The nonequivalent-control-group design is important because true experimental
designs are frequently either infeasible or undesirable and other quasi-experi-
mental designs have only quite limited applications. This design, however, has
been disparaged as nearly useless because it depends upon statistical methods
that may give biased results when applied to it. The design is too important to
let lie in this condition. It is suggested that slight modifications, a few of which
have been offered by others, might render it more reliable. One such modification,
quite simple, widely applicable, and highly restorative of internal validity, is
suggested here. The bias associated with the standard design is presented as
resulting from basic violations of the assumptions of statistical methods. Both
reduction of the bias and estimation of its extent are shown to be possible if the
comparison group is selected at random from the relevant population and used
by itself, rather than in conjunction with the experimental group, for the prelim-
inary estimation of parameters. The modified design is shown to have various
advantages relative to its unmodified form and even, at times, relative to true
experimental designs. A secondary purpose of this article, supportive of the first,
is to clarify the analvsis of evaluation designs by conceptualizing the issues in
terms of ordinary least-squares regression.
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he primary purpose of this article is to contribute to the
rescue of the nonequivalent-control-group design by
specifying a modification that avoids the most damaging analy-
tical difficulties of the standard approach. In order to do so, a
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basis for expressing those difficulties is required. A secondary
purpose is therefore to cast the logic and functions of a group
of prominent preexperimental and quasi-experimental designs
in the terms of ordinary regression analysis, which would seem
to be more general, flexible, and parsimonious for this purpose
than the analysis of variance, covariance, and correlation frame-
works that have commonly been employed (Porter, 1973; Camp-
bell and Boruch, 1975; Kenny, 1975; Cronbach et al., 1977;
Reichardt, 1979).

A leading assumption behind this article is that the non-
equivalent-control-group design, or “Design 10,” as it is com-
monly known (see Campbell and Stanley, 1963: 40, 47-50), has
great importance for program evaluation. The field has been
strongly urged in recent writings to use true experimental designs
rather than quasi-experimental designs such as Design 10 (e.g.,
see Gilbert, Light, and Mosteller, 1975; Campbell and Boruch,
1975). There can be little quarrel with this position, or with the
judgment set forth in these same writings that true experiments,
with effort and determination, could be used much more often
than they are. But that use must still be limited. There are times
when even the grimmest determination and the most tireless
effort will not yield the political and practical control that is
necessary to conduct randomized experiments. In addition,
experimental design has its own internal validity problems in
some situations and is therefore not always the design of choice
even when it is a practical possibility (Cook and Campbell, 1979:
341-371; Chung, 1979). Alternatives to experimental design are
therefore a necessity.

Among the quasi-experimental designs, there are three basic
variants with fairly broad potential applicability: time series
designs, regression discontinuity designs, and the nonequivalent-
control-group design (see Campbell and Stanley, 1963: 37-43,
47-50, 55-57, 61-64). The first, time series, is limited because,
except for a certain number of economic and demographic vari-
ables, time series data are simply not available for the measures
of interest in most program evaluations (see Campbell, 1976).
The regression discontinuity format demands controlled assign-
ment to treatment groups just as an experiment does; the times
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when an experiment is infeasible or undesirable, but controlled
assignment on some basis other than randomization is possible,
are few indeed. This leaves Design 10 as the last hope on a large
number of occasions for obtaining respectable inferences about
treatment effects-—inferences that enable some reasonable de-
gree of confidence.

The standard nonequivalent-control-group design improves
on the two most prominent preexperimental designs, which are
even less adequate, by combining them. Figure la shows one of
these two, the simple before/after design, where the flow of time
is from left to right (Campbell and Stanley, 1963: 7-12). The
basic difficulty with this design is the threat of “history,” i.e., one
does not know but that something other than T: occurring be-
tween time | and time 2 caused some or all of the observed
difference between the before measure (“pretest”) and the after
measure (“posttest”). The other preexperimental design, shown
in Figure 1b, is the static-group-comparison design (Campbell
and Stanley, 1963: 8, 12-13), where the dashed line divides the
treatment group from a nonrandomized comparison group. The
crippling threat in this case is “selection,” i.e., one does not know
but that the two groups were different to start with, so that
observed differences after exposure to T: are untrustworthy
indicators of treatment effects. Figure lc, then, shows the non-
equivalent-control-group design, which combines measurement
at two time points, as in Figure la, with measurement on two
groups, as in Figure 1b.

History is now controlled for because whatever happened to
one group in the critical interval presumably happened to the
other group, so that differences between them are not due to
extraneous causes. The threat of history is therefore reduced to
the threat of divergent history (sometimes called “intrasession”
history), i.e., an extraneous event might have occurred only to
one group after the initial observation, but not to the other
(this possibility pervades much of program evaluation; in prin-
ciple, it threatens true experiments as well as Design 10).

The selection threat is controlled in Design 10 by virtue of
the pretest. One group may have started out ahead of the other,
but the pretest permits the comparison of improvements, or
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la: The One-group-pretest-posttest Design:

Xe T Ye

Ib: The Static-group-comparison Design

lc: The Nonequivalent-control-group Design

B E.
X T
c 0 Ye
X = Pretest (‘‘before’ measure) E = Experimental group
Y = Posttest (‘‘after’’ measure) C = Comparison group
T3 = Treatment applied (or treatment 1 applied)

To = Treatment withheld (or treatment O applied)

Figure 1: Two Preexperimental Designs and One Quasi-E xperimental Design

“gains.” Presumably, if the comparison group gained 3 points, or 4
points, or more, the experimental group should gain exactly
the same amount and any difference in gain is due to the treat-
ment. There is a problem with this reasoning, however, that has
opened the door to relentless criticism of Design 10. The design,
as a result, has lost much of its respectability.

