A SPECTRAL REPRESENTATION METHOD FOR
CONTINUOUS-TIME STOCHASTIC SYSTEM ESTIMATION
BASED ON ANALOG DATA RECORDS

P. IKurpra.setio1 and S.D. Fassois?

Report UM-MEAM-91-16

(©1991 by P. Nurprasetio and S.D. Fassois
All rights reserved.

! Graduate Research Assistant, Mechanical Engineering and Applied Mechanics
2 Assistant Professor, Mechanical Engineering and Applied Mechanics

1






1 INTRODUCTION

After two decades of almost complete dominance of discrete-time system identification and param-
eter estimation approaches in the engineering theory and practice, the relevance and importance
of continuous-time methods based on analog data have been increasingly recognized (Young, 1981;
Young and Jakeman, 1980; Unbehauen and Rao, 1987; Wahlberg, 1989; Neumann et al., 1989;
Sagara and Zhao, 1990; Unbehauen and Rao, 1990). A survey of the available literature, however,
quickly reveals that the overwhelming majority of currently available continuous-time methods
is restricted to the deterministic case, and is thus incapable of handling the more general and
practically important class of stochastic systems!, with which additional difficulties are associated
(Young, 1981; Wahlberg, 1989).

One of the main difficulties in estimating continuous-time stochastic systems from analog data
records is due to our inability to accurately compute time derivatives (of various orders) of the
observed random signals (Young, 1981; Wahlberg, 1989; Neumann et al., 1989). If that were
possible, continuous-time versions of many discrete methods could be consfructed; see, for instance,
the works of Balakrishnan (1973), Bagchi (1975), and Pham-Dinh-Tuan (1977), who developed and
analyzed the Maximum Likelihood method for this case and proved its asymptotic optimality, and
also Unbehauen and Rao (1987), and, Priestley (1981), who discussed the autoregressive model case.
The use of the so-called State Variable Filters (SVFs), that are extensively used in the deterministic
case (Young and Jakeman, 1980; Young, 1981; Unbehauen and Rao, 1987) in alleviating this
difficulty is neither trivial nor effective, as their proper selection is not obvious [and in fact it is
known to optimally require a-priori system knowledge, in view of which adaptive SVFs have been
also suggested (Neumann et al., 1989)], their incorporation affects the stochastic part of the model,
and, unlike the deterministic case, cannot prevent the introduction of large errors into the obtained
random signal derivatives (Neumann et al., 1989).

Attempts to overcome these problems through alternative approaches based on integral (instead
of differential) operators have been also considered. Van Schuppen (1983) examined recursive such
estimation algorithms for continuous-time autoregressive processes and proved their convergence,
while Moore (1988) analyzed the convergence of the continuous-time version of the Recursive Ex-
tended Least Squares (RELS) estimation algorithm for AutoRegressive Moving Average with eXo-
geneous excitation (ARMAX) systems. In order to avoid numerical instability problems due to the
pure integration of the observed signals, exponentially stable prefilters have to be, however, used,
the selection of which is important for convergence and, also, requires some form of a-priori system

information. Another related problem in this case is that of initial conditions, the effects of which

! A large number of engineering and physical systems are, indeed, stochastic in nature. Consider, for instance, the
ambient vibrations of a building or structure, the vibrations of a machine tool during cutting, or those of traveling
ground vehicles and aircrafts.



do not decay away and can cause significant estimation bias errors (Young, 1981; Sagara and Zhao,
1990).

It therefore comes as no surprise that, for almost all practical cases, the stochastic part of a
given system is either not estimated at all, or, only a discrete-time representation of it is obtained
based on sampled data (Young and Jakeman, 1980; Young, 1981; Neumann et al., 1989; Sagara
and Zhao, 1990; Lee and Fassois, 1991). The only,4 and arithmetically very few, currently available
exceptions, appear to be based on an approach that postulates the estimation of continuous-time
stochastic models through the estimation of a directly, and approzimately, discretized representation
by using, once again, uniformly sampled data records (Astriim and Kallstrém, 1973; Phadke and
Wu, 1974; Pandit and Wu, 1975). The method developed by Pandit and Wu (Pandit, 1973; Wu,
1977; Pandit and Wu, 1983) is, in fact, a very systematic and comprehensive such procedure, that
has been successfully used for the solution of a large number of production engineering, random
vibration, and other types of problems. A number of additional such methods have been also,
though independently, developed in the fields of statistics (Robinson, 1980; Jones, 1981; Solo,
1984) and econometrics (Sargan, 1974; Bergstrom, 1976; 1983), where the assumption of sampled
data is practically reasonable.

