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1. INTRODUCTION

The present study has as its primary goal the numerical solu-
tion of the non-linear partial differential conservation equations
that govern the unsteady, inviscid, mixed subsonic-supersonic
flow within a Laval nozzle. The problem of interest involves an
intense, time varying and spatially varying, bulk heat addition
within the nozzle, which acts .as a transient "driving force' on the
internal gasflow. In what follows we consider both a quasi-one-
dimensional model and an axisymmetric model based on Euler's
equations. Each of these initial, boundary-value problems is
discretized by means of a two-step finite-difference technique and
subsequently solved on a digital computer. The ensuing analysis
places particular emphasis on the dynamic convective heat transfer
processes within the nozzle and on the role that nozzle geometry
plays in altering these processes.

This work was initially motivated by a desire to better under-
stand some of the physical phenomena underlying the operation of
the so-called gas blast circuit breaker, which finds wide use in the
power industry as an effective interrupting device for high power
AC electric systems. It is believed that convective heat transfer
plays an important role in arc extinction, and nozzle design criteria

for this type of breaker have long been sought.



Since the "art'" of numerical analysis of non-linear partial dif-
ferential equations is in its infancy (relative, say, to the progress
that has been made in the mathematical solution of linear equations),
a concurrent goal of this study is to evaluate the feasibility of using
modern numerical techniques to effectively model the circuit breaker
problem. In particular, we draw some conclusions regarding more
realistic multi-dimensional models, including those that account for real
gas effects, such as thermal and electrical conductivities and thermal
radiation, in the working fluid.

Before describing the numerical models and associated analyses,
we briefly discuss the physical problem of interest and provide some
background in the area of numerical analysis of partial differential

equations.

1.1 The Gas Blast Circuit Breaker

Lee! and Rieder” both review the state of circuit breaker
technology, discuss the various types of breakers in use, and
point out areas in which research would be beneficial to a better
understanding of the physical phenomena involved in their performance.
Gas blast breakers find wide use in ultra-high voltage AC systems
with voltage magnitudes up to 750 kV and current values‘ as high as
50, 000 amperes. As their name implies, they depend on the '"blast"

of some gas from a high pressure reservoir to rapidly cool and then



extinguish an electric arc that completes the external circuit to be
interrupted. Although there exist several mechanical configura-
tions for such breakers, the arc-nozzle combination shown in

Fig. 1-1 illustrates the principles involved in axial-flow breakers
and forms the basis of the ensuing analyses. After the separation of
the two electrodes and the subsequent formation of the arc along the
nozzle centerline, a gas enters the nozzle from an upstream reser-
voir and exhausts to a low pressure receiver. The pressure drop
across the nozzle is so great that the back (receiver) pressure offers
no resistance to the interior gas flow, which freely expands throughout
the converging and diverging nozzle regions.

Gas blast breakers use either air or sulfur hexafluoride (SF6)
as their working gas. The latter substance has certain special
properties that are .conducive to arc extinctionz’ 3. Figure 1-2 shows
the dependence of the electrical conductivity, o, of SF6 on static
temperature and pressure, according to the recent analytical
results of Liebermann4. The abrupt increase of o with tempera-
ture at about 40000K, a behavior found in most other gases,
allows for a clear definition of an electric arc "boundary", as
illustrated in Fig. 1-1. As the AC current input to the arc under-
goes a complete temporal cycle, this boundary defines an arc cross-
section that, on the one hand, may fill the containing nozzle during

peak current transition or, conversely, may shrink to a narrow
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filament along the nozzle centerline as the current magnitude be-
comes zero. This "current zero'" period, during which the power
input to the arc instantaneously vanishes, provides the optimum
conditions for arc extinction. To convert the electrically conducting
plasma into a non-conducting gas that will withstand rapidly increasing
circuit recovery voltages without thermal breakdown (or "'re-ignition"),
an enormous amount of energy must be removed from the arc region
within a few.microseconds. The energy transfer mechanisms avail-
able to do this include laminar and turbulent thermal conduction, con-
vection, and radiation. An understanding bf these mechanisms is, of
course, essentiallfor circuit breaker design. And yet, their non-
linear and highly cbupled nature render the problem almost entirely
insoluble. The possibility of significant electrode and gaseous non-
equilibrium effects further complicate the task of investigators. For
these reasons, previous analytical and experimental studies have
attempted to isolate only one of the important transfer processes.

The majority of previous analytical work in this area, beginning
with that of Cassies, deals with the idealized, cylindrically symmetric,
"asymptotic arc column' in which radial .conduction, and possibly -
radiation, are the dominant heat transfer mechanisms. One imagines
that the arc is confined within a long, well-cooled, constant-area
tube so that far away from the electrodes all axial gradients become

negligible. Through various mathematical and physical simplifications,



a generally comprehensive understanding of dynamic electric arc
behavior has been obtained and the results have given some insight
into the role of thermal conduction near current zero passage in gas
blast breakers. Anderson6 presents an excellent summary of this work.
In the few cases for which radial convection effects were included'in
the analyses, either an assumed velocity behavior (e.g. a linear
dependence on the radial coordinate) or numerical solution techniques
were necessary. Phillips7 recently demonstrated that the momentum
conservation equation must be solved to properly account for radial
flow effects for the cylindrical arc. He also showed that under certain
conditions indubed radial velocity and the associated compressibility
effects can dominate thermal conduction effects in a SF6 circuit
breaker arc.

The addition of axial convection effects (which are obviously
important to the gas blast circuit breaker) to the cylindrical arc
problem necessitates the use of numerical solution methods, unless
far-reaching and generally unrealistic idealizations are incorporated
into the analysis. Stine and Watsong, for example, added the axial
convective transfer term to the steady-state Elenbaas-Heller equation,
which was used in the conduction dominated cylindrical arc studies
discussed above. They decoupled this energy balance relation from
the momentum and continuity equations by assuming a pseudo-one-

dimensional, uniform pressure, "slug'" flow, and thus obtained a



closed form solution for the enthalpy distribution. In a later in-
vestigation, Watson and Pegot9 expanded this work and performed

what is perhaps the most comprehensive numerical study of constricted
arc-heater flow; Their analysis included both radial and axial con-
vection and real gas effects, but was limited to subsonic flow velo-
cities and steady state conditions (i.e. a DC current input to the arc).
Standard finite-difference techniques were used for both symmetric

and asymmetric conditions.

Numerical analyses that include constrictor (nozzle) geometry
effects generally assume the flow is one-dimensional or piece-wise
one—dimensionallo’ 11. Swanson and Roidtlz, however, were able to
include furbulence and radiation effects in a solution of the conserva-
tion equations for an arc core lying on the centerline of a breaker
nozzle. The arc geometry was determined through an approximate
integral formuiation of the thermal boundary layer equation applied at
the arc boundary. The nozzle geometry only determined the axial
pressure gradient in the arc core and conditions were again limited
to those of the steady state and subsonic flow velocities.

"In the present work we propose to go beyond the above investiga-
tions and concentrate directly on the gasdynamic effects involved in
gas blast AC circuit breakers. Such an analysis requires the use of
sophisticated numerical techniques for solving the unsteady conserva-

tion equations. Since the field of numerical gasdynamics is a relatively



new one, a review of its terminology, a brief historical development,
and consideration of the present "'state of the art' will expedite the

discussions of following sections.

1.2 Numerical Solution of the Conservation Equations of Gasdynamics

Although the field of research dealing with the computational
solution of systems of non-linear partial differential equations has been
a viable one for only a quarter century, an extensive literature on the
subject has emerged. The general area of fluid dynamics has probably
been the greatest impetus inthis direction. Sichel13 and Emmonsl4
present overviews of previous work in this area. Owing to a lack of a
rigorous mathematical foundation, however, numerical fluid dynamics
remains more of an "art'" than a science. It is hardly an exaggera-
tion to state that theré exist nearly as many numerical methods as
there are physical problems. In a manner similar to that of mathe-
matical solution procedures for linear equations, these methods
(and physical problems) may be categorized according to the type
of equations involved —elliptic (e.g., Laplace's equation), parabolic

(the heat equation), or hyperbolic (the wave equation). In what follows,

we will be concerned with the area of gasdynamics, in which the

working fluid is compressible. The governing conservation equations
then form a system of hyperbolic partial differential equations, or a

mixed hyperbolic-parabolic system for the case of the compressible



10

Navier-Stokes equations, which contain second order viscous and
: 15
thermal conduction terms. Cheng 5 gives an excellent discussion of

the many numerical considerations involved in solving these equations.

1.2.1. Definitions and Terminology

To further limit our considerations of this extensive field, we
also restrict the discussion to finite-difference methods for the
Eulerian form of the conservation equations. Among other things,
this rules out our use of other possible numerical techniques, such as
the method of characteristics (for purely hyperbolic systems), the
method of integral relations, and finite-element theory. Only the
first of these offers a practical alternative in the present study, but
it has the disadvantage of requiring a much more complicated com-
puter program logic (particularly in the axisymmetric case with
three independent variableslﬁ). In addition, the inclusion of viscous
and thermal conduction effects is not possible for future extensions of
the models. The Eulerian viewpoint is preferred here, because it
represents a more straightforward approach to the problem of un-
steady nozzle flow. Lagrangian coordinates find application to
problems that include free-surface boundaries, two or more fluids
with different state equations, or certain processes of interest that
are associated with fluid elements.

Two classical references on finite-difference techniques are

those of Richtmyer and Morton17 and Forsythe and Wasow18. The
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former has particular application to the present problem. In general,
the technique of finite-difference modeling involves replacing the
physical domain of interest by a finite set of nodal points at which

the solution to the éontinuous equations are to be approximated.
Wherever the exact solution is analytic, the derivatives are re-
placed by finite differences which follow from a Taylor series ex-
pansion of the exact solution, denbted as f, about any node at (x,t)

(say, for the unsteady, one-dimensional case). For example, from

2
f(XiAX,t)=f(X,t)iAX—§£ +‘—1~(Ax)2~a—-£ ... (1.1)
ox 2 2
,t 0X
X,t
we obtain the forward difference approximation,
of a1, o 0[(A )2] (1.2)
x x 2°% 2 * % .
0X
x,t
where
_fx + Ax,t) - f(x,t) 1
AXf = Ax (1. 3)
and the backward difference approximation,
of 1 azf 2
-é-}-{— :fo+~2~AX;—X—2' +O[(AX) (1'4)

where

:f( ’t) - f(X - AX,t)
v ts X o : (1.5)
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The addition of (1.2) and (1. 4) results in the central difference

operator,

A - - Ax,t)
GXfEf(X+ x,t) - f(x - Ax,t) (1.6)

2Ax
Similar expressions hold for differences for the variablet. There
exist many other approximations for first and higher order deriva-
tives, some of which are mentioned below. They all are based on the
Taylor expandability of the exact solution of the continuous differential
equations to be solved, and thereby assume that the sum of the Taylor
series is approximated to a high degree by its leading terms. The

remaining terms then constitute the truncation error associated with

a given difference scheme.

We can define more precisely the truncation error of a diffei'-
encing scheme and simultaneously explain the notions of consistency,
of explicit versus implicit techniques, and of the "order of accuracy"
of any scheme. Following the ideas of Morettilg, we denote the
approximate finite difference solution at x = jAxand t = nAt as Fr]l
Consistent with the previous notation, fr; then denotes the exact
solution at the same node. The overall differencing procedure is thus
one that arithmetically operates on FI; at all nodes in the domain of
interest to produce approximate values of F‘;Hl (at t = (n+1)At).

This procedure may be specified by a global operator, 4 , such that
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F}”l =(9’(Fr]?) . (1.7)

Now, if F;l +1 is calculated from exact values of the solution, that

is, if

F=r1oge) | (1. 8)

e=TF-f : 1.9)

Note that if one begins with the exact values, f;l , which are continuous

and satisfy the differential equations, then the ratio

should approach the same limit as

M+l _gn
j j
~AT

when At approaches zero. That is,

F ool

A j . €

lim ——— = 1lim (———): 0o . (1.10)
At -0 At At -0 At

Difference techniques that satisfy Eq. (1.10) when applied to a dif-

ferential equation are said to be consistent. Evaluation of the trunca-

tion error € for a given technique (e.g., a given operator, & ) requires

the replacement of each f? in Eq. (1.8) with its Taylor series
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equivalent about the node (j,n). The partial time derivatives that ap-
pear in these series can be expressed as spatial derivatives by means
of the associated partial differential equations. The truncation error

may then be written in general form as

€ = b(Ax)q +0 {(Ax)q+1] (1.11)
where At is given in terms of Ax, based on stability considerations

(to be discusséd below). The order of accuracy of the given differ-

encing scheme is then defined as (q-1). However, Moretti19 notes
that for this definition to be precise: (1) all the Taylor series in-
volved must converge rapidly and monotonically and (2) the factor b,
which depends on local values of the dependent variables and their
derivatives (and is unique to each difference operator, v ), must be
o‘f the order of one. In the case of non-linear governing equations,
Moretti demonstrates that these criteria are not always met.

Schemes that may be represented by Eq. (1.7) are known as
explicit techniques, because the calculation of F;‘ +1 depends only on
known values of the dependent variables at previous times. As such,
these techniques are particularly convenient to use, sinée they involve
a simple "marching forward" procedure from one time line to the next.
They have the disadvantage, however, of imposing a limit on the time
step of integration to maintain a stable solution procedure. Implicit

schemes, on the other hand, which may be represented as
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F;‘” -0, F;“l) , (1.12)

for example, usually need no limit on At to ensure numerical stability.
Their major shortcoming stems from the need to efficiently solve a
large set of simultaneous algebraic equations. In general, explicit
techniques find wider use in gasdynamics. There is reason to believe,
in fact, that even with the possibility of larger time steps, implicit
schemes are ill-suited to the solution of hyperbolic equations. We
discuss this topic in more detail in Sec. 2. 3. 3.

A great deal of work has recently been devoted to the question
of stability of finite-difference schemes. We will not delve into
this extensive topic in detail here; most references on finite-differ -
ence methods, such as Ref. 17, devote a great deal of discussion to
this concept. In general, any differencing method is said to be stable
if any errors (truncation, round-off, boundary errors, etc.) intro-
duced into the computation procedure do not grow in an unbounded
manner with increasing time and eventually "swamp' the solution.
Unfortunately, stability analyses, such as that due to Von Neumannzo,
apply only to linear equations. In the non-linear case the usual
procedure is} to linearize the governing equations and assume the
resulting stability criteria apply locally over the domain of interest.
However, for all hyperbolic partial differential equations and systems

of equations, such as those studied here, it is known a priori that the
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Courant - Friedrichs-Lewy stability condition must be met no matter
what form of differencing scheme is used. We defer a more thorough

discussion of this topic to Sec. 2. 3.3 on time-step control.

1.2.2 Concept's of Numerical Gasdynamics

Computer solution of the conservation equations of fluid dynamics
had its start around 1950 with Von Neumann and Richtmyer's work
on the ENIAC computer. In their attempts to solve for inviscid flows
containing shock waves, they proposed the use of an "artificial vis-
cosity', explicitly incorporated into the governing equations, to
numerically account for the discontinuous change in fluid properties
across the shock21. In 2 manner similar to the true physical char-
acteristics of a real gas, the flow then undergoes a continuous transi-
tion through a "mumerical shock wave" of finite thickness. Hence, the
use of the Rankine~Hugoniot relations is avoided and finite-difference
methods applicable to continuous flows suffice for the entire computa-
tional domain. Since that time, numerous investigators have used
this device not only for flows containing shock waves, but also as
a means for damping numerical instabilities that occur near boundaries,
steep gradients, etc.

