this range may be expanded in an infinite

series of Legendre Polynomials}
a0

Plx) = g £, P,00)
where
1
fg = 2,0; 1 5 f(x) P, (x) ax

)
1

;\%’é j £(x) lia(x) dx
L -1
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Normalized Legendre Polynomials

P.Q(X) = Pz(x)

Yo
Expansion in Normalized Polynomials
%
5x) = 2. g (x)
=%

1
3 .ﬁj_l g (x) pz(X) dx.

A Few Low-Degree lLegendre Polynomials and Respective Norms

PO(_X) =1 No =2

P (x) = x ng = 2/3
By(x) = 1/2(3%2 - 1) N2 = 2/5
Ps(x) =T, V Ny =27
Py (x) = 1/8(35x - 30x° + 3) Nf = 2/9
P5(x) = 1/8(63x7 - 70x> + 15x) 1\152 = 2/11
Pg(x) = l/l6(231x6 - 315:3F + 105x2 -5) N62 = 2/13

Integral Representation of Fp(x)

2
PL(X =1 [[x + (%2 - l)l/2 cosﬁ aq

Bounds on Pg(x)

For -1& x €1,

,P (x),él, a1l K.

References on Legendre Pol;ynomlals

— oo

D. Jackson; "Fourier Series and Orthogonal Polynomials", Carus Math.
Monographs, Number 6, 1941, pp. 45-68.

H. Margenau and G. M. Murphy; "The Mathematics of Physics and Chemistry",
D. Van Nostrand, First Edition, 1943, pp. 94-109.

A. G. Webster;"Partial Differential Equations of Math. Phys.", G.E.
Stechert and Company, 1927, pp. 302-320.

R.V. Churchill; "Fourier Series and Boundary Value Problems”, McGraw Hill,
1941, pp.175-201. (for discussion of concept of orthogonality, see Chap. III).

E. Jahnke and F. Emde; "Tables of Functions", Dover Publications, 1945,
pp. 107-125. (Lists somé properties and tabulates functions).
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III. Associated Legendre Functions

e p— — o po— — — o— — T — — o—

A. Definition of the Associated Iegendre Functions (Associated Legendre

Polynomials m
1.oPL(x) = (- 2)° g (x) (0£m £g)
“m 2
dx
m % ﬂ+m Vi
2. P, () = (- x2)° 4 (x° - 1)
22 gl fFT

B. Recurrence Relations

m+1

1. i (x) - 2m X Iiré__ (x) +Ea(ﬂ+ 1) - m(m-lﬂ P‘el_n-l(x)» =0

\'l - x@

m m m+l
2. xP’Q (x) = (@+m) % 1 (x) + (1 -‘m+l) Pj a (x)
2 +1
1/2 m+1 m+i
50 -7 B () = B () -3 ) ()
20+ 1
L m+1 m
- Pz __2om (Q+m) P (x) + (@ -ms1) P" (x)
",l—xg (2g + 1) £-1 y s
m-1
Jetas v - me - 1) 260
C. Differential Equation Satisfied by B, (x)
1. (@ - x°) desz - 2xaPp+| 0+ 1) - n =0
ax” dx 1-x°
2. Since PE (x) is defined on the interval -14 x £ 1, in physical

applications Pz(x) is often associated with an angle © through the
relation x = cos 6. Then the equation satisfied by Pjé (x) may be

found in the form

a“Fy (x) +cot @ aFp (x) + W@ +1) - u? PZ(X) -0

a6° de sin® ©

or

1 d sine da| P (x) +|W+1) - m [P'(x) = O
s5in 6 WG| £ 2

sinE'O
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D. Expression of P, (cos ) in terms of Fp (The Addition Theorem)

1. Expression 91 P (pl and 92, (pz denote, respectively, the polar and
azimuthal angles of two lines passing through the origin, then 6, the
angle between these two lines, is given by

cos 6 = cosel cos 92 + s:.n? sin 92 cos (q% _COQ), see figure.
With these definitions, P (cos ©) may be expressed

Py (cos 0) = P‘Q(éosel) ?6(005 a,) +

Eél- EQ;?;;: Pz (cos@l) P; (00592) cos m(¢l -g).
Ny

2. If P;i(x) is defined in a slightly different manner, allowing

negative values for' m«,l
m

P (x) = 1-x2)7
2 T
then the expa.ns&on may be written

Pl(cos 0) = é_ﬁ(ié;:f): P; (cosel) P (cos 92) cos m (¢l—¢é)

dlml

P,(x) (Im|£.2)

E. Normalizing Factor

2 1 2
l\lm) =} Pm X] dx = 24+ m)!
(«6 -1 [ 2 &) 2£2+T %Qt mgl

F. References

1. H. Margenan and G. M. Murphy; "The Mathematics of Physics and Chemistry,
D. Van Nostrand, lst edition (193L4).



-18-

2. A. G. Webster; "Partial Differential Equations of Math. Physics”, G. E.
Stechert and Company (1927).

3. D. K. Holmes and R. V. Meghreblian, "Notes on Reactor Analysis, Part II,
Theory", U.S.A.E.C. Document CF- 4-7-88 (Part II), August 1955, pp. 164-165.

4 E. Jahnke and F. Emde;"Tables of Functions", Dover Publications (1945).
IV.. Spherical Harmonics
A. Definition of Y"(£l)

The spherical harmonics are a complete, orthonormal set of complex
functions of two variables, defined on the unit sphere. Below, the vector
symbol {_l will be used to denote a pair of variables, ©, @here taken to bey
respectively, the polar and azimuthal angles specifying a point on the unit

sphere with reference to a coordinate system at its center. With these con-

ventions, the functions Yi (SL) are defined

T (Q
L ()
also, it defines/a: cos @ , |ml
1/2 2 f+ml 2 .
2 fefer (LampX 0o 2 £ (2oaje™?
L L (£+|m|)1 2 g dﬁ—lml
Note: Yo = (-1)" v here * denotes complex conjugate)

2z 2

B. Expression of Pp(cos ©) in Terms of the Spherical Harmonics

Defineél, CPl, i.e. _(_2,._, and 92,@, ioe.,_Q_g as the polar and azimuthal
angles specifying two points on the unit sphere, with respect to a coordinate
system at its center. Denote by © the angle between the lines drawn from
each point to the origin of the coordinates. Then:

)

! m *
]ie'(cos ) = 223‘\"1 :,,lYQQ_l) Yj; (Q_Q)

C. Orthonormality of YT (1)

k m¥
jg.yj (@) ¥, (@)= »;,5

where the integral over vector f_?_ indicates a double integration over the

full ranges of ©, Cp; T zZoe , 0 &@LQTE.

Y,
noj=a
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D. Expansion in Spherical Harmonics

Any functions, perhaps complex, of the variables & and ﬁ y 1.e.,82,
absolutely integrable over & and f , ean be expanded in terms of the

functions Yzl. (LY):

o0
r -2, ZF‘“ ¥, (@)
£ m=g®
where

*

¥, = IF(_Q:) Yi Q) asz
‘a

E. Differential Equation Satisfied by Yi (Q):

Pt

Qe Do sin © Q‘P (n integer)
Assume Y = D(Q)@(cos 6) and say

d_ (sindg) + 1 QEYQ +0@+1) (sin@) Y = &

32Y = -m®Y; impose the conditions Y bounded at cos@ = + 1
R
(makes g an integer) Y single-valued in @ (makes m

an integer).
F. Some Low-Order Spherical Harmonics

0
Y, () = 1

Y-l Q) = E 3 }1/2 sin@e'i@
1 T,
Yol (<) fi}l/g cos &
s
Y (@) Fggmeé@
1 "8«

G. A Useful Relationship

1l

it

If the vector £ is considered to represent a point on the unit sphere,

its components can be represented

Q. x = sin@cos @
ay © sin®sin cf
cos &

N
1
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If a new set of components be constructed,

Q=1 (K2 -iQy) =1
T d
QZ CO,SQ

sin@(cos ¢f 1 sin¢)

]

L,

a1 - 1 (_Qx+igzy) = 1 ,sine(coscp+i sind)
B B

then these are readily seen to be expressible as thej?::].spherical harmonics

(see E), » e Y B
s —-<§r)1/2 '
Lo = (%’1)1/2 i

1

H... References

1. H. Margenan and G. M, Murphy: "The Mathematics of Chemistry and Physics),
D. Van Nostrand, 1lst edition, (193k4).

2. A. G, Webster; "Partial Differential Equations of Mathematical Physics",
G. E. Stechert, (1927).

3. E. Jahnke and F. Emde; "Tables of Functions', Dover Publications, 1945,
pp. 107-125 (Lists some properties and tabulates functions).

L. D. K. Holmes and R. V. Meghreblian; "Notes on Reactor Analysis,
Part II, Theory", U.S.A.E.C. Document CF-54-7-88 (Part II), August 1955.

5. L. I. Schiff, "Quantum Mechanics", 2nd Edition, McGraw Hill, 1955, p. T73.

6. Whittaker and Watsonj "Modern Analysis'; 4th edition, Cambridge
University Press (1927), pp. 391-396.

. Laguerre Polynomials

A. Derivative Definition

M - n
an(x) = (1) xet a (@)

d
axc
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Generating Function -xt
H(x,t) = (1,-1:)’(0”1 f (-1)" Ih(o‘) (x) £

n=0 “n!
- (o)
Thus Ln(a) (x) =] & (1-t) ( ]
ath
Differential Equation Satisfied by Ln(o‘) (x):
xdey +(@-x+1)dy +ny =0 n = 0,1,2,...
) ax

Orthogonality, range 0 & x & €O

!

fxa e™* Im(a) (x) ]__h(oz) (x) &x = N2 smn
(s,

where

Nn2 = (-l)n n! r‘(n +a+ 1)

Expansion ia% Laguerre Polynomials

r) = D, i@ ()

n=0

where o0

x% e™ p(x) L,

f = () (x) d&x

1
n )

Np
)

m
Expansion of x in Laguerre polynomials.

(1)t [ (o +m+ ) 1 (% (x)
= n'[‘l(n+oz+l)

Recurrence Relations

(o) (x) (o)

a. (x-2n-q-1) 1L,

b. L'n+1(a) (x) = (n+1) Ll

@ ) -1, )

= L (x) + n(n + ) L3
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VI. Bessel Functions

A. Differential Equation Satisfied by Bessel Functions.

1. & +1 dy + @ -p*)y=0
=0

or 2. 1d_ (xgl)+(l—,£ y
x d&x dx 2

(An extensive listing of other equations satisfied by Bessel func:tions
is given in Reference 2.)

B. General Solution of Above Equations.

i

v A ,JV(X) + BJ_‘)(X) () non-integral)
y = A Jn(x) £ Bl\In(x) (n integral)
(Nn(x) is frequently represented by the symbol Yn(x).

where A and B are arbitrary corstants.

Bessel Functions of the first kind of nth order.

7,6)
1, (x)

For non-integers,

*Neumann Functions, or Bessel Functions of the second kind.

I

NV(X) = J (x) cosymn - J—-V(X>
sin ) =

For Y/ = an integer, the above expression reduces to*¥
l) n: ger, D n+%r

@ il
Nn(x) = 2J (x)loglx -1 (-1) {2 % F(¥) + F (n +r)
7 n 2 7 =0 y: (htv)!
-1 (n-v= 1)! (1 X)—n+2r
T ! 2
V=0
a
where F(y) = Z 1
S=1's

* In reference 4, these are called Weber functions

*% This is shown in reference 8, pg. 577.
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A third function which sometimes finds use is the Hankel function,

or Bessel function of the third kind. There are two such functions,

defined by
g & o) EACEERNCY (v unrestricted)
Hf)ﬁ)szw-i%@)

Then, for integers s Wwe see that a solution to Bessel's equation will be
A1H (X)+AH()(X)

where Al and A2 are arbitrary constants and may be complex.