The main advantage of these methods is in their ability to utilize the already available machinery
for discrete-time system estimation (Priestley, 1981; Pandit and Wu, 1983; Ljung, 1987). Yet, and
apart from being limited to sampled data records, a number of problems are known to be associated
with them, namely: (a) The estimates of the continuous-time parameters are asymptotically biased;
with the bias errors being due to the approximate nature of the employed discretization [Young
(1981); also see the discussion in Ben Mrad and Fassois (1991), and, Lee and Fassois (1991)], and
also analyzed in the econometrics literature [Wymer (1972); Sargan (1974); Bergstrom (1976)], (b)
additional errors are introduced into the continuous-time parameter estimates due to sensitivity
problems associated with the highly nonlinear discrete-to-continuous transformation (Fassois et
al., 1990); with the related question of sampling also being recognized as nontrivial (Fassois et
al., 1990; Unbehauen and Rao, 1990), (c) the loss of relative order, that is the difference between
the degrees of the numerator and denominator polynomials in the system transfer functions, (d)
the incorporation of a-priori system information into the estimation procedure is very difficult, if
not completely impossible, due to the highly complicated and nonlinear nature of the discrete-to-
continuous transformation (Wu, 1977; Wahlberg, 1989), (e) high computational complexity, which
is further aggrevated by the aforementioned nonlinear transformation.

In this paper a novel Mazimum Likelihood type method for the estimation of continuous-time
stochastic systems from analog data, that utilizes the general Autoregressive Moving Average with
eXogeneous excitation (ARMAX) stochastic model structure and block-pulse function (BPF) spec-

tral representations, and overcomes many of the aforementioned difficulties and limitations, is



introduced. The use of BPF signal representations has led to a number of developments in deter-
ministic system theory and identification in recent years [see, for instance, Wang (1982), and, Jiang
and Schaufelberger (1985)]; the present work, however, appears to be the first that, building upon
them, utilizes BPF expansions in solving stochastic estimation problems.

Within the context of this paper the validity of BPF spectral representations for stochastic
signals is, first, formally justified, and, then, based on them, as well as a set of linear opera-
' tions motivated by recent developments in deterministic identification (Jiang and Schaufelberger,
1985), the problem of interest is shown to be transformed into that of estimating the parameters
of an induced stochastic difference equation driven by the spectral represeﬁtations of exogeneous
(observable) and endogeneous (unobservable) excitations; the latter essentially being the spectral
expansion of a Wiener process. The structural and probabilistic properties of this difference equa-
tion are studied, and the endogeneous excitation is shown to be amenable to a first-order Integrated
Moving Average (IMA) representation driven by a stationary innovations sequence. Based on this,
as well as the structural properties of the stochastic difference equation, an induced, special-form,
discrete ARMAX system with parameters that are expressed as linear combinations of those of the
original stochastic differential equation, is finally obtained.

The mapping between this discrete ARMAX system and the original stochastic differential
equation is shown to be a bijective transformation, and, the discrete system stationary and invert-
ible. These features lead to a Maximum Likelihood type estimation scheme that is based on the
estimation of the discrete ARMAX system from which the parameters of the stochastic differen-
tial equation are subsequently obtained through a simple linear transformation. The linearity of
this transformation, which results in reduced computational complexity while also circumventing
sensitivity problems and allowing for the incorporation of a-priori information into the estimation
procedure, along with the use of analog data without requiring estimates of signal derivatives, and
the elimination of direct discretization procedures, are among the main features of this method, the
performance characteristics of which are finally evaluated via a number of simulation experiments.

