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ABSTRACT

A useful tool in the development of flexible automation is a
system description language which can generate a complete func-
tional description of a manufacturing cell of arbitrary complexity.
We propose a description system based on the concept of hierar-
chical decomposition utilizing the Ada programming language
in conjunction with established diagramm atical decomposition
methods. The distinguishing aspect of our work is that it takes
advantage of certain features of Ada (such as type checking) to
create a description that can be automatically verified for con-
sistency. Simulation is often an indispensable tool in the develop-
ment of manufacturing systems. We show how a simulation of
the operation of the manufacturing cell can be embedded in
its description. Finally, we apply the methodology to a specific
instance of a manufacturing cell.,

INTRODUCTION

In general, design begins with a functional description or specifi-
cation of the object to be designed. The design must then be
performed in such a manner as to match the specification. In
some areas, particularly software design, the specification pro-
cess and techniques to ensure consistency between a specifica-
tion and a design have been highly formalized and automated.
Ross and Schoman® and Teichroew and Hershey,® among
others, have demonstrated that a consistent specification
methodology and automated consistency checking significantly
aid the design process.

A recurring problem in designing manufacturing cells is the lack
of a suitable framework on which a correct functional descrip-
tion can be built. Manufacturing cells contain a number of com-
plex subsystems, such as programmable controllers, computer-
numerically-controlled (CNC) machines, robots, and material
handling and storage systems, whose operations and interac-
tions must be uniformly described. Each such subsystem re-
quires a different set of time-sequenced inputs and outputs in
order to perform its function. These inputs and outputs can
utilize discrete 1/O lines, analog channels, or synchronous and
asynchronous communication protocols. Each of these com-
munication media must meet differing rate requirements and
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Terms and definitions*

Accept statement — See entry.

Access value — An access value is the value of an access type
and designates an object; the access value can be used to
read and update the designated object. Access values are
known as painters in other languages.

Allocator — The evaluation of an allocator creates an object
and returns a new access value that designates the object.

Declaration — A delaration associates an identifier (or some
other notation) with an entity. This association is, in effect,
within a region of text called the scope of the declaration.
Within this scope, it is possible to use the identifier to refer
to the associated declared entity.

Elaboration — The elaboration of a declaration is the process by
which the declaration achieves its effect (such as creating an
object); this process occurs during program execution,

Entry — An entry is used for communications between tasks.
Externally, an entry is called just as a procedure is called; its
internal behavior is specified by one or more accept
statements specifying the actions to be performed when the
entry is called.

Object — An object contains a value. A program creates an ob-
ject either by elaborating an object declaration or by
evaluating an allocator. The declaration or allocator specifies
a type for the object: the object can only contain values for
that type.

Package ~ A package specifies a group of logically related en-
tities, such as types, objects of those types, and subprograms
with parameters of those types. It is written as a package
declaration and a package body. The package declaration has
a visible part which contains the declarations of all entities
that can be explicitly used outside the package. The package
body contains implementations of subprograms (and possibly
tasks as other packages) that have been specified in the
package declaration.

Parameter — A parameter is one of the named entities
associated with a subprogram or entry and is used to com-
municate with the corresponding subprogram body or accept
statement. A formal parameter is an identifier used to denote
the named entity within the body. An actual parameter is the
particular entity associated with the corresponding formal
parameter by a subprogram call or entry call.

Record type — A value of a record type consists of a collection
of components which are usually of different types. Such a
record object may be used to group together a set of related
components,

Rendezvous — A rendezvous is the interaction that occurs be-
tween two paralle] tasks when one task has called the entry
of the other task, and a corresponding accept statement is
being executed by the other task on behalf of the calling task.

Scope — See declaration.

Subprogram — A subprogram is either a procedure or function.
It is written as a subprogram declaration, which specifies its
name, formal parameters, and (for a function) its result; and a
subprogram body which specifies the sequence of actions.
The subprogram call specifies the actual parameters that are
to be associated with the formal parameters,

Task ~ A task operates in parallel with other parts of the pro-
gram. It is written as a task specification (which specifies the
name of the task and the names and formal parameters of its
entries), and a task body which defines its execution.

Type — A type characterizes both a set of values and a set of
operations applicable to those values.

*Abridged from Appendix D in Reference 9.
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require differing error recovery strategies. Futhermore, a poten-
tially extensive database must be maintained to accurately
reflect the current states of all parts flowing through the cell,
as well as the current state of all subsystems in the cell. The
heterogeneous nature of the cell dictates widely differing data
representations, access requirements, and access rates,

In view of the preceding, we believe that a formal functional
description technique would be highly valuable in designing
manufacturing cells. In general, it will not be possible to match
implementation with specification as can be done to some
extent in software design; however, extending the description
to a simulation of the cell being designed can incur many of
the same advantages. Such a description system should have
at least the following attributes:

(1) Completeness — The functional description must com-
pletely specify the manufacturing cell in question. This im-
plies that all interactions between the components of the
cell, implicit and explicit, must be accounted for.

B

Consistency — The constituent parts of the functional
description must be consistent with each other. Rate and
protocol of a sender must match those of a receiver; parts
output by one subsystem must correspond to the input
requirements of a succeeding subsystem.

—_
w
=

Ease of understanding — The functional description must
be easily understood at varying levels of detail. It must be
possible to gain a high-level understanding of the entire cell
without the burden of excessive detail; it must also be pos-
sible to gain a detailed understanding of any particular com-
ponent of the cell.

(4

foor)

Amenity to simulation — It should be possible to develop
a simulation of the system from its description. Either by
executing the description directly, or by providing a transla-
tion method whereby the description is transformed into
a series of simulation statements which can then be
executed.