These functions bear the same relation to the Bessel function J ) (x)
and Nl) (x) as the functions exp (+px) bear to cos Y x and sinYx. They
satisfy the same differential equation and recursion relations as JV (x).
Their importance results from the fact that they alone vanish for an infinite
complex argument, vis. H(l) if the imaginary part of the argument is positive,
1®) if it 15 negative, i.e, lim H((',)réii 0, lim Hé‘) —e oseﬁl

V2o Y>»co
From the above equations, we can also write

12_.[ (2 )( )+ (l) (x)] () wunrestricted)

, (2) (1
i[E "(x) - H (x)
L[ ]

C. Series Representation for Bessel Functions of the first kind of Order n.

i

JV(X)
NV(X>

i

= ar+n
5,69 = 0] (0 ()
=0
L L (1 +n+r)

D. Properties of Bessel Functions

(1" 5 )
(-1)" 3 (=x)

i

1. ,Jn(x)

i

2. Jn(x)
3. Bounds on Jh(x)

a. I.Jn(x)l <1 (n =0,1,2...) x20

k

b. IdK Jn(x)lf:l (o =0,1,2..;5 K=1,2..) x20
ax
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4, ILimits for J“(x) where n equal zero or positive integer.

a. lim Jn(x) =0

nco
b, lim J (x) =0
X 900
A
c. lim Jﬂ(X) = }f,
X 20 27!

5. Limits for Nn(x) for n = O or positive integer and x real.

a. lim N (x) =0

X D

I

I

b. lim N, (x)

w— —

(n-1)! (z)n nz 1.

X330 s £
c. lim NO(X) = -24,2 (c¥= 1.781)
X Do LI S

6. Graphs of J“(x) and Nn(x)

Jo (1)

3.6
/le (7‘\

s ¢ 7 6 4 1o uw & 13 14 s
Variation of J,(x), J) (x) and —%

~
N
t
K0\N

J_(x) with x.
A
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Ids

o

a5

N ¢x)

2 3 4 5 ¢ 7 &

-5~/
o ™
.y

0 112
—px

~QF

Variations of N, (x) and N ()

with x.
E. Q@enerating Function
exp [_7} (t - :_L_] = I, (x) 7 (n integral)
2 t h=-a
F. Recursion Formulae
a. 2rm(x) = g %) - Jn+l(x)

(x) (x)

b. . %E'Jh (x) = I + J

c.. xdn'(x) = x Jn_l(x) - nJ (=)
=X Jn(x) - xJ, 5 ()
G. Differential Formulae:

a. g__[xn I, (x):l
dx

b. g__':x_n J (x)]
= n

H. Orthogonality, range 0éx £C

1. jz x dn (Nyyx) Iy (Agex) dx = By Ny

il

n (x)
X dy g

1l
1
™
1
B
o
5
"

where A,y are positive roots of the equation J,(Ac) = O

| PR >
and Nnj =C l:Jn+l ()\.njC)j

2
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2 [ %0y (g ) Ty (o) W= 8, M

where }\.n‘e'are the positive roots of the equation (A c) J'n (Ac) =
-hJ, (AC) or its equivalent
(n + h) I, (Me) - Ac Il (x¢) =0

where h is some constant 70

n = 0,1}2-' ..
2
v 2 5 2., .2 2
and an =] N ,C7+Dh" - I, (}'?ng_'c)
1.2
2N no
I. Expansion in Bessel Functions
f(x) :ZAJJH(?\.HJ.X)
where Aj will be represented either by
c
a. Ay = - 2 5 x £ (x) Jn().njx) dx
Tt T )
when Jn()\.njc) =0 . .
b. or Aj = Mg _ /
7 z ¥ =4 . _
Ay ¢S+ - )[Jn(xnjcf ] x T (x) Jn(%.na.x) dx

when th‘n(XC) = -h Jn(h.c)

J. Bessel Integral Form
kjA
Jo(x) = L (cos (n6 -xsine)de (n =0,1,2...)
' T
(0]

VII. Modified Bessel Functions

A. Differential Equation satisfied by Modified Bessel Functions.

2 Zz
Ty o+ dy - (l»+_lZ_)3f=0
2 ax B

g

bl e

B. General Solution of Above Equation.

1t

v AT V(X) + BI_ U<X) (¥ non-integral)

y AIh(x) + BKn(x) (n integral)



C.

D.

Where

28~

A and B are arbitrary constants.

i

1 (2)
Kh(x)

For non-integers,

|

it

K, (x)

%[I_u(x) - IV(XE] 'é'i%ﬂ)??
)

o T R %iv-lHl(f)(-iX)
For integers,
K () = (1) 2 I () log (1/2 %) + 1 Z— (1) ()t (1/2 x)

v=0
b’ n+2r
-1 2 x}y 3 r

b o(a)® }?rz_; i 1n = gF(r)+F(n+ )%
where
F(¥) = Z 1

<=1 s

Relation of Modified Bessel Function of First Kind to Begssel Function

of First Kind.

For Y unrestricted,

Modified Bessel Function of the second kind of n

Iv(x) = i")Jd(ix)
. (2) (1) .
= %[HV () -m, (xﬂ
o0
= X‘) S (/4 x?‘)j
L] L C7EN R AV I g
where (). = (o) ((+1) ......... e+ -1)

Properties of T n (where n is integral).

1. I_n(x) = In(x)
2. n(x) =
3. @n In(x) = I 4(x) -

be

In l(x) + I1+l( )

In+l( %)

Modified Besgel Function of the first kind of _nth order.

th order.

-n4+2r



24 (x)
20

47

P}
'y

/T 2 3 4 5
Variation of KO(X) and K / (x) with x

30

/0

/ 2 3 4 5

Variation of I (x) and I ,(x) with x
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*¥Comment on notation of Jahnke and Emde.
1. A general cylindrical function 2$(X) is defined on page 14k Dby

Zp(x) = ClJf(X) + cgmb(x) (p integer or arbitrary positive)
where c;, ¢, denote arbitrary (real or complex) constants. Thus Zp(x) can
apply to Jb(X) by letting ¢, = 0, to Nb(x) for ey = 0, and to Hf(x) by other
constants.

A1l formulae on pages following use this definition of Zp(x)o
2. The function I?(X) is not listed as such, but is found as iEJp (ix) on
pages 224-229,
3. The function Kﬁ(x) is not listed, but

2K (x) = .l }&519 (ix)

" T 352)(ix)

o (1) (2)

1
The functions iHb< )(ix) = - (-ix) and B " (ix) = -H© (-ix) are
tabulated on pages 236-243.
k., This reference is full of extremely interesting, beautiful and helpful

pictures of many functions, almost suitable for hanging in the living.room.
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THE LAPLACE TRANSFORMATION

I. Introduction

A. Description

The Iaplace transformation permits many relatively complicatéd oper-
ations upon a function, such as differentiation and integration for instance,
to be replaced by simpler algebraic operations, such as multiplication or
division, upon the transform. It is analogous to the way in which such
operafions as multiplication and division are replaced by simpler processes
of ‘addition: and subtraction when we work not with the numbers themselves
but with their logarithms.
B. Definition

The Laplace transformation applied to a function f(t) associates a
function of a new variable with £(t). This function of s is denoted by
i T(t) or where no confusion will result, simply by (f(f) or F(s); and
the transform is defined Dby:

Jj(f) = f £(t) e 8% at
o)

C. Existance Conditions

For a Laplace transformation of f£(t) to exist and for f£(t) to be re-
coverable from its transform it is sufficient that f£(t) be of exponential
order, i.e. that there should exist a constant, a, such that the product;
f(t)l

is bounded for all values of t greater than some finite number T; and that

e—at

£(t) should be at least piecewise continuous over every finite interval
0 £t £T, T any finite number. These conditions are usually met by
functions occuring in physical problems. The number a is called the
exponential order of £(t). If a number a exists such that e~8 ,f(t)l is

bounded, f is said to be of exponential order.



~33.
D. Analyticity of F(s).

1f £(t) is piecewise continuous and of exponential order a, the trans-
form of f(t), i.e., F(s), is an analytic function of s for Re(s) 7a. Also,

it is true that for Re(s) Y a, lim F(s) = O and lim F(s) = O when s = x + iy.

-y
E. Theorems. x—veo N s

.

The Laplace transform of a sum of functions is the sum of the transforms

of the individual functions.

fero - Tor+ Lo

T e T e I I B

The Laplace transform of a constant times a function is the constant times
the transform of the function

i(cf) = ci(f)

e e e o, ammy pm— — Do o oo o Co—

If £(t) is a function of exponential order which is continuous and whose
derivative is at least piecewise continuous over every finite interval

0£€ ¢ fitg, and if f(t) approaches the value r(ot) as t approaches zero
from the right, then the ILaplace transform of the derivative of f(t) is

given by

fen

and.
f(f") = g2 I(f) - s(0+) - £ (0%)

the latter, of course, requires an extension of the continuity of f(t) and

i

s f(f) - £(0™)

its derivatives to include f£"(t), and may be formally shown by partial
integration. More generally, if f(t) and its first n-1 derivatives are con-

. n. . . 5
tinuous and df 1s piecewise continuous, then
at®

I[ﬁ]z sni(f) _ gh-1 £(ot) - -2 f"(0+) _____ _ f(n-l) (O+)
dt
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If £(t) is of exponential order and at least piecewise continuous, the

transform of J £(t) dt is given by

i jcf(t) dt = i(f +1 ]f(t) dt

a

]

F. Further Properties

Below, let us assume all functions of the variable t are piecewise con-

tinuous, O L4 & ', and of exponential order as t-»o0 . Then

Theorem V

i[eat f(t)] = F(s - a).

Theorem VI

If £(t-b), tZb
£ (t) =

0 , t<Db, then

i [fb (tﬂ “‘bSF(s)

iy — — — ot g — e —

t
i[/ £t - 1) glt) d‘{l - F(s)¥a(s)

t

=I[/g(t - 1) £f(1) dr

0

]

g vty (it oy e ooy wm iy oy o oy gmam

I[tf(w] !

ds

and, in general,

i[tnf(t)]

IT. Examples.

(-1)" aF
as®

il

A. Solving Simultaneous Egquations

Solve for y from the simultaneous equations

t
yv.+y+5/ zdt = cos t + 3 sin %
0
2yt + 3z' + 6z = O
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The transform of each equation is:

To) + f/zat =Of(c0s £) + 3] (sin t)
EI(y‘x) ¥5I(Z') +6I(Z) = 0
Lo 3] [ P! IR

524-1 s +1

2 [sof(y) +5] +3[sI(z) - r{] + 6I(z_) =

collecting terms and transposing

(S+1I(y)+5I -3
ESI(y +5(s+2I(z = 0

The two original integro-differential equations are now reduced to two

or;

o

linear algebrailc equations :LnI(y) and f(z Applying Cramer's rule

and solving for I(y) gince it is y which we want;

(S_+5 _3 3
Frz g (s+5 _5)
ﬁ(y) _ 0 3(s+2)] = 3(s+2_)( 82-;-1
- 33 (s + 3
' (s + 1) 3
5
2s 3(s + 2

O’r,(‘f(y): s +2 -3 s + 2
,s(,s2 +1) s(s + 3)

Applying the method of partial fractions;

i<y>:§+'?§_i_.l.-l + 2
8 S2+l s + 3 8




-36-

And; finding the inverses in the table of transforms, which are tables
relating functions of s to the corresponding functions of t, and will be
found in section IV of this paper,

y = -2cost+sint-ed (for t> 0)
It should be noted that one of the inherent characteristics of solving
differential equations by the use of Laplace transforms is that the
initial conditions are inecluded in the solution.
B. Eleetric Circuit Example

Siﬁce Laplace transforms are widely used in the determination of the
transient response of electric circuits, a simple circuif example is
given below.

Given,cir‘cuit below; \/ R
VA
+=

o

—E
L

Find, equation of current flow after switch is closed,

a. Circuit equation; E = iR + L éi
at

b. TRANSFORMING; E = I(s)R + LsI(s) - L£(07)
g
at t =0, i =0 so; £(0%) =0
c. solving for I(s)

I(s) = E
s(R + Ls

d. TAKING INVERSE

i(t) = E (1 - e’Rt/L)
R

C. Transfer Functions

For certain control functions, and for representing the dynamic behavior

of various devices such as reactors, heat exchangers, ete., it is advan-

tageous to use a "transfer function" because of the convenience in manipula-
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tion which obtains. The trangfer functions of many elements of a system,

when strung together in a block diagraﬁ, represent a convenient way of

writing complicatéd system equations. The transfer function of a system

may be defined as the ratio of the output to the input of the system in

transform (s) space.