The problem is that the inference about gain scores assumes
that the slope of posttest on pretest is linear and is equal to 1.0.
Let us continue to assume linearity for the moment, for the
sake of simplicity, and consider the alternative later on. Under
the assumption that the slope is equal to 1.0, however, the
expected gain or loss for any individual, no matter what his or
her pretest score, is numerically the same. It is given by the
“natural” growth for the group, or the quantity « in the linear
model Y = « + ByxX, where X is the pretest score and Y the
predicted posttest. Thus, the experimental group gain is expected
to equal the comparison group gain precisely, even if the two
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groups started out at different average pretest levels. If Byx were
assumed to be 0.5, however, or 2.0, or anything other than 1.0,
this would not be the case. The gain would then be some « plus
half of one’s pretest score, or twice that score, and so on. In that
event, the expected numerical gain of the experimental group
would not necessarily duplicate that of the comparison group
but would depend, rather, on where the two started out.

Another way to express this (and both ways are important
for the sequel) is to consider Byx to be a factor that weights or
adjusts the gap between the pretest scores of the two groups so
as to transform it into the posttest gap under the assumption of
no treatment effect (the null hypothesis), i.e.,

(Y - Yo) = Bvx(Xe - Xc) (1]

where Y and X indicate mean scores and the subscripts refer to
experimental and comparison groups. In essence, this equation
gives the expected change in Y for a specific change in X, namely,
the difference between Xc and Xg. If Byx is assumed to be equal
to 1.0, then the gap between the groups on the posttest is expected
to equal precisely the gap on the pretest. If Byx is assumed to be
another quantity, however, the expected posttest gap is greater
or less. In short, if one must simply assume the magnitude of
the slope of Y on X, there are infinitely many possibilities; the
number 1.0 is arbitrary and no more reasonable, in principle,
than many others.

The solution, obviously, is to estimate Byx from the data
rather than assume it arbitrarily. For this reason, analytic
techniques for parameter estimation, such as the analysis of
covariance and regression, have assumed great importance in
connection with Design 10. If, however, the analytic techniques
available happened to be essentially inadequate to the task,
then so would be the design. Critics (e.g., Campbell and Boruch,
1975; Kenny, 1975) have indeed made the point that regression
and covariance analysis are not adequate or suitable for this
particular task. These critics are essentially correct. The design,
however, is so important that the matter should not rest there.
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Something should be done to improve the situation if possible.
All of the treatments of this subject (e.g., Porter, 1973; Reichardt,
1979; Chung, 1979; Cronbach et al., 1977; Campbell and Boruch,
1975) indicate that, given the basic or classic nonequivalent-
control-group design, employing even the most sophisticated
statistical techniques can yield little in the way of improvement
in confidence.

It is possible, however, that with some practicable modifica-
tions in the design itself, even the simple techniques such as
straightforward regression and covariance analysis may be relied
upon with much greater confidence. That strategy represents the
spirit of the present article (as it was the spirit of Campbell and
Stanley’s original treatise on quasi-experimental design). A few
such modifications have been suggested by Reichardt (1979:
194-196), Garfinkel and Gramlich (1973: 291), and especially
Chung (1979: 131-161), but because they are complex and rarely
practical they are unlikely to be commonly used. The alternative
to be offered in the present article consists in selecting the
comparison group at random instead of arbitrarily and in basing
parameter estimation primarily upon that group. This design
does not eliminate all bias, but it does go an appreciable distance
toward that goal and, in addition, is both simple and quite
broadly applicable. Furthermore, it is a modification that serves
well to illustrate the heart of the problem represented by the
application of statistical analysis to the standard nonequivalent-
control-group design.

The critique of analytic methods in connection with Design
10 has rested primarily orttwo grounds. The first general problem
is that incorrect treatment effects will be inferred when certain
measures are unreliable, and such unreliability must occur with
significant frequency in program evaluations. For example, the
measurement of the pretest may be unreliable, the pretest and
the posttest may have different reliabilities, the experimental and
comparison groups may test with differing reliabilities, and the
tests used may have floor effects or ceiling effects (see Campbell
and Boruch, 1975: 223-241, 255-272). These criticisms are quite
valid and for some situations, quite damaging. It is also true
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that they do not present a problem in randomized or experi-
mental designs as they do in Design 10. The unreliability problem,
having its own extensive literature, is not treated in this article.
In some evaluations, badly needed estimates of reliability will
simply not be available. At other times, either good estimates
will be available so that the appropriate correction factor may
be applied, or reliability will not be a potential problem at all.
In the sequel, it is assumed that one of the latter two conditions
prevails.

The ground that subsumes most of the balance of the criti-
cisms, although not generally stated in these terms, is that
the assumptions of the analytic techniques are not satisfied in
Design 10 applications. Essentially, what is violated is the
assumption of zero correlation between independent variables
and the disturbance terms in a regression framework (Cain,
1975, makes this point without demonstration).