In 1954, Lax22 extended the above ideas by proposing the use of
the so-called 'conservation férm", or "divergence form'', of the
equations of gasdynamics, as opposed to the better lg;'nown Euler equa-

tions. In this way, the unsteady one-dimensional conservation equations,
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for example, have the form

g __0oh (1.13)

where g represents a vector whose elements are the three de-
pendent variables of interest and h is a vector function of g. Euler's

equations, on the other hand, have the form

of . of
- A

(1.14)
in which { is the vector of dependent variables and A is a matrix

whose elements depend, in general, on f. The innovative feature of

form (1.13), as put forward by Lax, lies in the fact that in the steady-

state the Rankine-Hugoniot equations for conditions across a shock

wave are automatically satisfied. Moretti22 points out that this
advantage does not carry over to unsteady flow calculations. A further
advantage attributed to the conservation form, as opposed to Euler's
equations, is that the fluid mass, momentum, and energy are con-
served during a finite-difference calculation. As a consequence,

this technique has attained great popularity among researchers in
computational physics, who have applied its principles to a wide

range of fluid dynamic and gasdynamic problems. Nevertheless, there
exists some skepticism and convincing evidence that it offers few,

if any benefitslg’ 23.
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The use of an artificial viscosity and the conservation form of
equations to implicitly "fit" shock waves into inviscid flows entails
two major disadvantages. One is the fine mesh size (and correspond-
ing large computational time) needed to maintain a reasonably narrow
(but still unrealistic) shock transition region. A large viscosity
relieves some of these difficulties, but causes significant errors
throughout the overall flowfield. The second disadvantage is the
non-physical oscillations that appear on the high pressure side of the
shock and become more intense with decreasing viscosity. (See Ref.
24, for example.) In an effort to relieve some of the difficulty, Lax
and Wendroff25 proposed a new difference technique in 1960, which
is second order accurate in both the time and space variables. The
scheme involves approximating the dependent variables, f, at each

new time line by a second-order Taylor series expansion; hence,

of 2

~ 1 20971
ft + At) = f(t) + At Frl) (At) —5 . (1. 15)

t att

The governing equations in conservation form provide expressions
for the above ‘time derivatives in terms of spatial derivatives, which
are than replaced with centered differences. No artificial viscosity
was used in the original work. Although the technique still produéed
oscillatory behavior of the solution in the vicinity of the shock, the

Lax-Wendroff technique has become quite popular because of its high
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26,2
overall accuracy. Some impressive results have been obtained 6, 7.

The technique alsd led to the development of several multi-step
Lax-Wendroff schemes that avoid the cumbersome form of the full
scheme in Eq. (1.15). One of the first of these is due to Richtmyer17

28,29,30,31 o developed and

More recently, Gourlay and Morris
studied several variations of these schemes.
The final topic relating to computational fluid dynamics that we

mention here concerns the time dependent approach, which has found

increasing usage in recent years. In general, it simply entails the
numerical solution of the unsteady form of the conservation equations.
However, in 1965, Crocco32 advocated this approach as a means of
solving fluid flow problems in the steady state. The flow would thus
evolve from some specified initial condition and approach the desired
equilibrium state asymptotically in time. Since the steady form of
the conservation equations are elliptic‘, this procedure avoids the
difficulties often encountered with specifying conditions at boundaries
that lie at infinity. Instead one solves an initial-value problem,

which is hyperbolic or parabolic in form, with greater freedom in the

choice and specification of boundary conditionsso’ 34

Time-dependent
techniques have been used in numerous fluid dynamics problems
and all significant references cannot be mentioned here. (See Refs.

33 and 34 for brief surveys.)
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1.3 Overview of Present Research

As we mentimed above, the primary intention of this work is to
numerically calculate unsteady flows in Laval nozzles and investigate
the effects of an intense time-varying bulk heat addition on the internal
gasdynamics. To accomplish this, we use a modern two-step finite-
difference technique which has second-order accuracy in both time and
space. C.heng15 offers convincing arguments that second-order schemes
are optimum for time-dependent problems. Our overall technique
may be termed time-dependent in the general sense described above,
as well as in the more restrictive definition, since we use it to cal-
culate steady-state solutions as well. Neither the artificial viscosity
nor conservation form concepts are used. Flow throughout a Laval
nozzle experiences large gradients in fluid properties that would cause
ar tificial dissipative mechanisms to produce significant errors in the
assumed inviscid flow. And since we are not concerned with shock
wave phenomena in this analysis, the natural stability characteristics
of the chosen difference scheme suffice. In addition, our governing
equations cannot be written in a true conservation form, because they
contain "source-like' terms due to heat addition, nozzle area varia-
tion, and terms due to the axisymmetric form of the conservation
equations. The numerical study, as a whole, is significant in that it
considers transient internal flows whose velocity ranges from near

zero to highly supersonic values in the domain of interest.
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In regard to the gas blast circuit breaker problem, the analysis
focuses on convective energy transfer processes and how they are
influenced by nozzle geometry and heat input. As in previous studies,
we omit non-equilibrium, turbulence, magneto-hydrodynamic, and
electrode effects in order to obtain a tractable problem formulation.
The implications of such simplifications are thoroughly discussed

elsewherél’ 6,8,9, 72.

In addition, we consider the working gas to

be inviscid, so that numerical difﬁculties associated with nozzle

wall boundary layer effects are avoided. As such, the ensuing analysis
implicitly assumes that the internal gasflow follows the specified wall
geometry variations; that is, boundary layer separation does not

occur. This assumption is expected to be valid for the large inlet-to-
receiver pressure ratios, high Reynold's numbers, and nozzle.
geometries studied here. Furthermore, the results of Watson and Pegot9
indicate that viscous forces in a plasma-generator nozzle and constrictor

have a negligible effect on flow properties when internal passage

dimensions are comparable to those used in the present study.



2. QUASI-ONE-DIMENSIONAL MODEL

2.1 Introductory Remarks

The quasi-one-dimensional conservation equations of gasdynamics,
which are widely used in the area of internal gasflows, form the basis
for the initial approach to numerically modeling the present problem.
Although the assumption of one-dimensionality is restrictive in its
basic implications, these equations have been found, in many cases,
to yield reliable quantitative, as well as qualitative, resﬁlts; flow
through ducts, heat exchangers, turbo-jet engines, and wind tunnel and
rocket engine nozzles represent typical examples.' The possihility of
accounting for (in a manner consistent with the one -dimensional
assumption) the effects of heat addition, a variable duct geometry,
wall friction, body forces, variable gas composition, and mass injec-
tion, further enhances the applicability of this approach. Crocco 34
presents a detailed discussion of the steady form of the quasi-one-
dimensional equations, while Shapiro's text35 is perhaps the classical
reference in this area. Sentman's work 36 gives a complete and mathe-
matically rigorous derivation of the general, unsteady equations and
was the author's chief reference in formulating the governing equations
of this section.

With regard to the present investigation of flow in a Laval nozzle

with a general time-varying bulk heat addition, a one-dimensional

22
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model offers several benefits. First of all, it provides the opportunity
to evaluate a given'numerical technique hefore it is applied to the more
comprehensive axisymmetric physical model. We use the term
"numerical technique' here and throughout the remainder of this thesis
to signify the overall method used to discretize the physical model and
produce an approximate computer solution for a given set of problem
parameters. Such a technique would therefore include: (1) a finite dif-
ference scheme that accurately integrates the governing partial differ-
ential equations within the interior of the domain of interest, (2) a
suitable numerical scheme (which is compatible with that of the domain
interior) to impose the boundary conditions that define the problem at
hand and determine a unique solution, (3)' a method to dynamically con-
trol the size of the time stép used in integrating the. equations and
thereby ensure a stable solution procedure, and (4) initial values of the
dependent variables that either represent the true physical initial con-
ditions or, in the case for which only a steady-state condition is of
interest, prevent numerical instability. Other more subtle ingredi-
ents of the numerical technique are the forms in which the differential
equations are written (e.g. conservation versus non-conservation
form), the size and shape of the ﬁnite-difference grid used, and
methods for reducing numerical data and displaying the final results.
Although the additional spatial (radial) coordinate of the axisymmetric

governing equations introduces numerical considerations not present
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in the one-dimensional model, virtually all procedures developed in the
latter case carry over to the higher dimension model . For example,
the manner in which the inlet houndary condition is incorporated into
the numerical model proves to be more critical in determining a stable
numerical solution than conditions at the nozzle exit, axis of symmetry,
or wall.

In addition, the numerous exact analytical solutions availahle for
quasi-one-dimensional flows allows us to demonstrate the validity of
the technique that is ultimately adopted. In short, the one-dimensional
model is} a logical "numerical stepping-stone' to the axisymmetric
problem.

Another benefit to be derived from the one-dimensional approach
| concerns the physical implications that may be drawn from the result-
ing solutions pertinent to the circuit-bhreaking potential of Laval noz-
zles. The unsteady quasi-one-dimensional equations yield significant
qualitative information pertaining to the gross effects of én "arc-like"
bulk heat addition on the mean flow properties within the nozzle, and
to the roles played by axial convection and nozzle geometry. One
parameter of interest to the circuit-breaker designer, for example,
is the thermal time constant associated with the decay of the static
temperature (and hence, with the decay of electrical conductivity)
both near current zero passage and during the 'free decay' from a

high temperature steady state. Also, the transient phenomenon of
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reverse flow near the nozzle inlet during the first moments of energy
addition (which is one undesirable form of circuit-breaker 'clogging'),
the validity of the quasi-steady assumption commonly used in analyti-
cal treatments of the "near peak current' period of an AC arc cur-
rent input, the effects of the time lag between heat input and gasflow
response, and the importance of supersonic flow velocities represent
additional phenomena of importance that may be examined through a
one ~-dimensional analysis.

And finally, we should mention that the numerical solution of the
quasi-one -dimensional conservation equations governing mixed sub-
sonic-supersonic flow in a Laval nozzle is a non-trivial problem.
Some of the more recent investigations along these lines were men-
tioned in the Introduétion. Most entail considerations of the steady
state only; and, to this author's knowledge, the case including an
intense time -varying bulk heat addition has not been previously investi-
gated.

In the remainder of the present section, we detail the form of the
governing equations used in the oné -dimensional model, the overall
numerical technique involved in their solution, and the subsequent

results obtained from this approach.

2.2 The Quasi-One-Dimensional Governing Equations

The quasi-one-dimensional equations of gasdynamics express the

laws of conservation of mass, momentum, and energy of a fluid flowing
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within ducts of varying cross-sectional area. The prefix "'quasi-''
generally reflects the inherent inconsistency between the assumption
of one-dimensicnality (with the coordinate, x, directed along the duct
axis) and the inclusion of area variation effects. One further assumes
that the effects of any mechanism, such as heat addition, are "felt' by
the fluid at each x instantaneously and uniformly over the local duct
cross-section. Consequently, the fluid properties that appear in the
following equations represent mean values at each axial station. The
equations can be derived either by considering a control volume fixed
in space35, or by following the motion of a fixed-mass fluid element36.
They do not, in general, follow from the three-dimensional conserva-
tion equations as do the true (exact) one-dimensional equations, which
hold along a streamline in an inviscid three-dimensional flonield.
Proceeding with the fomulation of the working equations, we write

the continuity equation in general form as

3(pA)

0
ot +&—(puA)-0 , (2.1)

assuming there are no mass sources or sinks present. The fluid den-
sity (p) and velocity (u) are functions of both time (t) and the single spa-
tial coordinate. Since the duct cross-section area, A, is a function

only of x, we have by the above equation that

oo, %, v x
at+uax+pax+puﬂ_0 (2.2

V.4
with A = d(¢n A) /dx.
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If we now assume that the fluid is inviscid and non-heat-conducting,
there are no body forces acting on the fluid, and a state of thermody-
namic and chemical equilibrium exist at each x and t (so that, in the
usual manner, the normal stress within the fluid is equated with the
equilibrium thermodynamic pressure, p), then the momentum equation
takes the familiar Euler form in which

du . du  1lap _
8t+ua_§+p X_0 (2.3)

and u represents the fluid velocity. It is interesting to note that the
duct area, A(x), does not appear in Eq. (2. 3); hence, the equation holds
regardless of the spatial (or temporal) variation of A.

Finally, we write the energy equation in a form that is analogous
to the First Law of Thermodynamics for a fluid element;

De _

e
Dt

Q _ D(1/p
> P Tpr (2.4)

where e denotes the specific internal energy of the fluid and Q repre-
sents the net rate of heat addition per unit volume (watts/ m3) at any
point along the duct. In general, Q is a function of both x and t and
accounts for duct wall heat transfer effects, radiation, and all other
forms of energy addition or removal. A discussion of the specific form
of Q used in the present study will be deferred to the section on the one-

dimensional results.
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If the working fluid is now assumed to behave as a perfect gas with
p = pRT (2. 5)
and

e=c_ T , (2.6)

where Cy is the specific heat at constant volume, then the foregoing
conservation equations may be written with p, u, and T as the dependent
variables. For the remainder of this thesis, we adopt the standard sub-
script notation to denote partial differentiation. Equations (2. 2), (2. 3),
and (2.4) then become for a perfect gas:

pp = - up, - p(u +ud)

T
ut—-qu—R(TX+—5pX) . (2.7

T, = —uTX -(y -1) T(ux+uK) + (Q/pcv)

y represents the ratio of specific heats cp/ c -
Equations (2.7) may now be normalized with respect to a charac-

teristic length, L, a characteristic velocity, V_ ., and some reference

ref

values of the fluid properties. We therefore introduce the following

dimensionless variables:
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where
. p C
ref "ref .. V_ -1
Qref L & TR v -1 ’
pr = Loty and x* =2
L ’ L

The reference velocity is, for convenience, given by the relation

/p/

=(p ref

r ref

The working equations now take the following non-dimensional form:
[ =" up, - p (u_+ud)
u = -uu - TX -(T/p) Py (2.8

T, = -uT - (v -1 T +uh) + (v - D@Q/p)

in which we choose to drop the asterisk superscript to simplify the nota-
tion and will re-introduce it only when it is necessary to reference
dimensional values in relation to their dimensionless counterparts. In
the numerical results to follow, L is the nozzle length and the fluid

upstream reservoir conditions are used as the reference state.

2.3 Numerical Technique

The task of choosing a numerical scheme to integrate a nonlinear,
coupled set of partial differential equations, such as (2. 8) above, is
complicated by the fact that the literature abounds with numerical tech-

niques applicable to fluid dynamic problems, almost all of which purport
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to offer certain advantages that make them preferable to others. We
described some of these in the Introduction. The Lax-Wendroff (L-W)
technique perhans comes closest to being a "universal'’ scheme in
fluid dynamics. It offers second ar der accuracy in both time and space
(in the sense previously defined), numerical stability (with the aid of an
additional artificial damping term in certain problems involving stag-
nation points, sonic lines, and/or shock waves near an axis of sym-
metry39), and a certain proven versatility in that it has been success-
fully applied to a wide range of inviscid flows. However, the inclusion
of diffusive second order terms in the working equations (most notably,
those terjms involving viscous and heat-conduction effects) renders the
L-W differencing scheme virtually useless, because of the great num-
ber and complexity of the resulting terms in the differenced equations.
Everi in the case of multi-dimensional inviscid flow in which an auxil-
iary mapping 40f the physical domain onto a rectangular computational
domain is necessary (such as the mapping used in the axisymmetric
model considered in the present study), one must question the prac-
ticality of the method (see, for example, Ref. 27). In these respects,
then, the Lax-Wendroff scheme lacks efficiency and flexibility.