Conditions for using transfer functions

1. Initial condition operator = O.
2. No loading between transfer functions.

3. Transfer function satisfies existence
conditions for Laplace trangformations.

L. ILinear system.

Example of Transfer*Fﬁnction R
Find Eo (s) of ?r—1ﬁ£ 1
i ‘
a. REquations
el = Ri + L g-i
dt
eo = I gi
dt
b. Transforms
Ei(s) = RI(g) + sLI(s)
Eo(s) = 8LI(s)
¢. Solving
Eo (s) = sLI(s) = sl = st
oy (R+sL) I(s) R + sL 1+ st
where t = L/R = circuit time constant.
d. Block diagram E, (s) st < E_(s)
— 1 + st -
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IITI. Inverse Transformations

A. Heaviside Methods.

When solving éqpationsvby the Iaplace transform technique, it 1s fre-
quently the most difficult part of the procedure to invert the transformed
solution for F(s) into the desired function £(t). A simple way of making
this inversion, but unfortunately a method only applicable to special cases,
is to reduce the answer to a number of simple expressions by using partial
fractions, and then apply the Heaviside theorems as outlined below:

Theorem 1

If y(t) = ;E _ll:E%E%' , where p(s) and q(s) are polynomials, and
the order of q(s) is gr:azer than the order of p(s), then the term in

y(t) corresponding to an unrepeated linear factor (s-a) of q(s) is

p(a) eat, or p(a) eat,
g!(a Q(a

where Q(s) is the product of all factors of q(s) except (s-a)

Example: If i(f (t)) = s2 + 2 , wvhat is £(t)?
s(s+1) (s32)
a. Roots of denominator are s =0, s = -1, 8 = - 2
b. p(e) = s°+2
c. q(s) = 83 +352 + 255 q'(s) = 332 4 68 + 2
. p(o) = 2, p(-1) =3, p(-2) = 6
C@'(e) = 2, qr (1) = -1, a=(-2) = 2
e. T(t) = % ot 4 2_‘e"t + 6 e™2b _ 1 -zt 4 3ot
-1 2

Theprem II

If y(t) = ;f~-l p(s) | where p(s) and q(s) are polynomials and
qisi

the order of q(s) is greater than the order of p(s), then the terms
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in y(t) corresponding to the repeated linear factor (s-a)

of q(s) are;

a - r-2 - e
8t ¢(2i:i§?> . 2?_2;!(9.) L e BLETE L fa) z:f-_lly
where f(s) is the quotient of p(s) and all the factors of q(s)
except (s-a) .

Example:
—EEZ;E;» _ SE+ 3 what is f(t)?
(s42)° (s+1)
a. P(s) = s433 P'(s) = (s41) - (s43) = - 2

s+l (S+l)2 ’('S+l)2
b. p(-2) =-13 pr(-2) = -2

soy terms in f(t) corresponding to (s+2)2 are

e2t | .o 4 1t = - 2 (o4t)
v 011!

then, as in the example of Theorem I;
p(s) = s+3; q(s) = s 4 532 + 8 + 4
q'(s)= 552+ 10s + 8

p(-1)= 2 Q' (-1) = 1
so3 £(t) = -e 2% (24t) 4 2e”?
Theorem IIT

If y(t) = éfii:p(s)] s where p(s) and q(s) are polynomials
and the order of q(gggz; greater than the order of p(s), then
the terms in y(t) corresponding to an unrepeated quadratic factor
[:s+a)2 + b%] of q(s) are g:ff_ (B cos bt + ¢r,sin bt) where
¢r and ¢i are respectively, tﬁe real and imaginary parts of
f(-a+ib), and P(s) is the quotient of p(s) and all the factors
of gq(s) except [}s+a)2 + bgl]

Example: . t = 5
SR ;ILCE( ) (s+2)2 (s2+2s+2)
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a. Considering the linear factor as in the example of Theorem II

4 - S 1 t(g = -;SE + 2
He) (82 + 28 + 2) prés) (s2 + 2s + 2)@

-1 3 pr(-2) =_

p(-2)

it

o]

§0, the terms in f(t) corresponding to the linear factor are;

eBt (-1/2 - 1) = - (1 +2t) e 2b
T2

b. considering, the quadratic faetor

2425+ 2= (s + 1)2 + 12

e e
o - ib) = (-1 + i) = —l + 1
p(-a + 1b) = p(-1 + 1) [(-1+1)+2J2
= -1+ 1 = =l +i = 1+1
(l+i)2 21 2 2

so; p.=p; =1/2
so; the terms in £(t) corresponding to (s + 2s + 2) are

e P(cos t + sin t)
2

Now, adding the two partial inverses, we get

£(t) = -(1 +2t) e 4+ eb(cos t + sin t)
2 2

B. The Inversion Integral

When the function cannot be reduced to a form ammenable to inversion by
tables of transforms or Heaviside methods, there remains a most powerful
method for the evaluation of inverse transformations. The inversion is

given by an integral in the complex s-plane,
d+r0

£(t) = 1 | P F(s) as
5r1
¥y-+®
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where zfis some real number so chosen that F(s) is analytic (see
Appendix A) for Re(s )ZZ{ , and the Cauchy principle value of the

integral is to be taken, i.e.

+iew

£(t) = 1 lim [ 5%F(s) ds.
eri  fIo ,
y-r00

Iet us illustrate the formal origin of the inversion integral in the
following way. In the complex plane let ¢(z) be a function of z, analytic

on the line x = Z s and in the entire half plane R to the right of this

line. Moreover, let ,;ZS(Z) approach zero uniformly as z becomes infinite
through this half plane. Then if 55 is any point in the half plane R, we
can choose a semi-circular contour ¢, composed of c¢; and cp, as shown below,

and apply Cauchy's integral formula, (see Appendix B)

¢ - 2§ 22 _4s

2ni 2- So
c
Here ,4)(5) is analytic within and on the boundary ¢ of a simply connected

region R and §, is any point in the interior of R (Integration around C

in positive sense). lﬁc%
ib--2 R
s-plane
| L& Cz
¥
x b
b b
Thus, Cauchy's integral formula yields .
5-ab
p(s) = 1 f(z)dz = 1 f(z)dz + 1 P(z)dz
2f1 Z-5 i Z-8 ol % - s
e

F+ib <
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Now, for values of z on the path of integration; ¢p, and for b sufficiently

large,

o2 ez

l! (z)dz fmlz—‘;llglz‘
F { oo

= TlbM
b -]s|

where M is the maximum value of ,¢ (z)l on c,. As b2e0, the fraction

hence

b approaches 1, and at the same time M approaches zerod. Hence

"R

b0
and the contour integral reduces to ¥+ALc0
¥orb
f(s) = 1im 1 )iz = 1 (z)dz
b 2“3. 7 - 8 Elﬁ. 5 ~ Z

J+eb @
now, taking the inverse transform of the aboveé, e'c‘luation,

¥+er00

1 ¢ (z)az

1’1§¢(s)§ = f(t) =I'l{ o1 | s - z
) J-~c0

= 1 s - z\ dz
2m
S 1( 1
= 1 2f'*""?l’s(z);f 55 - z?d‘z
kr®
1 ,
am
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Our final equation after switching from z to s as dummy variable in the

last integral Ya oo

;(*#(s)} = £(6) = 1 \Be) P s,
2ri
¥Y-Aa
is just the inversion integral which we were establishing.

At this point, it would be advantageous to know how to evaluate the
integral on the right. According to the residue theorem, the integral of
e'.Stjé(S) around a path enclosing the isolated singular points s,, s,----8;,
of esé(s) has the value

211 Eﬁl(t) + pg(t) + '""/')N(t)J
where/)n(t) = the residue of e5t¢(s) at = s, .

For discussion of residues, see Appendix C; for singular points, Appendix D.

Iet the path of integration be made up of the line segment 8 - ib,

A
¥ + ib, and ¢, then ~4 ¥+ 4b
@ Sn s- Ip/a/’IC
G
.S
s, 20 |¥ g
053 A
e 5-4b
~
¥+ib Y N
1 Sth(s) ds + 1 eSVP (s) as = -"/ (t)
ral Pl =
J-ib 35 n=1

If the second integral around c5 vanishes for b —»o© , as often happens,

we are led to the immediate result that

j—lggb(s)i = £(t) = %Z/n(t).
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Note that in the formal derivation of the inversion formula, we assumed
that $(s) @nd therefore efYf(s)) is analytic for sZ ¥ , and that
lig l CP(S)’ = 0 in that plane. In our discussion of the residue form of
8
thecz;version,vwe work in the left half-plane. This 1s because Iaplace
transforms have the property that they are amalytic in a right half-plane,
and that in that plane, lim [cp(s)] = 0.

8 >

Questions of the validity of the above procedures, alterations of con-

tour, and applications to problems are not dealt with here, as they are

presented in detail in the references.

IV. Table of Transforms.

F(s) £(t)
1 Unit impulse at t = 0, &[t)
8 Unit doublet impulse at t = O, éé(t)
1 Unit etep at t = 0, u(é)
)
1 o-at
(s + a)
1 -8t _ e"bt
(s+a) (s+b) b ~ a
s+c (c-a) e™@F - (c-b) e7PF
(sta) (s+b) b - a
‘B8+C e + ¢ - 8 e"'at + ¢ - Db e-bt
s(s+a) (s+Db) ab a(a-b) b(o-2a)
Lo 1 _ e-at + e~bt + e=Ct
(s+a) (s+b) (s+c) (c-a)(b-a) (a-b)(c-b) (a=c) (b-c)
{ sid (d-a) e™8% 4+ (d-p) e Pt 4+ (d-c) e~®P
(s+a)(s+b) (s+c) (b-a){c-a) (a-b)(c~b) a-c) (b-c)
52 + es + d (82 - ea + d)e8b & (c2-ec + d)eCt 4 (b2-ebtd)e Pt
(s+a)(s+b) (s+c) (o-a) (c-=a) (a-c) (b-c) (a~b) (c-Db)
1 1 sin bt

SEV + b2 b



s (s + a)

s + 4

(s + &) &=

..14,5_.

b

cos bt

e”a‘t sin bt
b

e~8t cog bt

1 (a2 + bg)l/2 sin (bt +$P)

1/2
1 (d-8)2 + bﬂ e gin (bt +4)
b

1 + 1 e~

o) ,
=arc tan b} bo =a2+b2

[(d - a)
hb

%: arc tan - arc tan (__}3
d-a -8,

O

gsinh Dbt

o

cosh bt

1 ot
n-1):

V-1

1 £ (V> 0)

'O

e ¥ +at - 1

b

(V may be non integer)

[f = arc tan (_PE)

 sin (bt ~4)

g

9‘4: arc tan b

]1/2 e™@% gin (bt+f)

(n is an integer 20)

= &

2, p2



1 sinh bt -1 ¢
jop] b2

1 (ecosh bt - 1) - 1 t2

o+ 212
1 (sin bt - bt cos bt)
opJ

}_.t sin bt

2b

1 (sin bt + bt cos bt)
oD

t cos bt

1 et (ein bt - bt cos bt)
2b3

1 te™®% sin bt
2b
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(s+a) te™®" cos bt
[ﬂs+a b2;]
1 eh (t - t1) u (t - t7)
2
1 (t.s + 1) e”t18 tu(t - t.)
— \1 1
2
S
22 - _
1 (b8 +2ts +2) e ® t2u(t - %)
85
Appendix A
Analyticity

Iet w be a single valued complex function of z,

o = f£(z) = ulx,y) + iv(x,y)

where u and v are real functions.