THE ASSUMPTION THAT rxu =0

For simplicity, we will work mainly with the underlying
3-variable model,

Yi = a+ ByxaXi + Byr-xTi + u [2]

for the i"" individual, where Y is the outcome measure of interest
in the evaluation (the posttest), X is a measure of the same
variable before the treatment or program begins (the pretest),
and T is the treatment variable, a dummy variable scored 1 for
individuals in the treatment or experimental group and 0 for
those in the comparison or control group. Generalization to
the case in which control variables in addition to X are included
is straightforward.

The focus of the evaluation is the estimation of SByr.x, the co-
efficient of treatment effect. This coefficient has an important
equivalent expression or definition in the context of equation 2 as
the quantity Ye - Yor. The latter term, Yo, will be called the
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“null case” posttest mean for the experimental group, i.e., what
the outcome would have been without the treatment, or presum-
ing that the treatment had no effect whatever (when thlS value
is estimated from the data, we will use the notation Yob) The
quantity Yor is of course never directly observable once the
treatment has been applied. The coefficient Byr.x—the effect of
the treatment—is thus simply the difference between the observed
outcome, Y, and the unobserved null case outcome, Yog.

Let us begin with an assumption that has been worded as some
variant of, “the within-group slope predicts between-group
confounding” (Porter, 1973: 43; Porter and Chibucos, 1974: 444,
1975: 249). What this assumption actually means is that if the
experimental and comparison group averages are different to
start with, i.e., different on X, the pooled within-group slope of
Y on X in the data accurately projects the quantity Yog.'

The reader is referred to Figure 2. In Figure 2a, the two groups
are shown separately rather than combined, and the dashed line
represents the unobserved but “true” or “population” null case
slope of Y on X. As Figure 2a is illustratively constructed, one
sees that in this hypothetical case the assumption is satisfied,
since the extension or projection of the comparison group slope
intersects the vertical through Xg precisely at the point Yor.’
Furthermore, since that point coincides with Yg, one would
infer that the program had no effect, and the inference would
in this example be correct.

Figure 2b depicts the same sort of case, the only difference
being to assume a true effect of the treatment; the whole regres-
sion line for the experimental group has been displaced upwards,
to a higher Y intercept, because of the exposure of its members
to the program being evaluated. This treatment effect would be
captured accurately by the data analysis; it is seen graphically to
be equal to the distance Yg - Ym

If, however, there were a bias in the pooled within-group
slope, it would not accurately project the null case outcome for
the experimental group. As is standard in regression theory, let
us attribute such bias to a nonzero correlation between inde-
pendent variable and disturbance, expressed notationally as
rxs # 0. An example of this case is shown in Figure 2c (there, as
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constructed, the correlation between X and u is positive in
sign—within each group, the higher the pretest score the larger
the algebraic magnitude of the disturbance).’ In the figure,
Yop, would be erroneously estimated to be the projected point
Yoe. In this way, bias in the within-group slope will clearly lead
to an erroneous estimate of the effect of the treatment. Here, the
bias makes a treatment that we assume by construction to have
no effect, Ye - Yor = 0, appear to have a negative effect—the



62 SOCIOLOGICAL METHODS & RESEARCH

quantity Yg - Yor. Standard regression analysis would corre-
spondingly yield the same negative value for byr.x (note that the
bias can have serious consequences even if small, depending upon
how far apart the two group means are on the X axis). This
phenomenon—a hidden phenomenon-—occurs simply by hap-
pening to select groups for study in which the within-group slopes
are misleading relative to the true null case regression of posttest
on pretest. This kind of occurrence, whether referring to slopes or
other values, will be called “sampling bias,” as distinct from
“sampling error.” Since sampling bias results from arbitrary
rather than random sampling, it is capable of grossly exceeding
the range of ordinary sampling error. It is an extremely impor-
tant concept in this context, since one way of expressing the pri-
mary problem with Design 10 is to say that, because of arbitrary
selection, it inherently has the potential for an unknown degree
of sampling bias.

A key conceptual step, then, is to consider the experimental
and comparison groups in Design 10 to be samples from a
population of interest. The problem is that they are arbitrary
samples rather than random samples, which is why one cannot
accept with any degree of confidence at all the closeness of
statistics based upon them to the true parameters of interest.
Given arbitrary rather than random sampling, there is no basis
whatever for an expectation that rx, = 0. The existence, sign, and
extent of sampling bias of this sort that may exist will simply
be unknown.

A part of the suggested remedy is to identify the population
of interest and compose the comparison group by sampling
randomly from that population. In Design 10 applications, one
usually has no control over the composition of the treatment
group (the subjects may be volunteers, a natural group, a political
jurisdiction, a group covered automatically, and so forth) and
that is often why a true experiment cannot be conducted. The
comparison group, however, is far more frequently a matter of
choice by the investigator. There is no reason in most cases why
the comparison group must also be arbitrary.

More needs to be said about determining the population from
which to sample for the comparison group. This will be done
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and examples will be provided as certain companion points are
made. For the moment, however, let us assume that the “right”
population can be identified and that it is some population that
contains the experimental group.

Given that we compose the comparison group by sampling
randomly from this population, the danger of bias from the
source rxu # 0 is nullified if the estimate of Byx is based on the
random comparison group alone. This is the technique that we
shall employ. It implies replacing equation 2 with a new, three-
step procedure for calculating the treatment effect, as follows:

First, estimate o and Byx, from the random-comparison-group
data alone,’ as the regression estimates a and byx:

Yi=a+ byxXi+uy [3]

Next, use these estimates and the experimental group pretest
mean to estimate Yog, as in note 2:

Qog = a + byx.-tXE [4]

Note that all of the quantities on the right in equation 4 are
known—a and byx.tr from equation 3, since T in this context is
inactive, and Xg from the observed data.’