" In the present investigation, in which we perform a partial paira-
metric study of the effects of nozzle geometry and type of heat input,
an efficient numerical technique is essential. In addition, the tech-

nique should be flexible enough to handle both single and
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multi-dimensiona'l flow cases, as well as diffusive fluid mechanisms,
such as thermal conduction, for future extensions of the axisymmetric
model. In light of these requirements, the two-step L-W integration
schemes previously discussed offer a workable alternative to the full
Lax-Wendroff method while maintaining second order accuracy.
MacCormack recently developed such a scheme to solve the unsteady,
axisymmetric, Navier-Stokes equations describing the fluid-like crater-
ing of hypervelocity cylindrical aluminum pellets on semi-infinite
aluminum targets. Conéequently, the equations contained a coefficient
of viscosity of large magnitude. Moretti19 conducted a very rigorous
comparison of this scheme with several others prominent in the litera-
ture. He considered the initial compression period of the one-dimen-
sional "'shock-tube' problem in which a piston is accelerated linearly
from rest into a quiescent gas. By terminating the solution before
the compression waves coalesce into a shock, he avoided the problem
of consistency of the finite difference schemes when a discontinuity is
present in the flow. After comparison of the results with the known
exact solution, MacCormack's scheme proved to be superior from
the standpoints of accuracy and ease of programming.

This finite difference method has since been applied to a variety
of problems. Anderson38 used it in the time-dependent solution of

Laval nozzle flow with chemical and vibrational relaxation effects
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present—as applied to gasdynamic laser devices. Moretti40 studied
both the steady state and transient asymptotic approach to the steady
state for inviscid compressible flow past a circular cylinder. Moretti
and Pandolfi41’ 42, Moretti et a1.43, Kutler and Lomax44, and Thomas
et al.és, all applied MacCormack's scheme to the steady, inviscid,
three-dimensional conservation equations describing suioersonic flow
past various body and wing -body configurations at angle of attack.
(These works offer interesting contrasts as to the manner in which
discontinuities and severe flow property gradients are handled nu-
merically, and represent excellent examples of the differing philos-
ophies present in the modern computational fluid dynamics literature.)
And finally, MacCormack has applied his original scheme, as well as
drastically altered forms of it, to the time-dependent computation of
the flowfields involved in the shock wave-laminar boundary layer inter-
action problem46 and supersonic ﬂoW over a double Wedge47. We now
apply the original form of this scheme to the problem at hand with

the ultimate test of its applicability here being the quaﬁtitative and

qualitative character of the subsequent results.

2.3.1 Interior Points
In order to discuss, in a systematic manner, the overall numerical
technique used in this study, we distinguish between those points, or

nodes, in the computational domain that constitute either the domain
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boundary or its interior. In the one-dimensional model, the equations
constitute an initial-, two-point boundary-value problem with boundaries
located at x = 0 and 1. Correspondingly, the interior comprises all
nodes of the finite-difference mesh, except two. These interior nodes
are discussed first.

To facilitate the illustration of MacCormack's integration scheme,
we write Eqs. (2.8) in an equivalent vector form as:

ft=-CfX+S . (2.9)

The column vectors, f and S, represent the dependent variables and

"source-like'' terms in the governing equations, respectively;

i
f= |u (2.10)
[T
and
3 - puf‘:
S = 0 : (2.11)

(v - DIQ/P - Tul

The coefficient matrix, C, is a function of f;

C U P 07
C= |T/p u 1. (2.12)

| 0 (y -1T ul



34

We now divide the domain of interest uniformly in the axial direc-
tion and seek approximate values of f at a discrete set of J + 1 nodes
spaced Ax apart at each value of time t = nAnt(n =0,1,2,. . .), where
0 <x<1and Ax =1/J. In the usual manner, denote the finite differ-
ence value of f at any axial station along the nozzle, where x = (j - 1) Ax
(j=1,2,...,J, J+1), by f.jn. Then, given initial values of f].n at
time t, the first, or predictor, step of MacCormack's scheme estab-
lishes temporary values of fjn, denoted f].n—:l, at time t + Ant by means

of a simple first order Fuler method with forward differences in both

x and t. Thus,

(2.13

Defining X = Ant/ Ax and re-arranging (2.13), we write the predicted

values explicitly as:

2D P oY) A st . (2. 14)
] j I £ S nj
The final corrected values at t + Ant, f ].n+1, follow from what amounts

to a temporal average of those at the beginning of the time step, fjn,
and values att = (n + 2) Ant, denoted here by fjm, which are based

on the predicted values given by (2. 14) and first order backward

differences in x. Hence,
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gl %(f + fn+2) (2.15)

where

g2 gt _emtl gl iy ) i gnt (g1
i j ] j j-1 noj

The manner in which the time step, Ant, varies with n will be discussed
below.

In practice, Eqgs. (2.15) and (2.16) are combined so that, for
example, the first component of (2.9), the continuity equation, appears

in the corrector step as:

pn+1 1 ol 4 pHIi ) A[un+1 (pn+1 ) pn+1> N pn+1 (un+1 u n+1)]
] 217 j i ] j-1 ] ] j-1

- (2.17)

Before proceeding further, we introduce a more convenient nota-
tion than the obviously cumbersome one displayed in Eq. (2.17) above.
Since each finite difference equation refers to computations about the
general node (j,n) in the x,t) plane, only the indices different from this

central node need be specified. Therefore, f],n may simply be written

as f, fjil as f. ., and so forth. There should be no confusion between

i+l
the exact and approximate (differenced) values of f, because the con-
text in which they appear will make the distinction obvious. Further-

more, let the predicted values of f be denoted as f, and Ant as simply
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At. Then, for example, the general vector form of the corrector step,

Eqs. (2.15) and (2. 16), becomes:

e+ TaT - ¢ acE] (2.19

This notation will be particularly convenient for the discussion of the
axisymmetric model.

We now write out the full form of the finite-difference equations
corresponding to the domain interior (2 <j<J). For the predictor

step, Eqs. (2.10) through (2.12) and (2. 14) yield:
— ~
p=p- A[u(pj+1 -p) + p(uj+1, -u] - Atpu A

E:u—k[u(uj+1-u)+('I3.+ —T)+T -p/p)

(2.19)

T=T - A[u('l‘].+1 -T) + (y‘— 1) T(uj+1 -u)]

+ At (v - D[(Q/p - TuA]

For the corrector step, Eqs. (2.18) yields:

o= {o+ 5 - A5 - 7 + 5@ - T,_p] - At puK}
u é—{u+u—k[uu—u] 1‘) +(TI“—.'-I‘_J.._1) +T(ﬁ-5j_1)/ﬁ]}

(2. 20)
T s T[T - T + & - ) T@ -1, )]

e

+At (v - ) [(@/p - Takl}
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2.3.2 Boundary Points

Boundary conditions, of course, determine the uniqueness of any
mathematical solution. In the present, one-dimensional, case we
must consider the two permeable boundaries of the computational
domain corresponding to those at which the gas flow enters (inlet;
j=1, x=0) and leaves (exit; j=J +1, x =1). It is interesting thatv
texts on the fundamentals of numerical analysis of partial differential
equations, such as Ref. 17, offer little guidance in the impbsition of
boundary conditions; and yet these are the very conditions that dis-
tinguish a given physical model. The bulk of the literature puts little
emphasis on this aspect of numerical techniques and there seem to be
as many methods for numerically sifnulating conditions at the bound-
aries of the computationai domain as there are solutions.

One must turn to the more recent literature for logical guidance

’

in this area. Moret:ti4 9 is perhaps the most vehement critic of
many of the recentvtrends in computational fluid dynamics. He
stresses the importance of boundary conditions to a numerical tech-
nique and suggests the manner in which the various types of bound-
aries (rigid wall, permeable boundaries, symmetry axes or planes,
and flow discontinuities) should be handled. His ideas are based on

an adherence to the physical principles underlying the fluid flow in a

given problem, as well as to the corresponding mathematical
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characteristics of the associated equations. As an example, consider
the case, which is pertinent to the axisymmetric model of the present
study, of a fixed rigid boundary in an inviscid flow. Mathematically,
it is well known that the proper boundary condition to be applied is the
vanishing of the normal component of the velocity. Hence, to deter-
mine the density, temperature, and the tangential velocity component
at the wall (which are needed in each step of the difference solution),
Moretti notes that one must use information only from the domain
interior plus this one boundary condition; otherwise, the problem will
be over-specified and therefore will not be consistent with the physical
problem considered. And yet, it is most common in the literature to
use the so-called '"reflection rule' at wall boundaries. (See, for
example, Serraz’7 and Burstein26.) In this technique, an imagina_vry
row of finite -difference nodes is added "inside'' the wall and the den-
sity, temperature, and tangential velocity values there are related

to those within the interior such that their gradient normal to the wall
vanishes. (That is, they are locally even functions with respect to the
wall boundary.) In this manner, the same finite-difference relations
conveniently apply at both the boundary and interior points. However,
these boundary conditions do not correspond to the true physical situ-
ation, except under very special circumstances. Nevertheless, investi-

gators have obtained seemingly valid results through their use.
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Limited studies of the reflection rule have both confirmed 44 and
deniedqt8 its value.

This apparent contradiction, and others associated with the nu-
merical solution of non-linear partial differential equations (for
example, the use or non-use of the conservative form of the govern-
ing equations), is possibly best explained by the relatively large degree
of error allowed for in finite difference approximations. Any error in
the boundary values of the same or higher order as the truncation
error of the difference scheme will generally be inconsequential. Even
in the case of lower order errors, the pseudo-diffusivity implicit in
the differencing scheme may sufficiently damp these errors at points
away from the boundary before they affect the overall quality of the
results. For reasons such as these it is often difficult to draw an
analogy between the differential and differenced problems in order to
determine whether a computational model is well —posed; it will gener-
ally appear to be over-specified.

The case of first-order partial differential equations differenced
by means of a second-order sc’heme, such as in the present study,

15, who discusses some of the

represents a good example. Cheng
above ideas, notes that by using a second-order difference scheme

one assumes the first and second derivatives of the Taylor series

expansion of the difference quotient are non-zero. The subsequent
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evaluation at each point of the second-order derivative implicit in the
scheme therefore requires values ‘of the dependent variables at two
neighboring points and provisions for two boundary conditions, as
opposed to the one condition normally expected for a well-posed
differential problem.

The point to be made by the above discussion is that errors due
to the numerical domain boundaries are unavoidable. The proper
imposition of extra boundary conditions requires a knowledge of the
exact solution; and this is, of course, unknown. These errors need
not be disastrous as long as their magnitudes are small and they can
be damped by the natural dissipation associated with the differencing
scheme. In regard to the latter point, it is We~11—known15 that the high
wave number components of an error spectrum are damped at a greater
rate; therefore, the use of extrapolated boundary values, whose related
errors change sign every few integration steps, is preferable to speci-
fying fixed values of the dependent variables at the boundaries (whose
related errors are not damped at all). In fact, the reflection rule
previously mentioned probably owes its "success" to these same
principles, since the associated error is not a fixed value and likely
changes signs frequently during the course of the integration. With the

above ideas in mind, we proceed to specify the boundary conditioas for

the one-dimensional model.
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Consider now the downstream boundary as being located at the
nozzle exit. As mentioned in the introduction, we consider only the
case of negligible back pressure so that the flow is unimpeded and may
freely seek supersonic velocities in the diverging region of the nozzle.
As a consequence, the dependent variables at the exit plane are inde-
pendent of downstream conditions and may be determined by means

48

of a simple extrapolation of upstream (interior) values (Note that

the interior finite-difference equations (2.19) do not hold here, because
they require a forward spatial difference.) In similar studie527’ 38,

the authors have used a simple linear extrapolation on the grounds

that any perturbation caused by the associated truncation error cannot
travel upstream in a supersonic flow. While this is true in the continu-
ous differential problem,' a consideration of finite-difference equa.tions,
such as (2.19) and (2. 20), shows that any error will indeed propagate
"upstream'' at a rate of one mesh node per time step. Initial numeri-
cal results of the present model based on a linear extrapolation at the
exit confirmed this by displaying oscillatory spatial distributions in

the dependent variables near the exit boundary at each time step. We
therefore adopt a second-order extrapolation formula, which is consis-
tent with the accuracy of the difference scheme used and ha’s heen found
to yield good results. Hence, the dependent variables at the exit

(j =J + 1) are calculated in both steps from values at the three

adjacent upstream nodes;
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=f -3, ,-T) (2.21)

in the predictor step, and

n+1 n+l 3 (f n+1 n+1> (2.22)

frig =159 -1 &

in the corrector step. Thé use of Eqs. (2.21) and (2.22) implies that
the third partial derivative of each dependent variable with respect to
X is equal to zero. Finally, we note here that this boundary condition
has always resulted in supersonic flow velocities at the nozzle exit.

The inlet proves to be the most interesting and, correspondingly,
the most critical boundary in the determination of stable and physically
reasonable results in the present study. Several possibilities exist in
the treatment of this boundary? more than one of which were actually
tested here by numerical experiment. Each warrants mentioning,
because it helps to illustrate the importance of this aspect of the nu-
merical model and the considerations involved in developing a technique
that is applicablé to both the one and two-dimensional problem.

The simplest method for specifying the upstream state entails
essentially no restriction on the flow. One assumes the inlet boundary
to be located in the converging portion of the nozzle. After determin-
ing the flow properties within the interior domain, the model evaluates
the dependent variables at the upstream boundary by means of an
extrapolation of adjacent interior values. A consideration of the non-

dimensional difference equations shows that with this method the
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interior flow obtains no information about an upstream reservoir, or
lack thereof. Hence, if the initial conditions correspond to true isen-
tropic flow and no heat is added (Q =0) for t > 0, then the numerical
computation results in the flow finally coming to rest in a portion of
the converging nozzle region and reversing its direction there,while
maintaining a positive axial velocity in the diverging region. The
computer run eventually terminates when the nozzle is vacated and the
density values become negative. One concludes from this somewhat
naive first approach that some sort of inlet flow condition must be
specified in order to simulate the existence of an upstream reservoir.
And yet, to be accurate, any such specification of flow properties
necessitates a knowledge of the true time—varying solution at the inlet.
Morettilg’ 48 suggests a solution to this dilemma, which is hoth
mathematically and physically reasonable. For the present case of an
internal flow, one assumes the nozzle is fed by an infinitely long con-
stant area duct. Since the initial perturbation formed by the transient
flow adjustments within the nozzle can never reach the inlet (where
X = - o), the flow properties there do not change with time and may,
therefore, be fixed at their initial values. To allow for the semi-
infinite physical space (- « < x < 1, t > 0) computationally, one maps

it onto a rectangle by means of an appropriate stretching function, Z(x).
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The governing equations are then modified only by the inclusion of a
coefficient, proportional to dZ/dx, in each of the spatial derivative
terms.

Without presenting the details, we mention that the ahove scheme
was briefly tested during the initial development of the one-dimensional
model. Several disadvantages associated with its use became apparent.
The most significant involves the large number of computational nodes
needed for a stable solution—two to four times the number necessary
if only the nozzle interior is considered._ There are two reasons for
this. First of all, the node immediately adjacent to the inlet boundary
must be sufficiently displaced from the nozzle so that the first transient
disturbance does not reach it in the time to which the computation
extends48. Also, good resolution must be maintained in transition
regions, such as the nozzle inlet at which the area begins decreasing50
and the heat front at which Q first becomes non-zero. As discussed
below, the time step involved in any explicit differencing scheme is
limited by stability considerations and, for the present probiem,
becomes smaller as the static temperature increases with an increase
in the amount of heat addition. Hence, the need to "carry along™
many computational nodes, at which the information is essentially
irrelevant, soon becomes intolerable. An extension of these ideas

to the non-adiabatic axisymmetric model is entirely unrealistic if
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computer processing times are to remain within practical bounds.
The notion of mapping the inlet plane to -« was therefore rejected.

