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1.0 INTRODUCTION

This guidebook and report are the result of a project at the
University of Michigan entitled, "Anthropometric Test Dummy Usage."
The project was initiated in response to the current interest in de-
veloping countermeasures to cope with the high incidence of safety
problems related to building structures. Human injuries occur during
the normal and abnormal usage of common structures such as doors,
railings, stairways, floors, and a variety of products utilizing
architectural glazing materials. The worker -- construction, maintenance,
production, etc. -- is the user of walkways, scaffolds, platforms, con-
struction shoring and other structural assemblages all of which have
particular safety problems.

1.1 The Role of the Test Dummy

The role which may be played by test dummies in research, develop-
ment, and standardization is the primary subject of this report. From
the most simplistic point of view, their role is to duplicate the re-
sponse of man to a particular hostile environment where he may be sub-
ject to impact or other types of injury.

The most sophisticated test dummies represent man as a collection
of skeletal elements and joints constructed largely of metal. Soft
tissues are usually replaced by rubber, plastic, and other polymeric
materials. The overall size, shape, and weight of the various body
segments are reproduced reasonably well. These sophisticated dummies
are most commonly called anthropomorphic test devices. Their con-
struction is based on anthropometric surveys of human populations
where measurements have been taken to define the human body and its
parts. For the sake of definition, the term "anthropomorphic"
generally refers to shape properties and appearance whereas "anthropo-
metric" usually refers to a series of specific physical measurements.
These two terms are often confused. It should be noted that the term
"anthropomorphic test device" represents a concensus opinion on what
to call sophisticated crash test dummies.

Simplified dummies are also often fashioned. They may be used to
represent:



- individual body parts (e.g., headforms for helmet testing)
- the whole mass of the body (e.g., the punching bag used in
the testing of glazing materials).

Figure 1 shows examples of the various types of dummies. For the pur-
pose of this report both simplified and sophisticated dummies will be
Tumped together under the term "test dummy."

Anthropomorphic test dummies have found their major applications
during the Tast several years in the development of improved hardware
for the protection of automobile occupants during crashes.

Their major successful applications have been in the area of attempting
to reproduce human motions, velocities, acceleration and gross force
interactions with motor vehicle interiors, exteriors, and restraint
systems. Up to this time they have not proved useful in duplicating
soft tissue injuries such as lacerations and abrasions. Research
information on soft organ (brain, lungs, heart, liver, spleen, intes-
tines, etc.) injury due to impact is continually being gathered with
inclusion in dummy design specifications as a major objective.

1.2. Definition of a Dummy Test

A dummy test is a simulation of the hypothesized physical interac-
tion of a human with his environment where the result is mechanical in-
jury or trauma to the human. Two points should be made at this time.

The first point is that there is a simulated event and a real life
event both of which have scenarios with three basic components -- the
victim, the environment, and the dynamics of the interaction. Figure
2 is a schematic of the two scenarios.

The second point to be noted after reviewing Figure 2 is that
there are several obvious potential sources of difference between the
simulated and real events. One of these is that the test dummy is not
a perfect representation of the engineering physical properties of man.
For example, muscle properties are not included and, even in the most
sophisticated test dummies available at the present time, the compliance
or stiffness of various structural elements is often too great. Although
it may be possible to duplicate the environment where the injury took
place, another source of difference arises due to the difficulty of du-
plicating the interaction. A key reason for this is the uncertainty

2
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of human posture at any point in time, a factor which is known

to have a strong effect on the dynamics of linkage systems. The last

and most important source of differences between test and real Tife

scenarios is that the human suffers an injury (which is only beginning

to be defined in quantitative terms based on current research). In contrast,

only a variety of physical measurements are possible during a dummy test.

The details and implications of these differences are discussed
later in the report.

1.3 Report Contents and Organization

There are three basic sections to this guidebook/report plus an
appendix. Part 2 shows the three basic reasons for dummy testing --
safety countermeasure development, compliance testing, and problem iden-
tification through accident reconstruction. These reasons are illustrated
by examples from practice. Part 3 discusses the details of dummy
testing through a comparison of test and real life engineering vari-
ables which must be considered. Guidance is given relative to decision-
-making based on test results. Part 4 provides practical information
for the potential user of test dummies. Items discussed are the range
of data to be expected and procedures for data acquisition as well as
analysis.

The appendix to the report gives a listing and short review of
the literature of test dummies. It is organized to give the reader quick
access to the type of information he may need. Reference to specific
documents is not included in the main text.



2.0 WHY CONDUCT A DUMMY TEST?

This section of the report discusses the overall scenario of ac-
tivities which may involve safety-related dummy testing. Examples of
different types of tests are given.

2.1 The Three Basic Reasons for Dummy Tegting

The reasons for dummy testing become clear when they are seen
within the framework of 311 safety-related activity. Figure 3 is a
simplified schematic of the types of activity that take place within
the safety community.