The remaining part of this paper is organized as follows: The exact problem statement is
presented in Section 2, some preliminary considerations and the validity of BPF spectral expansions
for random signals are discussed in Section 3, the induced stochastic difference equation is derived in
Section 4, and its structural properties analyzed in 5. The stochastic modeling of the endogeneous
signal spectral representation is discussed in Section 6, and the estimation method formulated in
Section 7. Simulation results are presented in Section 8, and the conclusions are finally summarized

in Section 9.



2 PROBLEM STATEMENT

Consider a continuous-time stochastic system with exogeneous (observable) excitation {u(t)} and

corresponding response {y(t)} described by the ARMAX stochastic differential equation?:

: & o dy(t) RN, du(t) | RS, dRu(d)
Sc . ZO a; dt’ = Z bJ dt] + kZ Ck dtk (1)
1= 7=0 =0

in which the differentiation operations are to be interpreted in the mean-square sense (Jazwin-
ski, 1970), a5 & L cn 1 = 1, and {w(t)} represents an endogeneous (unobservable) zero-mean

continuous-time innovations signal with autocovariance function:

E[w(s)w(t)] = (o3,)* - 6(s — 1) (2)

where §(+) stands for the Dirac delta function. By using the mean-square differential operator D,

the system S¢ may be equivalently rewritten in the notational form:
Se: a’(D)-y(t) = b°(D)-u(t) + c°(D)- w(t) (3)

with a°(D), b°(D), and ¢°(D) being the Autoregressive (AR), Ezogeneous (X), and Moving-Average
(MA) polynomials, respectively, which are of the forms:

a’(D) 2 pre 4 ay _ D" ' +...+a}D +af (4a)
b°(D) £ 63 _ D™t 455 _, D"~ 4 .+ 3D + b3 (4b)
(D) & D14 _ D" 24 .. +c3D+c§ (4¢)

The ARMAX system S¢ is additionally assumed to satisfy the following standard assumptions:
Al. The polynomials a°(D), b°(D), and ¢°(D) are coprime (irreducibility assumption).

A2. The polynomials a°(D) and ¢°(D) are strictly minimum phase (stationarity and invertibility

assumptions, respectively).

A3. The signals {w(t)}, {u(t)}, and {y(t)} are Gaussian, with the latter two additionally be-
ing continuous in probability and having almost every sample path characterized by finite
energy within the observation interval [0,T), namely [ [z()]?dt < oo almost surely (a.s.)
(Jazwinski, 1970).

2The superscript ° is used to indicate quantities associated with the actual system and distinguish them from
those of corresponding candidate models.



As we will see the Gaussianity assumption is not critical for the development of the estimation
method, but only the vehicle in casting the problem into a Maximum Likelihood framework. It
may be thus relaxed, and the method formally interpreted within the broader Prediction Error

estimation context (Ljung, 1987).
The estimation problem considered in this work may be then posed as follows:

“Given analog excitation {u(t)} and response {y(t)} data records generated by the system Sc,
subject to assumptions A1l-A3, over a period of time [0,7T), estimate an ARMAX model of the

form:
Mc:  a(D)-y() = b(D)-u(t) + ¢(D)- w(t) Bluw(syw(t)] = o3 -6(s 1) (5)

that matches the system S¢ as closely as possible.”

3 PRELIMINARY CONSIDERATIONS

The ARMAX equation (1) provides a strictly formal representation of the underlying stochastic
system, as it is well known that the continuous-time white noise signal is not second-order and its
mean-square derivatives fail to exist. A more appropriate, and also convenient for our purposes,
representation may be thus obtained by integrating the differential equation (1) n, times, which,

assuming, for simplicity, zero initial conditions, yields:

ft t t
S y(t) + 020_1/ y(t)dt' + - + a3/ . / y(t') dt' =
0 Jo__Jo
na—fold
t t t t t
=bp 4 / w(t)dt' + - + bg/ / u(t')dt' + 11)(t) +eet € / / B(t')dt! (6)
0 AU 0 0
na—fOld (na—l)—fold