Finally, a point estimate of the treatment effect in the random-
comparison-group design, noted as br, is derived by simple
subtraction:

br :_Y—F. - QOE [5]

where Y is taken from the data and \A(or; from equation 4.

Thus, the random-comparison-group approach eliminates
bias in the slopes of the pretest and control variables as a source
of error in estimating Yor. However, that is not the only nor
even the most important source of the problem. Preserving the
estimating procedure specified in equations 3-5, we now consider
the remaining source, still in the perspective of the assumptions
for estimating the ordinary regression model.
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THE ASSUMPTION THAT rr, = 0

This is the assumption that the experimental and comparison
group posttest means are given, within the constraints of ordinary
sampling error, by expected values based on equation 2; neither
group is characterized by disturbance terms that are systemati-
cally high or low. Another way of putting the same idea is to
say that neither group begins, on average, either higher or
lower than the other on unmeasured variables that affect the
outcome.

With arbitrary selection, however, there is no basis for such
an expectation. It holds legitimately only when the groups are
established by randomization, as in a true experiment, or when
both are taken as random samples from the same larger popu-
lation. In Design 10, neither group is randomly selected. Thus,
the essence of the remedy proposed by the random-comparison-
group design is that some amount of random sampling may very
constructively be introduced as a modification.

To explain, one expects statistically under this modification
that the comparison group is representative of the population in
unmeasured variables. That is, the intercept of the separate
regression line for this group will be neither higher nor lower
than it is supposed to be within the constraints of ordinary
sampling error; the expected group mean would, in other words,
fall on the dashed line in Figure 2. This assurance regarding the
comparison group has the effect of minimaxing intercept bias
in the estimation of treatment effect, that is, it minimizes the
maximum possible error from the source rry # 0. True, in the
ordinary Design 10 approach, both groups, being arbitrary,
could luckily be “off” due to sampling bias in the same direction,
as in Figure 3a (where both have high average disturbances), and
this would yield a very small bias. But they could also be off in
opposite directions, as in Figure 3b, yielding a very large bias.
In the random-comparison-group approach only one group can
be unrepresentative because of arbitrariness, which essentially
halves the maximum possible error from this source (Figure 3¢).

Thus, using the random-comparison-group design, equations
3 and 4 would at least yield an unbiased estimate of Yor for
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Figure 3: Treatment Effect and Sampling Bias

a randomly selected experimental group. Unfortunately, equa-
tion 5 might still be biased from the source rr, # 0 because the
experimental group is not random. It might well be unrepresen-
tative of the population in its intercept: Because of certain
variables that were not measured it may have the potential from
the beginning for a higher or lower mean outcome than would
have been expected from a random sample (see Figure 3c¢).
To minimax the bias, in other words, is not to eliminate it. This
irreducible potential for sampling bias® holds the design in the
quasi-experimental category; it is still on less solid ground than
a true experiment with respect to internal validity. However,
it is significant that the only major source of bias remaining is
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this intercept sampling bias in the experimental group.” Further-
more, even this problem is mitigated by the possibility of an
interval estimate of program effect that makes allowances for
the remaining sampling bias. Such an estimate is not available
in ordinary Design 10 analysis.

PROBABILITY-BASED ESTIMATES
OF TREATMENT EFFECT

To speak of an interval estimate in the present context is
to be in quite a different framework from classical inference,
although the random comparison group does allow some
elements of the latter to enter the procedure in critically impor-
tant ways. A classical interval estimate depends conceptually
upon the hypothetical outcomes of repeated sampling by the
same random procedure. In the present context of possible
sampling bias (as opposed to sampling error) in the experi-
mental group, that basic idea is irrelevant; it is impossible to
base parameter estimates on the outcomes of repeated sampling
by some unknown arbitrary process. An ad hoc analytic pro-
cedure for arbitrary sampling in program evaluation must there-
fore be devised, taking advantage of the accompanying random
comparison group. A suggested method is outlined in this
section.

Figure 4a represents the illustrative outcome of an evaluation
in which the treatment was applied to only one subject—a person,
a city, a class in school, and so on. It appears from the plot that
there has been a treatment effect, otherwise the outcome for
that subject, Ye, would likely have fallen within the ellipse that
represents the error variance for the remainder of the population,
of which that subject is a member. A point estimate of the treat-
ment effect is given from equation 5 as

A
br = Ye - Yor
This of course assumes that there is no sampling bias—that

the subject is precisely average in null case Y score for the pretest
score Xg and the null case value is therefore assumed to lie
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precisely on the regression line. One can have little confidence
in so strong an assumption. In many cases, however, one may
have a great deal of confidence in the relaxed assumption that
the true value Yor lies somewhere within the ellipse, in which
case one can infer a range of treatment effects on a probability
basis. The modified formula is based on the assignment of an
“extreme” value for Y()L on either the positive or negative side,
to make the inference more conservative, as follows:

Ext(¥op) = Yop + Zes,, o9 (6]
where Z is an appropriate positive or negative value from the
standard normal table, s,. is the estimated standard error of the
regression, based on the comparison group, and the final term,
e¢, will be explained momentarily. If the value Z = 1.96 is used,
for example, one is estimating “with 97.5% confidence” that the
null case Y score would have been no more than 1.96 error
standard deviations above the regression line. “Confidence” in
this case reflects the fact that, given Xg, no more than 2.5% of
the population has the propensity for more extreme Y scores
than our subject is assumed to have without the treatment. The
new, or “extreme” point, Ext(Yo[) is also shown in Figure 4a for
comparison. In contrast to equation 5, the estimate of treatment
effect “at the .975 level” then becomes

> \‘KE — Ext(Y ), positive program effects
e [7]
<Y — Ext(Y ), negative program effects

One may use a higher confidence level, but at the expense of
accepting a smaller program impact.