The definition of the limit of f(z) as z approaches z and the theorems
on limits of sums, products and quotients correspond to those in the theory
of functions of a real variable. 'The neighborhoods involved are now two-
dimensional; however; and the condition

lim
z»z f(z) = uy + iv

o

is satisfied if and only if the two-dimensional limits of the real functions
u(x,y) and v(x,y) as x—> x_, y=>y, have the values u, and v respectively.
Also, f(z) is continuous when z = z_ if and only if u(x,y) and v(x,y) are

both continuous at (xX,,¥,)-

The derivative of @ at a point z is

do = f£'(z) = lim aw = Llim f(z +Az) - £(z)
dz Az=>0 Az AzZ=0 AZ

provided this limit exists. (it must be independent of direction).

Suppose one chooses a path on which Ay = 0 so that Az = Ax. Then,



gsince &W = Au + 1AV,

H
Q/

e

+

e

Q/

<

dw = lim au + i Lov ou gv
&z  Ax20 [ AX A X X X

or, if Ax =0, so that &z = 1 Ay, then
AV =
AT ;y JY

Equating real and imaginary parts of the above equations, since we insist that

gﬁg = lim fau +1
dz AyD0 | 1Ay 1

the derivative must be independent of direction, we get
Su = 3v, v = -3u
Q¥ gy )x gy
These are known as the "Cauchy-Riemasmn conditions”.
Now, the definition of analyticity is that "a function f(z) is said
to be analytic at a point z, if its derivative £'(z) exists at every point
of some neighborhood of zo". And, it is necessary and sufficient that
f(z) = u + iv satisfy the Cauchy-Riemann conditions in order for the function
to have a derivative at point z.

Appendix B

Cauchy's Integral Formuls

Theorem I: If £(z) is analytic at all points within and on a closed
curve, ¢, then

é: f£f(z) dz = O

Proof:

éf(z)dz = é(u +iv) (dx+idy) = é (udx-vdy) + iévd.x—l—udy
c c C

C

Applying Green's lemma to each integral, .

ff(z)dz:/[{___v-g_%dxdy+i/ Q_E‘Q,Y. dx dy
x Qv R\Q* Y

but, because of analyticity the integrands on the right vanish

identically, giving

%f(z) dz = 0

c
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Theorem I,I

If £(z) is analytic within and on the boundary ¢ of a simply
connected region R and if z, is any point in the interior of R, then

f(z,) = _1 f(z) dz

2zl Z - Z
e

where the integration around c is in the pogitive sense.

Proof':

Let c_ be a circle with center at z, whose radius /P is sufficiently

small that Cq lies entirely within R (see Figure below)

.8

£(z) is analytic everywhere within R, hence f(z) 1s analytic
zZ - Z
everywhere within R except at z = z,. By the "pcz)-in‘ciple of

deformation of contours”, (see any complex variable book ) we get

%f z) # f(z) dz % f(z,) + £(z) - £(z,) dz
Z - 24 Z = 2 Z - Zq
: f(z ?5 % - £(z,) dz
z - z, Z - Zg

H

(4

I

Consider the first integral,

% o

Co Z - Zg

. 1O .
and let z -2y =r e , dz=yie A&, getting

2% =) 2%
[ kriel dé = i/ i@ = 2oxi
[¢] (e}

ie

r e
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And, observe that

/,f(z) - r(zo) dz|€ f'f(z) - f(zo)l ’dzl

Z - Zg Iz-—z

Co
0n cys Z ~ Zg =ﬂ
Also, lf_‘(z) - f(Z-o)I(GPrOVided ,z - zd, ??-/-'(S

Chooging ﬂ to be less than S s, We write

l% £(z) - £(zo) |2z ¢ 2{;:__[@2/ - € Id‘z/ - ;_270= on&

%o Z - Zg ﬂ co

Since the integral on the left is independent of & » yet cannot ex-

ceed 2n €, which can be made arbitrarily small, it follows that the
abgolute value of the integral is zero.

%+ We have

% £(z) = £(z,) 2xl + O or,
Zz - Z
Co o
f(zg) = 1 £(z) dz
2ni Z - Zg
C

which is "Cauchy's integral formula".
Appendix C

Calculation of Residues

I. Laurent series.

Theorem T:

If £(z) ds analytic throughout the closed region, R, bounded by two
concentric cilreles, cy and Cy, then at any point in the annular ring

bounded by the cjrcles, f(z) can be represented by the series

n
£(z) = ay (z - a)
N=~aD
where a is the common center of the circles, and

°n 7 l é f@;ng-lw
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each integral being taken in the counter-clockwise sense around any curve
¢, lying within the annulus and encircling its inner boundary (for proof
see any complex variable book). This series is called the Laurent series.
II. Residues
The coefficient, a_j, of the term (z -~ a)'l in the ILaurent expansion
of a funetion, f(z), ie related to the integral of the function through
the formula
ay = L1 f(z) dz.
2nl ]
c
In particular, the coefficient of (z - a)'l in the expansion of f(z)
"around an isolated Singular point™ is called the "residue" of f(z) at
that point.

If we consider a simply closed curve ¢ containing in its interior a

number of isolated singularities of a function f(z), then it can be shown

that éf(z) dz = 211:5.[1‘1 + Lp o+ mmm—e rnJ

c
where r,'s are residues of f(z) at the singular points within c.

I1I. Determination of Residues.
The determination of residues by the use of series expansions is
often quite tedious. An alternative procedure for a simple or first order

pole at z = a can be obtained by writing

f(z) = a-1 + a +a(z-8a)+ -—-mm-
)

and multiplying this by (z - &), to get
(z -~ a)f(z) =a] +a,(z -a)+a(z - a)2 t om———
‘and letting z —» a, we get

a_y = z%i?é (z - a) f(zi]

‘A general formula for the residue at a pole of order m is

(m-1)ta; = lim a1 I:(z - a)® f(z{]

Z - .a dzm‘l
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For polynomials, the method of residues reduces to the Heaviside
method for finding inverse Laplace transforms.
Appendix D

Regular and-Singular Points

If W = f(z) possesses a derivative at z - z, and at EVery point in

o)
some neighborhood of z,, then f(z) is said to be “analytic" at z = zg,
and z  1s called a "regular point" of the function.

If a function is asnalytie at some point in every neighborhood of a
point zy, but not at ZO; then %y 1s called a "Singular point" of the function.

If a function is analytic at all points except z, in some neighborhood
of zy, then z, is an "isolated singular point'.

About an isolated singular point z, a function always has a Laurent
series representation =

£(2) = Aol 4 Aeg b mem ho + B (2 - 7))+ - (0 )5 - 50| £ R

where Yp is the radius of the neighborhood in which £(z) is analytic

except at z . This series of negative powers of (z - zo) is called the

"principle part” of f(z) about the isclated singular point z,. The point

z, is an "essential singular point" of f(z) if the principle part has an

infinite number of non-vanishing terms. It is a '"pole of order m" if

A, #0and A =0whenn»m. It is called & "simple pole" when m = 1.
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FOURIER TRANSFORMS

I. Definitions
A. Basic Definitions

In addition to the Laplace transform there exists another commonly-used
transform, or set of transforms, the Fourier transforms. At least five differ-
ent Fourier transforms may be distinguished. Their definitions follow:

Finite Range Cosine transform
i

j’c [n] = C’n[f] = /f(x) cos nx dx (n = 0,1,2---)
o)

Finite Range Sine transform
T

\7s'[n.] = 8y [f] = /f(x) sin nx dx (n =1,2,3---)

o]

Infinite Range Cosine transgrm

?’c [r] = C. [f] = V_E_—‘/f(x) cos rx dx (0€ rée)
T Yo

Infinite Range Sine transfqé?

}s [r] = Sr[f] V—é_' ff(x) sin rx dx (04 réa)
T o

Infinite Range Exponential transform

?e[r] =fr [f] =V_?JT-[_ £(x) ™ ax (-cpéréco)

-00

B. Range of Definition

In the infinite range transforms, the transform variable is continuous;
in the case of the finite range transforms, the variable takes only positive
integer values or zero. Considering the range of integration used in the
definition of each transform, we see that the finite range transforms apply
to functions defined on a finite interval, the infinite range sine and cosine
transforms to functions defined on a semi-infinite interval, while the exponen-

tial transform applies to functions defined on the infinite interval.



-55-
C. Existence conditions.
As an existence condition for all these transforms it is customarily re-

quired that the function be absolutely integrable over the range, i.e.

IFKX)I dx exists
range

Note that although for the derivations toc follow, the more stringent con-
ditions of continuity or sectional continuity are imposed upon the function,
absolute integrability is all that is required in the general case.

II. Some Fundamental Properties
A. Transforms of Derivatives of Functions

Consider the finite range cosine transform of the derivative f' of the

function f,

Cn[fj = zf'(x) cos nx dx

Integrating by parts,

Cp, [f]

m

7
f(x) cos nx + n)/'f(x) sin nx dx
o) (0]

il

f(x) cos nx - £(0F) + n Sn[f]

and since n is an integer,

Cy [f'] - [(ml)Il £(x) - f(O+):| +ns, [£]

Consider also,

£
S, [f'] / f'(x) sin nx dx
0
n T,
f(x) sin nx -n )/,f(x) cos nx dx
o o
= —nCn [f]

Now taske for £, f = g'; we get by iteration

Cp [f"] Cn[g":, = [(-l)rl g'(n) -g' (O+2] +n Sn[g“]

,:(-l)rl g' (x) - g'(O+J - 0% ¢, [g]

i

il

1
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Similarly,

S, [g"] -n Cp [g']

- -n['(-—l)n g(x) - g(O_;’ -0 8, [&]
- n[e) - (" s -5, (8]

Now consider the Infinite range cosine transform

[2) a
Cr[f*] = vr}f_./f“(x) cos rx dx

[—4
and again integrating by parts, and assuming 1lim f(x) = O, which is a conse-
x-»eo
guence of our condition of absolute integrability, we get

Cr[f'] ‘uti_-' [—f(o-)]+ T EL:ZX) sin rx dx
-E £(0) + T 5, [f]

1
o
2 jf( (x) sin rx dx
T ‘o
-r " 2 ’f(x) co$ rx dx = -r C, [f]
T /o

Iterating once, we find

Cp [f'j - _“'_2_" £1(0) + rSr[f”]
m
’F £1(0) - 2 ¢, [f]
i
Similarly,
5, f'] = -rC, [f"]

-r - e
% £(0) S.. [f]

i

1]

and also

Sr[f']

]

]

il

Finally, consider

Er [f'] = 1 |f'(x) eirX dx

2 -0
and assuming lim f(x)—20
X»co (77,

Er [f'] = - ir |f(x) eTX dx
«Eﬂ /o

¢, L]

Iterating,

€[]
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In each case we have assumed continuity for f' and f" in order to perform
the indicated parts integrations. One may proceed with the iterations, obtain-
ing relations involviﬁg transforms of higher derivatives. Further properties
are derivable with similar ease, the procedure usually involving an integration
by parts.

B. Relations among Infinite Range Transforms.

It is interesting to note some relations among the infinite range transforms.
Recalling the identity

eirX = cos rx + 1 sin rx

we find that

oo -2
éerf] 1 f(x) cos rx dx + i I(f(x) sin rx dx

il

ﬂ_§;7 -0 V_§;1 -0

Q a0
Jf(x) cos rx dx + 1 [f(x) cos rx dx

‘E;;‘ 'Gﬁp V§;1 4

+ i f(x) sin rx dx + i [f(x) sin rx d&x

Il
Ju

21 J-ao V?;;w o

f(-x) cos rx d&x + 1 f(x) cos rx dx

|-

ad )
+ i ;f(x) sin rx dx - i ff(-x) sin rx dx

= =
Er[f] - % {cr [f(-x)] + C, [f(x)] + 18, [f(x)] - 18, [f(—xﬂ

which i1s not very interesting except when f(x) is either even or odd on the

o
or

infinite interval; if even, i.e. if f(x) = f(-x), then the exponential trans-
form reduces to the cosine transform; if odd, i.e., if f(x) = -f(-x), then the
exponential transform reduces to the sine transform, with a factor \-]1.
C. Transforms of Functions of Two Variables.