In this expression the integration operations are to be interpreted in the mean-square sense as

well (Jazwinski, 1970), while {w(t)} represents the Wiener process:

B(1) & /O " w(s)ds (7)

which, due to the stated properties of {w(#)}, is Gaussian, continuous in probability, with foT [W(t)]?dt <

o (a.s.), and also zero-mean and with autocovariance function (Jazwinski, 1970):
E[w(s)d(t)] = (oy,)* - min(s, ) (8)

For the development of the estimation method the m-th order block-pulse function (BPF)
spectral representations (Kwong and Chen, 1981) of the signals {u(t)}, {@(¢)}, and {y(t)}, are now

6



used. Within the observation interval [0,7) these signals may be then expressed as follows3:

u(t) 2 um(t) £ i Ur ¥r(t) = UT®(t) (9a)
k=1

y(t) 2 ym(t) 2 i Y ¥r(t) = YTU(2) (9b)
k=1

B(t) = B (t) 2 i Wi vi(t) = WTE(2) (9¢c)
k=1

where {U;} , {Y:} and {W;} represent the sequences of BPF expansion coefficients of {u(t)},
{y(t)}, and {w(t)}, respectively, U, Y, and W corresponding vector representations, and ¥(t) an

m-dimensional BPF vector of the form:
T(t) 2 [$a(t) Yalt) - (@] (10)

with (%) representing the k-th block pulse function of the m-th order BPF function set:

1 for (k-1)L<t<kl
Yi(t) = (k=1,2,...,m) (11)
0 otherwise
and T'/m the block pulse function duration (“width”). For a given signal, say {y(¢)}, the BPF

expansion coefficients can be computed through the expression:

A M kL

T m m
v & [ uonma= 7 oz YOE (b=1eim) (12)

Such BPF expansions are frequently used for the representation of deterministic signals, and it
is well-known, that, in the limit, as m approaches infinity, the set (11) is complete, and the signal
representation {ym(¢)} given by (9b) converges to {y(¢)} pointwise for any deterministic square-
integrable signal defined in the interval [0,7) (Kwong and Chen, 1981). Within the context of
the present work the question of validity of such expansions for stochastic signals is an apparently

legitimate and important one, and is therefore addressed in the following theorem:

Theorem 1: The BPF spectral expansions (9a)-(9c) of the stochastic signals {u(t)}, {y(¢)}, and

{w(t)} are convergent in the following product measure sense (exemplified for the case of {y(t)}):
Tim (P x M{(@,8): [y() = ym(® 2§ =0 Ve >0 (13)

with w denoting an elementary event of the sample space, P the probability measure, and A the

Lebesgue measure on [0,T). o

3Bold-face characters indicate vector/matrix quantities.



The proof is a direct consequence of the completeness of the set (11) as m — oo, the continuity
in probability and finite energy for almost every sample path, that is fOT [y(®))Pdt < o (as.),
properties of the random signals involved (see assumption A3 and the earlier discussion on {w(t)}
), and Theorem 2 of Bharucha and Kadota (1970), which states that the expansion of a random
process {y(t)}, with ¢t € [0,T), in terms of an arbitrary basis in L,(T), the space of square-
integrable functions, is always cdnvergent in the above product measure sense for signals satisfying
the aforementioned conditions, regardless of the orthogonality of the basis used and the boundedness

of the time interval T'.

4 AN INDUCED MAPPING AND A STOCHASTIC DIFFER-
ENCE EQUATION REPRESENTATION

By substituting the expansions (9) into the system expression (6), and using the operational matrix
form of the BPF spectral representation for integration (see Appendix), we arrive at the following

system representation:

ng—1 ng—1
YTZanu_‘F () =UT 3 05, i Fia @)+ WT > 5 i Fil(2) (14)
1=0 1=0 1=0

in which Fy represents the m X m operational matrix form for k-fold integration (see Appendix).
By canceling the vector ¥(t) from both sides of this equation and performing the algebra, we obtain
(nq + 1) equations Ey,...,Ey, of the form:

