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Abstract: Under a simple nondegeneracy condition, the displacement and edge traction of a planar, isotropic,
linearly elastic solid determine its Lamé moduli. When these moduli are constant, they can be recovered
exactly; this is demonstrated by a specific traction satisfying the nondegeneracy condition. Spatially vary-
ing moduli can be computed numerically by considering the equations of linear elasticity as a hyperbolic
system for the unknown moduli. A stable finite difference scheme for solving this system is given; synthetic
experiments demonstrate its efficacy.

1. INTRODUCTION

In the biaxial testing of planar tissue, one seeks (see, e.g., Nielsen, Hunter, and Smaill
[1]) to determine constitutive behavior from measurements of displacement under pre-
scribed edge traction. Although typically such experiments are used to determine a few
parameters in a hypothetical strain energy density, we wish to show here that one may in
fact recover material heterogeneities. We suppose that our square sample

Q= (0,a) x (0,a)
is isotropic, linearly elastic, and subject only to traction. That is,

V.o=0 inQ (1.1)
on=g onodQ, (1.2)
where n denotes the outer unit normal, and the stress and strain
o=2WE+AMtrE) and E=(Vu+Vul)/2
are derived from the displacement u. The Lamé moduli, L and A, are assumed to be

smooth functions of their coordinates and to everywhere satisfy the strong ellipticity
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condition
n>0, p+A>0. (1.3)

We shall show, under the nondegeneracy condition, Zy,tr £ # 0, that 4 and g uniquely
determine p and A. We also build and test a practical algorithm for the recovery of p
and A from u and g. Our approach follows Richter’s attack; see Richter [2, 3] on the
associated scalar problem of recovering o in

—-V.-oaVv=f inQ, oVv-n=h onoQ, (1.4)

from knowledge of v, f, and h. We remark that the question of whether | and A are de-
termined by knowledge of the associated Dirichlet to Neumann map has been answered
in the affirmative by Nakamura and Uhlmann [4].

2. THE UNIQUENESS THEOREM

The nondegeneracy condition is already apparent in the edge condition (1.2). In partic-
ular, on the bottom edge we find

“2uEp=g and —-2uEn-ME=g,

and so | is determined there so long as Z;, does not vanish, while the calculation of A
there requires the nonvanishing of tr E. Similarly, the right and left edges require

4 (Zufn +Mr £) _
2uE '

respectively. Regarding the interior, we evaluate the divergence in (1.1) and so arrive at
a first-order system for £ = (U,A),

Ad,L+ B3, L+CE=0, @.1)

where

A= (an 0 ) B= (qu tl'f) C= (2(ax£,1+ay£12) otrE
2E, wE)’ 2, 0 )° Z(Bxf]2+3yfzz) aytl'f ’

It remains to transform (2.1) into a form in which we can establish the existence of a
solution. When Zi,tr E # 0, we multiply (2.1) on the left by

PRV «E 0
2Er E\-2En 2E;
and find

9,L+A"'BoL+ATICL=0. 2.2)



RECOVERING PLANAR LAME MODULI 299

Though
- 1 2E trE
A ]B= (— 11 )
25, \ZPgE 2%n

is not symmetric, it is diagonalizable. Its eigenvalues, in terms of the principle strains
é4, arc

B (B - fzz)i\/(fu —En)?+4E, es—Tn
= 2% By

These are two real numbers of opposite sign, in particular, sgn(y+) = xsgn(Z2). We
collect y4 in the diagonal matrix I" and record in

trE «ZE
P= (—2e_ -—2e+) '

the corresponding matrix of eigenvectors. Using A™'B = PT'P~! and setting £ = P§
brings (2.2) into the form

9,(PE) — PTP™19,(PE) + A~'CPE = 0.
Evaluating the derivatives and then multiplying through by P~1yields the final form
9,& +T9:E + £ =0, 2.3)
where
A= (AP)"'CP+P '9,P+TP0,P.