A particular type of safety activity is initiated on the basis that
an injury pattern is observed or supposed in reviewing or gathering
accident data. In some cases, the cause of the accident is clear. If
so, the problem is quickly identified. If not, a hypothesis is de-
veloped for the cause and scenario of the accident. At this point,
accident reconstruction and testing may be done to identify the problem.
The accident environment is reconstructed in the laboratory and a dummy
subject is chosen for use in the test. This has been done successfully
in the case of automotive safety (full-scale barrier crash tests) and
more recently in the study of gquardrails at the Center for Building
Technology of the National Bureau of Standards. In most cases of
accident reconstruction, the dummy chosen is as sophisticated as can be
located, particularly if little is known about the mechanisms of injury
causation and the forces and motions which may be involved.

Proceeding down Figqure 3, the next type of testing may occur
after a problem is identified and countermeasures are proposed for its
elimination or attenuation. Especially in those cases where the
scenario is altered or attenuated, testing is required to determine
countermeasure effectiveness. A great deal of dummy testing is done
in this area. New restraint concepts for automobile occupant protection
are continually reviewed in this manner by means of impact sled or bar-
rier impact tests using full-scale anthropomorphic test devices. Sim-
ple head forms are used to evaluate the performance of protective head
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gear and sports equipment as well as automotive windshields. This

area of study is the one which usually leads to the development of new

and simplified concepts in dummies as the need for specialized infor-
mation arises. The success or failure of a dummy used in this activity

is directly related to whether the parallel between the dummy test and

the real world of injuries illustrated in Figure 2 is kept clearly in mind.

The bottom of Figure 3 is concerned with the development of stan-
dards and it is here that the final type of testing is accomplished.
The purpose of a safety standard is to show that a countermeasure
(helmet, restraint system, improved quardrail, etc.) is effective in
reducing potential for injury to a clearly defined level. Most often,
this implies that the standard addresses a very specific accident
scenario with a simple interaction between the victim and his environ-
ment. Because of this, it may be possible to simplify the dummy and
test procedure for compliance-type tests. Examples of this are the
simple headforms mentioned previously and the punching bag impactor
used in the ANSI testing of architectural glazing materials. The
validity of simplifications of this type must be established through
correlation of test results with the real world accident scenario --

a step which has rarely been accomplished in standards development
up to the present time.

In summary, three basic reasons have been identified for dummy
testing. These are:

1. Problem identification (accident reconstruction),
2. Countermeasure development,
3. Standardization and compliance testing.

2.2 Examples From Research, Development, and Standardization Activities

This section of the report presents brief discussions of nine exam-
ples of dummy testing. The examples cover the three basic uses of dum-
mies presented in Section 2.1 as well as the various types of dummies
in use for different applications. In each brief discussion, the rea-
son for the test is given followed by a description of the test pro-
cedure and results obtained. An evaluation of the test procedure con-
cludes each discussion to provide the reader with some case data to aid
in decision-making with respect to feasibility and utility of future

dummy tests.




\

2.2.1 Problem Identification. Child Car Seat Tests. Before
the U.S. government issued a standard for the safety performance of

children's car seats (1971) little information was available concerning
their behavior in a dynamic crash environment. In response to concern
in the private and public sector about these devices, test programs
were initiated to estimate their safety potential. In most cases,

an automotive seat was bolted to an impact sled, a child seat was at-

* tached according to manufacturer's directions (if any), and an articulated
dummy the size of a three-year-old was positioned as the crash victim.
The impact sled was then used to simulate frontal, oblique, side, and
rear impacts. The dummy was instrumented with accelerometers in the

- head and chest and high-speed motion picture cameras were used to re-
cord the motions.

These tests demonstrated serious shortcomings in the structural
designs of children's car seats as seat hardware failures and undue
dummy motions were easily observed. The ability to relate the data
gathered to injury patterns was very limited for two reasons. First,
there is essentially no human impact tolerance data for children, and
second, no correlations have been made between dummy performance and
the 1imited tolerance data which are available. The utility of the dum-
my test was limited therefore, to two (very important) factors:

1. The dummy delivers a mass load to the product (car seat) repre-
senting an approximation of loads which may be expected in practice.
This has led to a realistic appraisal of potential (and observed) prod-
uct failures.

2. Because of its articulation, the dummy was capable of defining
a motion envelope not possible in a static test which showed relative
motions between body parts and the potential for forcible interactions
with the vehicle interior.

Figures 4 and 5 illustrate this type of test. Figure 4 shows four
frames from a high speed movie. The upper left photograph shows
the position of the subject just prior to the crash sequence. The
Tower left photo shows the dummy (and seat) moving forward while
the simulated vehicle is subjected to a crash deceleration. The upper



3e3S 4e) pLiy) ul Awwng

20uanbasg yseua) aLAOK

y 94nb1L4

10



*3e3S ae) pLLyy ur Awwng jo ydeuabojoyd 3S91-3S0d

g m;:mwm‘

1



right photo shows seat collapse and violent interaction of the dummy
with windshield and instrument panel areas. The lower right photo
shows the post-crash state of rest. Figure 5 shows an engineer
examining the test setup following a similar test.

2.2.2 Problem Identification. Architectural Glazing Materials. During

technical discussions relating to a standard for architectural glazing
materials, two of the issues raised were:

1. How does a human interact with a large glazed panel such as a
sliding patio door?

2. Does the punching bag impactor adopted in ANSI Standard 797.1
relate to the human impacts?

To aid in the discussions, a limited series of tests were initiated
where a sophisticated anthropomorphic test dummy and a standard punching
bag (simplified one mass dummy) were alternately dropped through glazed
panels.