The transforms may also be used with functions of two or more variables;
for example, if f 1s a function of x and y, defined for O £ x4 T, 0& vy &,

then,
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T
g f(x,y) sin mx dx
o

il

5, L]
5, [f]
Sm,n[£]

]

1
5’ f(x,y) sin ny dy
o

m

I s, [f] sin my dy = fﬂ Sm[f] sin ng dx
0 0

il

T,
f S f(x,y) sin mx sin ny dx dy
olo

1l

Furthermore,

Sm’ng% = mJs, [f(o,y) - (- Sn[f(n,yﬂ - n Sy [£]

so that if
£(0,y) = fn,y) = £(x,0) = £(x,n) then,
2l -um2 s |f
Smnﬂg;?] mn [ ]
2 2 2 2
S f Q°f | = - n<) f
Hm}égg + é;;? m- o+ Smn [.]

Similar formulae may be derived for Cm,n and extensions can be worked out in
analogy to the single-variable properties. These transforms of more than one
variable amount to transforms of transforms, obtained by taking the transform
of the function with respect to a single variable, and subsequently taking
the transform of this transformed function with respect to another variable.
In fact, if the boundary conditions in the various dimensions are not all of
the same type, more than one type of transformation may be used. (one fairly

common combination is the Fourier plus the ILaplace transformation).

D. Fourier Exponential Transforms of Functions of Three Variables.
Consider a function of three variables, f(xl, X0, x5), piecewise con-

tinuous and absolutely integrable over the infinite range with respect to
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each variable. We may apply the exponential transform with respect to each

variable, defining the three-times transformed ogu_nction.

0
1 (kX HhoXorkzXz )
gk [f] = g(kl’kE’kB) = l5 5 [ F A e f(Xl,XE,X3-:)dxld.}(2dX5
(2x) ~06 “o0 -0
Using vector notation, this may be written
; ik-
Ek [f] = g(lg_) = 1 e =X f(§) d5x
(2n)3/2 %
where k has components Xk, ks, ko,
x has components xp »Xn ,x5 » and d5x = dxldxgdxi , and the integration is to be

taken over the full range, -@ to @O of each variable. The inverse transfor-

mation gives back f(x),

f(x) = 1 e

(217.)5;2 k -
Properties: say Ek [f] = g(k); é;{ [E] = G (k

); then

1. EE[Yf] =-1kg (k)
2. E 7] - ke
3- Ek [yx:F_] = -1k x G(k)

i
]
g
Hy

w E ] -

(From a glance at formulae 1 to 4, we see that under this transformation,
the vector operator V operating on a function transforms into the vector

ik times the transformed function).
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IIT. Summary of Fourier Transform Formulas

A. Finite Transforms (Functions defined on any finite range can be trans-

formed into functions defined on the interval 0% x & 1)

1. Definitions

7
a. S [y] :Fj y(x) sin nx dx n=1,2,...
"o
0
b. C, (y} =§5 y(x) cos nx dx n
T)o

Il

0,1,...

2. Inversions (0 € x &)

w .
a. y(x) =v;2;n2=1 Sy [y] sin nx
b. y(x) ="’§'§ C, [y] cos nx + %E Co [y]

n=1

3. Transforms of Derivatives

8. Sn [y'] = -1 Cn [y] n = 1,2)’0-

b. C, [y‘] = 08 [v] - 5(0) + (-1)" y(x) n =0,1,2,...(note that
functions must. be known
on boundaries)

n° Sy [y] +n [y(O) +(-l)ny(n:)] n=1,2,...(note that
functions must be known
on boundaries)

]

. & ]

d. Cp [&f] = -n° Cp, [y] - y'(0) + (-1)n y(x) n=0,1,2,...(note that
derivative must be known
on the boundaries)

k., Transforms of Integrals

a. Sy {}; y(?)d‘gr % Cy, [y] - (1) ¢ [y] n=1,2,...
b 0 BX s o= 2 sa[v]
o [[v @ wold-els]

]

1l
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5. Convolution Properties

a. Define convolution of f(x), g(x) (-n¢x%&x)
7
p*q .=.j p(x -%) a(f) 4¢ =
-3t

b. Transforms of Convolutions

Define extension of f(x), where f(x) defined an range 0 € x & ¢

0dd extension: fy(-x) = -fy(x)
f1(x + 2x) = f£(x)
Even extension: f,(-x) = f,(x); fo(x + 2x) = fp(x)

128 [r] sfe] = o [fl g ]
2. 28, [£] cye] = s, [ @;.2:{
2 ¢, [£] Cp [g:] = Cn [fl*ggj

6. Derivatives of Transforms

. s [y] = ¢, [w]

-8, [xy]

b. d Cy [y]
(Here the differentiated transforms must be in a form valid for n

Il

dn

a continuous variable instead of only for integral n).

B. Transforms on Infinite Intervals. oy

It must be true that /y(x) dx or /y(x) dx exists.

1. Definitions: =

a. S, [y] Uy(x) sin rx dx r20
b. C, [y F/w(x) cos rx dx r20
c. &7 7 (x) e

1l

\PT,«,
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Inversions

@
a. y(x) =2 8, [y] sin rx dx x20
Vm:
s

= V;E? S:) [Sr [y]]
b. y(x) Z\E"‘-' fCr [y] cos rx dx x 20
o

[ 1]

e () \r:;:'fg [] < ax - E_x[é[y]} EX[ _r[y]J

—aD

(The Cauchy principal value of the integral is to be taken).

al

.  Transforms of derivatives

a. S, [y'] = -r ¢, [v]
. = r 8, [y] - v(0)
e. & [v] =-x& ]
a s [v] = 2, [y]+ ry(0)
-r® C,. [x] - y'(0)

oF
2
)
—
o
2
i

[p]
Q
=
:4-
—
i

f £ [v] - 2EL]
g &, &y - (-ir)"E . [¥]

. Transforms of Integrals

e s [ w0 7] - e[
o[ v o] - - 15 [1]

x
(In a and b, require J y(?)dg’be sect. cont. and-»o as x-H®).
o

c. gr [fxy(f) d;]: 1 Er [y], ¢ is any lower limit

x
(in c. require f y(?) dfto be sect. cont. and-9oas x -Ded.

-an
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X

d. ,sr[fo (7 dg’dz\] L B [v]

. cr[] fky(g) d?‘d)\]: _1_5 Cr [v]

E[L [y aeed- L&

5. Some Relations Between Transforms for real y(x),

oo [] +15:f]= &

»

or
. ] - R EFD)
fsr (] - hm&[51)
b For y(x) = y(x), y(x) =@ €20
EI’E’] = 21 [y} where Laplace transform variable is taken as ir.

6. Convolution Properties o

a. 28.[r]s:[g] = o ]ﬂ?’) (£(x+5) - £1(x-F)) dﬂ
b. 28 [r]c[e] Sr[:go( (£(x+%) +fl(x-;‘) df]

= Gy L (9) (g2(x-%) - &(x+%)) df]
Cr[og (5, <x-$ + £(x+9)) d$]

i

i

c. 2c.fr] cpfe]

where extensions defined

Yl('X) = -y(x) ;3 o (-x) = y(x), all x.

. ELIEET - E[frto soop aq]

7. Derivatives of Transforms

a. %; Sr [y] = Cp [?y]
b. g; Cp [y] = -5y [w]
c. %’f Er [y] = igr [xy]
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IV. Types of Problems to which Fourier Transforms are Applicable.
A. General Discussion.

It is to our great advantage to have some inkling as to just which transform
to use where. We have noted that finite-range transforms are useful on functions
defined over a finite range, F% [r]and ]s[r] are useful on functions defined over
semi-infinite intervals, andiﬁaﬁﬂon functions defined over the infinite range.
Still more can be said.

First, it goes almost without saying that if it can be avoided, it is un-
desirable to introduce an unknown quantity into an equation. Now, if an equation
in £, which is defined O £ x £ 5 contains a differential operator which one wishes
to reduce, say QEE and f(x) and £(0) are known, while f'(x) and £'(0) are not,
then clearly Sndxis used, for in so doing we introduce f(x) and £(0) and need
not know the value of f' at any point. We would not use C, for £'(0) and £*(mw)
are unknown and would enter the transformed equations as unknowns, which would
not be solved for until later in the work. On the other hand, if £'(0) and
f'(e) are known, one uses C, for the same reason. The situation is similar
with respect to the infinite range transforms; usejﬁSEEJ reduce ggi‘when £(0)
is.Known,Eﬁc[?]when £7(0) is known. ©No such question arises with xgrespect to
3ﬁ=£ﬁ]~

We have noted at the start that the functions to which the Fourier trans-
forms are applicable are usually required to be absolutely integrable. This
kind of knowledge of a function is usually evident from the physical meaning of
the function, before the function itself is known. The ILaplace transform, on
the other hand merely requires that the function be of exponential order, i.e.,

‘f(x),( M M éor any real numbers
B. An Example of the Use of Fourier Transforms
Consider the following steady-state heat conduction problem in a medium with

no internal heat generation.



y &-

Y,
&o
l 2= £ b x

Face x=0 has a heat flux q, 0 L&y £ a, and is insulated, y > a, and face
x=x is insulated for all y. Face y=0 is held at temperature @o , all x,
04 x £ 5. The slab extends 0 & y €a. The equation to be solved is

Laplace's equation with boundary conditions.

Ve - o

q 0Lyda
_kgg{mo 0 y)a

o3P =0
Qx

@(X:O) = @0

We propose to do the problem by the method of Fourier transforms, but intuitively

X=11

we know lim @5 @ # 0 and, therefore, the transform of @ does not exist. How-
Y=eo

ever, the function @ —@zQis such that 1im &= lim @"53@'@:0811(1 the trans-
Ydeo Y

form may (in fact, does) exist. ILet us, therefore, substitute in the above
problem

- 0+ @
to obtain

2

V& =20

k Q&
S_X- x=0

q Oﬁyéa

il

=
X

Ox0) +@ =B, ;s Bx0) - - @ = Gs

X=1
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The structure of the problem is not essentially changed, except that now 90
is not known since @ is not known.

We must reduce the operators 526 and 3°@. In x, we known 9©
2

é g %2 dv d ¥ | x=0 and

AXizﬂ' Thus, a finite range Fourier cosine transform is indicated (see section IIA)

In y, we known € (x,0) =9aand that lim & = 0. Therefore, an infinite range
Y-

Fourier sine transform is indicated. Denote x-transformed functions by super-

script f,, y-transformed functions by superscript F. Recall

(.s_fg)f ~rftarde| - de

x=0

32 9% g

and

(%?‘?F - 226" + r O (%,0)
y

It is irrelevant in which order the transformations are applied or inverted, al-
though one order may prove nicer than another. Iet us transform first with

respect to x.

-n29 fn 4 (-1)" 36 - Q_Q + 420 - o
gx X=q0 ax x=0 dy2

38 f-x odyc¢a
ax x=0 =
0] vy Da
6 =0
ks n=0
fn<0) =
9 0 n=1,2,...

then with respect to y: (Churchill pag. 300, formula 3)

F F
-n2 ef‘n F . (-1) Q—QI - Q_@ _rzean - fn 0)=o
ax X=g gx X0

= -g/k (1-cos ar)

38|F
d X | x=0

(See Erdélye, p. 63, formula 1)
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F
36 =0
Qx| x=xn
an(O) = 0 n=1,2,3,...

Making substitutions, this yields the single algebraic equation.

(-n2 - I'Q)QﬁflF + g (1 -cosar) = 0; (n=1,2,...)
k r

-r29f°F +g (1 -cosar) +aQr=0 (n= 0)
k r

Solve for gan :

QfOF = (1 - cos ar) + x 905 (n=0)

3 r

~ha

fnF

qg (1 -cos ar); (n=1,2,...
9 E 2 ( =2 )

r(r? + n?)