As I'is diagonal with areal, distinct diagonal, it follows that (2.3) is a hyperbolic system.
We now determine the side conditions that render its solution unique. Let us call y; = Y4
and 'y, = Y_ and suppose, without loss, that v, <0 <7;. They define characteristic curves
in Q via

dx

— = =1.2. 4
dy Y k 1,2 (2 )

We shall denote by
s = Xi(t;%,y) (2.5)

the solution to (2.4) that passes through the point (x,y) € Q and by (¥, ) the point on
o at which the characteristic enters (;, < y) Q. Under the convention that v, <0 <11,
it follows that the characteristics defined by X; enter on the left and bottom, while those
defined by X, enter at the right and bottom. This said, we find (2.3) equivalent to

y
Ex(x,y) = &k (T, V) —/[ﬂ(Xk(t;x,)’)J)@(Xk(tﬂ,)’),t)]kdt- (2.6)
Vi
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By the classical method of successive approximations (see, e.g., Petrovskii [35, sec. 10]),
this integral equation possesses a unique C! solution so long as 4 and X are C!, §;
is given and C! on the left and bottom edges, and &, is given and C! on the right and
bottom. We remark that 4 and X are C! when the displacement, u, is C? and Fystr E# 0.
Regarding the edge data, we have seen that £ may be determined on the left, right, and
bottom edges from g and E. Applying P! to £, we arrive at the required boundary
values. They will be C! so long as u € C2(Q) and g is C'. Moreover, the linearity
of (2.6) allows us to deduce continuous dependence from the proof of uniqueness. In
particular,

Theorem 1. If u € C3(Q) and g € C}(9Q) and |Epztr E| > ¢ > 0, then there exists

a unique £ € C'(Q) such that (u,g,£) satisfies (1.1) through (1.2). If (u®, g 1)

and (u®,g@ £ are two such triples, then there exists a constant M such that

16D — £ oy < M(UI8® = gl cooqy + 14D 4D o)

As a simple illustration, let us show how this apparatus may be used to recover
constant Lamé moduli. The key issue, of course, is to devise a traction g under which
neither the shear strain, Z;,, nor the sum of the principal stretches, tr E, changes sign.

We have found
1 1
g= (1 1) n 2.7

to be one such traction. This choice, with constant Lamé moduli, produces the linear (up
to an additive rigid) displacement

__ 1 x+y(H+A)
uwy) = 2u(n+2) (yu+x(u+7»))

and corresponding constant strains

1 1
Fy = =———— and Ep=—.
1 =% TN 12 =50
As p and A satisfy (1.3), we find that our choice of g leads to a trivial satisfaction of the
nondegeneracy condition. Moreover, we find 4 =0, y; =1, v, = —1, and so (2.3) takes
the simple form

(B +3)E1 =0 and (3,— )& =0,

and hence &x(x,y) = &x(Xx,¥x). As both £ and P are constant on 9, it follows that so
too is &. Hence, & is constant throughout Q. Applying P to &, one recovers the constant
Lamé moduli, 4.

In the more general case of nonconstant strains, one may not solve (2.3) by hand and
so is compelled to seek numerical alternatives.
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3. NUMERICAL SOLUTION OF THE INVERSE PROBLEM

We now describe a convergent finite difference scheme for solving equation (2.3). The
scheme is a first-order, explicit upwind scheme that uses adaptive step lengths to ensure
stability. It is a modification of the method found in Garabedian [6, pp. 469-472].

It will be convenient to label the known boundary values of § by

vi0) = [P710,)£(0,5)],,  w2(x) = [P (x,0)€(x,0)],,
vs(x) = [P7(x,0)6(x,0)],, wa(y) = [P (Ly)E(L,Y)],-
We shall assume that the values of the strain £ and its partial derivatives, d,E and 0, E,

are given on a regular grid of & by h squares, thus allowing computation of the coeffi-
cients in (2.3) on the same grid. We set h = 1/(N — 1) and write

3.1

A

sz(j_l)h7 yi:(i—l)h7 g(i,j)=&_.()€j,}’j), i=1,...,Nj=1,...,N.

Under our assumption on the signs of Y1, ¥, the characteristics of §; have positive slope
in the xy-plane, while those of &, have negative slope. We integrate along these charac-
teristics, advancing one row in the grid (i.., one step in y) by computing &; from left to
right and &, from right to left. The scheme for advancing &; is based on the discretization

E,ul(i+ 1,£y_§l(l’]) +,?1 (1,1)§1(l’1) —A&v;(i,j_ 1)

+ 241 (1, )81 (G, ) + a2 (i, )E2 (G, J) = 0.