Figures 6-9 show pre- and post-test views of these experiments.
Figure 8 shows one of the positions assumed for the dummy. This simple
configuration was contrasted with others such as a case where the dummy
was presumed to be running with a stiff arm into the panel of glass.

It should be noted that the wires running from both the punching bag
and the dummy carried accelerometer signals to FM tape-recorders.
High speed motion pictures were also made to record the dynamic motions.

It was not possible to answer the questions posed at the beginning
of this section on the basis of the project. First, the test did little
to define the real world accident scenario. However, it did demonstrate
the complexity of the interactions which could occur during an accident
of this type (e.g., for a running dummy the knee and hand contacted
the glass at about the same time; they both rebounded causing the
dummy to straighten out; finally the whole body carried through the
panel breaking it). Thorough accident investigations would be required
to shed additional light on the real scenario in order to define sub-
ject posture and velocity at the time of impact. Second, any injury
estimates were impossible. Glass injury usually involves lacerations.
The dummy skin has not been designed to produce a Taceration injury.
Indeed, no indisputable laceration simulator has yet been developed.

12
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Figure 7. Post-test View of Punching Bag Dummy Drop Test.
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Figure 8.

Anthropomorphic Dummy Positioned for Drop onto Glass Panel.



Figure 9. Post-test View of Dummy After Drop Through Glass Panel.
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Third, because of the lack of a clear definition of the real accident
scenario, it was also impossible to relate the punching bag drop test
to human injury causing impact events.

2.2.3 Countermeasure Studies. Guard Rails. In reviewing work-

surface accidents and falls, it has been found that a significant
number are quardrail-related. A test program was initiated at the

NBS Center for Building Technology which involved dynamically loading
various guardrail structural assemblages using an anthropomorphic

test dummy. As a result of these tests and others, a proposed cri-
terion was developed for quardrail height. A schematic for one of the
test conditions is shown in Figure 10.

The dummy properties which are of relevance to the study are
body mass, geometry and articulation. It should be recalled from
Figure 3 that the first of the types of countermeasures listed is
elimination of the accident scenario. Here, the concern is fall pre-
vention. Body mass and geometry of a dummy define human body center
of gravity with a fair degree of accuracy. The tests are thus
particularly appropriate for defining guidelines with respect to
railing heights. Insofar as it is possible to estimate or put an
upper bound on the velocity of impact or force of loading of the ac-
cident victim on the quardrail structure, it is also possible to de-
velop strength requirements from tests such as these.

2.2.4 Countermeasure Studies. Protective Helmets. Protective

helmets for motorcycle riders, race car drivers, athletes, construction
workers, miners, etc., have been the subject of standardization
activities for many years. Helmets are known to reduce injury incidence
but their effectiveness and usage still is an area of great controversy.
The primary reasons for this are threefold:

1. What is the accident scenario? (Size, velocity and direction
of the impactor)

2. What is human tolerance to head blows? (A major research prob-
Tem in itself, the data available must be clearly relatable to the
test procedure adopted for a standard).

3. What dummy or hardware should be used in the test (Headform
mounted rigidly or on an articulated neck).

17
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In the process of developing countermeasures for protective head
gear, a variety of activities must take place simultaneously in re-
sponse to all three of these questions. With respect to the dummy,

a variety of headforms may be used. Figure 11 shows several which are
constructed to different anthropometric standards. Some are metal;

some are plastic. Some are solid; some are hollow. In countermeasure
development, it is possible to try various impact directions, dummy
configurations, and instrumentation in order to better duplicate or
reconstruct accident scenarios. Figures 12 and 13 show the pre-

test setup for two hard hat experiments conducted at HSRI. One

involves the dangerous vertex impact (Fig. 12) while the other in-
volves a less common but equally dangerous impact from the side.

The procedure shown here is somewhat more sophisticated than the usual
tests found in current standards. First, the headform is mounted on

a flexible neck and torso. Second, the blow delivered by the controlled
pneumatic ram impactor is registered as forces and accelerations both

in the head form and in the impactor. Third, high speed motion pictures
record the head/impactor interaction.

Tests such as this demonstrate that a period of varied and some-
times sophisticated testing often precedes and supplements development
of new standardized testing procedures. Much of the reason for this
is that countermeasure development often requires more instrumentation
and detail in order to assure measurement of all the important
engineering variables.

The procedures adopted for use in standards should tend to be
as simple as possible without losing sight of the engineering objective.
In the case of protective helmets, the procedure adopted in standards
has been to use only the head from more sophisticated dummies and assume
that coupling of impact loads with the neck and torso can be ignored.
This procedure has come into question as has the problem of where on the
helmet to deliver the impact.

2.2.5 Countermeasure Studies. Simplified Dummy for Automotive

Side Impact Testing. Two problems with anthropomorphic crash test

dummies have led to development of the device shown in Figures 14 and
15 by the Transportation Road Research Laboratories (TRRL) in England.
The problems were that existing dummies were unrealistically stiff

19
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Figure 12. Protective Helmet Test. Vertex Impact.
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Figure 14.