We propose to invert first with respect to r, but we would run into difficulties

for n=0. Iet us, therefore, integrate the x-transformed equations directly for

n=0 to get Qfo_

We have
a2gfo +gqg = 0 0yl a
dy2 k
dEefO = 0 y 7 a
dy2
e " 7=0) = 1,
1im & =0
g>es
integrating,
efo = - q y2+Cly+02 0Ly<«a
6 2k
=) = CBy + C) vy pa
Now lim @ T =0, s0 C5 = 0 = 0.
oo
Also
fo0) = = C
9 - ﬂgo Ve

It is necessary to cook up another condition to get Cl‘ In a problem of this

type, we must require 39 and. 9 to be continuous, therefore géfo

37 37
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and efo are continuous. Apply these conditions at y=a.

fo
a6t - 48
dy a- dy Ja+
- QE,- + Cl = O; Cl = -(l?,_
k k

6™ () =™ (ar)

-ga® +gaf + xg= 0.
2k K °©

Somewhat surprisingly, applying this last condition yields

2
& %
Thus
oF =[-a-27° yta
2k
0 yZa

We have Qfo. Iet us invert ean to get efn

@an = g (1 - cos ar) (n=1,2,...).

The inverse of 1 is 1 (1 - e'nY) (See Erdelye, p.65, formuls 20).

r(n? + r°) ne

Also, a property of the Fourier sine and cosine transforms is

pt [g(r) cos arj = 1 [G(y +a) + Gy - aﬂ
2
and it is also true that for the sine transform, if F"l[gij= G(y), then

G(-y) = -G(y). Therefore,

FL 1 (1 - cos arﬂ -
(:r(r2 + n2)

-

(1-e07) - 1 |1-enla),; _n0-8)

(L -e™W) - 1 1 - en(y+a) _1 4 e-n(a-y)]

'._‘JI!—J bll—'
) )
n
B
W)
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L_[%—emy-l+eqwgéa+eqmﬂ ypa
2 2

1 [% - o, omn(y+a) _ e—n(a—y) v ¢ a

n® 2

e™  (cosh na - 1) yOea

1 (1 -e™™ - e™8 ginh ny) y L@

2

n

Now, lacking a known inversion to invert with respect to n, we use the

series form

©
ezg__efo_l_g §9fncosnx
i A ]

~qa_ (v - a)2 + 29 ? (L-e™™ -e™1@ ginh ny) cos nx v& a
2k K ne
= n=
2q e™ (cosh na - 1) cos nx y>a
kT nf

and recall that
P- 0+ &
-— 2 wa—
GE% = G,+@= -+ P

2xk
é%szz &, + QEE
27k
P- 6 +6+3°
21k

V. Inversion of Fourier Transforms.
A. Inversion of Finite Range Transforms

Inversions of the finite range transforms are easily seen to be a conse-
quence of the completeness and orthogonality of the cosines in the case of the
cosine transform and of the sine in the case of the sine transform on the

interval of integration. Indeed, one sees that the integrals defining Cn
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and Sn are just the Fourier coefficients for expansions of f in a cosine series

or a sine series. Thus their inversions are given by

eyt [cn] Co [f] +2 Z [f]cos nx (0€x€rx)
52 [8a] z [f] sin m (0

n=1
Two facts, though obvious, should be noted with regard to these transforms.

f(x)

1
alH

N

f(x)

i

:\H\)

If the function is defined over some range other than 0& x & 1, say 0€ x & L,
there arises no difficulty since one can define a new variable , say ?: iX-,
such that when x = L,$= n, and £(x) = g(§) = (L ?) and proceed. If thi—'
function is extended out of the range 0O ﬁ X & n,ﬁthe inversion of the cosine
transform is the even extension, i.e.,

c, ™t [Cn (x)] - o [cn (—x)]

while the inversion of the sine transform is the odd extension, i.e.

5,7t [S (x)] = - Sn-l [Sn (-x)]
B. Inversion of Infinite Range Transforms.

Inversions of the infinite range transforms follow from the Fourier integral
theorem in various forms. The inversion of the cosine transform, for example,
arises from the formula @

X
2 /cos rx [ £(y) cos ry dy dr

: . »
‘Ig'fcos X F{f(y) cos ry dy dr
b T

The interior integral is Just what we above defined as C [], thus

£(x) = oyt [c] rf [£] cos rx ar

The other inversions follow immediately in the same way from other forms of the

f(x)

il

il

Fourier integral theorem. It is to our great advantage to note that, with the

normalization factor \,g_ or 1 inserted as above, the inversion integral is
T \ 2= '
Just the transform of the transform, il.e.,
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1T B
£(x) = G [Cr] = o |Cr [£]
8imilar formulae for the sine and exponential transforms are
f(X) = .Sr_l SI’] = SX SI' [f]]
-1 r _ T .
£(x) E, _Er]~ E_X[Er[f]]

Knowing this fact doubles the utility of a table of transforms since it can be

]

used. backwards as well as forwards. That is, given a transform one wishes to
invert, one may first look for it among tabulated transformed functions; not
finding an inversion there, one may equally well look for his transform among
the tabulated functions, if it is found there, the inversion of the given trans-
form is the transform of the tabulated function.

There are tables of both the finite range transforms and the infinite
range transforms, useful for the purpose of inverting these transforms. How-
ever, this is just one way of obtaining an inversion (the easiest, of course).
In the case of the finite range transforms, where the inversion is a Fourier
series, and one does not know how to sum it, that is, get the inversion in
closed form, then the truncated series in a useful approximation to the inverse.

In the case of the infinite range transforms, the inversion integral is
subject to evaluation by the methods of complex integration and residue theory.
C. Inversion of Fourlier Exponential Transforms.

We have seen that if the transform of a function F(x) is

£(r) = 1\F(x) ™™
then (under prgger—ggnditions on F) the function can be recovered from its

transform through the inversion formula,

£
F(x) = 1 |[f(r) ™ ar.
ﬂ 2m

Note that in the inversion formula, r is a real variable. Iet us change the
variable r to a new (complex) variable, ir = s, and say f(s) = f(r).

Then

« 7
p(s) = _l__fF(x) & ax

% Lo
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and the inversion is (sine idr = ds)
F(x) = - 1 4),(8) e 5% gs
\ 2x

where ¢ 18 the curve in the s-plane below, and the Cauchy Principsl value

c

v

is to be taken, Ag
s-plane
%
A
that is
. ip
F(x) = - 1 lim (P (s) e™% gg
“ 25 B

-iﬁ
Suppose ¢(s) is analytic in the left half plane @(s) < 0, except
at a finite number of isolated singular points Sp» Let us close the path

cg 5 - BSC@V,\S £B, with a semicircle in the left half-plane, choosing B.
A0

Y5
so large as to include all finite singular points in the plane @(,s)é 0.

By Cauchy's residue theorem, then we have



5=
j e Ps) as + J e‘"‘SX(P(_s) ds = 2ri Zk P
S, = 3

eB c'B
where /’)j denotes the resgidue of e-sx¢ (s) at the singular point s 32 and
we have assumed that there are k such singular points.

Since we have hypothesized that B be so large that c:‘B include all
finite singular points in the left half plame, in the limit as p->€0, the

right side remains constanty and we have

k
1im e P(s) ds + 1lim e"BX¢.(.s) ds = 2xi Z Pj
‘ _ J=L
cp

B8>a0 8200
or
18 K
lim /e-‘sx¢(.s) ds = 2xi ?FJ - ]::Ism e-Bx¢ () ds
p>w _ip J=1 BT o1
Thus
ip
Flx) = ~- i lm{ eB% ¢(s) ds =
!a‘x pI®, ip

mg()j +r§i— 1lim ~e‘SX¢(s) ds

B =Y ¢
ci
Many times, the 1imit on the right hand side is zero, or is easy to evaluate,
so that the above formula is a very useful device for inverting the transform.
Ressoning in similar fashion, but completing the path with a semi-

circle in the right half plane @(s) 2 0, we obtain a similar formula.

k! .
Px) = -fox {1("3 - L = P s) as

' oo
ox PP/, 5
where the curve c"‘3 is shown below,
»(:6 ~ s-plane
j
£ '8
o 3
A
-4 |
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One may find that for x £ 0, the limit

Jn ]
B0 e P(s) a5 = 0
CYB
g0 that the first formula becomes

k
F(x) =(2r
F(x) ”,%PJ

(recall that /) 3 are residues at singular points in the left half-plane
@.(5)40 ). Again, one may find that for x » 0, the limit

lim ,e"gx ¢ (S) dg = O

>0 "B
so that the second formula becomes

k't
F(x) = -[2r fa
2=
At x =0, FO) = 1 [ F(ot) + F(O'ﬂ
2

where F(0V) = lim F(&),
0% = im ®(@),
and F(0") = 1lim F( - &)-
&0
Appendix
VI. Transform Tables
4
s, (v) = j y(x) Bin nmx dx n & positive integer
o a
a
C,(y) = J y(x) cos mmx dx n & non-negative integer
(o) 8
v (x) Suly)
1 a |1- (-l)nj
nx
- ;2—2_ (~-l)n+l
o
X2 gé. (_l)ﬁ—l'l - ___?‘_ 3 [l _ (_l)n]
nx ng
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Y£X.) Sn;ﬁz)
= wg [2- ar ]
nere + cfa?f
Wa
sin Wx a (n =7 )
5
ngs (-1) gsinyla n;éul.a
n? 2 uﬁﬁ X
X C-wE
cos  x 0 n "“Qi)
—
nmE [l - (=1)" cosw
ZE_2.2 (n Fwa )
i
sinh ex nms (_1)n+l sinh ¢ a
ng +ca
cosh ex __nrxa [l - (»-IL)n cosh ca]
nEn:E' +.828.2
a - x &8
nx
x(a - x) E(a ° [+~ (~1)n_]
1
singl(a - x) nya (h ,é U_i)
 ginwla nzﬁa weae i
sinh c(a - x) nya.
gsinh ca ngﬁg + 0232
y(x) Cp(x)
1 a (n=0)
O (n‘il;%, 80
X 1 a2 (n=0)
2

(%’?)2 [(_l)n i ] (nel,2,. .



y(x) _ Cn (x)
x2 18 (n=0)
o)

2ad  (-1)" (n=1,2,...)

n2y2
ecx 8,20 [ ("‘l )n eca - l]

2@ + o2
sinlx 0 (n= «_LB)

::

___&w J(a)m caswa-cg (nf k_lg)
2 - wfe? "

cos ) X la (n =Wa )
2 %
v ()™ cinwa (+42)
1’12,_11;2 _wQaE T
sinh ex | alc [(—l)n cosh ca - JJ
n°r + cfa?
cosh cx ale (~1)? ginh ca
n2y2 4+ cPg?
(x - &)2 4 a (n=0)
3
2 8’
02,2 (n=1,2,...)
cost(a - x) a2
sin Wa B PR (nf _6_(}_52,)
r
cosh c¢(a -~ x) ale
sinh ¢ a 2By oPaP

For a few additional transforms of this type, see Churchill or Sneddon
(Reference 2 and 3) 0

For transforms of the form y(x) ™ ax, y(x) sin nx dx, and

-0 fe]
/‘;(x)(ao nx dx, see Erdelyi (reference 1).
o



.-77_
References
Sneddon, Ian N. "Fourier Tramsforms", McGraw Hill, 1951.
Churchill, Ruel V., "Operational Mathematics", McGraw Hill, 1958.

Erdelyi, Volume I, "Bateman Mathematical Tables'.

MISCELLANEQUS IDENTITIES, DEFINITIONS, FUNCTIONS AND NOTATIONS

Ieibnitz's Rule:

b(x)
If £(x) = J g(x,y) dy
‘ a(x)
Then )
b(x
a£6) = g [xpe)] o) - g [xat)] et + [ 2slen &

General solution of first order linear differential equation.

dy + a(x)y = f(x)

with boundary condition
The procedure is to find an integrating factor. Define h such that

dh = a(x). Thus

ax
X
h = / a(x') dx!
c
The integrating factor will be eh, since
dehy) = eht dy + ‘ehyg@_ = b dy + el a(x)y = ehf(x)
dx dx dx dx
Then
yeh X '
j d(eby) = L e’ £(x" ax
h
o © o
X
0 .
where hg :j a(x') ax
c

X0
ht - J a(er) dxt!

C



Thus,
X !
yeh - yoeho " / eh F(x') dx
X
o)
Hence
X 1t
Yy = ¥ elo-h / eh'-h f£(x') dx’
X
o)
Recalling that
bd
h = a(x') dx!
/
x! X X
h' -h = ! a(x'') ax" - / a(x") dx' = -/ a(x") dx"
c c x!
Finally,
X a(X")dX"
ho-h - &'
y = y,ev° +/f(x')e dx!