The final term in equation 6, &y, is taken from classical in-
ference and allows for sampling error in the coefficients a and b,
equations 3 and 4. That is, it allows for sampling error in esti-
mating population parameters from the random comparison
group. If, as will frequently occur, the whole population rather
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than a random sample is used, this term may be ignored. Other-
wise, it is taken from the “prediction” function of classical
inference. The issue in the present application is that of error
in the “prediction” of a Y value corresponding to Xg, that is,
the prediction of Yoe. In the present illustrative context with
one independent variable, the proper expression for the con-
fidence interval is (see Johnston, 1972: 154)

A =
eYt

where € need not be the same as € in equation 6. In most appli-
cations, the above expression will yield a very small number,
but increasing in magnitude with decreasing comparison group
sample size and increasing distance of Xg from Xc. The general
extension to the multivariate case is given in Johnston (1972:
153).

In the more usual case, the experimental group will consist of
many subjects rather than one, and the inference will pertain to
means rather than single values. The observed outcome for this
case is illustrated in Figure 4b.

One might treat this exactly as in the previous example, with
the mean Y score employed as though the group were one subject.
The Anull case outcome for the experimental group mean,
Ext(Yor), would again be given by equation 6, but we may re-
write equation 7 for the more general case by allowing the
observed mean on Y to replace the observed single value:

> ?E — Ext (\A(OE), positive program effects
by _ A (8]
<Yg — Ext(YOE), negative program effects

Equation 8 is the basic estimating equation for the random-
comparison-group design. In truth, however, this equation will
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now in many instances represent an over/y conservative assump-
tion. If Z =1.96 is used, for example, it assumes that the typical
experimental group subject with the posttest score Yr would in
the null case have been 1.96 standard errors above the mean,
Yo, or just inside the border of the large ellipse in Figure 4b.
All experimental group subjects with the same pretest score X,
but with outcomes above Yg, however, are assumed to be ex-
treme outliers in the null case, who have practically no counter-
parts in the remainder of the population and so were not
captured at all by the random sample comparison group. The
null case, that is, is imagined to look like Figure 4c. Subjects in
the small ellipse who are above the large one are assumed to be
very extreme outliers. If there is indeed a great danger that the
experimental group could be quite unusual in type (and there-
fore, that its members could be extreme outliers compared to
the rest of the population, e.g., if the program were carried out
on nearly all the large metropolitan areas in a state, leaving
primarily the smaller cities for the comparison group), then
perhaps the conservatism of equation 8 is truly warranted, or
perhaps the random-comparison-group design cannot construc-
tively be used at all.

In other cases, however, although one cannot assume that
the experimental group is effectively a random sample, one
can at least assume that nearly all of this group would have
fallen somewhere within the boundaries of the large ellipse—
that it does not contain many subjects so extreme as to have
few or no counterparts in the remainder of the population. One
may then employ a moderated extreme Y score, as follows:

: EXt*(?OE) = EXt(Q-OE) + Ze* SuE [9]

where Ext(?og) is calculated as in equation 6.

For example, in establishing Ext(?oa) on the right-hand side,
let us again choose Z to be 1.96, representing the .975 level of
confidence. One might reasonably and still fairly conservatively
choose the new term Z_y to be -1.28, representing the .90 level
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in the small ellipse (note that s, in the above equation refers
to the experimental group—we are taking advantage of the
experimental group variance), with the sign chosen as appro-
priate to move the assumed null case distribution closer to the
population regression line, as in Figure 4d—in this case, nega-
tive. Indeed, one may quickly see by comparing Figures 4c and
4d that the effect of equation 9 is simply to move the experi-
mental group ellipse for the null case assumption to a somewhat
more central population location. The inference of treatment
effect might take the verbal form: “Assuming that as many
as 10% (from Z.x = -1.28) of the experimental group may have
been outliers—beyond the .025 level without the treatment—
one can say with 97.59% confidence that the treatment effect was
as large as b¥,” where b¥ is given as follows:

=Y - Ext*(?ou), positive program effects
by . [10]
< ?L‘ - Ext*(YOE), negative program effects

If the experimental group variance is approximately as large
as that of the population, so that Z *s. in equation 9 almost
nullifies Z_s.. in equation 6, one may then in many applications
infer a treatment effect almost as large as that given by the simple
and liberal point estimate in equation 5, depending upon the
need to hedge against null case outliers.

IMPORTANCE OF THE PRETEST

It is clear from the above that the magnitude of s, or the
height of the large ellipse in Figure 4b, is important for the
power of the design, particularly with estimation as in equations
5-8. If Yk fell on the inside of the ellipse, for example, one might
not be able with confidence to infer any treatment effect at all.
If in the same case one could shrink the ellipse, however, so that
Y: were now on the border or on the outside, its position might
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safely be attributed to the treatment rather than sampling bias.
This suggests that the addition of good independent variables to
narrow the error variance would be desirable. Such variables—
age, sex, and so forth, depending on context—are almost always
available.