TRRL Side Impact Dummy Prior to Test of Vehicle Side Structures.
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when subjected to side impact and that there was no known relation be-

tween test data derived from these dummies and human injury. Then

TRRL set out to develop a specialized side impact dummy which

reproduced vehicle interior damage caused by the human crash

victim. In turn, the vehicle interior damage had been correlated

with injury. The developers then correlated accelerometer and force
transducer data from the pelvis, shoulder and ribs of the dummy with

the injuries to produce human impact tolerance corridors for the specialized
impact.

The example shown in Figures 14 and 15 involve impact sled tests of
prototype energy-absorbing vehicle side door structures. Figure 14
shows the initial position of the dummy. In Figure 15, the dummy
has slid into the door structures and rebounded to his final resting
place. These test results have been correlated with test data using
standard anthropomorphic test dummy and human cadaver subjects with
the data most resembling the cadaver results, particularly the motions
of the head and thorax. This dummy is very important for one primary
reason. The reason is that a direct Tink has been established
between observed injuries and a well-defined data gathering system
built into the dummy. It is the opinion of the author that this should
be the goal of all laboratory test dummies to be used in any of the
three applications set forth in this report. However, there are
some cautions which also should be noted. The dummy has been de-
signed for direct vehicle side impacts strongly limiting its potential
test environment. The injury data base also is limited to the same
type of crash environment.

2.2.6 Countermeasure Studies. Inflating Occupant Restraint Systems.

A classic case of the use of test dummies for studying countermeasures
involves their use in the development of inflating occupant restraint
systems or airbags. In early testing the system exhibited reasonable
performance for dummies positioned with good posture in an upright
seated position. However, objections immediately arose about this
Timited definition of the accident scenario. After all, people, es-
pecially passengers, assume a variety of positions in a car. What
happens then? Figure 16 shows four set-up photographs from

an early airbag test series conducted at HSRI indicating a few of the

25
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occupant positions which were examined in the course of the develop-
ment of the airbag system as a safety countermeasure. The positions
are:

1. Dummy passenger leaning forward on the instrument panel.
2. Dummy slouched in seat.

3. Child dummy on lap of adult dummy.

4. Child dummy standing with chest against airbag.

The anthropomorphic dummies were instrumented with the usual complement
of triaxial accelerometer clusters in head and chest. More often

than not, the level of protection was estimated to be degraded

when the occupants were out of the "usual" erect seated position.

The important point to be noted with respect to this example is
again the importance of accident scenario definition. Countermeasure
testing should encompass the variety of situations likely to be encountered
in practice in order to assure that simplified standard test procedures
which may evolve cover the necessary range of performance requirements.

2.2.7 Standard Test Procedure. Architectural Glazing Materials.
The Consumer Product Safety Commission has been involved in

the development of a standard for architectural glazing materials.
To a large extent the effort has concentrated on a simple pendulum
test where a lead-filled punching bag swings into a vertically
mounted panel of glazing material (See Figure 17 for a schematic of
the test). The 100 pound punching bag is a simple, idealized test
dummy representing a running boy. The energy of the impact is de-
termined by the height of the bag as it is released and has been
established at a maximum of 400 ft. 1b. (ANSI Standard Z97.1). The
interaction being modeled, thereby, is a boy running at a brisk rate
into a large glazed panel. If the panel does not break, the lacera-
tion injury scenario, which is the usual form of injury from this
class of product, does not develop. If it does break, there are
limitations on the size and shape of the hole and the fragments of

material which result, again attempting to avoid the assumed accident
scenario.

27
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This standard test procedure, by avoiding or eliminating the
primary anticipated injury scenario, can be judged successful as a
strength measure of glazed panels. Some of the issues which are
avoided are:

1. Insufficient accident scenario definition with respect to
what parts of the human contact the panel;

2. Unknown impact energy levels;

3. Sequence of events leading from panel breakage to laceration
injury is undefined.

It should be stressed that standards such as this which are intended

to use a test dummy to prove avoidance or elimination of an injury
scenario are usually more tenable than those which strive to attenuate
injury. The obvious reasons are the added need for biomechanical

data relating injuries to measurable engineering parameters and a
clearly documented, statistically based accident scenario definition.

2.2.8 Standard Test Procedure. Part 572 Dummy. The most sophisti-

cated simulation of human form, articulation, and mass which has been
incorporated into a standard is the Part 572 anthropomorphic test device
(See CFR, Title 49, Part 572). Its use is called for in the Motor
Vehicle Safety Standard 208 of the National Highway Traffic Safety
Administration in the evaluation and certification of passive

automobile occupant restraint systems. In testing, the dummy

is positioned either in the driver or passenger seat according
to a complex placement procedure. The car is then subjected to

a series of crash events consisting of a 30 mph front solid barrier
crash, a lateral barrier impact, and a rollover. The restraint system
being tested is not in compliance when the transducers in head,

chest, and legs of the dummy exceed certain values which to the extent
possible are based on biomechanical data. For the head, the head
injury criterion (H.I.C.) cannot exceed 1000. Its computation is
based on a special integral of the resultant head acceleration.