%o

(Wote that the constant c appearing as lower limit in the integral of
the integrating factor is not a boundary condition: it disappears

in the final solution).

ITI.Identities in Vector Analysis

Below, underscored quantities are vectors, and V is the vector
A ANA
differential operator V = 2 3 +i D+ ?{ Q s and I,j,k are unit vectors
IX Ty Y7

in x, y, z directions respectively. J




1) a-bxc =Db-rcxa =c-axp
2) ax(bxe) = bla-c)-cla-b)
3) (axb)- (cxd) = a-bx(exad)

4) (@xb)x (exd) = (@xb-d)c -(@xb-c)d
5) V@ +¥) -9p+ 0y

6) V(B¢ = Uy +ygs

7) Y@e-p) = @Wb+ (2 V) a+ax(gxd)+bx (Lxa)
8) Vr(a+p)=9-a+¥ b

9) g x(a+b) =Vxa+Vxd

—

10) Yepa)=2a -Vp+pV-

A4 a
12) __V_'(EXb) = -ng_-g-yx’g
15) Yx(@xb) =2 V+b-bV-a+(b V)a- (V)b
1) Vx Vxa = V(-3 -yga
15) Vxy9H=0
16) ‘_Z-«ng.:o
A A A
Ifr= 1x+Jvy +kz
17) V- r=5Vxzr =0

If V represents a volume bounded by a closed surface S with unit vector @
normal to S and directed positively outwards, then,

19) fV‘ adv= Ja- 'g\d a  (Gauss' Theorem)

zo)ffv-_g_dv =/f§—ﬁds —[g'Vfdv
- ) —_ .'—__.
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21) fg_-Vfdv =ff_gq-?_}ds -[fv-gdv

v S v =
~
EE)I(VXg)dV=fExEda
' S

23) £(¢V2¢- 7’V2¢ ) dv = fs((DYL"—lf’Y¢ ) » nds (Green's Theorem)

If S is an unclosed surface bounded by contour C, and ds is an incrementof length

along,.c.
L 2y a = s
e)[__ Wes - fses

25) fo a-nda = fa - ds (Stokes' Theorem)
S

C

IV, Cartesian, Cylindrical, and Spherical Coordinate Systems

Cartesian A
Z —ii o) g N d \
44/0/%' Vase s +§§ $753 %
a7 2 S, Yo, 0
$7gb = 5221 + ‘g;/z + $>;EZ
% L= dx ey dz
%

Cylindrical




Spherical

x

V. Index Notation

A short note will be given on this notation which greatly simplifies

certain mathematical problems (to mention one advantage).
volved is essentially Jjust the adoption of a convention.

used here suffices for work in rectangular Cartesian coordinates.

What is in-
The convention

For

more general coordinate systems a more elaborafje convention is needed; it

is explained in reference works, see for example 1, 2, 3.

Consider a simple example which illustrates the utility and applica-

tion of the index notation.
U= ayX b agy o+ 8, Z
Vo= byx o+ byy + byz
W= CyX 4 Cy¥ 4 CpZ

By defining
U= U, Vo= U, s W =
X =% L,y = X ,Z2 =
8% T %11 0% T %o 8y T
Py = By by = Bop s bz -
c, = aBl » cy = a52 s ¢, =

Suppose one has a set of three equations
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These may be written

Up = 8g3X) + 810Xy + 813Xy
Up = 8p1X] + 8opXp + BgzX3
or
U = él 81 ke
3
up = él releo)
or
3
uj :'25:? e Toae) (1 =1,2,3)
O=1

To this point we have effected considerable simplification of the original
equations. By the introduction of the "summation convention", we can go
8till further. Notice that there are two kinds of indices on the right,

i, which occurs once in the product, and «, which occurs twice. Index i

is called a "single-occuring” index; o is called a "doubly-occuring" index.

The convention to be introduced is:

a. Doubly-occuring indices are to be given all possible values

and the results summed within the equation

b. Singly-occuring indices are to be assigned one value in an

equation, but as many equations are to be generated as there

are available values for the index.
Thus by Part a we may drop the sum symbol, and by Part b we may drop the
parenthesis denoting values for i. With the summation convention in force,

we have
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which unambiguously represents the original equations, if o and i have

the same range, which we shall assume.

A nice but unnecessary finishing touch can be put on the convention

which seems to make things clearer in the work: for all singly occuring

indices use lower-case Roman lettersj for all doubly-occuring indices, use

lower-case Greek letters.

We remark that it is possible to have any number of indices on a

quantity.

Examples of the Use of Index Notation

A. Some Handy Symbols

1. 613 = 1 i =]

= 0 1 £

This is the Kronecker delta.

o, Zk =1, ifti,itk, j#£k, 1,5,k in cyclic order
1J ' ’
=-1, i £33, 14k, §J#k, i,i,k in anticyclic order
= 0, i=J ori=%k,orJ=%k

This is called the Levy-Civita Tensor density.
B. Some Relationships Expressed in Index Notation

1. Dot product (a scalar)

ab = aghy
2. Cross-product (a vector; consider ith component )
.= = -€,
(a x D)y EEiob aoPp 1paPeiq
3. Triple product (a scaler)
aebxe = 8o€pybpcy

4. Gradient ( (P is a scalar)

(ch)l = Q_Cp_
Iy
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5. Divergence (V is a vector)

TV - Ve
¥

6. Curl (V is a vector)
(vxy), = & Mg
i ioB éfxf3
7. Laplacian

Ve - 9%

9 Xy 9%y

]

8. axi = B
%

C. Some Identities in & and éijk in 3-D Space

1J

1. 8. =3

2. ff(mgwégqu =6

7 Eios€i0p = 21y

]

b €13p€rip = BBy - BBy
5 Eix€im = %11%mO%n * BimByndat Bind31%m~ 8119inBkm
- 6i‘me’jlgkn - 5inajm§kl

VII. The Dirac Delta "Function"

The Dirac delta "function" symbolizes an integration operation and in
this sense is not strictly, in the interpretation of Professor R. V. Churchill,
a function. Thus the gquotation marks around the word "function". It cannot
be the end result of a calculation, but is meaningful only if an integration
is to be carried out over its argument. We define the Dirac &-"function" as
follows:

8(x) = o0, x £0

fﬁ(X) dx = 1, €70
Jef(x) 8(x) ax = 7(0)
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Very often it is convenient to think of the &-"function" as a function
zero everywhere except where its argument is zero, but which is so large at
that point where its argument vanishes that its integral over any region of
which that point is an interior point, is equal to unity. Mathematicians
shudder at the idea of the ¥-'"function", but physicists have used them for
years (carefully), finding them of great utility.

Schiff's "Quantum Mechanics'" lists some properties of the Dirac &:

5(x) = 8(-x)

2() = o) () = g )

x8(x) = 0
X5'(x) = -d(x)
8(ax) = 1 8(x) a»o
a
6(x2 - 89) = 2 [5<X -a)+ o(x + aﬂ a0

I

a

jﬁ(a - x) 8(x - b) dx 5(a - b)

f(x) 8{x - a) = f(a) 8(x - a)

Professor Churchill uses as a &-"function" the operation
f(x) U(h,x) dx , & 70

lim

h=>o —€

where U(h,x) is the function

L,

;

—
T

h

'

X —e
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Here, note that the 1limit is taken after integration. Other such represen-

tations are common,l like that given by Schiff;

8(x) = 1lim  sin gx
g%co nX

which means not that the 1imit is to be taken exactly as shown, but rather

that 1t is taken after integration, i.e., with this representation,

& &
5(x) dx = lim gsin gx dx
Ze 3—)00 Ze X
< &
ff(x) 5(x) &x = 1im Jf(x) sin gx dx.
a X
le 3>
Schiff gives still another representation, in terms of an integral;
a0
ix§ g
ix ;
8x) = 1 | e vag = 1m 1 [ *Tag¥
T jﬁm 2n
-l -g
= I1im 1 2 sin gx
Z»a 2f X
= 1im sin gx
g 0o X
thus e & o
£(x) 8(x) dx = L i £(x) a¥ax.
2n
- —é »

VIII. Gamma Functions.

A. Definitions
/0]

M) - /e't 571 ap

(7]
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B. Properties

oo Nx+1) = x)

b. [ = @-1) (IM@Q) =1) (n positive integer)

Nela

X): n
gin xX

Q

d. rﬂ(x) [1(x +1/2) = pl-8x nl/g r7(2x)
I G R e
£ [Ta/2) = [«

Since by (a) one may reduce [1(x) to a.product involving [1 of some
number between 1 and 2, a handy table for calculations is one like
that found at the end of Chemical Rubber Integral Tables, fOrF (x)

14x €2
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IX. Error Function

X 2
erf(x) = 2 e” ad A
i
o

@
..},,2
B. erfe(x) = 1 -erf(x) = 2 e a A
X

A.

=
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NOTES AND .CONVERSION FACTORS

I Electrical Units

A. The Electrostatic CGS System
1. The electrostatic cgs unit of charge, sometimes called the escoulomb
or statcoulomb, is that "point" charge which repels an equal "point" charge

at a distance of 1 cm. in a vacuum, with a force of 1 dyne.

2. The electrostatic cgs unit of field strength is that field in which 1

escoulomb experiences a force of 1 dyne. It, therefore, is 1 dyne/escoulnmb.

3. The electrostatic cgs unit of potential difference (or esvolt) is the
difference of potential between two points such that 1 erg of work is done

in carrying 1 escoulomb from one point to the other. It is 1 erg/escoulomb.

B. The Electromagnetic CGS System
1. The unit magnetic pole is a "point" pole which repels an equal pole at a

distance of 1 cm, in a vacuum, with a force of 1 dyne.

2. The unit magnetic field strength, the oersted, is that field in which
a unit pole experiences a force of 1 dyne. It therefore is 1 dyne/unit

pole.

3. The absolute unit of current (or abampere) is that current which in a
circular wire of l-cm radius, produces a magnetic field of strength 2x
dynes/ (unit pole) at the center of the circle. One ambampere approximately

equals 3 x lOlO esanmperes or 10 amp.

L. The electromagnetic cgs unit of charge (or abcoulomb) is the quantity of
electricity passing in 1 sec. through any cross section of a conductor

carrying a steady current of 1 abampere. One abcoulomb equals 10 coulombs.
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5. The electromagnetic cgs unit of potential difference (or abvolt) is
a potential difference between two points, such that 1 erg of work is done
8

in transferring abcoulomb from one point to the other. One abvolt = 10~

volt = approximately 1/(3 x 1010) esvolt.

C. Practical Electrical Units and Their Equivalents in the Absolute System

Practical Electrostatic Electromagnet
__ces cgs
Quantity 1 coulomb 3x107 escoulombs 1/10 abcoulomb
Current 1 ampere 5xlO9 esanperes l/lO abcoulomb
Potential Difference 1 volt 1/500 esvolt 108 abvolts
Electrical field 1 yolt/em 1/300 dyne/escoulomb 108 abvolts/cm

strength

D. Some Energy Relationships
1 esvolt x 1 escoulomb = 1 erg

1 abvolt x 1 abecoulomb

H

1l erg

1 volt x 1 coulomb lO7 ergs = 1 joule

The electron volt equals the work done when an electron is moved from
one point to another differing in potential by 1 volt.

1l electron volt

it

4.80 x 10710 escoulamb x 1/300 esvolt

1.60 x 10712 erg.