At present, it is possible to give quite specific functional descrip-
tions of each component of a manufacturing cell. These descrip-
tions take the form of manufacturers specifications, wiring
diagrams, shop floor layouts, and so forth. Unfortunately, it is
difficult to combine these descriptions into a coherent set of
specifications at the manufacturing cell level, particularly one
that is amenable to simulation.

In this paper we explore and extensively discuss the develop-
ment of a complete, consistent, level-sensitive functional
description of a manufacturing cell. We observe that our
description is amenable to simulation, and explore that con-
cept, and finally, we illustrate our concepts with a simple case
study.

DESCRIPTIVE METHODOLOGY

One way of achieving our stated goal is through a system
description language which can completely describe a manufac-
turing cell at a suitable level of detail. Examples of such
languages and associated analysis systems are well known. Ross
and Schoman® claim a lack of an adequate approach to
requirements definition as a major source of difficulty in systems
work, and propose context analysis, functional specification,
and design constraints as solutions to this difficulty. Within the
context of functional specifications they set forth the Structured
Analysis and Design Technique (SADT) as a tool in buliding com-
plex specifications. SADT, a graphical structure which is both
modular and hierarchical, is used to describe functional ar-



chitecture. Sammet, Waugh and Reiter® describe PDL/Ada
(Program Description Language/Ada), which is a procedural
high-level language used in writing software specifications that
is based on the Ada programming language.® Using PDL/Ada,
a modular textual structure is used to describe functional archi-
tecture. Teichroew and Hershey® discuss PSL/PSA (Problem
Statement Language/Problem Statement Analyzer), which is a
computer-aided structured documentation and analysis tech-
nique used in describing arbitrary information systems, Using
PSL, a modular textual structure used to generate functional
specifications for information processing systems. The associ-
ated analyzer, PSA, can be used to generate a variety of reports
based on the PSL descriptions.

These examples make use of the concept of hierarchical decom-
position; that is, decomposing a difficult problem into several
simpler subproblems to allow a solution when direct methods
fail. We apply this technique to the problem of generating func-
tional descriptions of manufacturing cells, utilizing two com-
plimentary descriptive formats. We then show that one of the
techniques is readily extended to provide a simulation for the
system being designed.

In the first format, diagrammatical decomposition, we present
a diagram of the functional description. The hierarchical decom-
position is shown as a series of nested diagrams, and directed
lines between elements of the diagram describe the data and
control flow. This format is roughly analogous to that of SADT
and allows the reader to obtain a quick, intuitive understanding
of the manufacturing cell being described.

In the second format, procedural decomposition, we present
an equivalent functional description written in a procedural
description language based on the Ada programming language,
along the lines explored in Reference 6. However, there is a
key difference. Whereas PDL/Ada does not support the parallel
execution of the descriptive components, this concept is cen-
tral to our description system. The hierarchical decomposition
is shown as a series of nested Ada packages, and Ada task
rendezvous describe the data and control flow. This procedural
decomposition is much more detailed than the diagrammatical
one and gives the reader a complete functional decomposi-
tion of the cell being described. We believe that both formats
are necessary for complete understanding.

Our hierarchical concept imposes a great deal of structure on
the description process. While the task of generating a com-
plete description of a large manufacturing cell remains for-
midable, the method of hierarchical decomposition provides
a way of systematically generating correct functional descrip-
tions to any desired level of detail.

Diagrammatical decomposition

The basic unit of diagrammatical decomposition is the box. In
Figure 1, there is a number of inputs to a box, a number of
outputs from the box, and a function, mapping the inputs to
the outputs, performed by the box. The first, or top, level of
decomposition is a description of the manufacturing cell, and
the inputs and outputs are the actual inputs and outputs of the
cell. We do not distinguish at this level between physical and
nonphysical objects.

The exterior of a box encloses the current level of decomposi-
tion. The box shown in Figure 1 resides at the first level of
decomposition. The inputs are part, and part,, the output is
parts, and the function performed by the box is the joining of
the first two parts to yield the third. This level of decomposi-
tion does not describe how the assembly is to be performed,
only that it is to take place.

parts
part;
part,

MAKE
parts

Figure 1. Box exterior.

The interior of a box contains a collection of subboxes. The col-
lection of subboxes forms the next level of decomposition; their
collective function is identical to the function of the enclosing
box. One of the subboxes is designated as a control subbox,
and its function is to serve as a manager of control and data
flow within the box by specifying, if required, the order in which
the other functional subboxes should be invoked, what inputs
they should be invoked with, and what outputs they should
return to realize the function of the enclosing box. In Figure 2,
the box of Figure 1 has been opened to reveal the subboxes
inside. (We call the process of opening a box a decomposition
step.) The functional subboxes f,, f5, and f; represent the three
operations “pick up part 1, “pick up part 2, and “join parts”
Together these three operations realize the function of the
enclosing box.

We can recursively descend in the hierarchical decomposition
by opening subboxes to reveal other subboxes contained within
them. This process continues until a level of decomposition is
reached at which further partitioning is unnecessary. In our ex-
ample, a subbox whose function is “close gripper on robot
arm 1”is probably not amenable to further decomposition; we
call it a terminal subbox. The successive decompositions of a
cell can be viewed as a tree which represents a collection of
descriptions at different levels of detail.