The nozzle inlet plane represents the most logical and conven-
ient choice for the upstream b'oundary, and is the one that we use to
complete our model. In his quasi-one-dimensional representation of
the flow in a gasdynamic laser nozzle, Anderson51 assumed fhat the
nozzle inlet was essentially in the reservoir (that is, the inlet area
ratio was greater than six) and that the fluid density and temperature
therefore remained fixed with time at their stagnation values. The
inlet velocity, however, was allowed to vary. Its magnitude was
computed from a simple linear extrapolation of the values at the two
adjacent interior nodes. We note that, based on our initial considera-
tions of numerical boundary conditions, these restrictions should be
quite inaccurate, because an error of constant magnitude that cannot be
damped by the difference scheme is introduced into the interior at each
time step. Also, a linear extrapolation is inconsistent with the use of a
second-order numerical technique. In what follows,therefdre, we ex-
tend the above ideas in a manner that allows the inlet sfatic properties
of the fluid, as well as the velocity, to vary with time. To simulate an
upstream reservoir, the total, or stagnation, pressure ahd temperature
are assumed fixed at reservoir values. This specification of inlet condi-
tions is precise for steady-state nozzle flow. During transient flow

periods it is accurate in the limit of small flow (pressure) disturbances
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at the inlet plane. However, whatever errors are generated at the inlet
have a random character and can be damped away from the inlet by the
natural dissipé.tive mechanisms associated with the differencing scheme.
In fact, results to follow indicate that variations in inlet flow conditions
have only a local effect on the interior nozzle flow.

We consider a physical model of the circuit-breaker arc-nozzle con-
figuration equivalent to that represented by Fig. 1-1 of the Introduction.
The upstream electrode is located just downstream of the inlet plane,
such that any heat addition due to Joulean dissipation within the arc begins
affecting the gasflow at x = 07. In this manner, since the fluid is non-
heat-conducting, the inlet flow remains adiabatic. Now, visualizing
isentropic flow upstream of and including the inlet, we assume that the
stagnation, or "total", values of the fluid properties at the boundary
(specifically, the total density, temperature, and pressure) remain
constant. Theoretically, the total conditions at any point in a flow are
those that would exist if the flow were brought from its given state to
one of zero velocity by means of a steady isentropic process. By
definition then, the total pressure and temperature for a perfect gas

are given, in dimensionless terms, by:

) v/ v-1
pt=p(1+721M2) (2. 23)

and
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Tt=T(1+y;1M2> , (2. 24)

in which

M2 = uz/(yT) . (2. 25)

Since the reference state corresponds to that of the upstream reser-
voir, as mentioned previously, P, and Tt assume fixed values of
unity and the above equations reduce to a pair of relations for the inlet

static pressure and temperature. We have, therefore, that

T=1 -<V 2-y1>u2 (2. 26)

and

p=|1+ y -1 uz/TY/l—y (2.27)
(%)

at the inlet. Given a value for‘ the velocity, u, Egs. (2.26) and (2.27)
and the perfect gas law,
p=pT , (2. 28)
determine the flow at the upstream boundary.
The inlet flow velocity needed in the above equations is established
by means of the differenced momentum equation for j = 1. The pre-

dicted value, ﬁl, follows directly from the second of Eqs. (2.19):

=y - A[ul (ay -u,) +(Ty = Ty + Ty (o, - pl)/pl] . (2.29)
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In order to take the backward spatial difference required in the cor-
rector step, Eqs. (2.20), we imagine an additional "virtual' node
upstream of the inlet, where x = - Ax, and compute values of the
depen.dent variables there with a second-order extrapolation. If we
denote these values by fO, it follows that

fo = 3(f1 - f2) + f3 . (2. 30)

This extrapolation is consistent with the overall accuracy of the
numerical technique, and is further justified by the generally smooth

spatial distributions of the dependent variables near the nozzle inlet.

The corrected value of the inlet velocity, u{l +1, is now given by the

equation:
n+tl 1 - - = om o= =\ /=
e -x[@l -8+ (T -T) + Ty () -B)/my|} - (23D

: - n+1
Given values of uy, oru,

, Eqs. (2.26) through (2. 28) determine both
the predicted and corrected values of the inlet static temperature and
density needed to continue the numerical integration.

One final consideration will complete the overall formulation of
the inlet boundary condition. The preceeding relations are sufficient
to determine the flow conditions at the nozzle inlet plane as long as
the massflow there remains positive for the timespan considered. In

this manner, only the upstream 'cold" flow traverses the houndary.

However, in the case of a large amount of heat addition to the



49

downstream flow, the fluid velocity in the nozzle inlet region may
momentarily become negative; that is, the nozzle may ''clog'. When
this'occurs the total energy, and hence, the total temperature, at the
inlef: no longer remain constant, but increase due to the resulting con-
vection of the heated gas from the nozzle interior. To allow for these
circumstances in the numerical model, we let the dimensionless inlef
total temperature increase above a value of one whenever ‘ﬁl, in the
predictor step, or Uy in the corrector step, becomes negative (as
calculated in either Eq. (2.29) or (2.31)). The static temperature
value necessary to evaluate Ttl by Eq. (2. 24) is obtained from the

differenced energy equation similar to (2.19) and (2. 20). Hence, with

Q1 = Ql = 0 we have that

Ty =Ty A fug (Ty =T + 0= D) Ty Gy - up)]

- (v -1) At T, u, 2{1 (2. 32)
and
n+l 1 . = -
Ty = §{T1 +Ty - "[“1 (T, -T) +{r -1 Ty @ - “o)]
_— o~
- -0 &t T, H &} (2.3

whenever 'u'l, uy < 0 and/or Ttl’ Ttl > 1.0. The inlet total pressure,
Pty remains fixed at the reference value as before to simulate the

presence of an upstream reservoir.
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The above boundary conditions as a whole have been found to
yield good results, both qualitatively and quantitatively, and they
are consistent with a stable numerical technique as long as the incre-

mental time step, At, is properly controlled.

2.3.3 Time Step Control

As mentioned in the Introduction, any explicit finite -differencing
scheme, such as MacCormack's, has associated with it some limita-
tion on the time step used. For the case of a purely hyperbolic system
of differential equations, a necessary condition for convergence of the
finite -difference represehtation to the exact solution is the so-called
CFL, or domain of dependence, condition first put forward by Ccurant,
Friedricks, and Lewy in 192852. In mathematical terms, this cri-
terion requires that the domain of dependence of the partial differen-
tial equations be contained within that of the corresponding difference
equations. For the present one-dimensional model with fixed Ax, this

translates into the relation:

Ax
M S (2. 34)
max

We illustrate the significance of the CFL criterion by considering
a general interior mesh node located at (j, n + 1) in the x-t plane, as
shown in Fig. 2-1. The finite-difference solution at this node (point

A in the figure) given by Eqs. (2.14) through (2. 16), depends on values



51

vorIoa) AN[Iqels T4D Jo uolyesisn[(l ‘[-g omS3ud

|+ [ |-

v {ulod j0
— aJu3apuadag Jo uowoq

ysaw
90u3134}1Q - 3}1ut4

<t {iVu=\|

=— V(I1+U) =}

_..A |+ __.o + _+.“3 = 3d0|S :91§S13}J2040Y) XY/ 1V = adojg



52

of the dependent variables at only the three additional nodes on the
previous time line t = nAt (shown as darkened circles). These four
nodes constitute the ""computational molecule' of MacCormack's
method. The numerical domain of dependence of the point (j, n+1)),
therefore,v corresponds to the triangle ABC. On the other hand, a
consideration of the characteristic curves converging to point A, which
locally have slopes of (u + a) -1 in the x-t plane, shows. that its domain
of dependence in the differential fofmulation is the triangular region
ADE. (Actually, the characteristic curves are not straight lines as
shown, but may be represented as such to a good approximation in the
limit of small At.) It is clear that Eq. (2. 34) requires ADE to lie
within ABC, given that the sum (u + a) is a maximum at point A for
the time line t = (n + 1) At.

In practice, the characteristic slopes must be evaluated at t=n At,
because the values of u and a at the succeeding time line are a priori
unknown. To allow for curvature of the characteristics,} a ''safety

factor," C is incorporated into the criterion, which now takes

SF’

the altered form:

At=Cqp —2% ¢ Ax .
(lujnl + ajn) SF lujn + (y T].n)l/2 ,

o<cSF<1 , (2. 35)
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in which the speed of sound has been non-dimensionalized with respect
to Vref' The CFL criterion may now be given an alternative interpre-
tation that is perhaps more intuitively appealing. Figure 2-2 shows the
characteristics that issue from the nodes at B and C. It follows from
the theory of hyperbolic partial differential equations that data along

BC determines the solution at points within the region BCD alone, the
solution at other points in the x-t plane being undetermined by data only
on this interval of the t = nAt time-line. Hence, Eq. (2. 35) assures

the consistency of our numerical technique by restricting the location

of point A to the region BCD.

To conclude this discussion of time step control, a few additional
notes are in order. First of all, a further consideration of Fig. 2-1
indicates that for CSF < 1 the numerical scheme makes use of more
information than it needs in order to calculate the solution at point A,
since the segments BD and EC of the t = nAt time-line are outside its
interval of dependence. Moretti19 mentions that this inaccuracy is
not detrimental to the numerical scheme, because values along the
true interval of dependence, DE, are interpolated from those at the
three nodes on BC. One would expect, however, that a greater accu-

racy results from values of C_., closer to (but not greater than) one.

SF

This was, in fact, verified by the numerical results of the present

study both quantitatively, for the steady-state isentropic and
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""Rayleigh process'' cases for which an exact solution is known, and
qualitatively, for all cases which as a whole indicated better stability
characteristics for larger values of CSF' Other studies seem to
verify these ideas as well. For example, Rubin and Burstein53 show
a definite improvement in the qualitative aspects of their results for

a standing shock wave as the value of CS is increased up to a value

F
of 0.98. For C,., = 1.0, however, they found complete instability

SF
of their techniques.

With the above discussion in mind, we interject here some related
comments regarding the relative merits of implicit and explicit nu-
merical techniques for solving hyperbolic partial differential equations.
Generally, implicit differencing schemes result in a set of finite-

difference equations for which the domain of dependence of a mesh

point, such as point A, is the entire preceding time line. (See, for

example, Refs. 54 (pp. 505-512) and 55 (pp. 49-54).) As a result,
the domain of dependence of the differential equations is always con-
tained within that of the difference equations; that is, the CFL cri-
terion is satisfied for all values of At. Although the ability to choose
a large time increment would be very desirable, we note that the use
of an implicit scheme with hyperbolic equationé is similar to having

a very small value of CSF in an explicit method. Because most of the

information used to calculate the solution at each point of the succeeding
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time-line is extraneous, this should result in a very inaccurate
solution. In this sense then, explicit differencing methods are more
consistent with the mathematical nature of hyperbolic equations. On
the other hand, implicit schemes correspond more closely to the nature
of parabolic and elliptic equations. It is not unusual, therefore, that
explicit techniques are predominantly used in the area of numerical
gasdynamics.

Finally, note that the CFL criterion is a necessary condition for
stability and convergence of the numerical scheme. Equation (2. 34)
represents an upper bound on the value of At used during the course of
the integration. Several explicit differencing schemes, such as the
full Lax-Wendroff method, have stability properties that are more
restrictive than the CFL condition. Although the numerical technique
used here, based on MacCormack's scheme, was found to be stable for

values of C_., as high as 0.95 in certain cases of a "well-behaved"

SF
solution, values from 0.75 to 0. 85 were used for the general "hot

flow' runs in which large transient variations of the dependent vari-
ables existed and the characteristics,such as those in Fig. 2-2, had
1a,.rge curvatures. Furthermore, since the sum of the fluid velocity
and speed of sound is always greatest in the diverging portion of the

nozzle, we evaluate Eq. (2. 35) at only one or two nodes in this region

of the domain. In fact, it has been found that in the majdrity of cases

the minimum time step is determined at the nozzle exit.
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2.3.4 Initial Conditions

A specification of the initial values of the dependent variables,
fjo (1 <j<J+1), necessary to start the integration, completes the
formulation of the quasi-one-dimensional numerical model. If one
desires only a steady-state solution and the preceding transient flow
processes are irrelevant, virtually any initial distributions of the flow
variables that do not cause numerical instabilities will suffice as initial
conditions. Experience with this numerical model has shown that
instabilities do not appear if the fjo are consistent with the physical
assumptions inherent in its development. For example, the initial
exit Mach number should be greater than one as assumed by the extrapo-
lation boundary condition there. For the majority of cases considered
in this study, however, the initial flow transients are of interest.
Consequently, a typical run is "started' with the exact steady-state
isentropic flow values as initial conditions and, with Q = 0, the integra-
tion allowed to proceed until the corresponding finite -difference isen-
tropic solution is established. (The criteria used to define the achieve-
ment of a "steady-sfate" in the numerical results are outlined in the
results section.) This latter state then acts as the initial condition for
cases in which an initial isentropic flow is assumed to exist. Although
thé difference in the values of the dependent variables between the

exact and finite ~-difference solutions is less than one per cent,
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as demonstrated by the results to follow, this procedure eliminates
any non-physical initial transients caused by the truncation error.
For cases in which some "hot flow' steady-state, corresponding to a
given heat inpﬁt in the nozzle, is required as the initial condition, the
dependent variable distributions established by the difference equa-

tions themselves are used.

2.4 Quasi-One-Dimensional Results and Discussion

2.4.1 Validation of Technique

It is not uﬁcommon in the literature for the author of a numerical
study of some physical or engineering problem involving the solution of
non-linear partial differential equations to simply assumé his technique
produces results of a specified order of accuracy. In fact, the investi-
gators in some experimental studies often refer to numerical solutions,
to which they compare their results, as "exact'". However, one can

rigorously demonstrate only the consistency of a finite -difference

scheme when the equations to be solved are non-linear. As discussed
in the Introduction, information concerning the order of accuracy,
stability, and convergence properties of the scheme follow only after
the working equations have been linearized and, as such, this informa-
tion is not always reliable when applied to the actual numerical solu-

tion. Moretti19 mentions several examples of this and shows that
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even the simple first-order Euler differencing scheme, which is
unconditionally unstable in the linear case, produces relatively good
results compared to other first-order techniques when applied to the

one -dimensional conservation equations of gasdynamics.
37 46

)

MacCormack performed the linearized analysis of the
present scheme and we do not repeat it here. To demonstratevthe
value of the results produced by the numerical technique set forth in
the preceding sub-sections we recall the previously mentioned studies
that involved the use of MacCormack's method (for hoth steady and
non-steady problems), particularly those of Moretti; and carry out
our own comparison with the exact analytical solutions of two well-
known steady-state problems. |

First consider the case of isentropic flow in a Laval nozzle; that
is, with Q = 0.0 for all t and given some initial distributions of the
dependent variables we allow the solution to approach a steady state
condition asymptotically in time. Recalling that the present model
assumes the back pressure to be negligible, we expect this steady
state to correspond to the well-known supersonic branch of the isen-

tropic area ratio-Mach number relation56:

(y+1)/(y-1)
2 1 2 y-1_2
A =M2 [)/+1<1+ . M)] (2. 36)
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in which, for convenience, the nozzle area has been non-dimension-

alized with respect to the throat area, A Besides demonstrating

thr’
the credibility of our numerical technique, this simple first case illus-
trates some of the transient response characteristics of Laval nozzle
flow. It also serves as a reference case against which we may later
compare cases of non-zero heat addition.