The resultant chest acceleration is limited to 60 G's for intervals

exceeding 3 milliseconds. Loads in individual femurs cannot exceed
1700 1b.

This standard, not yet fully implemented, duplicates real
crash scenarios to the extent that a crash barrier duplicates the

variety of objects contacted during automotive accidents and the
29




Part 572 dummy represents human dynamic response. The standard has
had a controversial history not only due to the fact that passive
restraint systems are controversial but also because of the level of
development of crash test dummies. Of particular concern have been
reproducibility of test results and the biofidelity of the dummy

(the degree to which its predictions reflect human response). Title
49, Part 572 was prepared to improve and clarify the properties of the
dummy and the test procedures for its use. Figure 18 is a photograph
of a Part 572 anthropomorphic test device prior to an impact sled

test of a belt restraint system.
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3.0 WHAT IS A DUMMY TEST?

In the introduction to this report, a dummy test was defined as
the hypothesized physical interaction of a human with his environment
where the result is mechanical injury or trauma to the human. Two
points were made briefly:

- The accident scenario has three basic components which are the
victim, the environment, and the dynamics of interaction.

- There are potential sources of differences between the simulated
and real events which can be discussed in terms of engineering
parameters of the problem.

The purposes of this part of the report are to discuss the engineering
parameters of dummy testing, describe the state of knowledge with
respect to them, and indicate what types of decisions may be possible
based on dummy test results.

3.1 Engineering Parameters in Dummy Testing

The parameters of dummy testing can be organized into four groups.
The first three deal with the three components of the accident scenario
while the fourth deals with accident (or test) results. Table 1 lists
parameters with similarities between victim and test dummy and also
those parameters where differences exist or where there may be problems.
The 1ist shows that the best data are probably available for describing
the weight and shape of the human body and its component parts. A
problem exists as these data have been implemented into hardware
for only a few sizes representing average and large males as well as
a small female, infant, three year old, and six-year old children.
Little controversy surrounds the definition of an average or 50th
percentile male but non-controversial anthropometric definitions have
not ye . been developéd for the other sizes. The parameter problem is

illustrated graphically in Figure 19 which shows a diasassembled child dummy.

An additional problem with articulated test dummies is the lack
of biomechanical information describing the physical parameters of human
joints. Among the important parameters are stiffness or resistance
to motion at the joint. This property reflects lack of data describing
the normal and forced range of motion possible at the body joints
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TABLE 1. PARAMETERS OF THE VICTIM

Similar Parameters Problem Parameters
Total body mass Limited number of body sizes
Weight of body parts Unrealistic joint properties
Limited anthropometry No muscle tension

Flesh inappropriate for superficial
injuries
Not a validated injury indicator.

as well as mdscle capability in resisting loads. A good deal of infor-
mation is available for the arms, torso, and legs to define static lifting
strength but the ability to resist surprise dynamic loads is largely
unknown. Most of the information on this subject relates to the neck
(studies of the whiplash phenomena) and the forearm and elbow.

Other problems with or shortcomings of existing test dummies
relate to their ability to register injury. Most of the available
injury criteria deal with resistance to blunt impact on the head,
thorax, or the femur. Care must be taken that an injury criterion
selected for performance evaluation is applicable to the test conditions
imposed. For example, head injury criteria are best documented for
forehead impact, less-well documented for head side impact, and poor
for blows to the vertex or occipital (lower back of the head) regions.
Chest injury criteria are best documented for blunt impact to the
sternum but are sketchy for blows to the side or back of the chest.
Fairly good information is available for blows to the knee/femur
complex but do not relate to the twisting and turning of the knee
as may occur in a fall. A final problem exists with
the flesh or skin of dummies. The flesh provided with anthropomorphic
test dummies may be soft and feel somewhat like skin. It may respond
somewhat Tike human flesh when subjected to a blunt impact. However,
a good lacerating flesh has yet to be developed.

In those cases where tolerance data is limited or not available,
the most that can be expected from a test dummy is a good representation
of body mass and form. This representation can aid in countermeasure
development or standardization by showing comparative attenuation
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of dynamic events but cannot be expected to predict a quantified reduc-
tion of injury level.

The parameters of the environment where the accident takes place
do not present a major problem for laboratory duplication. In so far
as is necessary, the structures, surfaces, railings, flying objects,
etc. can be reconstructed.

Given a test dummy and an accident environment, however, it is
often very difficult to create the correct dynamic interaction be-
tween the two. To start with, it is necessary to have a well-defined
accident scenario. An example of this problem which has already
been discussed in this report concerns hard hats. An obvious problem
in defining the interaction is the position in which the victim
has his head. Is he looking forward or down? Are his muscles tensed
or loose? With respect to this same accident, the possibility for good
interaction definition with respect to some parameters also exists.

For example, if it is known that an object drops from a certain

height, the impact velocity and energy are well-defined. Basically
then, parameters of the interaction usually involve the initial
position and motions of the victim in the environment. Definition

of the interaction can be no more accurate than the ability to position
the victim in space, a task which increases in difficulty as the num-
ber of articulations in the test dummy increases.