We emphasize the difference between hierarchy of decomposi-
tion and hierarchy of control. Our hierarchical decomposition
is primarily a description of a manufacturing cell. As such, the
functional boxes are abstractions and may not in general have
physical counterparts in the cell itself. At some level of decom-
position, however, the functional boxes should correspond to
physical entities or control program procedures, and the inputs
and outputs are associated directly with the terminal subboxes.

parts
party
part

i e i

f, fa fa

Figure 2. Box interior.
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Procedural decomposition

The diagrammatical decomposition method provides an elegant
way of decomposing a manufacturing cell. However, futher ex-
amination of Figures 1 and 2 points out some insufficiencies
in this method. First, considerable descriptive detail is missing
from the diagram, such as precise definitions of the parts and
operations involved. Second, while it is possible for the func-
tion f, and f; of Figure 2 to happen concurrently, f; must wait
for them to complete before proceeding if the joining process
is to be correctly described. This flow of control is determined
by the control subbox, but is not explicitly given in Figure 2.
Attempting to correct both of these omissions by increasing the
amount of detail in the diagrams would clutter the description
to the point where it would be difficult to interpret correctly.
To deal with these problems we use a procedural decomposi-
tion language to complete the hierarchical decomposition.

Ada language review

Our procedural description language is based on the Ada pro-
gramming language. Hence, we review briefly those portions
of the Ada language salient to our needs. Ada’ is a strongly-
typed, block-structured programming language with support
for concurrent execution, separate compilation, reusable soft-
ware modules, and extensive compile- and run-time verifica-
tion. Ada defines procedures and functions in the usual way.
Tasks are units of concurrent execution. Execution of the
statements contained in a task proceeds independently of the
rest of an Ada program except at specifically designated syn-
chronization points.

The rendezvous is the only means of synchronization in Ada
and can be thought of as an intertask procedure call. During
a rendezvous, both tasks are synchronized while any associated
parameters are exchanged, after which both continue inde-
pendently. Like a procedure call, a rendezvous is performed
by two parties: the caller, who performs an entry call, and the
callee, who performs an accept. The task performing an entry
callis suspended until the called task performs the correspon-
ding accept statement or vice versa. In Figure 3, task SEND
executes the entry call RECEIVE.COMMAND(10) while task
RECEIVE independently executes the (possibly compound)
accept statement accept COMMAND ... end COMMAND. (In
fully qualified or dotted notation, a call on entry COMMAND
in task RECEIVE is written RECEIVE.COMMAND.) During
the time task RECEIVE executes the accept statement, the
two tasks are said to be in rendezvous. During the rendezvous,
SEND is suspended while RECEIVE executes the statement
COM := VALUE which saves the value of the passed parameter
in COM. This is done because the values assigned to formal
parameters of an accept statement are available only during
the scope of the statement. When the execution of the accept
statement is finished the rendezvous is completed and both
tasks continue execution independently.

Program and data objects may be grouped together in a
package. Objects so grouped share identical scope and visibility.
In Ada, packages can be used as a passive grouping mechanism.
Extensive compile-time checking is performed to ensure that
formal and actual parameters do not conflict, and run-time
checking is performed to ensure invalid assignments and
references are detected. (It is this extensive error checking that
provides a large measure of confidence in the consistency of
the description of the interacting parts of the manufacturing
cell.) Ada supports separate compilation since it does not force
an entire program to be recompiled when a change is made
to a single module.
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task body SEND is
begin

RECEIVE.COMMAND(10);
end SEND;
task body RECEIVE is
COM: INTEGER;
begin
accept COMMAND(VALUE: INTEGER) do
COM := VALUE;
end COMMAND;

end RECEIVE;

Figure 3. Example of a rendezvous.

Procedural decomposition language

We now give a characterization of our procedural description
language. The functional units of the procedural decomposi-
tion are represented as Ada tasks, just as we represent the func-
tional units of the diagrammatical decomposition as boxes.
Tasks were chosen instead of procedures or functions because
tasks execute in parallel and thus provide a more realis-
tic description of simultaneous events than do sequential
constructs.

At a given level of decomposition, a task representing a func-
tional block must convey the following information. First, it must
show the interconnection with other tasks by characterizing
the inputs and outputs of the task and by describing how these
inputs and outputs are synchronized with each other and with
those of the other tasks. The description is provided informally
through comments, but all interconnections with the surround-
ings of the functional block are represented formally so that
the overall structure of the system being described may be
automatically checked by an Ada compiler at a level which
guarantees that part and data flow among different components
of the system are consistent. Through hierarchical decomposi-
tion (described in greater detail below) this can be carried to
any desired level of detail; thus it is possible even to represent
timing signals used by the system. The following paragraphs
illustrate the description conventions which allow this to be
accomplished.

The functional description is provided via comments in the Ada
text. Each task specification contains a textual description of
the function of the unit the task represents, the inputs to and
outputs from that unit, and any synchronization which is to
take place with other units. This text is called a DIO list (short-
hand for Description/Input/Output) and is placed at the begin-
ning of the task specification. See Figure 4 for an abstraction
of the use of a task for the functional description of a block.

Each functional block receives certain inputs from, and pro-
vides certain outputs to, its surrounding environment, each of
which may be synchronized with other functional units. Each
separate kind of input or output, whether physical object or
data (e.g., raw stock to be machined, finished parts, or data
record describing the measured tolerances of a part), is given
an Ada type. This establishes different kinds of objects as
separate kinds of things and enables the compiler to check the



task T is
-- DIO T:
-- description is ...
-— inputs are INPUT LIST.
- outputs are OUTPUT LIST.
entry START(INPUT LIST);
entry STOP(OUTPUT LIST);
entry ...

end T;

task body T is
begin
loop
accept START(INPUT_LIST)
LOCAL_INPUT_LIST := INPUT LIST;
end START; N