The nozzle geometry considered corresponds to a wall radius

that varies hyperbolically with axial distance and is symmetric about

the nozzle throat. The area ratio then follows from the equation:

A =1+ (x - xthr) 2/b2 (2. 37

in which the semi-conjugate axis, b, of the hyperbola is given in

terms of the inlet area ratio, A, = A(x=0), and the distance to the

I

throat, Xinp thus,

2 2
b =x, /(AI -1 . (2. 38)

Figures 2-3 through 2-12 present the results for the case of linear-
ly varying initial distributions of p, u, and T. We have arbitrarily
‘chosen a range of values from 1()_3 to 1.0 with density and temperature
decreasing from nozzle inlet to exit and velocity increasing. (Note
that for ¥ = 1.4 this corresponds to an initial supersonic value for the
exit Mach number; M

= 8.44.) With Xipo = 0.5, the inlet and exit

E h

area ratios are identical; they are chosen in this example to have a

value of 5.0.
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We should mention here that themajority of graphs presented in
this thesis have been produced by computer on a remote Computek 401
storage -tube graphic display terminal. Spatial distributions, such as
those in Figs. 2-3 and 2-4, are generatéd as a sequence of straight
lines connecting the actual computed values at each node and inter-
mediate points that are added to enhance the smoothness of each curve.
The intermediate values result from a third order interpolation scheme
due to Akima57, which has been found to yield very satisfactory
curve -fits to our numerical data even in regions of large spatial
variations. In the above-mentioned -figures, for example, there is a
total of 81 points— 21 nodal points and 60 interpolated points. On the
other hand, all temporal distribution curves, such as those in Figs.
2-5 through 2-7, comprise a sequence of straight lines connecting
only the actual calculated data points. For most quasi-one-dimensional
and axisymmetric runs, the dependent variable values at every node
are stored at intervals of At = 0.01. In a few cases At =0.02. And
finally, the curves shown in the "hidden-line" surface plots, such as
Figs. 2-8 to 2-12, do not in general pass through the computed data
(nodal) points upon which they are based, but result from an interpola-
tion implicit in the plotting subroutine.

Figure 2-3 shows the evolution of the static temperature distribu-

tion from its initial linear profile to the final "'steady-state' profile at

which t = 3.0. With a nozzle length, L, of 10 centimeters,
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Dot = 10 atm, Tref = 300 OK, and air as the working fluid, a unit of
time corresponds to 0. 34 msec. It should be noted that for the pres-
ent example a specification of L and the reservoir conditions is only
needed, as above, to refer values of the diménsionless variables to
corresponding dimensional quantities. As evidenced by the working
equations (2. 8), the isentropic nozzle flow problem scales in such a
manner that the solution depends only on the specific heat ratio, v,
of the gas and the spatial derivative of the logarithm of the nozzle
area, K(x). The abscissa in the figure (and all figures in this sec-
tion with axial distance as the abscissa) represents a percent distance
from the nozzle throat, 3{'; hence,

X =(x - (2. 39)

%)Xt
and X = 0.0 therefore corresponds to the throat of the nozzle. The
numbers shown on each curve in this and other graphs serve only as
identification with respect to the parameter values (t, in this case)
listed in the legend above the graph and have no relation to the number
or location of nodal points. Note that the first four curves correspond
to the early moments of transient flow adjustment. Since little change
occurs in the temperature distribution after a time of 0.6, only the
final curve is added for comparison. The figure as a whole demon-
strates a gradual, generally uniform relaxation of the static tempera-

turesto its equilibrium state. The accuracy of the numerical scheme
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is demonstrated in the resulting values of the dependent variables
which, as a whole, differ from the exact values by less than 0. 1%.
The exception to this occurs in the density values in the exit region
of the nozzle, which become relatively small in magnitude (e.g.
Py =0 0633) and are in error by as much as 4% at the exit itself.
Increasing the number of axial nodes, J + 1, from 21 to 31, however,
reduces this error to less than 1%.

In contrast to the static temperature behavior, the adjustment of
the massflow distribution to its uniform steady state value throughout
the nozzle is significantly more dynamic. Figure 2-4 presents the
massflow profiles for the same five values of time as in the previous
figure. The peculiar shape of the initial profile is artificial and results
from the initial linear variations assumed for p and u and from the
symmetric nozzle area-ratio distribution. Because of the reference
quantities defined previously, the dimensionless massflow plotted in

the figure is non-dimensionalized with respect to the quantity

=p (2. 40)

mref ref Vref Athr

The figure clearly demonstrates the existence of a lag between the
transient massflow response in the supersonic and subsonic regions of
the nozzle. This increased resistance to changes in the state of the

fluid for higher Mach numbers is obviously attributable to the greater
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momentum (or "inertia", as Zuckler58_ 60 refers to it) of the fluid.
As one might intuitively expect, this effect exists whether there is
heat addition to the flow or not. It can be detrimental to the interrup-
tion of AC circuits, because it prevents the flow from returning to

its original cold-flow state near the moment of current reversal,
which is the critical time for arc interruption. The fluid, therefore,
retains a certain "residual temperature' that makes it less conducive
to dielectric recovery. The effect of nozzle geometry on reducing
this effect is discussed below.

Before terminating the discussion of Fig. 2-4 we note that the
massflow attains a uniform steady-state value within 1% of the’ exact
value of 0.684, exceptvnear the nozzle exit. Again, this is caused by
the more inaccurate density values there and is alleviated if ten addi—
tional nodes are added along the x axis.

Figures 2-5 through 2-7 show the temporal varijation of each of
the three dependent variables at five representative axial locations
within the nozzle — the nozzle inlet (j = 1), mid-subsonic region (j = 6),
throat (j = 11), mid-supersonic (j = 165, and exit (j = 21) regions.

The figures illustrate the attainment of steady-state conditions through-
out the nozzle. Although it is not entirely obvious from these graphs,
the density of the fluid in the subsonic region converges toward an

equilibrium condition less rapidly than the other variables and acts,
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therefore, as a ''gauge'' of the overall progress toward the steady
state. Dﬁring runs of the computer program, values of the dependent
variables at two specified nodes are monitored from the remote com-
puter terminal. A steady state is assumed to exist whenever the
subsonic density value converges to within 10™%. This condition is
admittedly arbitrary and the resuits of both hot (Q > 0) and cold flow
runs are examined graphically to verify the achievement of equilibrium.
(The program contains provisions for restarting previous runs if
convergence appears to be incomplete.)

Although graphs, such as those in Figs. 2-3 and 2-4, are useful
for demonstrating some aspects of the temporal variations in the
dependent variable distributions, Figs. 2-8 through 2-12‘ display
essentially all of the results produced by the numerical technique and,
as such, represent a very effective means for visualizing the flow
dynamics in the nozzle. .Figure 2-8 shows the rather undramatic
evolution of the static temperature distribution from its initial linear
profile to that at t = 1.0 where it is very near its numerical steady-
state (as verified by Fig. 2-7). Figure 2-9, on the other hand, is
significantly more interesting. It readily demonstrates the more
dynamic massflow behavior in the inlet region of the nozzle and the
approach to a uniform axial distribution for greater values of time.

The remaining ''surface plots' in Figs. 2-10 through 2-12 show the
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corresponding behavior of the other dependent variables, velocity
and density, and also the static pressure. In the last figure, note
the tendency of the pressure distribution to "over-shoot" its steady-
state profile and deveylop a maximum upstream of the nozzle throat.
The introduction of a large amount of energy addition in the nozzle
makes this transient effect much more pronounced and the resulting
adverse pressure gradient can cause the inlet flow to momentarily
reverse itself. This form of nozzle clogging is investigated further
below.

As a final note on the isentropic case, we mention that the integra-
tion from t = 0.0 to 3.0 for J = 20 involved less than twenty seconds of
computer processing (CPU)‘ time.

Before considering the general case of heat addition to the nozzle
flow, we compare the solution produced by the present numerical tech-
nique to another steady-state problem for which an exact analytical
solution is available —the so-called "Rayleigh process' in which heat
is added to a frictionless constant area duct. For this purpose, we
simply attach a duct to the h.ype rbolic Laval nozzle of the previous
example, as illustrated in Fig. 2-13. A prescribed amount of heat is
then added to the duct alone, so that the nozzle acts only as a device
for supplying supersonic flow to the duct inlet (x = 0.5). The throat

of the overall system is now located where x = 0. 25 and, as before,

the back pressure is assumed to offer no impedance to the internal flow.
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This example problem proves to be particularly interesting,
because it offers insight into several aspects of the one-dimensional
numerical model. First of all, it represents another exact test with
which the accuracy and overall validity of the model can be demon-
strated. Besides providing a case in which heat is added to the flow,
it also illustrates the importance of the boundary conditions in deter -
mining a stable solution. In addition, this problem demonstrates the
ability of the finite-difference scheme to handle various types of dis-
continuities such as: (1) the discontinuity in dA/dx which occurs
between the nozzle and constant area duct, (2) the "heat front' at
which Q first assumes a non-zero value, and (3) a gasdynamic shock
wave.

To properly present the numerical results of this problem, it is
necessary to first detail some background information pertaining to
Rayleigh processes. Sentman36 thoroughly discusses the particular
case for which a Rayleigh duct is fed by a converging-diverging nozzle.
Ideally, the length of the Rayleigh duct is immaterial in terms of the
resulting flow pattern. Insteéd, the steady-state fluid properties at
any value of x are determined by the flow conditions at the duct inlet
(which also corresponds to the nozzle exit) and the amount of heat
added to the flow between the inlet and x per unit mass of fluid, denoted

here by Q. In the steady state, Q is equal to the difference in total
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enthalpy between these two points and is related to the rate of heat

addition per unit volumeat eachx, Q, by the following dimensionless

equation:
X
Q) = f Q x|/ (pu) (2.41)
hi
in which we take
Q =P ./p 2 (2.42)
ref ref ref ref

X ¢ in Eq. (2.41) refers to the axial position of the heat front defined
previously. We can also express the total temperature at each x in

terms of Q;

T =1 + v - /7] Q) (2.43

with the specific heat at constant pressure, cp, referenced to the per-
fect gas constant.

In what follows we consider the case of an initially isentropic flow
throughout the entire nozzle-duct system to which increasing amounts
of energy aré subsequently added in the duct alone. The flow is
allowed to equilibrate before the value of Q (and hence, of Q) increases
to a new incremental value. In order to interpret the numerical
results, it is useful to introduce the concept of the ""Rayleigh line",

which represents the locus of all possible steady states of a Rayleigh
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process on a temperature entropy (T-s) diagram for given duct inlet
conditions. The curve corresponding to the present example is
sketched in Fig. 2-14. The Rayleigh line is determined by the steady-
state continuity, momentum, and state equations and is given in dimen-

sionless terms (with S et = C = R) by the equation36
ref

-1

Y
s-8-2=Lu ) (/%) 2 _ (2.44)
D+ Yo+ 02 -ay T/

in which the symbol (A) represents that particular flow state, reached
by means of a Rayleigh process, at which the Mach number is exactly
unity. The energy equation determines the relative location of two
points along the Rayleigh line.

On the T-s diagrafn the initial steady state isentropic process
assumed for the nozzle-duct system corresponds to the vertical line,
AB, shown in Fig. 2-14. The arrows indicate the direction of flow
from nozzle inlet (point A) to duct exit (point'B). The static tempera-

ture is noted to decrease past its "critical' value at the nozzle throat,

denoted as T , .., to its final value at point B. Since no heat is added
in the duct and the area is constant there, the flow conditions remain
unchanged. Hence, point B initially corresponds to conditions at both

the nozzle exit and all points within the Rayleigh duct. Now, if Q is
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increased throughout the duct to some small value, the steady-state
temperature in the duct increases monotonically from point B until it
reaches a certain value at the duct exit. Thé entire nozzle-duct flow
process would now correspond to path ABC in the figure. The corres-
ponding duct Mach number, on the other hand, decreases monoton-

ically to an exit value, M_,, which is greater than 1.0 at point C.

E

Further increases in the amount of heat addition to the duct flow
result in similar changes in the distributions of the dependent variables
with the steady-state duct exit conditions advancing along the Rayleigh
line until point D in Fig. 2-14 is reached and the exit Mach number
becomes exactly equal to unity. Up to this point, flow conditions
throughout thé nozzle remain unchanged. The value of Q correspond-
ing to sonic duct exit conditions, Qmax’ depends only én the Mach
number at the duct inlet and follows from Eq. (2.43).

Increasing Q above this critical value causes a shock wave to form
at the duct exit. However, a shock is unstable in a Rayleigh duct and
will tend to "jump' across the duct into the diverging portion of the
nozzle. The reason a shock wave does not assume a steady-state posi-
tion in a Rayleigh duct may be explained, physically, by the fact that it
represents an adiabatic process and therefore does not provide a
mechanism by which the flow can adjust itself to different amounts of

heating. Now, with a shock wave in the nozzle and the back pressure
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still negligibly small, the Mach number would be subsonic at the duct
inlet and increase monotonically with x up to ME = 1. This process
would be represented by a different Rayleigh curve than the one shown
in Fig. 2-14; however, we need not discuss this possibility further
since the numerical model under consideration is not expected to
handle the presence of shock waves in the flow. Explicit procedures
to do so (derived from the Rankine-Hugoniot relations, for example)
have not been incorporated into the analysis and the working equations
are not written in the conservation form, which other investigators
claim is necessary for the implicit handling of sho cks.

With the above information regarding the expected qual‘itative flow
behavior of the nozzle-Rayleigh duct configuration, we now discuss
the results of the associated numerical experiment, which are pre-
sented in Figs. 2-15 through 2-22. The starting initial conditions
correspond to the actual numerical results for isentropic flow in the
nozzle (obtained in the previous example) and uniform values of the
dependent variables throughout the duct equal to those of the nozile
exit. Curve number one of Figs. 2-15 and 2-16 show the static
temperature and Mach numbér distributions associated with this
initial state. The second curve on each figure represents the nu-
merical isentropic condition for the nozzle-duct system as a whole;

that is, the equilibrium condition reached after the integration is
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allowed to proceed from the above starting conditions to t = 1.0 with
Q equal to zero everywhere. An adjustment of the duct flow to the
numerical error generated at its inlet by a discontinuity in the value
of dA/dx causes curves one and two to differ. This error could be
reduced by increasing the number of axial nodes used, which in turn
would increase the resolution of the numerical scheme in the vicinity
of the duct inlet. However, the results to be discussed below for

Q > 0.0 in the duct confirm that the present value of J = 40 is suf-
ficiently accurate for the present purposes.

For simplicity, we now assume that the value of Q increases
impuls.ively in time to the same positive value throughout the Rayleigh
duct; that is, Q = constant for 1.0 < %X < 3.0. Since the term (pu) |
is constant in the duct (for steady-state conditions), the critical value
of Q necessary to bring ME to .1. 0 follows directly from Eqs. (2.41)
and (2.43). Hence, with M(¥ = 1.0) = 3.175, we have that T, = 1. 56
and Q__=0.564. In the steady state, this amount of heat addition
corresponds to path ABD in Fig. 2-14. In the unsteady case, how-
ever, this limit must be approached gradually if ME is to remain
greater than unity during the transient flow adjustments. The remain-
ing results illustrate this point.

Curves 3 and 4 in Figs. 2-15 and 2-16 correspond to the numer-

ical steady state associated with values of Q =0.3and 0.5. The exact
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analytical values at each node are not shown, because their difference
from the numerical results would be indistinguishable. The error in
the dependent variables is again generally less than 1% in both the
nozzle and duct, except for the three nodes in the transition region
atX = 1.0. The error here is due to both the discontinuity in wall
slope and the inaccuracy in density values mentioned previously.
Figure 2-17 illustrates the temporal behavior of the Mach number
profile soon after the value of Q is again incremented such that Q =0.6
throughout the duct. Since this amount of energy addition is more than
that necessary to thermally choke the duct, a shock wave should form
at the duct exit as discussed above and attempt to quickly traverse the
duct. The numerical technique does indeed account for this phenome-
non as evidenced by the unstable behavior of the Mach number profiles
shown in the figure near the exit. The numerical integration terminates
as the density becomes negative three nodes upstream of the exit for
t = 5.838. Figure 2-18 shows the associated variation of the exit static
temperature (j = 41) with time for the entire time range from t = 0.0
until the shock occurs and causes instability. Note the achievement
of steady-state conditions for the lesser values of Q, as well as the
final unstable behavior when t > 5.0. This verifies the conjecture
that the present model cannot handle the presence of shock waves in the

flow without producing unstable results.