The final class of parametersdeals with the comparative results
of an accident scenario, an injury to the human and data from a dummy
test. Comparisons of the various possible output parameters are
given in Table 2. With test dummies it is possible to obtain substantial
data describing body motions, applied forces, and kinematic quantities
such as velocity and accelerations. The major problems lie in a
paucity of information relating injuries to biomechanical human tolerance
criteria which can be derived from test dummy data. The appendix to

this report gives references on this subject and the other parameters
of the injury event.
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TABLE 2. OUTPUT PARAMETERS FROM INJURY-CAUSING EVENT

Similar Parameters Problem Parameters

Gross body motions No injury measure in test dummy.

Gross forces No effects of muscle tension possible in
dummy .

Gross kinematics Force and kinematic data available only

from dummies.

3.2 Possible Decisions Based on Dummy Test Results

Dummy test results can provide a basis for decision making with
respect to each of the three types of tests discussed earlier -- problem
identification, countermeasure development, and standardized test
procedures. With respect to problem identification, it can be determined
that a problem exists, and further, a physical definition of the
problem can be made, when a test dummy and a human victim leave the
same "imprint" on the environment. If, in addition, the test dummy
or environment is carefully instrumented, the injuries or other human
responses can be related to engineering variables measured during the
test. This is precisely what was done in the case of the TRRL dummy
described in Section 2.2.5 and provides a firm foundation for counter-
measure development and standards development which may follow.

Countermeasures are developed to eliminate, alter, or soften
potential injury-producing scenarios. As a result of testing
potential countermeasures, decisions can be reached based on their
comparative performance. In other words, answers can be obtained to
the question, "Did the countermeasure alter the outcome of the initial
scenario in a manner beneficial to the victim on the basis that he feels
gentler forces and motion?"

Compliance test procedures can be used in the same manner as counter-
measure tests to compare performance of safety countermeasures against
standard data and certify their value as safety-protective devices.

It is obvious, however, that the standard may be useless or even dan-
gerously misleading unless correlation has been established between
the accident and the standardized test procedure.
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As a conclusion to this section, a list of three questions is
given which should be asked anytime a decision is contemplated rela-
tive to any of the three types of dummy tests outlined above:

1. Does the laboratory test scenario reflect all the engineering
variables relevant to the injury-causing event?

2. Are the instrumentation and test dummy which have been selected
capable of reflecting all the relevant engineering variables?

3. Does the test data which is obtained reflect the potential for
injury?

If all these questions can be answered in the affirmative, the dummy

test can be a useful tool in decision making relative to safety counter-
measures.

37



4.0 CONDUCTING AN INSTRUMENTED DUMMY TEST

The dummy test as described in this report is a simulation of a
dynamic event -- usually an impact. The objective of any instrumenta-
tion is therefore to record the parameters of a dynamic mechanical
event, that is, motions, velocities, accelerations, forces, and
other quantities which may be derived therefrom. It is the objective
of this concluding section of the report to outline briefly the range
of data which can be expected in this type of test, the equipment
utilized in a dummy test laboratory, and typical requirements of
data analysis.

4.1 Range of Data to be Expected

There are six groups of variables which are measured during dummy
tests. These are:
Time
Position of objects in three dimensions
Linear and angular velocities
. Linear and angular acceleration
Force and moment vector within the dummy or environment

S O AW NN -
. . . .

. Other quantities such as performance indicators which may be
derived from the other variables

Time durations in injury production and in dummy tests are brief.
The usual unit is the millisecond with total events seldom lasting more
than 1/4 second. A common procedure is to digitize time to 0.1 millisecond.

A variety of requirements may be placed on position measurement
depending on the particular application. Deformation of a human body
or a dummy simulation is usally much less than six inches. Relative
motions between adjacent segments of articulated dummies can be said
to be limited to any point within a circle within about eight feet of
any point on the body. This requirement can stretch the imagination
of even the most creative of laboratory specialists as it has in the case
of full scale impacts of pedestrian test dummies with an automobile moving
at 30 mph. Body segment rotations are also classed as large deforma-
tions and may exceed 180° relative to a laboratory fixed coordinate
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system or even between adjacent body segments in a dummy. The most
difficult problem in position measurement is, of course, tracking
motion of moving objects in three dimensions. For any rigid body, this
requires following three translational and three angular coordinates
fixed in the body.

Accelerations measured in dummy tests most often do not exceed
100 G's. Sometimes they may be as great as 500 G's for head impact.
Frequency response of accelerometers and other transducers mounted
in test dummies generally is not required to exceed 1000 Hz. For
anthropomorphic crash test dummies, a Society of Automotive Engineers
specification (J211) recommends 1000 hz. for head-mounted instrumenta-
tion, 180 hz. for the chest, and 600 hz. for the legs.

Force measurements seldom reach 5000 1bs. Most bony structures
in the human body can bear in excess of 1000 1bs. Although test dum-
mies should be designed conservatively to far exceed this requirement,
it is not customary to greatly exceed the levels expected of the human
during testing. The human femur can ordinarily withstand loads up to
1700 1bs. while the thorax can be expected to resist 2500 1b. if it
is well-distributed over the front of the chest.