LOCAL_OUTPUT_LIST := F(LOCAL INPUT_LIST);

accept STOP(OUTPUT_LIST) do
OUTPUT LIST := LOCAL OUTPUT LIST;
end STOP; B B
end loop;
end T;

task T' is
-- DIO T':
- description is ...
- inputs are INPUT LIST.
-- outputs are OUTPUT LIST.
entry START(INPUT LIST);
entry STOP(OUTPUT_LIST);

end T';

task body T' is
begin
loop
accept START(INPUT_LIST)
LOCAL_INPUT LIST := INPUT LIST;
end START;

t(.START(LOCAL_INPUT LIST);
t(.STOP (LOCAL_OUTPUT LIST);

accept STOP(OUTPUT LIST) do
OUTPUT_LIST := LOCAL OUTPUT LIST;
end STOP; B
end loop;
end T';

Figure 4. Task implementation.

consistency of usage. The declarations for these types are ex-
ternal to the task representation of the block and thus do not
appear in Figure 4. They are visible to this task, however, and
may be referenced. They are represented by the abstractions
INPUT_LIST and OUTPUT_LIST in the figure.

Inputs to and outputs from the block are shown formally by
providing entry statements for each input and output. At a
minimum, there will be an input corresponding to the begin-
ning of the block and an output at the end. These are shown
by the START and STOP entries in Figure 4. There may be ad-
ditional entry statements associated with synchronization or
communication with other parts of the system, as necessary.
Corresponding to the entry statements, there will be accept
statements in the body of the task through which the actual
passing of the inputs and outputs is represented. The represen-
tation of inputs and outputs in this fashion, together with the
use of types for different kinds of objects allows an Ada com-
piler to check for consistency of the interconnections between
different parts of the system being described. It is this very type
of consistency checking which has proven to be extremely
valuable for early error detection in the development of com-
plex software systems, and is one of the principal advantages
to the procedural portion of the description system presented
here.

The use of Ada rendezvous for representing the input and out-
put operations also provides a natural mechanism for represen-
ting the time synchronization among different components of
the system. As will be seen later, this is readily extended into
a simulation of the system.

Finally, for manufacturing operations, functional blocks typically
represent activities that are repeated in time. This is represented
by a main loop within the body of the task. The function F
shown in the middle of the task body in Figure 4 represents
the operation the functional block is to perform; this opera-

Figure 5. Interface task implementation.

tion was described in the DIO list formal representation of the
functional block implemented by the task. For simulation opera-
tions it will be replaced by linkages to a scheduler and a func-
tion which increments time by the amount required for the
operations discussed in the next section.

We thus see how an Ada task can be used to describe infor-
mally (and to a limited extent formally) the operation of a func-
tional block. The task description of the manufacturing system
is encompassed by an environment, also represented as an Ada
task, which provides the inputs to, and accepts the outputs from,
the cell being described. This environment is not shown here,
but is somewhat similar in nature to the cell description. It is
this environment which includes the necessary type definitions
to represent the different kinds of objects in the system.

Next, we examine the manner in which decomposition is ac-
complished to achieve a more detailed description of the
system, and describe the effects of a decomposition step on
task T. When such a step is made, task T shown in Figure 4
is replaced by an interface task T’ shown in Figure 5, a contro/
task to corresponding to the control subbox of Figure 2, and a set
of functional tasks t; corresponding to the functional subboxes
of Figure 2. The control and functional tasks which make up
the decomposition of T are identical in form to Figure 4 and
are not shown. If there are n functional tasks we have the three
relations:

F< XZF,
i=0

n
INPUT__LIST € U INPUT__LIST,,
=0
and '
n
OUTPUT__LIST CU OUTPUT__LIST,.

i=0
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Figure 6. Results of decomposition step.

These equations denote that the collective function of the func-
tional tasks replace the function of the original task and that
the combined inputs and outputs of the functional tasks sub-
sume the inputs and outputs of the original task. This is shown
diagrammatically in Figure 6.

The interface task is introduced in order to isolate other parts
of the description from changes required by a decomposition
step, and to provide a mechanism for dispersing and collec-
ting the inputs and outputs of T. It is identical to the original
task T except that the statements representing the function F
are replaced by START and STOP rendezvous calls to the con-
trol task to. The control task is reponsible for sequencing the
execution of the remaining functional tasks t,,... t,; its body
consists of START and STOP rendezvous calls to the rest of the
functional tasks in a manner similar to that shown in Figure 5.
Although not evident in this simple abstraction, any additional
entries for input, output, or synchronization operations would
also be passed downward to the task corresponding to the con-
trol subbox at the next level of decomposition.

For convenience in organizing a decomposition, we place the
control and functional tasks generated by the decomposition
step into a package and make them visible to the interface task
which remains outside the package. This partitioning of the
decomposition into packages provides for a more understand-
able description and allows portions of a large description to
be compiled separately. The interface task thus replaces T in
its package; the control task and the set of functional tasks are
enclosed in a new package. Everything that is to be accessible
to the exterior of a package must be listed in the package
specification according to Ada rules; everything else in the
package body is hidden from view. Thus the package specifica-
tion contains only a description of the control task; it is the only
task that must be visible, for it will be invoked from a task in
a different package at the next higher level of decomposition.
The remaining tasks are invoked from the control task, or can
invoke each other, and thus need not be visible outside the
package.

The similarity in form between a functional task t; and the
original task T allows further decomposition steps to be taken
by considering one of the functional tasks as a new task T and
repeating the decomposition procedure. This results in a tree
of packages as seen in Figure 7. At some point it becomes un-
necessary to decompose a task any further; we call such a task
a terminal task which will have the form of Figure 4. For exam-
ple, P; and P4 of Figure 7 contain only terminal tasks, while
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Figure 7. Package tree.

P2 contains two tasks which are not terminal. Terminal tasks
will play an important role when simulation is considered, as
discussed in the next section. Thus the set of all terminal tasks
plus all control tasks contains the entire functional description
of the manufacturing cell.