88

g0 = O IO SaI1JoId JdqWINN YOBIA JUSISUBLI, °LJ-g 2InJ1g

LYl # 107d
0°€E g2 02 S°1 0°1 S0 0°0 | S*0- o.ﬂ.
_ I _ _ I [ _ 0
— "1
—H 2
>
™
— g H
—1 *h U
pu—— -m
17
p— -w
0028°S = (R 3IWIL 0000°C = (LIXI)xgd * Q000°S = (LIWN[)
0008°S = (E)3IMIL - 00S2°0 = (HHL X ° 000270 = (N3 20N
000L"S = (2)3WIL T - 1 :8W00 W039 ZON ° S300N 1h
0000°S = (1) 3WIL 62 "ON NNY



89

sanjeaadwo I, J1XH 10N JO Uol3BlIBA Jexodwa], °gI-g 2Jndig

61 = 10d
‘g ‘g h ‘€ 2 1 0
i | ] | i |
— S°0 /_
Hen
>
— S§°1 /_
0°¢ <1 ‘9°0 UG
0°$>3-0'¢ ‘'S0( _o ez ™M
0°¢>1>01T ‘€0 ;
0'T>1> "0 ‘0°0
— g2
0000°S = (LIXJ ™ ° 0000°S = (L3N
00S2°0 = (MHL X ° 0002°0 = (WIN31 ZON
I - 1 'BWOD WO39 ZON * S300N 1h
Th = (1 )NSOdr 62 "ON NnH



90

L

¢ecG '0 = O J0jy uonnqrIIsIg ANIsus@  ‘gI-g oIndig

FJINVLISIO TVIXV
ot _+x we w1 41 w0 w0 e ey

h 4

»

0000°S = (LIXJy»d ° 0000°S-
00S2°0 = (HHD »X ° 000270 =
T - 1 *8WH0D WO39 Z20M

0000°03 = (1) 3L

c’0

R0

90

ALISNFU

8’0

0°1

= (L3I
(W) N37 Z0N
* S300N 1h
62 "ON NnY



91

8

s 107

¢€GG "0 = O J0J uoyNqLIISIq A3VOIOA  °0g-¢ 9andrg

JINVLSIO 1VIXY

0°¢

S°1

01

S°0 0°0

5°0- 0°1-

1

|

0000°01 =

(1) 3WIL

|

| 0°0
20
h'0
9°0
g8 0
0"t
2’1

h't

ALTJU 1/

9°1

8°1

0°¢

e’¢

0000°S = (LIXI»d * 0000°S = (LIWD»Y
00S2°0 = (HHLI »X ° 0002°0 = (W)N37 20N

1 -1

‘8H0J WO39 ZON ° S3TON Th
62 "ON NnY



92

€& = (0Md
686G "0 = O J0F uonnqrasig eamesadwe f, o1YRIS 1g-g 2Indlg

JIONVILSIO TVIXY

0°€E 5'2 0°2 5'1 0°1 5°0 0°0 $*0- 0°1-.
» i 1 _ I T I i 6°0
— 20

m

>

-
LN

0000°S = (LIXJ*Y * 0000°S = (LIWI) sy

00S2°0 = (MHI)*X * 0002°0 = (W) N3 20N

T - 1 8400 WO39 20N ° S300N Ih
0000°01 = (1) 3WIL 62 "ON NNg



93

11 = 107

S'¢

GGG g = (O JOJ UoTINQIISIJ JQWINN YOBN °gZ-g 2In31g

JINVLSIO TVIXY

0°e S°1 0°1 S°0 0°0 S 0- 01—

_ | | | _ |

et

0000°S = (LIXZ1»d °* 0000°S

S°0

0°t

S*1

0°¢

ON HIVW

S°e

0°¢e

S°¢

= (L3WI[) Y

00S2°0 = (4Hiy*X ° 0002°0 = (W) N3 ZON
T - T *8W00 WO39 ZON ° S30ON 1h

0000°01 = (1) 3WIL

62 "ON N



94

It was found that the value of Q could be increased gradually up to
a value of 0. 5535 without causing numerical instabilities in the solution.
The resulting exit Mach number is 1.0006. Thus, the model predicts
the proper amount of heat addition to choke the ilow to within 2%. If
desired, a larger value of J would improve the accuracy. Figures 2-19
through 2-22 present the final distributions of the density, velocity,
static temperature, and Mach number for the case of thermally
choked flow. The slight inaccuracy at the nozzle exit (kX = 1.0),
caused by the discontinuous wall slope, is more perceptible in these

figures.

2.4.2 Nozzle Flow with Intense Heat Input

In order to apply the quasi-one-dimensional numerical model to
the circuit-breaker problem, we now specify the form of the heat addi-
tion rate per unit volume, Q(x, t), which appears as a source term in
the energy conservation equation and acts as the "driving function' for
the hot flow cases to follow. In reality, there are several energy
transfer mechanisms of importance during the operation of a gas-blast
circuit-breaker, as mentioned in the Introduction, which could con-
ceivably be incorporated within the expression for Q In what follows,
however, we assume that all the energy liberated within the arc
plasma through Joulean dissipation remains in the gasflow. In light

of the qualitative nature of the one-dimensional model and the large
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magnitude of the Joulean heating term, wall energy transfer effects
are considered negligible. We also ignore radiation losses, although
they could easily be included in the model at a future date, if the
assumption of an optically thin gas is made.

Assuming that there are no externally applied magnetic fields and
that those induced by the presence of the arc are negligible, we may

write that

Q.6 =@, 7 {i%6x, 8 /0lrs, 4} (2.45

in which j is the current density (amps/mz), o is the electrical con-
ductivity of the gas (mho/m; and shown in the equation as a function of
static temperature), and Q is dimensionless as before. With the fur-
ther assumption that the arc is sustained by some external "current

source', represented by I(t), Q takes its final form;

. -1 1(t)

Qx, ) =Q, (2.46)

2

o[T(x, t)] Aarc X)

with Aarc (x) as the local arc cross-sectional area.

In what follows we consider two forms of current input for the
above "arc-like'' heat addition model:

1) the "step-modulated" (DC) case with associated 'free decay",

in which



96

I (amps) ; 0.0< tstmax

max
I(t) = ¢ (2.4M
0.0 ; t> 0t
max
and
2) a simple sinusoidal (AC) current variation where
I(t) =1 (amps) sin (27 v t) (2.48)

max

and a frequency, v, of 60 Hz is assumed as standard. For the DC case,
therefore, the current is a step-function in time and is applied with

the nozzle flow conditions initially at a steady-state corresponding to
either isentropic flow (Q = 0.0) or to a previously applied lower value
of Imax' Similarly, the AC current waveform is applied when initially
isentropic flow conditions exist in the nozzle.

The assumption of an ideal current source to replace the external
electrical circuit, which the arc completes, creates difficulties .in the
numerical technique that have no physical counterpart. The problem
occurs as a result of the extremely small values of the electrical
conductivity associated with relatively cold gas conditions; that is, for
T less than about 3000°K. Such conditions prevail both initially, when
the flow is isentropic and the current is suddenly increased, and near
current-zero passage for an AC current input. Consider, for example,

SF6 at a temperature of 1000°K and a pressure of 1 atm, which has
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an electrical conductivity of the order of 1()_28 mhvo/m (Ref. 61).
The corresponding value of Q, g iven by Eq. (2.46), would be astronom-
ical whent = 0" in the DC case, as well as approaching current-zero
in the AC case (with a small but non-zero value of current), for any
reasonable value of the arc cross-sectional area. The rapid changes
in the dependent variables caused by this unrealistically large heat input
would, as one might expect, cause instabilities in the numerical solu-
tion procedure. Of course, in an actual gasblast circuit-breaker sys-
tem the arc represents an important component of the overall circuit
and its dynamic behavior couples non-linearly with that of the remainder
of the circuit. Hence, the current flow depends strongly on the arc's
presence, particularly near current zero conditions when the arc
impedance is greatest.

There exist several possibilities for circumventing these diffi-

culties. For instance, one could somehow model the dynamic behavior

of the arc geometry such that A=A _ (x,t) —a function of time as

, arc arc
well as axial distance. However, such a model would of necessity be
almost entirely artificial, since the physical mechanisms underlying
arc dynamics in the present problem are little understood. In addition,
these mechanics are clearly of a multi-dimensional nature and would
probably not be warranted in the present one-dimensional analysis.

Another possibility is to simply assume a constant value for o that is
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representative of the gas as a whole. But we expect the temperature
of the gas to vary over a wide range of values from a few hundred (if
the reservoir temperature is taken as 3000K) to several thousand de-
grees Kelvin for currents up to 500 amps. Because the electrical
conductivity depends so strongly on the temperature, it would not only
be difficult to choose a representative fixed value, but the model would
lack an important physical aspect of the gas behavior. In any case, the
numerical results would still not reflect the true behavior of circuit-
breaker nozzle flow under the special low temperature conditions noted
above. |

We choose, therefore, to define an ersatz gas whose electrica_l
conductivity varies linearly with temperature for 0 < T < 5x 103 OK,

3 °K) = 35.56 mho/m. The latter value corres-

4

such that o(T = 5 x 10
ponds to that recently calculated by Liebermann” for SF6 at p = 4 atm.
For temperature values above 5 x 103 OK, the electrical conductivity

is based on a curve-fit of the same data of the above reference. Since
o varies with pressure to a much lesser degree than with temperature,
particularly for temperatures below 2 x 104 °K (see Fig. 1-2), a pres-
sure dependence is not included. For the reservoir pressure of 10 atm
used in the following runs, the static pressure value of 4 atm used here
corresponds approximately to conditions in the major portion of the noz-

zle about the throat region. Figure 2-23 shows the resulting variation

of electrical conductivity with static temperature.
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For the remainder of the quasi-one-dimensional results the gas
constant corresponding to SF6 and a value of ¥ = 1. 2 are used in order
to be consistent with our model for the electrical conductivity and to
lend as much relevance as possible to the results. Also, unless
specified otherwise, the nozzle is assumed to be 10 centimeters in
length with a throat radius of one centimeter. These dimensions are
generally representative of circuit-breaker nozzles currently used in
industry.

As an initial demonstration of the above arc-like heat addition
model and the effects of an intense energy input on nozzle flow condi-
tions, consider the same symmetric hyperbolic Laval nozzle of the
previous examples to which a DC current of 100 amperes is suddenly
added when t = 1.0. As usual the flow is initially isentropic and
reaches a new higher temperature steady state, in this case when
t = 6.0. Figures 2-24 through 2-36 demonstrate some of the pertinent
aspects of the resulting flow behavior.

Figure 2-24 shows the transient behavior of the massflow profile
during the initial stages of flow readjustment to the intense heating.
While the gas velocity initially increases in the supersonic flow region
of the nozzle, the lower velocity fluid near the inlet rapidly decelerates
and reverses direction just prior tot = 1. 3. This "clogged'" flow condi-
tion is noted to be more severe (in terms of the minimum massflow

value) near a time of 1.5. The profile actually begins to rise when
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t = 1.48 and becomes positive throughout the nozzle again ast = 1. 76.
Since a unit of dimensionless time, t, now corresponds to 0. 765
milliseconds, the period of reverse flow persists for about 0. 214
milliseconds. For times greater than 1. 76 the massflow profile con-
tinues to oscillate about its new steady-state value for several cycles,
but in the present case remains positive. When t = 6.0 the massflow
has a value of 0. 313, less than half the numerical isentropic value of
0. 649 for this nozzle geometry. A decrease in massflow under these
conditions is a familiar phenomenon in the gasdynamics of internal
flows and is associated with the existence of any irreversible physical
mechanism (such as heat addition, wall friction, etc.) that acts to
increase the entropy of the working fluid. Therefore, the presence of
the electric arc will always lead to massflow values IeSS than those
when the arc is absent, except for brief periods during the early
transients of arc ignition, such as in the diverging portion of the nozzle
as shown in Fig. 2-24. We investigate the possibility of minimizing
this effect in a circuit-breaker nozzle below.

The reason for this clogging phenomenon is best explained by
considering the initial transient behavior of the axial pres‘sure distri-
bution. Figure 2-25 presents the pressure profiles corresponding
to the first four curves in the previous figure. In response to the

sudden heat input, a pressure maximum quickly develops just upstream
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of the nozzle throat. The resultant adverse gradient‘ in the nozzle inlet
region causes the fluid velocity to decrease and eventually come to rest
and reverse its direction. On the other hand, the fluid downstream of
the pressure maximum now experiences a more favorable pressure gra-
dient which resuits in a temporary increase in the massflow there.
Again, note the lag that exists between the pressure response and that
of the massflow. The pressure peak begins to subside when t = 1. 3,
while the inlet massflow continues to dec4rease until t - 1.5. For values
of t greater than those considered in Fig. 2-25, the pressure distribu-
tion gradually relaxes to one of a more smooth axial variation in which
the gradients are negative throughout the nozzle.

We again utilize the advantages of surface plots to demonstrate
the overall spatial and temporal characteristics of the nozzle flow in
the present example. Figures 2-26 and 2-27 show the massflow and
static pressure surfaces for a range of t from 1.0, when the current is
pulsed from 0 to 100 amperes, to t = 2.6, when the flow transients have
essentially ceased. The inlet clogging effect is clearly evident, as well
as the associated pressure peak upstream of the nozzle throat. The
wavy pattern near the nozzle inlet in both figures is caused by the heat
front located at the second node, which in turn results from the discrete
nature of the numerical model. These oscillations in the axial distribu-
tions of the dependent variables occur in the vicinity of steep gradients

or discontinuities whenever real gas effects are not present. In the
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present case, they are somewhat exaggerated by the numerical inter-
polation procedure of the plotting program. Note that they dissipate
for larger values of time.

The gasflow in the nozzle rapidly adjusts to the intense heat input
by means of a series of pressure waves which are initiated by the first
pressure pulse upstream of the throat and which subsequently traverse
the nozzle in a downstream direction. Figure 2-28 shows the temporal
response of the static temperature at five axial locations within the
nozzle; x = 0.0, 0.2, 0.5 (= Xipr ), 0.8, and 1.0. The relative posi-
tions of the most prominent peak of each curve indicate the downstream
motion of the initial stronger wave. For greater values of Imax’ this
initial pressure pulse is more intense, as are the subseque nt transient
responses of the flow variables. Figure 2-29, which is inserted here
somewhat out of context in order to emphasize this point, shows a
portion of the static temperature surface for the case of Imax = 500
amperes (DC) in a different hyperbolic nozzle geometry for which
A(x =0) = 10.0 and Xipp = 0.6. Note that time is now the horizontal
axis in contrast to previous surface plots. Only the early transient
period encompassing the motion of the initial pressure wave is shown.
The figure clearly demonstrates the downstream motion of the wave
and the increase in its velocity as it approaches the higher Mach

number flow just upstream of the throat. We note further that the



108

8

X
(DQ) sdwe g01 =
* 107d

e

EH I0J SUOT)R]S [BIXYV [BISASS je dwl], 'SA aanjeradwa ] @g-g 9InJid

INIL

0°S 0°S 0'h 0°E 0°2 0°1
[ T T T T T T T T I - S°0
t 01
—~
&1 _,N:
0'e _r_,_
sz >
-
0 )
& g M
h— 5°€
0'h
1€ = (5 )NSOdr
S2 = (h JNSOdr 0000°S = (LIXZ)% * 0000°S = (LIWI) =Y
gl = (€ INSQdr 000S°0 = (HHL)»X * 0001°0 = (W) N3 ZON
L = (2 INSDdr 1 - 1 :GWDD WO3IO ZON * S3I0ON 1€

{1 INSOdI

1€ °"ON N



109

ST = 107d

xXeul
(0Q@) sdwe gog = I 103 aanjeradwa ], 01381S ‘6Z-7 2an3ig

FJHN LY ST L



110

temperature ""peak' is more pronounced than in the 100 ampere case
and, of course, the overall temperature values and the differences
between those of the transient '"peaks and valleys' are greater. The
irregularity of these peaks in the diverging region of the nozzle is due
to poor resolution in the plotting scheme and does not reflect the exact
behavior of the numerical results.