(T/m)l Ltk na=1 (T /m)i+1 I+k
Ej : ( na—z Y'fi,l+k+1-') = (_——_ a—1—1 U; f,+1 I+k+1—7 )
g (z+1)| J—Z] J J ; (2+2), 1 ]—Z]_ J J
na—1 i I+k
(T/m -
+ Z ((2 -{- 1;' Cra—1-i ZWjﬁ,I+k+l—j) (k = 0711 Tty na) (15)
j=1

with [ representing an arbitrary positive integer and fi; a quantity defined in the Appendix
[Eq.(A.3)]. In a manner analogous to that used by Jiang and Schaufelberger (1985) for deter-

ministic systems, by performing the linear operation:

Z( 1)k( ) ne—k (16)

on the set of equations { Ex}, we obtain the following stochastic difference equation:

Na : Ta Tla -
YA Yipi=) By Ui+ Y CP - Wiy (17)

1=0 1=0 1=0



which is independent of any initial conditions, and, through appropriate reindexing, may be ex-

pressed as:
Sp A°(B)-Yy = B°(B)-Uy + C°(B)- W}, - (k=1,2,---,m) (18)

In this equation {Y}, {Ux} and {Wy} represent the BPF expansions of the response, exogeneous
excitation, and Wiener process, respectively, and A°(B), B°(B), and C°(B), polynomials in the
backshift operator B (B - Y £ Yi-1) and of the respective forms:

A(B) & A3 + A3, B+...+ AS- Bl 4 A3 Bre (19a)
B°(B) £ B3, + B2, _,-B+...+ B B!t BS.B" (19b)
C°(B) £ G2 +C2_ B+...+CS-B 1+ (3. B (19¢)

The coefficients {A?}7*2, may be shown to be related to the coefficients of the original stochastic

differential equation {a?}?%;! through the expressions:

AS = Z(_l)n¢+z 51"3' S _; (20a)
1=0

A= Z(g frr?)' ”""nf( l)k( )f”"""k"m) (i=1,2,...,ns)  (20b)

and similar expressions relate the rest of the coefficients in (19) with those of the original equation

Sc. By defining the continuous and discrete parameter vectors as:

a2(a, ... alag" [(ne + 1) x 1] (21a)
Ao o 1017
b = [bna—l cee bl bo] . [na X 1] (21b)
c=[c, 1 .. gt [ne x 1] (21c)
and:
AS(4z ... A2 AT [(na + 1) x 1] (22a)
B2([B:, ... B BT [(na +1) X 1] (22b)



CECs ... Co 3T [(ng +1) x 1] (22¢)

respectively, the relations between the discrete and continuous system parameters may be com-
pactly expressed as:
A=Dga B=Dgb C=D¢ec (23)

with D 4 being a square matrix with elements determined from (20), and D and D¢ submatrices

of D4 formed by expressing D4 in terms of its column vectors as:

Ds=[da) | ... | da(ma+1) | [(na+1) X (ng +1)] (24a)

and defining;:
Dp=da®@ | ... | da(ma+1) | [(na+1)x 7] (24b)
Do=[dal) | ... | da(ma)]|  [(na+1)xng) (24¢)

These mapping relationships between the continuous and corresponding discrete parameters are
summarized in Table 1 for up to fourth-order systems.

Equations (23) define a mapping relationship 7 between the sets:
c2 {(a,b,c) € R™*! x R™ x R" | with a,b,c of the form (21) withal =5 _; = 1} (25a)
and:

i {(A,B,C) € RMeFt1xReFt1x R+l | A = Dya; B=Dpb; C=Dg c; for all (a,b, &) € C}
(25b)
The nature of this mapping is of particular importance for our developments and is therefore

examined in the following lemma:
Lemma 1: The mapping 7 : C — D is a bijective (one-to-one and onto) transformation.