A key factor in the procedural description methodology is the
fact that the specifications can be compiled by any validated
Ada compiler. The compiler error checking mechanisms will
detect any inconsistencies in number or type between the for-
mal and actual parameters representing data or physical ob-
jects which are passed between different components of the
system being described. This is a powerful design aid and is
the principal motivation for using the procedural design meth-
odology. It allows many design errors to be caught at a very early
stage of the design life cycle where the costs of such errors are
minimal.

SIMULATION METHODOLOGY

Our hierarchical description provides the basis for simulation
control software which supports a process-oriented simulation
scheme. Thus, another major attribute of the procedural de-
scription methodology is that it can be extended to support the
simulation of the system being designed at the same varying
level of detail as the decomposition of the system. We can
replace the function descriptions in the terminal tasks with
process-oriented simulation statements. These are generally very
simple constructs such as wait statements to simulate the
passage of time that occurs when the function represented by
the task is performed. We also need to add some support soft-
ware to manage the process-oriented simulation, such as
scheduling routines, clock managers, and so forth. While these
functions can be provided by any good simulation package,
they are simple enough that we have chosen to implement our
own simulation support package.

In conventional process-oriented discrete-event simulation
systems, a number of simulation processes appear to execute
in parallel. In fact, only one such process is executing at a given
time, and that process continues to execute until it chooses to
stop, at which time the simulation system schedules another
process for execution. This process-oriented simulation scheme
utilizes one master simulation clock.

We desired a parallel implementation to take advantage of the
nature of our description. Since our description is implemented
in terms of Ada tasks, it seemed natural to allow these tasks



to execute concurrently during the simulation to take advan-
tage of any underlying multiprocessor hardware, as suggested
in Reference 3.

In a parallel discrete-event simulator in which there are many
processes executing concurrently a single master simulation
clock no longer suffices. Consider two processes, A and B, which
are executing simultaneously. Suppose A schedules another pro-
cess, C, to run at time t, and subsequently gives up control.
Assume C turns out to be the next process that is activated,
with the master simulation clock set to t;. If B, which is still
running, schedules another process, D, to run at time t;, where
t; <t;, we could be faced with the problem of having to roll
back the simulation clock to t, and undoing whatever C has
had a chance to do in the interval [t,, t4]. It is evident that we
must provide a mechanism for managing the master simula-
tion clock so as to avoid this roliback.

We have developed such a mechanism for use with our descrip-
tion system using a concept first described in Reference 4. We
supply each task with a local simulation clock in addition to
the global clock. Each task consults its own local clock to deter-
mine its course of action; the local clock thus completely deter-
mines a task’s view of simulation time. This local clock is syn-
chronized with the global clock whenever the task invokes one
of the following primitives.

e Wait — A task wishes to advance its local clock by a given
amount. When execution of the task resumes, its local clock
will be incremented by the specified time.

¢ Intend to rendezvous — A task wishes to rendezvous with
another task by performing an entry call. In this case both
the invoker's local clock and the local clock of the task that
executes the corresponding accept may require updating.
When the rendezvous takes place, both tasks will have their
local clocks set to the larger of the original local clocks.

¢ Intend to accept — A task wishes to rendezvous with another
task by performing an accept statement. In this case both
the invokers local clock and the local clock of the task that
executes the corresponding entry call may require updating.
When the rendezvous takes place, both tasks will have their
local clocks set to the larger of the original local clocks. Thus
the “intend to rendezvous” and the “intend to accept” prim-
itives cause the local clocks to be updated in the same way.

Whenever a task needs to perform one of these primitives, it
performs a rendezvous with the simulation controller which
changes the state of the task from running to a wait state. A
skeleton of the simulation controller implementation is given
in Figure 8. Task sched manages client calls of the aforemen-

task body sched is
begin

loop

select
- accept wait(...)
. : advance_global time;
or

accept itr(...)

—m———

else

end if;

advance_global time;
or

accept ita(...) do

else
-- Set task WAITING TO ACCEPT;
end if;
advance_global time;
end select;
end loop;
end sched;

procedure advance_global time is

begin
if (no tasks are running) then

end advance_global time;

-- Perform initialization via sched.activate .

-- Wait.
-— Compute wakeup time and set task to WAITING state.

—- Intend to rendezvous (call).
if (partner already WAITING TO ACCEPT) then
—-— Set both local clocks to larger wakeup time and set both tasks WAITING.

-- Enqueue task on partner's accept queue and set task WAITING_TO_CALL;

-- Intend to accept.
if (a WAITING TO_CALL partner already in accept queue) then
-- Dequeue partner from accept queue.
-- Set both local clocks to larger wakeup time and set both tasks WAITING.

if (at least one task is WAITING) then
-- Update global clock to smallest of WAITING local clocks.
-- Resume all tasks whose local clocks match the new global clock.

else
-- DEADLOCK; no tasks RUNNING or WAITING.
end if;
end if; -- No update yet; at least one task RUNNING.

Figure 8. Simulation controller.
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tioned primitives at entries wait, itr (intend to rendezvous), and
ita (intend to accept). Task sched also handles client task in-
itialization, which is not shown. If the desired action is “wait,’
then the simulation controller calculates the time at which the
task should resume executing, based on the task’s local clock
and desired wait interval, and updates the wakeup time for that
task. As long as there are still other running tasks no further
action is taken; the remainder of the running tasks are allowed
to continue. This is the key concept that removes any require-
ment of rolling back the master clock. Only when there are
no more running tasks will the simulation controller examine
the list of waiting processes, determine the new global clock
value from the waiting task with the smallest wakeup time, and
resume running all waiting tasks whose wakeup times are equal
to the new global clock. The simulation controller also sets the
local clocks of all resumed tasks equal to the current global
clock; the tasks henceforth reference their local clocks.