4.2 Data Acquisition

There are basically two types of data which must be recorded --
visual and transducer. Acquisition of visual data requires the use
of high speed motion picture cameras with frame rates generally in the
range of 500 to 3000 pictures per second. Transducer data is most often
recorded on an FM tape recorder with a frequency capability flat from
0 to 10000 hz.

The key to position measurement is targeting of the subject
and the Taboratory. The laboratory is targeted to provide a fixed
coordinate system against which environmental or victim motions can
be measured. Figure 12 illustrates a simple targeting arrangement for
a two-dimensional motion study. At the left center are two targets
fixed in the laboratory. Targets are also placed on the impactor ram
in order to monitor its position as a function of time. Finally,
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targets are on the helmet and the dummy head to compare their motions
with the Taboratory-fixed system or with each other.

It is implied in this discussion that position is determined as a
function of time from a movie analysis. This requires that the frame
rate of the camera in pictures per second is known precisely. The
usual procedure is to record time markers directly on the film
either using a clock in the field of camera view or, better, imposing
a time marker on the edge of the film from a signal generator. Using
this procedure it is possible to synchronize visual and transducer data by
also recording the time base signal on the FM tape.

Direct three-dimensional motion measurement is a more difficult
problem. An example of a system used to track a rigid body in space
is shown schematically in Figure 20. Here a test dummy is seated on
a moving impact sled. A target cluster of five small balls is rigidly
attached to the head of the dummy defining a moving coordinate system
in the head. Orthogonal (not a necessity) cameras record the motion
from two directions with respect to a laboratory fixed system shown
at the left of the figure. Five balls are used to insure that at least
three are visible in both cameras at all points in time. This require-
ment is based on the fact that location of three noncollinear points
in a rigid body can be used to define its position in space.

Acceleration measurement is usually accomplished through the use
of linear accelerometers mounted singly or in groups of two or three
for multidimensional kinematic data acquisition. For test dummy appli-
cations, the most commonly used accelerometers are the miniature piezo-
resistive type. They couple small size with accuracy, sensiti?ity,
and a wide range of frequency responses. The piezoelectric
type requiring a change amplifier may cause problems of drifting
because many of the impact situations require relatively long response
cycles greater than 100 milliseconds which is at the edge of the
normal Tow frequency response of these devices. The wire strain
gage accelerometers are usually too large and do not have the response

for applications of this type.
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Figure 20. Apparatus for Acquisition of Three-Diminsional Motions of a
Rigid Body.
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The problem of acceleration measurement in three dimensions has
only recently been solved in a practical sense. The technical problem
is to measure three Tinear and three angular accelerations at a point
to completely specify the acceleration of any point in a rigid body.
The two approaches commonly applied involve either the use of rate
gyros or miniature accelerometers. Rate gyros have the advantage of
direct access to angular accelerations but the disadvantage of relatively
large size and high cost. The approach which seems to be the most
widely accepted involves the use of nine linear accelerometers mounted
in three triaxial clusters separated by as great a distance as is pos-
sible within the constraints of the test. The use of nine accelerometers
has been found necessary to avoid stability problems in data analysis
which always can be shown to occur when using only the minimum number
of six.

Force transduction usually is a less severe problem as force
measurements are usually made on a fixed element of the environment
eliminating the problem of motion. A variety of satisfactory force
links are available usually based on the principal of strain gage
sensing of calibrated beam bending. Figure 12 shows an example of
typical instrumentation of this type. Above the surface of the
impactor is a force Tink in series with the ram. Because of the motion
it is necessary to compensate for the inertia of the ram in order to
obtain a correct reading of force applied to the helmet. This is done
by measuring ram acceleration (accelerometer mounted just above the
force link) and multiplying by ram mass to obtain the compensation due'
to inertial force of the ram.

The recording of transducer signals is done in two ways.
The first, least expensive, and most common is the use of an umbilical
carrying the signal directly to a recording device. The second involves
telemetering of the signal. This procedure is often limited by frequency
response of the system required in recording an impact event. For
sophisticated, multi-channel experiments, an FM tape recorder is usually
required, especially where the data must be subjected to post-test
analysis. Where a single number or data trace is required, a light beam
oscillograph or storage oscilloscope are often satisfactory.
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4.3 Data Analysis

A schematic of a complete data acquisition, handling, and processing
system is shown in Figure 21. This is typical of systems in use in the
field of automotive safety which often involves tests acquiring mas-
sive amounts of data. There are three data streams in the schematic.
The first routes the transducer signals directly through filters
onto 1ight beam oscillographs. This is often done as part of the test
in order to obtain a quick look at data quality and instrumentation
function. The second stream routes the transducer data to an FM
tape recorder with a primary goal of detailed post-test analysis. The
high speed films are developed and form a parallel data stream.

The first step in data processing of the tape is to play back through
an analog to digital converter and store the resulting sequence of data
points in file storage of a minicomputer. Film analysis has the

same goal. Individual frames of the motion picture are projected on
one of a variety of film analyzing tables. Point positions are

either manually or automatically (or using complex scanning equipment)
reduced to digital form and entered into files of the mini-computer.