T is a transformation since for any triple (a,b,c) € C expressions (23) define a unique triple
(A,B,C) € D. T is also onto since by construction of D every triple (A,B,C) € D is the image
of at least one triple (a,b,c) € C. That T is one-to-one follows from the full rank property of the
matrix D 4; a fact that may be shown by using expressions developed by Kraus and Schaufelberger
(1990) in such a way as to rewrite D4 as the product of two matrices that may be verified to
be nonsingular. Therefore the (sub)matrices Dp and D¢ are also full rank, and the one-to-one

property follows.

10



5 STRUCTURAL PROPERTIES OF THE STOCHASTIC DIF-
FERENCE EQUATION S§;

Before the induced stochastic difference equation Sj of Eq.(18) can be estimated, its structural and
probabilistic properties need to be determined. Specifically, issues such as the stationarity of Sj,
its identifiability, and the first and second order properties of the sequence {Wk}, are all essential
for constructing a proper estimation algorithm. It is emphasized that the study of the last issue
is indeed necessary, as the noise dynamics of S are not completely determined by the polynomial
C°(B) alone, but also depend upon the correlation structure of {W;}.

With these ideas in mind we proceed to examine the structural properties of the stochastic
difference equation Sy first. The following theorem discusses the phase characteristics of the poly-
nomials A°(B) and C°(B) of (18), and therefore the latter’s stationarity and “partial” invertibility

properties:

Theorem 2: Consider the continuous-time ARMAX system subject to assumptions Al and A2,
and its corresponding stochastic difference equation Sy given by (18). Each one of the polynomials
A°(B) and C°(B) of the latter will then be:

1. Strictly minimum phase, provided that its continuous-time counterpart is strictly minimum

phase.
2. Minimum phase, provided that its continuous-time counterpart is minimum phase.

3. Nonminimum phase, provided that its continuous-time counterpart is nonminimum phase.

(a) Let us examine the A°(B) polynomial first.

(al) Consider the system y(t) = ¢°(D) - u(t) with the strictly proper [see (4)] transfer function
9°(D) = b°(D)/a°(D). For a strictly minimum phase a®(D) the system ¢°(D) is asymptotically
stable (Chen, 1984), which implies that for every bounded excitation the response will be also
bounded, that is:

V{u@®)}: [u@)le <00 = |lyt)lleo < oo (26)

where ||%(2)||co = supey, |u(t)| with Jy = [0,00). Now consider the corresponding discrete system
G°(B) = B°(B)/A°(B) induced by the BPF expansions of fixed width T//m. Since G°(B) is
(by Lemma 1) unique, its response {Y;} to any given excitation {U;} will be also unique. An
arbitrary bounded excitation {Ux} can be, however, constructed from a bounded {u(t)} through
(12); select for instance u(t) = U for (k — 1)L < ¢ < kL. From (26) the response {y()} to the

11



excitation {u(t)} will be bounded, and, therefore, the (uniquely-determined) response {Y;} will be

also bounded because:

Welleo < 5 [ 100 - I86)lon -
m k&
= 7 WOl [[" = @l < o (21)

where ||Y;||oo = ‘suptE 7, Y| with J; = [1,00)%. As a consequence, an arbitrary bounded excitation
{Ux} results in a bounded response {Y%}, the system Yy = G°(B) - Ui hence is asymptotically
stable, and the polynomial A°(B) strictly minimum phase (Chen, 1984).

(a2) For a minimum phase a°(D) the system g¢°(D) = b°(D)/a°(D) is stable in the sense of

Lyapunov, and, therefore, its impulse response function {g(¢)} bounded:

lg()lloo < o0 (28)

The corresponding discrete system G°(B) = B°(B)/A°(B) induced by the BPF expansions has

impulse response function:

Ge=2 [T gt) - vn(t) - dt (k=1,2--") (29)

T Jo
By taking the norms of both sides of (29), and using (28), we have:

”Gk”oo

IA

% /0°° lg(@®lloo - [1¥8(?)lo - dt
m kL
= Tl [” , a

_)_

= Jlg®)lleo < o0 (30)

which implies that {G\} is also bounded, and, thus, G°(B) stable in the sense of Lyapunov. As a
consequence A°(B) is minimum phase (Chen, 1984).