The “intend to rendezvous” and “intend to accept” primitives
are managed somewhat differently. Since a rendezvous requires
two parties, a task indicating an intent to rendezvous without
a corresponding partner task having previously indicated an
intent to accept, or vice versa, is suspended and is not allowed
to resume execution until the partner task issues its intent to
complete the rendezvous. Once both tasks have indicated their
intent to rendezvous the simulation controller updates their
wakeup time to the larger of the two task local clocks and places
them in a wait state. The tasks are then resumed as in the
preceding paragraph. Note that tasks paired through a rendez-
vous are resumed at the same time due to their identical wakeup
times. Because of the asymmetric nature of the Ada rendez-
vous in which the task issuing an accept does not know the
identity of the task making the rendezvous it is necessary to
queue tasks which have indicated an intent to rendezvous with
a target task until that target task indicates an intent to accept.
The queuing discipline is FIFO and is provided in the simula-
tion controller.

We now describe briefly the way in which the scheduler
resumes waiting tasks. This is done via a rendezvous with the
send entry point of an element of the agents array (the agent
task structure is shown in Figure 9). There is a copy of this agent
task corresponding to each task identifier; when resuming a

task type agent is
entry send(local clock: in time);
entry recv(local clock: out time);
end agent;

task body agent is
clock storage: time;
begin
loop
accept send(local~clock: in time) do
clock storage :=local_clock;

end send;

accept recv(local clock: out time) do
local clock := clock storage;

end recv;

end loop;
end agent;

agents: array(l..N) of agent;

task, the scheduler will rendezvous with the agent and the agent
will rendezvous with the task. This eliminates the need for keys
in a situation where a client requests a service to be completed
but cannot poll the server. (A detailed discussion on using agents
in this capacity may be found in Reference 1, pp. 236-238.) For
example, when the scheduler has determined that a task
previously suspended on a call to sched.wait may continue ex-
ecution because the global clock has advanced sufficiently, the
scheduler gives the updated global clock value to the agent
via the send rendezvous. Subsequently, the agent passes it on
to the waiting task via the recv rendezvous, and the task resumes
execution with an updated local clock. The use of this
mechanism will be apparent in the case study.

CASE STUDY

Utilizing our method of hierarchical decomposition we have
generated a description of the machining cell shown in Fig-
ure 10. The manufacturing process involves machining preformed
metal stock by milling, turning, and rolling threads. The cell
contains two robot loading and unloading a CNC mill, a CNC
lathe, and rolling and gauging machines. Both robots have two
sets of grippers so that a finished part may be unloaded from
a machine and a new part inserted into the same machine
without the need for moving the robot between these
operations.

Diagrammatical implementation

The hierarchical description comprises three levels. The first
level describes the operation of the complete cell, and lists the
inputs and outputs to the manufacturing cell as a whole. For
example, an input is “stock,” which describes the metal stock
the cell takes in; and an output is “good parts,” which describes
a properly manufactured part which the cell puts out.

The second level provides more detail and splits the box into
a control subbox plus three functional subboxes:

* Milling — A description of the first third of the manufacturing
cycle, in which the first robot accepts parts from a parts
presenter and causes the parts to be milled and gauged.

* Turning — A description of the second third of the manufac-
turing cycle in which the first robot causes the parts to be
turned and gauged.

¢ Thread rolling — A description of the final third of the
manufacturing cycle in which the second robot causes the
threaded portion of the parts to be rolled and gauged.

MILL LATHE ROLLER
Cell input Cell output
GAUGE GAUGE

\

Intermediate output

Figure 9. Agent task structure.
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Figure 10. Machining cell.



CONTROL

Bad parts

Stock —»] MILLING H_, TURNING |/ ROLLING| |+ Good parts

Figure 11. Diagrammatical example.

The corresponding diagrammatical decomposition is shown in
Figure 11; the directed lines indicating control flow between
the control and functional subboxes have been omitted for clar-
ity. The execution sequence of these functional subboxes is
determined by the control subbox so that the flow shown in
Figure 11 is achieved.

The third and final level of decomposition splits each of the
level 2 subboxes above into more subboxes. The number of
boxes then increases beyond the scope of this paper; for ex-
ample, the milling and gauging subbox is further decomposed
into a level 3 control subbox and twelve terminal subboxes.
The other two level 2 functional subboxes controlling the
manufacturing cycle are decomposed in exactly the same
fashion.

Procedural implementation

We shall illustrate the decomposition process in greater detail
by considering the subbox which describes (and simulates) the
acceptance of input stock by the first robot. The task that
represents this subbox performs this simulation by advancing

its local clock by an amount indicative of the time needed for
the robot to accept the part from the parts presenter. The task
also updates the simulation variables we have chosen to
describe the state of each component of the cell.

Figure 12 gives the specification for the task. The specification
includes a DIO list which denotes the description, inputs, and
outputs of the task. The name of the hierarchical superior sub-
box and a list of the other subboxes at this level of decomposi-
tion are also given. Finally, the START and STOP entries match-
ing the input and output lists are given. The corresponding task
body is more detailed and is not given in a figure, but is in-
terspersed with the following text.