Solving this for &; (i + 1, j), we obtain

&6+ 1) = (1- 24 i)+ 2 GIBGI=D
~ &y (816, DB 0,) + P (i, D2l 1))

where both Ax and Ay initially equal &. Applying similar considerations to &;, we derive
the following formula:

Bali-+1,) = (1+ 206 ))alin ) — 20206, Ml + 1)
— &y (216, B (1, + P i, Dol J)) -

Stability requires that the von Neumann conditions

(3.3)

Ay, .. . Ay, .. .
— < — <1
AJCYI (la]) = 1) AxYZ(l’J) >

be satisfied. If this requirement is violated, then we reduce Ay appropriately and take
several intermediate steps to reach the row representing y = y;;1. In the unlikely event
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that 4; or 4, grows sufficiently that this smaller value of Ay is not small enough to ad-
vance the integration from row i to row i+ 1 of the original grid, this idea is applied
recursively. To produce the needed coefficients at these intermediate steps, we simply
use linear interpolation on the original data (which, we recall, was given only on the
original square grid). We now define the algorithm in detail. In what follows, note that

é refers to the computed values of & on the original grid, while we use E to refer to these
values together with intermediate values arising from reducing the step size to retain

stability. Thus, E(x;,y1) = £(i, j).
ALGORITHM

0. Let N be a positive integer, and assume that {" and 4 are samples, on the regular N
by N grid described above, of the continuously differentiable functions I" and 4,
defined on Q. In addition, assume that {3 };_, are samples of the continuously
differentiable functions {yy}f_,. defined, per (3.1), on the unit interval. The fol-

lowing algorithm computes estimates é(i, j) of &(xj,y:),i,j=1,2,... ,N, where &
solves (2.3).

1. Set the boundary values: & (i, 1) = 91 (1), & (1, ) = 92(/), &(1,) = ¥3(j), and
E,(i,N) =Pa(i),i,j=1,2,... ,N.
2. Fori=1,2,...,N-1:

Execute STEP with y = (i — 1)k and Ay = h to compute & (i + 1, j),
j=23,...,Nand &(i+1,j), j=N-1,N-2,...,1 from &(i,j), j =
1,2,...,Nand §(i+1,1), & (i + 1,N).

STEP

0. The purpose of the algorithm is to take values of E(xj,y), j=12,...,N, along

with El (0,y+Ay) and Ez(l,y+Ay), and produce the values of §(x;,y + Ay), j =
1,2,...,N.

1. Set Ymax = max{|ve(x;,¥)| 1 k=1,2, j=1,2,...,N}
2. I Ymax < 1

i FOE Jj=2,3,...,N, compute El (xj,y+Ay) by formula (3.2). Note: The value
of £;(0,y + Ay) is given.
ii. For j=N—1,N—2,...,1, compute & (x;,y +Ay) by formula (3.3). Note:
The value of &, (1,y + Ay) is given.
2. Else

i. Set k =ceil(Ymax)
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ii. SetAy=Ay/k
iii. Forl=1,2,...,k
a. Call STEP recursively to compute the values of &(xj,dy +1Ay), j =

1,2,...,N. The values of &1(0 y +1Ay) and &2( ,y + lAy) are estimated
by hncar interpolation.

iv. Return the values g(xj,y+kAy), j=1,2,...,N.

Since |y;| and |y,| are bounded on £, the recursion bottoms out when Ay is suffi-
ciently small, and thus the algorithm is well defined.

The above algorithm is clearly first-order consistent; therefore, to prove that it con-
verges, we need only prove stability. Let us define

My = max [l and Ma= |2,

where || - || denotes a maximum over components and indices.
Theorem 2. The values &(z j), i,j=1,2,...,N produced by the algorithm satisfy

€]l < Myea.

Proof. Let Ayy,Ay,, ... ,Ay; be the step sizes encountered in the above algorithm,
and define 7; =0,
zi=y+Ay+Ay,+... + Ay, i > 1.