The second step in data analysis is to assemble, sort, scan,
and repair (if necessary) the digitized data from both the transducer
and visual (film) data streams on a common basis. This is generally
followed by digital filtering using software with the flexibility
to allow the user to "design in" his own filter specifications.
Graphics plots are often prepared at this point to review the raw but
sanitized data.

The third and final step is formal data analysis which may require
use of a large digital computer. Typical information desired consists
of:

1. Resultant accelerations;

2. Three-dimensional motions and acceleration calculations;

3. Corrections for inertia; and,

4. Computations of performance indicators.

The second and fourth of these may involve use of sophisticated computer
software.

43



Camera

__M_E__

Transducer signal

r - Y
Film analysis
Filters (position vs. time)
& FM tape
.- lrecorder
0scillograph I‘ l{ Y
Position data into
Analog to Digital digital file
conversion

F

Digital filtering
in mini computer

Data Analysis
(Possibly on large digital computer)

Graphic plots
of data

1. Resultant accelerations.

2. 3-dimensional motion and accelera-
tion computations.

3. Force inertial corrections.

4. Computation of performance indica-
tors such as injury criteria.

Graphic plots
Tabular output

FIGURE 21. Complete Data Analysis System
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The data analysis overview which has been presented is intentionally
broad and includes the use of sophisticated acquisition, processing,
and analysis procedures. It is realized that the objective of most
test procedures will be to simplify this system to the greatest ex-
tent possible to reduce cost, to eliminate the possibility for error,
and to produce minimum but clear data. This is especially true in the
development of standardized test procedures. It is also realized
that there are times when simplification is not desirable. The pro-
cedures which have been presented summarily are in common use (including
the software which has been briefly mentioned) and should present
few problems to the careful user.
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APPENDIX

LITERATURE REVIEW ON TEST DUMMIES
AND THEIR USAGE
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A.1. INTRODUCTION

To support the work leading to the main text of this guidebook,
a literature view was conducted on the general subject of dummy testing.
The library at the Highway Safety Research Institute, one of the
largest libraries in the world dealing with safety-related issues
provided the bulk of the information. No attempt was made to go
beyond a first order literature search based on bibliographies included
with most of the documents because of limited time and funding. It
is known that the literature on many of the sub-categories of this
subject includes many thousands of references. Rather, a representa-
tive spectrum of literature was included with sufficient depth to aim
the user of the Guidebook toward the literature on any topic where he
may require further information.

The information gathered was divided into three general
categories:

- Dummy Usage
- Dummy Description
- Dummy Testing

Literature falling into the Usage category deals primarily with the
various types of applications of test dummies. The dummy description
category covers subjects ranging from background data on which to

base dummy designs to injury criteria for evaluating dummy test re-
sults. Dummy testing documents generally cover the procedures used

in testing. Each of the three general categories was further sub-
divided as shown in Table A-1. An additional category which is included
in this list identifies the type of group conducting the work.

A card was prepared for each document which was collected. After
review, each was assigned a code word indicating the Table A-1
category. In general the codeword is given as:

Agency - U, D, or T - subheading

It was found that many documents fit primarily into one category but
contain information fitting into other categories. On this basis,

it was decided to list the literature under the three broad categories
given above (U,D, or T) rather than subdividing into shorter lists.
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TABLE A-1. CATEGORIES FOR LITERATURE REVIEW

Dummy Usage (U)

1. Accident reconstruction (Problem identification)
2. Countermeasure development
3. Compliance testing

Dummy Description (D)

. Parameter - anthropometry, mobility (human)
. Parameter - anthropometry, mobility (dummy)
Injury criteria, biomechanics

Biofidelity

Partial dummies - body blocks

. Partial dummies - head forms

. Other simplified dummies

o N O o B w N~

. Whole body dummies

Dummy Testing (T)

. Data analysis - photographic

Data analysis - transducer

Data acquisition and instrumentation
. Test procedures

. Test setup and positioning

D O B W N -

. Dummy test performance characteristics (Repeatability, etc.)

Agencies Involved

1. Universities

2. Industries and trade organizations

3. Private laboratories and research-oriented corporations
4. Federal

a. NHTSA, NBS, DOT, FAA, CPSC, NIOSH, OSHA
b. DOD, NASA
5. Foreign
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Parts A.2, A.3, and A.4 which follow are the three lists, each in
alphabetical order.

It will be noted upon review of the Titerature lists that there
is a larger collection of documents in some categories than others
(See Table A.2). This is felt to reflect the general state of activity
in the dummy test field but also reflects the necessarily cursory
nature of the review. In the case of the large relative number of
uses in countermeasure studies, the survey is believed to be rela-
tively accurate. This reflects the difficulty of getting a dummy
standardized. With respect to testing, the category T-6, which includes
the most T-entries, was used for documents of a general nature with
much overlapping of the other categories. Several of the D-categories
have limited entries and could be expanded. This is particularly true
with respect to human anthropometry, biomechanics, and partial dummies.



TABLE A.2. DOCUMENTS IN EACH CATEGORY

Category Entries
ul 7
u2 61
u3 ) 11
Tl 4
T2 10
T3 4
T4
T5
T6 29
D1 15
D2 29
D3 13
D4 26
D5 4
D6 13
D7 13
D8 36
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