In this question of reducing the size of the error variance, the
pretest is extremely important. It has a unique potential for
accomplishing that objective. Generally speaking, although not
universally, “before” is not only the best predictor of “after” by
far, but is a very good predictor in absolute terms as well. In the
case of an education evaluation discussed by Kenny (1975: 357),
for example, the correlation between the posttest and the pretest
alone was .75; in a similar case analyzed by Magidson (1977:
410), on the other hand, the multiple correlation of the posttest
with several standard predictors, a pretest being unavailable,
was only .33. The pretest, in short, is a critical component of any
strategy to make the best use of the random-comparison-group
design. It cannot function similarly in Design 10 because there
the error variance in the comparison group may just as easily be
the result of sampling bias as may any other statistic; it is funda-
mentally untrustworthy, whether large or small.

CURVILINEARITY AND INTERACTION

If the posttest is a curvilinear function of the pretest or other
important independent variables, additional problems clearly
arise in ordinary Design 10 analysis. If the experimental and
comparison groups are fairly far apart on the pretest, for ex-
ample, so that they occupy quite different portions of the curve,
they may well manifest significantly different within-group linear
slopes of Y on X, making further analysis impossible, or they
may yield a pooled within-group slope that is incorrect and leads
to incorrect inferences of the treatment effect. Conceptualizing
the problem as misspecification due to omitted terms (e.g., X*),
the treatment variable T is almost certainly related to such terms
when it is related to X, leading directly to bias from the source
rro # 0. The random comparison group is advantageous in this
connection. In composing the comparison group by sampling
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randomly from the relevant population, one obtains a broad,
realistic range on all independent variables and may use those
data well to discover and model any curvilinearity (including
interaction terms) that might exist (see Reichardt, 1979: 155).
The parameters of the model estimated in this fashion then
augment or modify equations 3 and 4 and one proceeds from
there as in the linear case. It stands to reason that analysis based
on curvilinear modeling could profitably be carried out more
frequently in evaluation studies (e.g., Garfinkel and Gramlich,
1973: 291-293), but the proper data base then becomes extremely
important. Two arbitrarily selected subgroups do not in general
form a good basis for modeling curvilinearity; one broadly based
random sample of the right population, however, is optimal.
A weakness of Design 10 that is frequently noted is selection-X
interaction. It will be referred to here as selection-T interaction
to be consistent with the notation employed throughout. In
essence, it refers to a treatment effect that occurs in the group
selected only because of that group’s particular values on certain
unmeasured variables—an effect that would not occur in the
comparison group or in other populations of interest. The first
point to be made about selection-T interaction is that Design 10
does not in fact differ greatly from true experimental design in
regard to this threat to validity (Campbell and Stanley, 1963:
50). In both cases, the effect produced is real enough, but its
generalizability is in question. In both cases, the group selected
may have characteristics that make it unusually sensitive to the
treatment, only in the experimental design this statement will
apply to the control group as well, whereas in Design 10 it may
not. Since Design 10 treatment groups are more likely to be
composed of volunteers, they are more susceptible, on the whole,
to this sort of interaction (Campbell and Stanley, 1963: 50), but
that differs with the selection method of the individual study.
It should also be noted that a selection-T interaction could
produce a nongeneralizable slope of Y on X (for any X, i.e., for
other control variables as well as the pretest). Generally, there
is not great interest in this slope for its own sake, but there is a
potential interaction problem with respect to its use in calcu-
lating the treatment effect. In the ordinary Design 10, if byx in the
experimental and comparison groups are significantly different,
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apparently connoting some sort of interaction, there is little
choice but to terminate the analysis. Thus, one of the greatest
dangers of selection-T interaction is that of wasting the study
entirely because one cannot know which slope to believe.® This
danger is eliminated by the random-comparison-group modifi-
cation, since in that design only the slopes in the comparison
group are utilized in the calculation of the effect of the program.

Equations 9 and 10 raise the issue of an interaction effect that
is not a matter of concern in other designs. In “taking advantage
of the variance” of the experimental group’s posttest scores,
there is the underlying assumption .that the null case error
variance for that group would have been the same as the observed
variance, i.e., that there is no interaction of the treatment with
unmeasured traits of the individuals within the experimental
group such that the observed variance of Y is either increased
or decreased, as a result, from what the null case variance would
have been. The quantity s.. estimates the null case; it helps to
locate where the experimental group mean would have been
without the treatment. If the observed posttest variance under-
estimates the null case variance, equations 9 and 10 underestimate
the treatment effect; the group average without the treatment
would actually have been “closer in” than we assume. If the
null case variance is being overestimated, then so is the treatment
effect. Thus, if a variance-enlarging interaction is suspected as
a possibility, the more conservative estimate given by equation 8
is to be preferred.