Figures 2-30 through 2-36 present fhe steady-state ""hot flow' axial
distributions of each flow variable, as.well as the initial isentropic
distributions for comparison, for the symmetric Laval nozzle in which
Imax = 100 amperes. Qualitatively, these curves are representative
of the manner in which the present heat addition model alters the condi-
tions throughout Laval nozzles as a whole. Figure 2-30 shows the final
distribution of Q, which is seen to decrease away from the nozzle thrdat
in both the subsonic and supersonic regions. (The heat addition rate
reaches its maximum slightly upstream of the throat.) Two conditions
are responsible for this behavior. Perhaps the more important effect
is the arc cross-sectional area, which in this case corresponds to that
of the nozzle itself and therefore is a minimum at the throat. While
this alone would account for the axial variation of Q shown in the figure,
the static temperature of the gas, and therefore its electrical conductiv-
ity, vary significantly through the nozzle. Figure 2-31 shows the

steady-state temperature profiles for both the cold and hot flow cases.
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The rapid increase of the static temperature in the converging region of
the nozzle tends to counteract the effect of Aarc in increasing Q toward
the throat, while the more uniform temperature in the diverging nozzle
region causes the electrical conductivity to have a much less significant
effect in this respect. The maximum heating rate of 11. 27 at the nozzle
throat corresponds to 1.49 x 103 watts/cm3 for the present problem
parameters. Figure 2-30 also shows the steep axial gradient in Q at
the nozzle inlet, which results from the heat front discussed above.

The static temperature shown in Fig. 2-31 reaches a maximum

value of 3.533 (1060°K for Tre = 300°K in the present case) down-

f
stream of the nozzle throat where X = 0. 36 and gradually decreases
toward the exit. The steady-state total temperature, shown in Fig.
2-3'2, on the other hand, increases monotonically as it must for Q > 0.0
throughout the nozzle. We note that a decrease in the static tempera-
ture, which can be beneficial in a circuit-breaker nozzle, since it
entails a lower electrical condﬁctivity, can occur in the steady state
only if the Mach number of the flow increases with x. This fact is

easily verified by a consideration of the static/total temperature

relation for a perfect gas, Eq. (2.24),

T/T=1+[0-0/21M
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which implies that with T, increasing and T decreasing with x, M

t
must increase.

Figure 2-33 compares the hot and cold flow Mach number distrihu-
tions. In addition to an overall decrease in M, note from the figure that
the steady-state sonic point shifts downstream of the throat when heat
is added to the flow. It may be shown from a consideration of the one-
dimensional governing equations that this displacement of.the sonic
point increases with increasing Q and is élso dependent on the nozzle
geometry and type of gas. (See Refs. 62 and 63, for example.) For
the case shown 3<J(M =1.0) ~ 0.107 and the exit Mach number decreases
from 2. 785 in cold (isentropic) flow to 2. 311 when Imax = 100 amperes.

- Figures 2-34 and 2-35 further illustrate the overall effects of heat
addition on the nozzle flow. The static pressure increases above its
cold flow value throughout the nozzle, while the density is noted to
decrease rapidly in the subsonic région.

Given values for the current, I, and electrical conductivity of the

gas, 0, at each x and t, we may express the one-dimensional electric

field strength, E (volts/m), by means of Ohm's Law as:

(x*,t%) _ I(t¥
(x*,t%  o(x*, t¥) AarC(X*)

E (x*, t%) = ; (2. 49)

The associated potential difference, V(volts), at any point in the nozzle

is then
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x*
Vx*, t¥ = Lf E(x*, t¥ dx* . (2. 50)
0

The asterisks are included in the above two equations only to denote
the dimensionless nature of the independent variables; E and V are
more meaningful in their dimensional form. For the present case of a
100 ampere input, the potential difference across the nozzle, shown
in Fig. 2-36, is 3.079 x 103 volts.

Although it is not possible to rigorously prove the éccuracy of the
above and following numerical results for unsteady Laval nozzle flow
with heat addition, we can demonstrate the self-consistency of the tech-
nique and thus infer its validity. First of all, we note that the results
of the hot flow runs as a whole are in qualitative agreement with the
very limited experimental results relevant to this problem, such as

those of Kogelschatz and Schade64

, who compared the axial Mach num-
ber and pressure distributions in a Laval nozzle with and without an
arc present. Secondly, we compare the transient and steady-state
solutions of the previous example in which different values of J + 1,

the number of axial finite-difference nodes, are used. ‘The static
temperature variations at nozzle locations where the flow is subsonic

and supersonic, x = 0.2 and 0. 8, presented in Figs. 2-37 and 2-38,

are representative of the overall results. It is noted from the first
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of these figures that the difference between steady-state values in the
subsonic region for J = 20 and 50 is less than 2%. Also, the greatest
discrepancy between solutions occurs at the transient "peak' near
t =3.0, but ~when J =30 it is still within 2% of the higher resolu-
tion curve. Ffom the figure, we conclude that solutions with larger
numbers of nodes are better able to resolve transient oscillations at
each node; however, 30 axial nodes seems to be quite adequate. In
fact, the transient solutions in regions of the nozzle other than near
the inlet are barely discernible from each other for this range of J.
Figure 2-38 shows the three resultant temperature variations in the
diverging nozzle region. Again, the lower curve corresponds to J = 20
and the upper curve to J = 50. Similar curves for the nozzle throat
are indistinguishable in graphical form. |

The apparent decrease in accuracy of the solution in the subsonic
flow region (if we assume the case with J = 50 is the more accurate)
could result from the relatively poor matching of numerical and
physical domains of dependence. Recall that the time step used, At,
is determined in the supersonic portion of the nozzle where the term
(u + a) takes its greatest value. Hence, our previous discussion of
Fig. 2-1 would indicate that the domains of dependence are more closely
matched near the nozzle exit. If this factor does indeed significantly

affect the accuracy of the numerical technique, then a decrease in the
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value of CSF should change the solution throughout the nozzle. To

test this conjecture, we varied C__, from 0.1 to 0.9 in the present

SF
example with J = 30 and compared the transient response at several
axial stations within the nozzle. The results were virtually identical
for the méjor portion of the nozzle. The only variation occurred near
the nozzle inlet where a better resolution of the first transient peak was

obtained for greater values of C the supersonic flow region was not

SF’
affected. We conclude that the inaccuracy in the numerical solution
that exists at lower Mach numbers is a matter of spatial, rather than
temporal, resolution.

We also note that compared to the isentropic cold flow case with
J = 20, which required less than 200 integration steps and a final
At =1.58 x 10—2, the corresponding solution with the same number of
axial nodes and Imax = 1.00 amperes required 850 time steps and
At = 0.613 x 1072 on the final step. For larger numbers of nodes At
decreases proportionately as 1/7J; for example, At =0.245x 10-2 for
J = 50. It also decreases, in general, as Imax and, hence, the gas
static temperature increase. To keep the CPU time within reasonable
limits, therefore, it is necessary to keep J as low as poSsible while
maintaining sufficient accuracy. A value of J = 30, based on the above
results and the author's experience with this numerical technique in

general, was considered sufficient and used in the remaining numerical

experiments discussed below.
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We proceed now to consider the effects of nozzle geometry on the
transient and steady-state flow properties in a Laval nozzle with arc-
like heat addition and to draw some conjectures regarding circuit-
breaker design.

While the overall hot flow results of the present one-dimensional
model indicate that the nozzle inlet geometry has little effect on flow
conditions in the diverging section of the nozzle, its influence on the
intensity and duration of the nozzle clogging phenomenon is signifi-
cant. Results show that clogging is minimized if the inlet area ratio
is large and if the area variation throughout the inlet region is strongly
convergent; that is, if ]K(x) | is large. For comparison with the
previous example, consider the piecewise-hyperbolic nozzle geometry,
used below in a further study of geometry effects, in which the inlet

area ratio is doubled [A(x=0) = 10.0] and Xipp is decreased 10% to 0.4.

h
With A = A, in the diverging portion of the nozzle and I

arc thr max
= 100 amperes, the total energy added to the flow in this case is about
50% greater than that for the symmetric hyperbolic nozzle (based on
the resulting steady-state exit total temperatures). If, for convenience,
we define the duration of clogging as that period from the time at which

current is initially applied to the first moment at which the massflow

becomes positive again throughout the inlet, then its value is 16% less
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for the nozzle with the shorter, more rapidly converging inlet. In
addition, the massflow decreases to a minimum value at x = 0.0 of
- 0.72, compared to - 0.92 for the symmetric nozzle.

We now investigate }the influence of the diverging portion of a
Laval nozzle on flow characteristics by appending three basically
different divergent geometries onto the more efficient hyperbolic inlet

in which AI = 10.0 and x he = 0.4:
r

t

1. The familiar hyperbolic nozzle in which

AR =1+ (x - xthr)z/bz

and the semi-conjugate axis is now given in terms of the

exit area ratio, A_ = A(x=1), such that

E

2= (1 - xthr)z/(AE - 1) (2. 51)

2. A conical nozzle with a circular throat wall variation of

radius of curvature T in which

AX) = 3[Rtan +m L(x - )] /Rthrtz , X than (2.52)

X
tan

where Xian represents the axial location of the point of

tangency between the circular throat region (x . <x< xtan)

th

and the conical divergent region of half-angle o; R is the wall

radius at any x, so that R, = R(xtan) and R,, = R(

tan thr = Ry
m = tan o (2.53)

and L is the nozzle length.
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3. A diverging geometry that has an elongated throat region,
which may be represented analytically by the expression:

X - Xthr

Xthr

A ={1+ 1n( + 1) (2. 54)
in which the exponent N may be used to determine the nozzle exit area.
It should be noted that all three of the above geometries result in a
continuous wall slope, dA/dx, throughout the nozzle. However,

dzA/ dx® is discontinuous at the nozzle throat for all cases, and at
Xian in the conical nozzle. |

For purposes of comparison, each nozzle has an exit area ratio,

A_, of 4.0. This corresponds to o = 9.5941° with r, = R (=10 “ m)

E’ thr
for the conical nozzle and to N = 1. 3215 in Eq. (2. 54) for the log-
arithmic nozzle geometry. Each nozzle is 10 centimeters in length.
Figure 2-39 shows the resulting wall radius variation for each. The
conical geometry is more easily fabricated and, therefore, more
~commonly used in circuit-breakers and related experimental studies.
There is some evidence, based on an examination of the one-dimen-
sional steady-state equations, that suggests possible difficulties in
achieving a continuous subsonic-to-supersonic flow transition in the

presence of an arc-like heat input for a conical nozzlesz. The follow-

ing results tend to refute this, however. The elongated throat geometry
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is more representative of that used in arc-heaters9 where the elec-
tric arc is constricted over much of its length so that the entire gasflow
must pass through the high-temperature plasma. The object is to
produce a high enthalpy gas stream for testing of materials, to simu-
late hypersonic reentry conditions, to produce thrust, etc. The hyper-
bolic diverging geometry, on the other hand, represents a compromise
between these two extremes.

To study both the transient and steady-state flow characteristics
of the three geometries, we step the current up to 500 amperes in
increments}of 100 amperes, allowing the flow variables to reach a
steady state at each step. The initial isentropic massflow value for
each nozzle is the same, since their throat areas are identical. To
enhance the validity of this comparison, we assume the arc cross-
sectional area is the same for all three cases. Hence, for x > Xihp?

Aarc is equal to the nozzle throat area, 7R 2. For x < x he

thr thr’ ¢
arc fills the nozzle inlet; that is, Aarc (x) = A(X). The latter stipula-
tion on the inlet arc area variation also diminishes the unrealistic
effects of a severe heat front by allowing Q to increase more gfadum
ally downstream of the nozzle inlet. (See Eq. (2.46).)
We first obtain an indication of the effect that the diverging por-

tion of a Laval nozzle has on the clogging phenomenon. Using the

previous definitions of the intensity and duration of clogging we find
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that, in response to the 100 ampere step input in current, the conical
geometry results in a minimum inlet massflow of - 0.69 compared to
- 0. 72 for the hyperbolic and - 0. 77 for the elongated throat geometry.
More significantly, the respective durations of clogged flow operation
correspond to t = 0.49, 0.64, and 0.68. One may therefore conjecture
that a conical divergent nozzle geometry is most beneficial in mini-
mizing reverse flow, or clogging, effects in circuit-breaker nozzles.
As the current is stepped to increasing values, the overall mass-
flow throughout each of the three nozzles tends to decrease. Unlike
the initial transient response following heat input to the isentropic flow
with Imax = 100 amperes, the massflow profile in the succeeding cases
with larger current inputs tends to oscillate in such a manner that the
inlet flow may momentarily reverse direction several times before
equilibrating to a new, generally smaller, uniform value. Figure 2-40
shows the steady-state massflow for each nozzle geometry, referenced
to the isentropic value, as a function of current. For relatively small
amounts of heating, there is a severe drop in the massflow that each
nozzle can pass. Again, the conical geometry proves to be the most
efficient. However, for cases of large values of current input, which
perhaps better represent the conditions in an actual circuit-breaker,
the effects of nozzle geometry become less significant. Between 400

and 500 amperes, the massflow for the case of the logarithmic nozzle
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Figure 2-40. Massflow Versus Current for Three Nozzle Geometries
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geometry variation actually increases to a small extent. It is not clear
to the author whether this behavior reflects that of the true physical
problem or is associated only with inaccuracies in the numerical
technique.

Figures 2-41 through 2-45 present the steady-state axial distri-
butions of several flow variables for the conical nozzle. The five
curves, such as those for the energy addition rate, Q, shown in Fig.
2-41, correspond to the five values of current. Wherever applicable,
the initial isentropic distribution is also included for comparison. We
choose the conical geometry for this demonstration of the influence of
an increasing electrical current, because the results generally indicate
it is the most efficient from a circuit-breaking standpoint.

The rate of heat addition to the nozzle flow has its maximum value
just upstream of the nozzle throat for all values of the current. The
sudden drop of Q in the supersonic flow region for Imax = 300 and 400
amperes (curves 3 and 4 in Fig. 2-41) indicates the achiévement of the

effective ""cut-off temperature' at 5000°K (T = 16.67 for Tre = 3000K)

{
at which the electrical conductivity increases more rapidly with T.
For Imax = 500 amperes we note that the entire diverging portion of
the nozzle has values of static temperature that relate to values of

electrical conductivity consistent with those of SF6 at P = 4 atm, as

assumed in our ¢ - T model of Fig. 2-23. Figure 2-42 shows the
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corresponding static temperature distributions with the cut-off value of
16. 67 indicated by the horizontal dashed line. Also note from this figure
that the temperature increases monotonically with x, unlike that in

Fig. 2-31for the symmetric hyperbolic nozzle, which had a shorter,
more rapidly diverging, supersonic region than the nozzles considered
here. We should note that the flow behavior displayed in Figs. 2-41

and 2-42 is indicative of all three nozzles; each attains temperatures

greater than T throughout the diverging section for I = 500
cu max

t-off
amperes.
The total temperature distributions for the conical nozzle are shown

in Fig. 2-43 and are similar to those of preceding examples. For

I = 100 and 200 amperes T

increases in a nearly linear fashion.
max t

It reaches an exit value of 29. 75 for Imax = 500 amperes.

While the potential difference along the nozzle increases somewhat
in the inlet region with increasing current, the effects of an increase
in electrical conductivity cause the electrical field to decrease down-
stream of the throat and, hence, the overall potential difference
decreases. Figure 2-44 presents the resulting voltages.