First we give the task body prologue in which we define
variables to be used in the task’s simulation activities. In the
scope of the task body local__input__part will hold a local copy
of the stock part description, local__output__part will hold a
local copy of the green part description, and local__clock gives
this task’s view of time. The types stock and green__part are
user-defined types which help describe a part as it moves
through the system, and time is a scalar type which has the
obvious meaning.

task body get_stock is
local_input_part: stock;
local output_part: green part;
local clock: time := O;
begin
If only a description were being constructed, the types stock
and green__part could simply be enumerated types, each with
a single possible value, since their utility in the description
would lie in the implied semantics of the names chosen and
in the fact that they are separate types whose usage can be
checked formally by a compiler. For simulation purposes,
however, it is convenient to make them record types and have
objects of these types carry information relative to the parts

task get stock is

--superior is milling and gauging;
--siblings are (

- dispose_bad_part);

--description is

- part.

——end description;
~--input list is

- (stock);
—--output list is

- (green_part);

entry START(input_part: stock);

end get_stock;

--specification identification is get_stock;

-— level 3a control, move to parts presenter, move_ to mill,
- unload_milled_parts, load _mill, mill, move_to_gauge,
- unload_gauged parts, load_gauge, gauge, move_to_parts_disposer,

- Obtains a stock part from the parts presenter
- and places it into the lower grippers.
-— point the part is known as a green, or unprocessed,

entry STOP(output part: green part};

At this ..

Figure 12. Procedural example specification.
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they represent. The choice of component types for the record
is strictly dependent upon the output information desired from
the simulation. Our simulation output provides status informa-
tion of all parts in the system at various points in time; we use
these record components to store this information. Indeed, one
might want to keep similar information in a real system to be
carried along with each part, particularly information related
to the gauging of the parts (not shown in this example) which
might be used for detecting tool wear.

The record components relevant to the example are:

process_initiated: boolean; -~ Indicates part has started
-- through the system.

part_code: integer; -- Uniquely identifies part.

parts_presenter_unloaded: boolean; ~-- Indicates part has been

-- unloaded from presenter.

The record types in which these components appear are used
in other tasks as well as get__stock. Accordingly the full defini-
tions of the types stock and green__part do not appear in
get__stock, but were made in a hierarchical superior task. For
this example, one merely needs to understand that the declara-
tion of objects of types stock or green__part associates with
those objects’ components of the types given above.

Returning to the example task body, we next define our task
to the scheduler by reporting its activation via activate;
ggp__port is an identifier which uniquely identifies this task
to the scheduler. Then we output a statement indicating that
get__green__parts has started processing.

-- Define task to sched; ggp_port identifies the task.
sched.activate(ggp_port);
put_line("get green parts: start");

We now enter the main loop and indicate our intent to rendez-
vous to the scheduler by passing our task indentifier and the
current value of our local clock to the sched.ita entry. We next
await notification from the scheduler that we may continue;
when our rendezvous partner indicates a corresponding intent
to make an entry call, the scheduler gives our agents task ar-
ray member the correct updated value of the global clock, and
we obtain it via the recv entry. Thereupon we continue execu-
tion, having set our local clock to the new global clock value,
and perform our half of the intended rendezvous by executing
the accept statement. When the control task rendezvous with
us, it will pass an input__part; we save it in the local variable
local _input__part for our use.

loop

-- Indicate intent to accept rendezvous.
sched.ita(ggp_port,local _clock);
-- Receive updated local clock from sched when OK to continue.
agents (ggp port).recv(local clock);
-- Perform accept. -
accept START(input_part: stock) do
local_input_part := input_part;
end START;

At this point we have been called with a new input part. We
output a comment to that effect and update the pro-
cess__initiated and part__code record components associated
with the output part.

-- Record event at current local time.

comment ("Accepting part from parts presenter”);

~=- Update part description variables.
local_output_part.process_initiated := true;
local_output_part.part_code := local_input_part.part_code;
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We next need to wait for an amount of time indicative of the
time required to obtain the part from the parts presenter. We
simulate this by asking the scheduler to delay us for pres-
ent__part__time units of time, again passing our task identifier
and local clock, and again receiving a new local clock value
when the scheduler has determined that we may proceed. For
localization and ease of modification purposes, all explicit time
values such as present__part__time are defined in the task at
the top of the hierarchy and thus do not appear in the local
declarations of get__green__parts.

-- Indicate wait.

sched.wait (ggp_port,local clock,present_part_time);

-- Receive updated local clock from sched when OK to continue.
agents(ggp_port).recv(local clock);

Having delayed by the proper amount of time, we next set the
parts__presenter__unloaded flag associated with the output
part.

—- Set "part unloaded" attribute.
local output_part.parts_presenter_unloaded := true;

We now perform a rendezvous with the control task to pass
back the output part description via the STOP entry. Finally,
we loop back to the START accept block to await the next in-
vocation, and the task body ends.

-~ Indicate intent to rendezvous.
sched.ita(ggp_port.local clock);
-- Receive updated local clock from sched when OK to continue.
agents(ggp port).recv(local clock);
-- Perform accept. -
accept STOP(output_part: out green_part) do
output_part := local output_part;
end STOP;
end loop;
end get_green_parts;

Simulation output

The output provided by the execution of the simulation is shown
in Figure 13. It consists of a time-ordered series of event reports
and additional information about the state of the simulation.
Lines of the form “task__name: processing” indicate that the
task identified by the task__name has just received a new set
of inputs and is starting to perform the function outlined in its
DIO list. Every control task in the description indicates the start
of a cycle in this manner. Lines of the form “time: event” in-
dicate that event occurred at time on the global clock. For ex-
ample, the mill was started 520 time units after the start of the
simulation at time zero. Thus these lines give a time-ordered
view of the simulation.

In addition, the level 2 control tasks output a block of infor-
mation at the completion of every cycle which lists the con-
tents of the various stations in the cell. In particular, the con-
tents of the stations in the mill and lathe portion of the manufac-
turing cell are listed at the end of the milling and turning cy-
cle. The part residing in each station is listed along with the
current description record associated with the part. The descrip-
tion records have been omitted due to space considerations.