(a3) Now assume that a°(D) is nonminimum phase. Then the system ¢°(D) is not stable in
the sense of Lyapunov, and its impulse response function grows unbounded (||g(t)||cc = o). By
using the continuity of g(¢) implied by the fact that g°(D) is strictly proper [see (4a), (4b)], the
unboundedness of {¢g(t)} implies that:

YM >0 3 at least one interval A such that A C [(k - 1)%,/(:%) for some value of &,

and for which |g(¢)|> M Vte A (31)

*Notice that although ||Xk||cc and ||z(?)||c designate different types of norms, the former may be interpreted
within the context of the latter by defining z'(t) = X for (k— 1)L <t < kL, so that: || Xk[leo = [|Z'(t)]|co-

12



The impulse response {G}} of the discrete system G°(B) induced by the BPF expansions will then
be, for that particular value of k:

m [FZ m [*5
t)-dt > —/ M . dt
9(t) T Jporyz
T

M (g(t) >0 te A) (32)

k= T (k-1)L

G = — b d —— ¢ M- -dt = -M
= t)-dt < -dt = t1)<0 teA 33
E=T J 1)Tg( ) T o)z (9() ) (33)

Based on this we conclude that:
VM >0 3 atleast one k such that: |Gg| > M (34)

which implies that {Gy} grows unbounded. As a consequence G°(B) is not stable in the sense of

Lyapunov, and A°(B) is nonminimum phase.

(b) The fact that the above results hold for the polynomial C°(B) as well may be shown as follows:
Rewrite the ARMAX system expression S; [Eq.(6)] in terms of the Wiener process {@(t)} in the

-following notational form:

s a®(D) - y(t) = b°(D)-u(t) + &©(D)- i(t) (35)
with:
@D)2 D-(D) =, 1D+ _,D" 4 ...+ D>+ 3D +0 (36)
By defining: r
¢ é[c%ﬂ_l e g 0] (37)

one may readily show that the vectors & and C are related through the transformation expression:
C=Dy-¢ (38)

which is of exactly the same form as the first of (23) that relates A and a. As a consequence all

previous results pertaining to A°(B) are fully applicable to the polynomial C°(B) as well.

Corollary 1: Lemma 1 and Theorem 2 imply that the converse of the latter holds for all autore-

gressive and moving average polynomials with coefficients in D.

Corollary 2: An immediate consequence of Theorem 2 and assumption A2 pertaining to the strictly

minimum phase nature of a°(D) is that the stochastic difference equation Sp is stationary.

The structure of the polynomial (:’°(B) is of particular importance in our developments, and

therefore further discussed in the following theorem:

13



Theorem 3: The polynomial é’°(B) of the stochastic difference equation (18) has a distinct root at
B =1 and can be factored as:

C°(B) = (1~ B)-C°(B) (39)

with C°(B) being minimum phase. ]

Proof:

The fact that C°(B) has a root at B = 1 may be shown by using a known (Jiang and Schaufelberger,
~ 1985) property stating that the sum of the A’s is proportional to aj, specifically: Tl AL =
(T /m)™=a3. Because of (38), this is also applicable to C°(B), and therefore:

Na
> C? = C°(B)|p=1 = (T/m)y"& =0 (40)
1=0
since é§ = 0 [see (37)]. The fact that the root B = 1 is distinct and C°(B) minimum phase, is a
consequence of Theorem 2 which implies that C°(B) has to be minimum phase since &(D) is such

[based on the definition (36) and assumption A2]. a

6 STOCHASTIC MODELING OF THE DISCRETE ENDOGE-
NEOUS EXCITATION SIGNAL {W;}

For the development of an estimation method for the stochastic difference equation Sj [Eq.(18)],

the probabilistic properties of the endogeneous excitation signal {Wk}, defined as:

T
= A M .
W, =— w(t) Yr(t) dt k € [1,m] (41)
0
need to be also analyzed, and a proper stochastic representation of it developed. Due to the
linearity of (41) and the Gaussianity assumption A3,'{Wk} will be Gaussian, and thus completely
characterized by its first and second-order moments. The first-order moment of {W;} can be

immediately verified to be zero:
- m (T
EWy] = 7 /0 E[@(t)]-ve(t) - dt =0  Vke[l,m] (42)
since the Wiener process is itself zero-mean. For the calculation of the second-order moment of