1l
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11. Fhysical Constants and Conversion Factorsj Dimensional Analysis

Numerical Constants

e (base of natural logarithm) 2.718
loge 10 2.303
Lengths, Areas
Micron ~e lO'LF em
Angstrom unit A 10‘8 em
X-unit XU 10™1lem
Wavelength of l-volt photon _ 12,396 A
Calcite grating space at 20°C a 3.036 A
Separation of electron and proton
in ground state of H a, 0.5291 x 10-8 cm

Compton wavelength h /mc 2.426 x 10710 en
"Conventional electron radius' e2/mocz' 2.8175 x 10715 cm
De Broglie wave of l-volt electron  h/m v 12.26 A
Barn b 10724 cp®

Masses and Mass Equivalents

9.107 x 10728 gn

Electrons m L
16 5.488 x 10‘124AMU
1/16 mass of O AMU 1.6595 x 107" gm
= Atomiec mass unit

Proton M 1.6722 x 10724 gn
1.00758 AMU L

Neutron My 1.674k x 1072 gm
1.0089% AMU )

Deuteron M 3.343 x 1072 gn
2.0Lk17 AMU,)

Alpha particle Moe 6.642 x 1072 gm
4. 00279 AMU

H- atom 1.00812 AMU

H® atom 2.01472 AMU

Fe atom 4.00389 AMU

Proton mass over electron mass Mﬁ/mo 18%6.1

Energies and Speeds

Electron volt

4.80 escoulomb x 1/500 esu ev 1.602 x 1012 erg

Million electron volts Mev 1.07k x 1073 AMU
Energy equivalent of

electron mass m c? 0.5110 Mev
Tonization energy of H atom 13.60 ev

Speed of 1-volt electron
Speed of light

N

QO Q
PO

5.9%1 x 100 cm/sec
2.9979 x 1010 cm/sec
8.987k x 100 (cm/sec)
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Other Electronic and Atomic Constants

Electronic charge e
Charge/mass for electron e/mo
Planck's constant h
Unit of angular momentum h/En
Duane's constant h/e
Rydberg constant

For Hl atom

For infinite
Bohr magneton B
Fine-structure constant o<

4,802 x 10710 esu

1.602 x 10720 emu

5.2735 X 1087 esu/gm
1.759 x 107 emu/ gm

6.62k x 10721 erg sec, or
4.135 x 10715 ev sec
1.054 x 10727 erg sec
1.379 x 10717 erg sec/esu

109,678 cmf%
109,737 cm

9.271 x 10720 erg/oersted
7.297 x 1072 = 1/137.04

Constants Needed in Kinetics and Radiation Theory

Gas constant R
Boltzmann's constant

(gas constant for 1 molecule) k = R/N
Molar volume of perfect gas at

0°C and 760 mm of Hg Vi
Faraday#* F
Avogadro's number N =
Number of molecules in 1 ¢ 5

of perfect gas at 0°C and

760 mm of Hg F/ev

m
Average kinetic energy of a
\ o
molecule at 0 C and 760wmm

BYe

of Hg (T, = 273.16%) 3/2 kT
Stefan-Boltzmann tonstant o= 15 hoce
First radiation constant cq
Second radiation constant c, = he/x

oo

8.3k x 107 erg/ (mole °C)
1.380 x 10-16 erg/ (OK molecule)

22415 cmﬁ/mole
9652.2 emu/equivalent
6.025 x 1027 molecules/mole

2.687 x 1019 molecules/cm?

5.655 x lO-lh er )

5.669 x 1077 erg/ (cmPdeg 'sec)

4.99 x 10712 erg cm
1.439 em ©C

* Based on the "physical" scale of atomics weights, in which O16 = 16 exaectly.
On the chemical scale the value 16 refers to the natural mixture of oxygen

isotopes. The two differ by 0.018 per cent
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Table 2
Conversion Factors

To obtain
Quantity Symbol Multiply Number of By Number of
Dynes 107>
Force F Pounds b, 448 Newtons
Ounces 0.2780
Centimeters 1072
Iength Y] Feet 0.3048 -0 Meters
Inches 2.540 x 10
Mils 2.540 x 1072
Centimeter® 104
, Feet? 0.09290 | 5
Ares A Tnches® 6.452 x 10~ Meters
Mils? 6.452 x 10-10
Circular mils 5.067 x 10~10
Dyne-centimeters 10-7
Torque T Pound-feet 1.356 Newton-meters
Ounce~-inches 7.062 % 1072
Ergs 1077
Energy W Foot~-pormds 1.356 Joules
British thermal units 1.055 x 102
Kilowatt hours 3.600 x 106
Charge Q Statcoulombs 3.3%5 x 10-10 Coulaombs
Abcoulombs 10
Electric potential o Statvolts 299 88 Volts
Abvolts 10~
Statvolts/centimeter 2'98’8 x 10%
Abvolts/centimeter 10”7
Eleetric field 8 Volts/centimeter 100 L Volts/meter
intensity Volts/mil 3,937 x 10

_g6..



Table 2
(ean'd)

Quantity Symbol Multiply Number of By To obtain
Kumber of
Unrationalized MKS
units of electric flux 7.958 x 1072
Electric flux 's Esu of electric flux 26.54 x 10™ Coulombs
Emu of eleectric flux 0.7985
Unrationalized MKS units
of electric flux density 7.958 x 10-2
Flectric flux density D Esu of electric flux 2
density 26.54 x 10-8 Coulambs/meter
Emu of electric flux
density 7.958 x 107
Capacitance c Statfarads 1.112 x 10712 Farads
Abfarads 109
Current I Statamperes 3.335 x 10710 Amperes
Abamperes 10
Pragilberts 7.958 x 102
Magnetic potential ‘f Esu of magnetic potential 26.54 x 10-12 Ampere~turn
Gilberts 0.7958
Pracersteds 7.958 x 1072
Magnetic field intensity H Esu of magnetic field _io
intensity 26.54 x 10 Ampere-turns/meter
Oersteds 79.58
Magnetic flux density B Esu of magnetic flux 6
density 2.928 x 10 Webers/meter
Gauss 10~
; "
Inductance L Stathenrys 8.988 x 10 Henrys
Abhenrys 10-9




Table 3
Dimensional Analysis, Using, F, L, T; and Q

Mechanical Quantity ~ Symbol Unit Dimension
Force £ newton F
Length X meter L
Time ¢t second T
Velocity v meter/second Fiig
Acceleration a meter/second® L2
Mass M kilogram Tt!‘]:."l'l'2
. , -1

Spring constant (translation) Kp = ; meter/newton FL
Demping constant (tremslation) Rye %;f" newton-second/meter Fr i
Torgue T newton-meter FL
Angle ] radian
Angular veloeity w radian/second -1
Angular acceleration o radian/second T2
Mament of inertis T kilogram-meter FLT®
Spring constant (rotation) Kp _«g newton-meter FL
Damping constant (rotation) RR = g newton-meter-second FLT
Energy W Joule L 1
Power P watt FLT™
Electric or
Magnetic Quantity Symbol Unit Dimensicn
Charge Q coulomb Q.
Permittivity € farad/meter Fl1,8g2
Electric field intensity E volt/meter FQ~L
Electric potential o volt 5 FLg
Electrie flux density D coulomb/meter® L7eQ
Eleetric flux ¥ ¢coulomb Q ‘
Capacitance c farad Fiplg2
Current L ampere T1lg
Magretie flux density B We’ber/mete‘r"g 1?‘1."'1‘1‘8‘“:L
Permeability < henry/meter T Q-
Magnetie field intensity H ampere/meter L"‘lT"'lQ
Magnetic potential /4 ampere iigt e}
Magnetic flux (or flux |

linkage) $ (or A) weber FLTQ™L
Inductance L henry FL Q,'”‘?
Magnetic pole (a mathe-

matical concept) P weber FTL.TQ";L
Resistance R ohm FLTQ™2




-96-

Table U

Dimensional Analysis, Using M, L, T, and

Mechanical Quantity Symbol Unit Dimension
Masgs M kilogram M
Iength X meter L
Time t gecond T
Velocity v meter/second L
Aceceleration a me«ter/ second LT‘% 2
Force g newton MLT
Spring constant (tramslation) KT.-: 3{- newton/meter M2
Damiping congtant (translation) = % newton~sec@md/meter M?I"'l
Torque T newton~meter MLE‘T
Angle g radian
Angular velocity @ radian/second ’I"Jf
Angular acceleration o radisn/second -2
Moment of intertis I kilogram-meter? MI2
Spring constant (rotation) = g- newton-meter M 272
Demping constant (rotation) =I newton-meter-second M‘LQT“J'
w

Energy W Jjoule MI2T2
Power P watt MreT =3
Eleetric or
Magnetic Quantity Symbol Unit Dimension
Permeability p73 henry/meter “ |
Current 1 ampere -~ glL/ ELl/ QT"]-IC' l/ 2 i
Magnetic flux density B weber/meter? 27-1/Br-141/2
Magnetic field demsity H ampere/meter / L'l/ .QT’"lAU‘l/ 2
Magnetie potential ampere Ml/ 2Ll/ ep-L ~1/2
Magnetie flux (or flux linkage) f (or\) weber Ml/ 2L5/ 2113"11—2.1/ 2
Inductance L henry
Charge A goulomb %417%1,1/ 24¢-1/2
Permittivity € farad/meter ﬁi?g?%#l
Electric field intensity £ volt/meter M/ 2l ?T‘Qul/ 2
Electric potential 0 volt ﬁi/QLi/Eg-Extl/Q
Eleetrie flux demsity D Coulnmb/mete—‘rg / 21.’"’5/ 'ﬂ,'lzg
Electrie flux 72 coulomb Ml/ 21;1/ 2u-1/2
Capacitance c farad L-lrey -1
Magnetie pole (a mathematical : ;

concept ) P weber wt/ 2145/ ET'la.l/ 2
Resistance R ofm LT
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Errata - II

NOTES ON MATHEMATICS (AMERICAN NUCLEAR SOCIETY PROJECT)

Pg. 8 - Next to last line:

Orthagonal should be orthogonal

Pg. 1ll-c: = 84 ... a0
g. 1l-c: F(x) 5 not -
Pg. 12-g: F(x) = ,a23+ Y. not ‘9_2"‘12

Pg. 13: 1II: Legendre Polynomials
2 ()

H(X)Y) = ( ) =.@—O

Previously
omitted

Also the line below this, should read Pﬁ = %, (the factorial was
unclear). ‘.

Pg. 16: should read (absolute signs were missing)
n |af
m 2,2 &
1. P (x) = (1 -x%) —I-—r P(x)|m|<)
4 axt™ 4

[not (0 <m < 4)]

2. PIE(X) = [ ] (0 <m<¥)

Pg. 2k: c: should read:

(_l)r (X)Er +n

o
g (x) = L 2r + n
r=0 2 r! M(L+n+r)

[was missing]

Pg. 25: No. Lk-c:

lim  Jp(x) not lim Jp(x)
x -0 X =3



D-

Pg. 28-c:

Pg. 51:

Line 22:

Pg. 52:

Page 56:

Page 59:

Page 60:

2

: v 00 2\T
I = —2— L 1/ x7)
V. o2Vp(y +1) r=0 r!T(v+1l+r)
IIT - line 20

a-1 a-L1

£lz) = ==+ ... not =——+ .
7~8, z-a
(z - a)f(z) = a_q t . not a; +
line 1k
A-1 A-2

£z) =3 ?o ¥ (Z"ZO)E$§\

was missing

bth line from bottom:

should be | X | —= =, not X -
line 6 ,

k , mnot k.
Line T:

x , not x

ra—

should read
Definitions
7t
a) s, [yl = [ y(x) sin nxdx
0
el
b) C, [yl = fo y(x) cos nxdx
Tnversions
2 ©
a) Y(X) = % 2 ( )
n=1
2 fos]
p) y(x) = — X )



ng 614-:

Pg. 66:

Pg. 68.

Pg. 69:

Pg‘o 77:

Pg. 791

Pg. 80:

Pg. 91:

line 17.

after Js[r] insert the word to .

line 3.
3y 06
We know Sy |x = 0 not we known oy |x = @

Line 7, should read fn, not £
Line 8, all f should be fn
Line 17, o
6"(p) = T not fTt
0 0]
Last two equations should have after them
y > a
y < a
line 5, should read
Now, lacking a known inversion in closed form

(this part missing)

I : Leibnitz Rule

b(x) b(x)

da d 2

&= fx)=(C )+ [ —g%’y—) dy , not —-————yfé’y) dy
a(x) a(x)

No. 19

JVesa av = fS afads (not da.)

No. 22

fv (Vxa)dv = fsg_x a ds (not da)

Gas constant R = 8.31k x lO7

€T8/mole °K not /mole o0
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