SELECTION OF THE COMPARISON GROUP

Which population to use as the “relevant” population can
be a difficult question to answer. Recognizing that there must
often be some arbitrariness here, the general answer is: the
population to which one is satisfied to generalize the results of
the experiment. Arbitrariness enters because any experimental
group belongs to infinitely many populations. For example,
Ann Arbor, Michigan, belongs to the population of cities in
Michigan, cities in the United States, cities of approximately
100,000 residents, university communities, and so forth. It is
difficult to imagine a satisfactory set of rules that would enable
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this decision to be made without resort to the judgment of the eval-
uator. It has seemed to be true that the choice almost always be-
comes narrowed to one or two possibilities by the nature of the
program being evaluated and the scope on which it might truly
be applied. For example, if Michigan were contemplating a
public drunkenness law requiring the police to take offenders to
a detoxification center instead of to jail, and if a pilot program
were being run in Ann Arbor, one would probably want to
generalize to cities in Michigan. On the other hand, if one were
conducting a summer program for new minority students at the
University of Michigan, one would prefer a population of large
state universities to the population of colleges in Michigan. In
the last analysis, however, all populations to which the experi-
mental group belongs are correct, and the choice is a matter of
evaluation strategy: Which population will be most useful and
persuasive as a standard of comparison in this particular case?

The practicality of drawing a random sample and obtaining
data is, of course, one constraint upon the identification of a
population. More experience is necessary to provide guidance in
this area, but consultation and student projects have suggested
that there are two bases on which sampling would generally
proceed. The first, and by far the most common, turns out to be
organizational—identifying, enumerating, and sometimes ob-
taining data through individual (or sets of) organizations and
agencies such as schools, school systems, hospitals, employment
services, welfare rolls, chambers of commerce, lobbying associ-
ations, police departments, courts, counseling services, and the
like, with their lists and records both of staff and clientele. The
second base is the general population survey, whether national,
local, or in-between. In these cases, one must generally obtain
the consultation and other services of one of the large survey
research organizations.

At the current writing, the random-comparison-group design
is being applied in two contexts, which are noted here for illus-
trative purposes.

(1) One study will evaluate the impact of Quality Circles—a par-
ticipative management technique well known for its successes
in Japan—upon clerical productivity in a large federal agency.
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Application of the treatment, which involves considerable ex-
pense, will be to twelve work groups. Their selection is based
primarily upon convenience of location. Since the productivity
data are fairly readily available, the comparison group is a large
sample of similar work groups in the entire agency.

(2) The other study will evaluate a pilot housing-subsidy program
carried out in eight locations. The pretest and posttest data are
available, with a bit of manipulation, in an annual housing
survey regularly applied to a large random sample of the United
States, partially on a panel basis. One comparison group will
be a random sample of the panel respondents in the survey
(so that both pretest and posttest are available) who meet the
eligibility requirements for the subsidies. Another comparison
group will be at a higher level of aggregation—the Standard
Metropolitan Statistical Areas defined by the Census Bureau—
so that the experimental group size is the number of cities (eight)
subsidized, rather than the number of individuals.

The usual approach in selecting a comparison group for
Design 10 has been to try to obtain one that is as much like the
experimental group as possible. One might accomplish this, for
example, by “matching” the two groups on X, subject for subject.
This makes excellent sense because when the mean pretest scores
of the two groups are equal, the expected gap in posttest scores
from equation 1—Byx(Xe - Xc)—is zero no matter what the
magnitude of Byx. All concern for accuracy in estimating that
parameter is thereby obviated. But that is al/l that is gained
through equating the means. It should not be overlooked that
intercept sampling bias is still a prominent threat to validity.

To minimax bias from that source, a random sample, but one
whose mean equaled X, would seem to be the comparison group
of first choice. There are several reasons, however, why it may
not be possible to have a random comparison group whose mean
equaled Xi. For one, the precise composition of the comparison
group on this dimension may not be controlled by the experi-
menter: It might not be possible to give the pretest before selecting
the subjects, or it might be necessary to select the treatment and
control groups concurrently, or it might be too expensive to
continue sampling, testing, and rejecting until the proper com-
position was attained. Moreover, most evaluation studies deal
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with several posttests, not just one (e.g., Waldo and Chiricos,
1977, used eighteen measures of recidivism), and it is far too
much to expect that the comparison group have a matching
pretest for all of them.

A strategy that copes with most of these difficulties is to take
a broad-range random sample and, for each analysis carried out,
to use only some portion of the sample whose pretest mean
matches the corresponding treatment group mean. This might
occasionally be an appropriate and desirable course to follow,
although how to select objectively a subgroup with a particular
mean is far from clear. But another exigency severely limits the
applicability of this strategy, as well. As discussed above, it will
usually be desirable to use several independent variables in
addition to the pretest in any one analysis. Thus, if the means
were equal for a particular comparison subgroup on one such
variable they would no doubt still be unequal on all of the others,
so that little would have been gained by matching even as an
addition to the random-comparison-group design. Most often,
then, a broad-range random sample of the relevant population,
which in its entirety provides the best estimate of all of the
slopes involved, will be the method of choice for composing
the comparison group.

SUMMARY OF THE FUNCTIONS OF
THE RANDOM COMPARISON GROUP

The nonequivalent-control-group design is capable at times
of avoiding many of the political, practical, and internal-validity
problems that would bedevil a true experiment (Chung, 1979).
Preserving these advantages, the following four points pull
together the additional advantages of selecting the comparison
group at random rather than arbitrarily:

(1) Iteliminates bias from the source rx, # 0. It provides statistically
sound estimates of all slopes in the model. It avoids the para-
lyzing possibility of accepting significantly different slopes in
the two groups when that is due either to sampling bias or to
selection—T interaction, as well as of arriving at inaccurate slope
estimates by pooling the error-prone within-group statistics.
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(2) It minimaxes the bias in the point estimation of Br that results
from a correlation between treatment and error (rr, #0). It also
then provides a basis for estimating the treatment effect in light
of the bias that may remain.