We shall show that the above inequality is satisfied by the values §(x,,z,) computed in
the course of the algorithm (note that there is a sequence ly 1, .. .,In such that& (G, =

E(xj,zl,-))- Define )
M, = m}a;lxllﬁ(xj,z,)llw

and note that M1 < M. From equations (3.2) and (3.3), we see that
My < (1+AyMa)M;.
Therefore,

M2 _<_ (1 +A)’1Mﬂ)Mb,

M; < (14+AyaMa)M; < (1+AyMa)(1+AyiMa)My,

My < (1+AysMa)Ms < (1+AysMa)(1+ Ay:Ma) (1 + Ay Ma)M,
and thus, by induction,

i—1
M; < Mbn (1 +AyMaq).
=1
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We now use the inequality (1+s) < e to simplify the upper bound. We have

i-1 .
TT(1+AyMa) < M DR
1=1

Since we are integrating y from 0 to 1, we have
i—

1
Ay, <1
i=1

Thus, we have M; < MyeM2 as desired. g

4. NUMERICAL RESULTS

We shall apply the algorithm of the previous section to three distinct choices of Lamé
moduli. Although we intend to test our methods against experimental data, we shall con-
tent ourselves here with synthetic samples. We use the Matlab PDE Toolbox to compute
u and Z on the unit square under the traction specified in (2.7) for three representa-
tive choices of Lamé moduli. As the PDE Toolbox expects Young’s Modulus, E, and
Poisson’s ratio, v, rather than p and A, we list our choices as

Sample 1:  E(x,y) =1000 and v(x,y) =0.3
Sample 2:  E(x,y) = 1000+ 100(x+y) and v(x,y) =0.3+0.1(x—y)
Sample 3:  E(x,y) = 1000+ 100sin(2mx) and Vv(x,y) = 0.3 +0.1sin(27x)

and recall that
VvE

E d A=

20+v) ¢ AT aowr

The PDE Toolbox solves (1.1) and (1.2) for a particular sample by triangulating the unit
square and applying the finite element method, with u assumed linear on each triangle.
For each sample, we adopted the default (irregular) triangulation of 185 (irregularly
spaced) vertices. Under laboratory conditions, the displacements are read by an overhead
camera and then digitized. We have attempted to simulate this environment by tainting
the computed displacements with camera blur and round-off error. In particular, we
independently considered both

u_—_

uM(y) =u(xy) +pB(xry) and uP(xy) =u(xy)+po(xy) @D

where p is a simple weighting parameter, ® is a zero-mean, unit variance Gaussian
random variable that is intended to simulate round-off error, and

_ ((x—.5)%gn(x—.5)
Bx.y) = ((; ~ Ssent- -5))
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Fig. 1. Recovery of sample 1.

is intended to account for measurement errors stemming from a camera whose accuracy
diminishes as one travels away from the center of the sample. For k =1 and k =2, we
(1) calculate the strain of the tainted displacement, u® | at the finite element vertices;
(2) interpolate the strain onto the finite difference grid; (3) calculate PO 0 40 and
{\iig.k) }‘j‘-=1 there; (4) compute fj,(") via the algorithm of the previous section; and (5) set
0 = P(")é("). In the subsequent figures, we plot the relative error in the reconstructions

G, y:) — A9 G, )] + MG, ye) = AP, )|
O¢(k) = max
() =ma TEPAIETED)

against the relative error in the measured strains as the weight, p, is increased. In partic-
ular, we track

CEnG) = BV + | Bid) — BN + Bl ) - B )]
SE(k) = max Z21G )|+ 1 B2 (o ) + B )] ’

where Z is the strain computed from the untainted displacement u, and ZK) is the strain
corresponding to the u® of (4.1).

The o marks correspond to camera blur, 4D, and the x marks correspond to round-
off error, u(?). In each case, the untainted strains, Z, satisfied the nondegeneracy condi-
tion. As the tainted strains violated this condition when 3%(k) reached 1, our plots stop
there.

With respect to Sample 1, where the actual strains are constant, the fairly coarse
finite difference and finite element meshes are not an obstacle to accurate recovery (see
Figure 1). Figure 2 indicates that this is not the case for Samples 2 and 3. In particular,
the addition of measurement error is not felt until it exceeds roughly le-4.
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Fig. 2. Recovery of samples 2 and 3.

Although these results indicate that our method of recovery can be successful even
when the strains are mismeasured by as much as 10% we do not expect, given its reliance
on the second derivatives of measured data, this approach to be of immediate practical
significance. With respect to the scalar problem, (1.4), a sizable literature (see, e.g., Falk
[7]; Kohn and Lowe [8]) has developed around circumventing this reliance on second
derivatives. The suitability of their methods to systems remains to be determined.
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