The simulation is executed until the desired amount of data
has been obtained about the manfacturing cell. It is a simple
matter to change the time required to perform the various ac-
tivities and obtain multiple simulation runs. It is only slightly
more difficult to change the model by modifying the descrip-
tion and the affected task bodies and to compare results for
different cell configurations.



level 3a control: processing

461: Moving robot 1 to mill.
464: Lathe gauging complete.

516: Milling complete.

520: Starting mill.

526: Lathe milling complete.

534: Starting mill gauge.
level 3b control: processing

554: Mill gauging complete.

555: Starting lathe.

573: Starting lathe gauge.

449: Moving robot 1 to parts presenter
459: Accepting part from parts presenter.

464: Lathe gauge has accepted part.
464: Lathe gauge output full; stopping mill and lathe cells.

516: Unloading previously processed part from mill.
518: Loading green part into mill.

520: Moving robot 1 to mill gauge.
530: Unloading previously processed part from mill gauge.

532: Loading previously processed part into mill gauge.

534: Moving robot 1 to lathe.
549: Unloading previously processed part from lathe.
552: Loading previously processed part into lathe.

554: Mill gauge has accepted part.

555: Moving robot 1 to lathe gauge.
570: Loading previously processed part into lathe gauge.

Figure 13. Simulation output.

EVALUATION

During the several months spent in developing our case study
- a simplified version of which is presented here - we learned
several things with respect to writing software in Ada. Although
they are not necessarily new insights, we pass them on here
to those considering writing their first application in Ada.

The Ada language is very strict. In particular, the concept of
strong typing leads to a developmental cycle in which many
passes are required to “get the program through the compiler;’
particularly if one is not familiar with the Ada language. In
return, we find that once an Ada program can be correctly com-
piled, it usually executes correctly the first time it is run. This
is a favorable contrast to typeless languages such as BASIC, FOR-
TRAN, and C, and moves a large part of the program debug-
ging effort from the execution to the compilation phase. Anyone
familiar with the problems of debugging high-level software with
low-level tools — particularly a compile-download-test environ-
ment where many people must compete for the development
hardware — can appreciate the concept of eliminating as many
errors as possible before the debugging phase.

It appears that one must have a great deal of knowledge of the
Ada language before one can write reasonable programs with
it. For example, one needs to know about generics, instantia-
tions thereof, subprogram overloading and the intricacies of
TEXT__IO before the value of an integer can be output. One
needs to read quite a bit about string types, the new operator,
and unconstrained arrays before one understands how to copy
a string from one place to another. Most of these problems can
be solved through better education, learning by doing, and ex-
amination of the work of others; what this means to novice Ada
users, however, is a greater time investment during the learn-
ing phase than required by other traditional programming
languages.

The strong typing of Ada presents some problems. A fairly com-
mon situation that arises when developing software according
to the client-server model is the need for the server to call back
the client sometime after a client request has been made. For
example, we needed sched to call back waiting tasks when it
was time for them to resume execution. In a less strongly-typed
language, an address is passed by the client when making a
request. The server stores the address and calls it at some later
time when the client request has been filled. (This address is
sometimes called a delay-return address.) This is a simple albeit
dangerous and error prone solution which is not available in
Ada, which expressly forbids the calling of passed addresses.
Thus it is necessary to use a scheme such as Barnes’ agents,
which effectively doubles the number of rendezvous required
over the delay-return model. It can also be argued that delay-
return calls present real problems in practice and can lead to
bugs that can be nearly impossible to find or reproduce, and
programs are better off without them; in that case, work needs
to be done in finding efficient alternatives to the delay-return
model.

One of the major reasons for investigating the use of Ada in
developing descriptions was the notion that strong typing would
help in ensuring consistency among the descriptive com-
ponents. While this turned out to be a true statement, we also
became aware of the fact that the level of type checking was
to a great extent definable by the modeler, perhaps too much
s0. We realize that any large system description involves a for-
midable level of detail, and that a good system description
language would not allow a large degree of variation in the
descriptions written in it. Our description system, since it is
based heavily on Ada, allows a wide range of descriptive styles.
The way in which we intended the system to be used is as
shown in the case study: different types for different objects.
In practice, this notion results in a large number of nearly
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duplicate object descriptions, with each task copying the con-
tents of the input object to the output object (since they are
of different types, a single object-to-object copy cannot be done,
and each element must be separately copied) and then updating
the output object with the task’s own actions. This allows max-
imal type checking but becomes tedious. If one makes all ob-
jects the same type, and simply copies the input to the output
object, then a significant amount of type checking is lost. A
variation of this scheme is to use the same object for input and
output. We wrote our case study this way. While it must be
noted that a complete and detailed cell description utilizing
any methodology is going to be voluminous, it seems that we
are torn between tedium and type checking, and it appears
that a solution to this dilemma lies in the automatic genera-
tion of a large part of the description. This would free the
modeler from rewriting the same code dozens or hundreds of
times, and would discourage the programming simplifications
that erode the benefits of type checking.

CONCLUSIONS

We have shown how the well-known idea of hierarchical decom-
position can be applied to the problem of supplying detailed
descriptions of an arbitrary manufacturing cell, and how a
suitable choice of a procedural decomposition language makes
possible the simulation of a manufacturing cell so described.

A further area of investigation would involve defining and pro-
viding a procedural decomposition language that could gen-
erate Ada-based descriptions and simulations directly. Another
possibility would be the investigation of the ramifications of
replacing the terminal function descriptions with real control
software to supervise directly the operation of an actual
manufacturing cell.
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