The substantial decrease in Mach number for Imax = 100 amperes
(shown as curve number 2 in Fig. 2-45) relative to the .initial cold flow
distribution is further evidence of thé substantial alteration of the

nozzle flow characteristics caused by relatively small amounts of
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heat addition. Further increases in current have less effect on the
flow until the cut-off temperature is reached and the Mach number
increases correspondingly. The conical nozzle displays a unique flow
behavior in the supersonic region for lower values of the electrical
conductivity (curves 2 and 3). In this case the influence of large heat
addition rates balances the expansion effects of an increasing area ratio.
This results in a nearly constant value of Mach number throughout the
diverging conical nozzle region. This phenomenon is not evident in the
hyperbolic or logarithmic nozzle geometries. For the purpose of
comparison, Fig. 2-46 presents the corresponding Mach number
profiles for the hyperbolic nozzle.

Figures 2-47 through 2-51 compare the steady-state distributions
of the flow variables throughout the three nozzle geometries for
Imax = 500 amperes. The existence of real gas electrical conduc-
tivity values downstream of the nozzle throat lends particular sig-
nificance to this high current case. The energy addition rate profiles
in Fig. 2-47 display several interesting features. The influence of
the heat front at the nozzle inlet is obvious. It is noted that the dis-
tribution of Q throughout most of the converging region does not
change significantly for different diverging geometries. This holds
true for the other flow variables as well, except for the total tempera-

ture profile of the logarithmic nozzle. The heating rate profiles of
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the hyperbolic and conical nozzles arequite similar, wh ile that of the
logarithmic nozzle reaches a maximum further upstream of the _throat
and has lower values throughout its constrictor region. Downstream
of the constrictor, however, the nozzle diverges rapidly, producing
lower static temperatures and, thus, higher values of Q

The potential difference across the entire nozzle holds particular
significance for gasblast circuit-breakers. In this respect, Fig. 2-48
shows that the conical nozzle geometry with 2068 volts is the most
effective in providing a large impedance to the external circuit. The
corresponding values for the hyperbolic and logarithmic nozzles are
2041 volts and 1980 volts, respectively.

These results for the voltage change across the nozzle may be
partially explained through a consideration of the associated static
temperature profiles in Fig. 2-49. The lower temperature values for
the conical nozzle throughout its inlet region and downstream of the
throat result in smaller values of the electrical conductivity and corres-
pondingly greater voltages. The relatively colder flow in the exit
regions of the logarithmic and hyperbolic nozzles is not sufficient,
in relation to the conical geometry, to offset the trend established by
the upstream gasflow.

It is interesting that the total temperature distribution throughout

the logarithmic nozzle, shown in Fig. 2-50, lies significantly below
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the other two curves, while Fig. 2-49 shows a higher static tempera-
ture through its iniet and constrictor regions. This indicates that
although the electric arc liberates a lesser amount of energy within the
flow, the elongated throat region of the nozzle causes a greater per-
centage of this energy to be converted into thermal energy of the gas.
On the other hand, the more rapidly diverging conical and hyperbolic
nozzles allow a greater proportion to be converted into directed kinetic

energy of the flow. These facts are reflected in the Mach number pro-

files of Fig. 2-51. Note that the conical nozzle has the lowest exit

Mach number. Its advantages with regard to ciréuit-breaker design
result from the rapid flow expansion that exists immediately downstream
of the throat.

As a natural continuation of the above cases of a step~modulated
current input, we now consider the associated free decay from the high
temperature steady-state flow, corresponding to Imax = 500 amperes,
to isentropic flow conditions. Figures 2-52 through 2-54 present the
static temperature surfaces for the initial moments of decay in the
conical, hyperbolic, and logarithmic nozzles, respectively. For each
case the high current steady-state initial conditions are allowed to
persist from t = 0.0 to t = 0.5, at which time the current is instantane-
ously set at zero. The overall decay characteristics are noted to be
most rapid in the conical nozzle, while the logarithmic geometry leads

to a more gradual response.
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Of particular interest with regard to the circuit-breaking potential
of each nozzle geometry is the initial rate of decrease of the static
temperature of the gas. Greater decay rates imply a more rapid dielec-
tric recovery of the gas, which is of critical importance during the cur-
rent zero period in an AC breaker when only a few microseconds are
available for arc extinction and prevention of subsequent reignition.
Figure 2-55 compares the initial temperature decay at four equally
spaced locations in the diverging portion of the conical nozzle; x = 0.4
(throat), 0.6, 0.8, and 1.0 (j = 13, 19, 25, and 31, respectively, in
the figure legend). The decay rate appears to be nearly uniform
throughout this nozzle region. The hyperbolic nozzle displays similar
decay characteristics. However, the corresponding curves for the
logarithmic nozzle, shown in Fig. 2-56, indicate a less rapid decrease
in static temperature within the elongated region downstream of the
throat; the throat itself, however, and the rapidly expanding exit region
are noted to promote a rapid flow decay.

These results can be made more quantitative by introducing the
concept of a conductance "time constant', or characteristic time of
response to temporal changes, which is frequently used to compare
the transient cfxaracteristics of circuit breakers65. In view of the
one-dimensional nature of the present model and the assumed tempera-
ture-only dependence of the gas electrical conductivity, we may define

a dimensionless time constant, 7*, as:
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1
S (2. 55)
Tt o

0]

The right hand side of Eq. (2.55) represents a relative, or percentage,
rate of decrease of the gas static temperature. It was numerically
calculated for the initial moment of flow decay (to* = 0.5) with the use
of a simple first order approximation of the derivative, 8T/at*, over
an interval At* = 0.01. Figure 2-57 shows the resulting values (the
reciprocal of the dimensionless time constant) as a function of axial
distance for each of the three nozzle geometries. The maximum per-
centage rate of décrease, that is, the smallest time constant, occurs
in the conical nozzle downstream of the throat at ¥ =0.12. Since
tref =7.65x 10 -4 sec, this maximum value, (1/Tmax*) =11.9, corres-
ponds to a dimensional time constant of 64.3 usec. Although no experi-
mental data directly relatable to this study are available, the above
value is of the proper order of magnitude. We might also note that
the present model accounts for only convective energy transfer mechan-
isms. Radial conduction and radiation both play additional important
roles in promoting dielectric recovery in a circuit breaker arc and
would further reduce the above time constant value. |

Note further from Fig. 2-57 that the maximum percentage rates

of decay for the hyperbolic and logarithmic nozzles occur, respectively,

at the throat and just upstream of the throat. (The latter case
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66 have in fact

represents only a local maximum.) Siddons and Heron
reported experimental evidence using streak photographs that show arc
interruption in a nozzle first occurs in the throat region. QOur results

therefore indicate that axial convection and nozzle geometry must play
dominant roles in the interruption process.

The effect of the exit region of the logarithmic nozzle is again
evident in the time constant behavior. However, the relatively large
values of T betweén the throat and exit would obviously be detrimental
to the effectiveness of this geometry in circuit breaking. On the ofher
hand, the time constant remains generally low in value throughout the
supersonic flow region of the other two nozzles, especially the conical

one. An important conjecture that follows from these results then is

that supersonic flow velocities (and hence, converging-diverging nozzles)

can be beneficial in gas blast circuit breakers. In the conical nozzle,

for example, the arc would tend to first become non-conducting just
downstream of the throat; however, the non-conducting zone should
rapidly extend downstream through the entire diverging portion of the
nozzle, thereby enhancing the ability of the breaker to withstand high
recovery voltages in the external circuit that tend to cause breakdown
of the gas and a subsequent arc reignition.

We turn now to a consideration of the sinusoidal current source,
given by Eq. (2.48), as a model of an AC current input to a circuit-

breaker arc. For a more meaningful correlation with previous
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results, we use the same three nozzle geometries as above and
consider a full cycle of the current-time variation for which Imax

= 500 amperes. With a frequency, v, of 60 Hz, current zero occurs
for (dimensionless) t = 0.0, 10.9, and 21.8. And Imax = 500 amperes
occurs for t = 5.45 and 16. 35. Initial conditions are again those of
isentropic flow.

Before presenting specific results of these numerical experiments,
we can mention some general comments regarding clogging effects.
The temporal increase in current is sufficiently rapid in these cases
that the clogging phenomenon is very similar to that occurring for the
step-modulated (DC) current input. The mechanisms leading to clogging
are the same in both cases and they occur, as expected, immediately
following current-zero (t = 0. 0" and 10. 9+, in the present cases) as the
magnitude of the current, and hence the heat addition to the gas flow,
begins increasing. The conical nozzle again proves to be most efficient
in minimizing this effect, while the logarithmic geometry leads to more
intense clogging.

Since the conical nozzle geometry displays the greatest overall
potential for a gas blast circuit breaker of the three geometries con-
sidered in this study, we again use it as the prime example in pre-
senting details of the results for an AC current input. Results corres-

ponding to the hyperbolic and logarithmic nozzles are in general quite
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similar. The more significant differences that exist in these two cases
compared to the conical nozzle, are mentioned below. Figures 2-58
through 2-69 show the full-cycle temporal behavior of the density, ve-
locity, static temperature, and heat addition rate at an inlet location

(j = 6), the throat (j = 13), and the exit (j = 31) of the conical nozzle.
The horizontal dashed line, included in each of these figures, desig-
nates the steady-state value of each variable, based on the previous
DC current cases for Imax = 500 amperes.

As a whole the flow conditions within the nozzle follow the cyclic
variation of the electric current input, which results in repeatable
temporal patterns of the flow variables once the initial transients have
decayed. The initial response differs from the overall temporal
behavior because the flow is at its steady-state isentropic condition
before the current increases; whereas succeeding current—zeros-
produce a different, higher-temperature flow state. As noted from
the figures, there exists a time lag, Atlag’ between the response of
each dependent variable and the electric current input. If we measure
this lag relative to the current-zero at t = 10.9, the foilowing approxi-

mate values are obtained:
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Table I. Time Lag of Response of Dependent Variables

j=6 j=13 j =31
p 0.56 0. 365 0.65
u 1.10 0.68 0.55
T 0.36 0.24 0.0"

In general, At, decreases with increasing Mach number, except in

lag
the case of density near the nozzle exit. This apparent discrepancy
probably results from the numerical inaccuracy associated with the
relatively low magnitude density values, as mentioned previously.
We note, also, that the gas static temperature, and thermodynamic
properties in general, respond most rapidly to the intense heat addi-
tion; whereas changes in the directed velocity of the gas at any nozzle
location "wait' for the necessary pressure gradients to be established.
Figures 2-62 throggh 2-64 contain eight additional data points
that help to illustrate the "near quasi-steady" behavior of the nozzle
gasflow when it is subjected to a 60 Hz sinusoidal current input. The
points represent steady-state values of the dependent variables at the
nozzle throat, based on the previous numerical results for the DC

case. They correspond to values of Imax = 100, 200, 300, and 400

amperes and are shown plotted at times corresponding to like values

of the time-varying AC current input. The two intervals following
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current zeros at t = 0.0 and 10.9 are shown. The static temperature
values for the AC case fall closest to those of the steady state, while
the fluid velocity displays the greatest discrepancy in this respect.

A similar comparison of density values shows gooc'l agreement except
for the case of Imax = 100 amperes (t = 0.7 and 11.59); that is, except
near current zero when the time rate of change of the current is great-
est. As a whole, then, the results lend credence to the quasi-steady
assumption that is often used in analytical studies of the near peak-
current characteristics of AC breakers. We should mention, however,
that as the frequency, v, increases above the present value of 60 Hz
the temporal behaviors of the fluid properties are expected to lose the
"rectified sine wave'' appearance, displayed in Figs. 2-58 through
2-69, as dI/dt becomes larger overall and the gasflow is less able

to follow the driving function, I(t)'72 .

The unusual energy addition rate variation at the nozzle exit,
shown in Fig. 2-69, is typical of the diverging region of all three geom-
etries. The sudden decrease in Q as current increases results again
from the effective cut-off temperature present in the electrical con-
ductivity/temperature model used in this study. This phenomenon
may indeed be relevant to actual circuit breaker flow behavior with
gases that display similar changes in o at given temperature values.

Zuckler = discusses the significance of flow-inertia effects

on circuit breaker performance. For very large AC current inputs
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the massflow through the breaker nozzle can become very small.
Then, as current-zero is approached, it rapidly increases but is un-
able to regain its full isentropic flow value due to the inertia of the
high velocity gas stream. As a consequence, the electric arc cools
less efficiently and dielectric recovery is impeded. One measure,
therefore, of a given nozzle geometry performance is the massfiow

decrement, Am, , which may be defined as:

dec

A, =mh m (t = 10.9 + At (2. 56)

dec isentr ~ lag)

where m (t = 10.9 + Atlag) is the minimum massflow value in the
vicinity of the half-cycle current zero. Of course, the massflow does
not remain uniform throughout the nozzle during the transient flow
variations, eSpecially those near current-zero; hence, its temporal
behavior will be different at different nozzle locations. However, it

is logical to focus our attention on the nozzle throat region, since

we have found that arc extinction is most likely to first occur there and
it is generally representative of the overall nozzle flow response.
Figures 2-70 through 2-72 show the temporal massflow variation at

the throat of the conical, hyperbolic, and logarithmic nozzles, respec-
tively. The massflow values are now referenced to that of the initial
isentropic flow, m, so that Am . follows immediately as shown

isentr’ de

in each figure. The conical nozzle geometry would again seem to be
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most beneficial from a circuit breaking standpoint. Its massflow decre-
ment has a value of 0.145 compared to 0.152 and 0. 161 for the hyperbolic
and logarithmic geoinetries. That is, the conical nozzle geometry is
most effective in overcoming the flow inertia and returning the fluid con-
ditions nearer to those of true isentropic flow during current-zero
passage.

One of the most prominent features of the massflow response in
Figs. 2-71 and 2-72 for the hyperbolic and logarithmic nozzles is the
intense transient wave motions caused by the initial moments of heat
input at t = 0. o and 10. 9" and, as mentioned previously, directly associ-
ated with nozzle clogging. This feature is noted to be much less pro-
nounced in Fig. 2-70 for the conical nozzle.

As a final note to the one-dimensional results, we mention that each
of the above cases involving a full cycle AC current input required less
than six minutes of CPU time on the IBM 360/67. As such, this repre-

sents the ""worst case' of all the hot flow runs discussed.



3. AXISYMMETRIC MODEL

3.1 Introductory Remarks

In the present section we consider the numerical solution of a
multi-dimensional model of the circuit breaker nozzle problem. Al-
though the previous quasi-one dimensional approach offers a great
deal of insight into the gasdynamic characteristics involved, the basic
physical problem at hand remains inherently three-dimensional. At
the outset of this study the primary goal of the author was to develop
a computer model, based on the assumption of Symmetry about the
nozzle centerline,that could predict the transient response of a coaxial
"arc', or high-temperature gas core, 'to an electric current input.

The inclusion in the model of real gas effects, such as thermal and
electrical conductivity, was also considered desirable. The obvious
advantages over the one-dimensional case of the additional radial
coordinate would include the ability to define and monitor an arc geom-
etry and to investigate the significance of radial variations in fluid
properties on breaker performance.

However, as this study progressed it became apparent that the
practical and economic limitations imposed by the nature of the prob-
lem (e.g., the high static temperature values and associated decreased

time-step of integration) were substantial. As a consequence, the

178
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axisymmetric model presented here serves more as a study of the
feasibility of developing a detailed, multi—dimens‘ional, numerical
model than as a tool to predict gas blast circuit breaker performance.
Nevertheless, the model is significant because it can accurately pre-
dict the unsteady (or steady, in the limit of large t), rotational,
inviscid, flow within a general Laval nozzle geometry that is sub-
jected to a bulk heat addition. Furthermore, the numerical technique
represents a substantial increase in efficiency (e.g., less CPU time
and simpler program logic) over previous schemes presented in the
literature, while maintaining second-order accuracy in time and space.
The additional numerical implications associated with two spatial
dimensions and time as independent variables turn out to be the over-
riding consideration in the development and extent of the axisymmet-
ric model. One of the more important aspects of the problem con-
cerns the substantially increased CPU time. Apart from other factors
to be mentioned below