(3) It provides a sound basis for incorporating curvilinearity and
interaction into the analysis—and even into the design—when
they are truly present and the proper variables have been
measured.

(4) External validity, or generalizability, is greatly enhanced by
random selection of the comparison group from the population
to which generalization is desired. To the extent that one can
assume the absence of selection-T interaction, the treatment
effect can be generalized to any subgroup in that particular
population of interest.

NOTES

1. This assumes that byx (experimental) and byx (comparison) are equal, or that they
are close enough in value to be pooled statistically, yielding a single estimate of Byx. If
they are not, then when the groups have not been created by randomization, strict ad-
herence to statistical procedure dictates that the analysis must stop; the evaluation data
must be largely wasted. This problem is reviewed further, below.

2. In Figure 2a and in the text, the two within-group slopes are assumed for con-
venience to be equal to one another in order to avoid having to draw yet another line to
represent the pooled within-group slope. This simplification allows us to speak in terms
of extending the comparison-group slope rather than the pooled slope. To explicate the
figure statistically, Yor: may be estimated from the data as ok, the point on the pooled
within-group regression line that is obtained by specifying Xi: for X; in the sample (as
opposed to population) version of equation 2:

A -—
: Yor = a + byx.rXe

Here, the term containing the dummy variable T may be suppressed because to assume
the null case is to assume that T has no effect on Y. The observed value Yy is shown in
standard texts (e.g., Johnston, 1972: 59) to be obtained by specifying X for X; in equa-
tion 2 again, but without the null case assumption:

Yi = a+ byxerXe + byrxTe

Since T for the experimental group is always 1, then Ty is also equal to 1. The coefficient -
byr.x is thus seen, by subtracting the former equation from the latter, to be equal to
Y+ - You. This is the observed version of the population identity mentioned just above
in the text.

3. This case (Figure 2c) exactly portrays the problem of random measurement error
in the pretest, except that in that event the correlation ry, is negative (see Reichardt, 1979:
160-164).

4. An observation frequently made at this point is that it seems a pity to sacrifice
statistical efficiency by rejecting the experimental group as part of the basis for estimating
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equation 3. It would seem that a Bayesian approach, for example, would be desirable.
There may be no objection to such an approach at times, especially when experimental
groups are drawn from the same population more than once, so that one can gradually
home in on the parameters of interest, but it is probably best not to rely upon it in prin-
ciple. Since sampling bias in the experimental group is precisely the problem to be gotten
around, it is best not to bring that potential sampling bias itself into the estimating pro-
cedure. In compensation, one may strive to make the comparison group large enough so
that coefficient variances are quite small (this can often be done at relatively small expense
in program evaluation since that group gets no treatment). Unfortunately, it is not possible
to use a mean-square-error criterion to estimate the tradeoff between bias and efficiency.
Neither the means nor the variances of sampling distributions involving the experimental
group can be employed in such a calculation because the sample is not a random one.
With arbitrary samples, bias and sampling variance can be huge, but in any case they
are unknown. In a subsequent section, however, it will be shown that the experimental
group variance can be advantageously employed, even if its size cannot.

5. We continue to treat the case of a single control variable, the pretest, for simplicity.
The extension to any number of additional control variables, Xy, is straightforward; one
merely uses the individual-level comparison group data on these variables in the generali-
zation of equation 3 and the experimental group means on those variables in the gen-
eralization of equation 4.

6. The term “sampling bias” as used here—in the context of means—is meant to
convey something slightly different from “selection bias.” The latter, as commonly
employed (e.g., Campbell and Boruch, 1975: 227, 230), refers simply to the selection of
experimental and comparison groups with different pretest means. As used here, “sam-
pling bias” refers to outcome rather than selection and is the analog of “sampling error”
for the case of nonrandom samples. It signifies the (nonrandom) selection of a sample—
with any given means, X, . . ., Xk, on the measured independent variables—whose null
case mean on Y is different from that expected of a random sample having the same
given means, X, . . ., Xi.

7. Other threats to validity such as curvilinearity and interaction between the experi-
mental group and the treatment are examined below.

8. One cannot escape this difficulty by using an “interaction model” in Design 10
analysis, i.e., by including a term in equation 2 in which the dummy T is multiplied by X:

Yi = a + Byx-txnXi + BzyrxxnTi + Byyxyx1XiTi + u;

The problem remaining is that one cannot know in principle whether to ascribe the
effects of the new term (a) to the treatment or (b) to sampling bais. For the former possi-
bility, one would assume that the comparison group slope of Y on X is correct and that
the treatment causes the experimental group slope todiffer. This means that the treatment
effect differs by pretest score, so that it is given for the i'" experimental group subject by
the expression: (Byr . xxx *+ Byxm - xrXi). For the latter of two possibilities, the sampling
bias in the slope of Y on X may lie either in the comparison group or the experimental
group or both, and the inference is thoroughly ambiguous. Even if one knew that the
comparison group slope were correct, one would still not be able to determine the exzent
of sampling bias in the experimental group slope of Y on X. The root of the problem with
respect to differences in slopes is that the treatment is indecipherably confounded with
sampling bias in slopes. The problem does not arise in true experiments because of the
irrelevance of sampling bias; there, equal slopes are expected if there is no treatment
effect, the interaction model is appropriate, and the effect of the treatment is given by
the expression in parentheses, above.
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