{W}} we proceed as follows:

me

W] = | [ apods [ amal

m?(02)? k% % )
= %)_/(k-l)l (Igl)lmm(s,t)-ds'dt (43)
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Consider the cases:

(a) Case k=1:
. 2 0)2 s 2 2 t
EW? = (") / / t-dt-ds + ("w) / [ psedsedt
-NE J(k-1)E -1)Z Jk-1)L
& r+11 (44)
where:
m2(02)? [k 1 T2
;= ™) / = =(k - 12—
T2 Jk-1)Z |2 ( Vo
m?(o2)? T3 T2 T T3 T?
—-—1_,2——-[6k3 (k:—-l)2 k—-————(k—l)3—+ (lc—l)2 2(k—1)
[y, 1T, L
By symmetry:
’ _ 1 . l I_ 0\2
II _[2k 3] m(aw) (46)
and thus: T
172) z = 012
EWH =(k-3) = (02) (47)

(b) Case k > I:

E[W, W]

2 0\2
(") / / t-dt-ds
-1)Z Ja-n&

2 2 1L kL
- m—%ﬂ’-)- / ™ / ™ ds
T (-1 (k-1)L

= (1 _ 5) I, (02)? (48)

(c) Case k < I:

kL 1L
m

. 2(,0)2 =
EW,W)] = .nl_(_%i/ s-ds-dt
T *k-1Z Ja-1Z

2( 02 kﬁ (.rlnl
= 20w (02’”) / sds / dt
T (k-1)L (1-1)Z
= (k=3) = (@2) (49)
Based on (47)-(49) we then have the following expression for the autocovariance of {Wi}:
(k= 3)E(ay)? k=1

E[ka] = { (min(k,l) _ %)%(0-3,)2 k#1 (50)
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Clearly, since this autocovariance is not a function of the relative lag k — I, the sequence {W}}

is nonstationary. In order to further investigate its structure we define a new sequence {Z} as

follows: ,
A =~ ~
Zg = Wi — Wiy (51)
{Zy} is, obviously, zero-mean as well, and with autocovariance E[Z;Z)] that may be computed as
follows:
(a) Case k =1:
E(Zf] = E[W}]-2EWiWi-1]+ E[Wi4]

(k=322 -2(k - 1-3) oo+ (k-1 - ) T(o2y? = 21

(2)? (52)
(b) Case k-1 =1:

ElZkZk] = EWiWioa] - EIWE_,] - EWiW,_o] + E[Wi_1Wi_s]

= (k-1-)m el (k=1- D) ooy (k-2-3) Zoo )+ (k-2- 1) Liony
= (o) (53)
(c) Case k—1> 1:
E(Z:2]) = EWWi] - EWiaaWi] = EWiWii] + E[W,_,Wiy]
= (1-3) (1= 3) =@y~ (1-1- D) =(ar+ (1 -1~ 1) Z(o2)?
= 0 | (54)

Observe that E[Z;Z;] is not a function of k or I, but depends upon their difference £ — [, and,
by using the symmetry property of the autocovariance, we have:
2L(o3) k-1=0
E[ZyZ)]) =< tL(a2)? |k-1Il=1 (55)
lk—1]2>2

o

This implies that {Z;} is a stationary MA(1) process (Pandit and Wu, 1983), and may be thus
modeled as:
Zk = N+ 67Ny (56)

with {N.} representing a discrete zero-mean Gaussian innovations (uncorrelated) sequence with

variance (0%,)?: By comparing the autocovariance of the sequence {Z;} to that of a generic MA(1) .
N y g

process given as:
(o)L + (692 k—1=0
raa(k—1) = { (03263 k-1 =1 (57)
0 lk—1]>2
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we obtain the following parameters of an invertible MA(1) representation of {Z}:

6° = 0.267949 (58a)

T
(o%)* = 0.622008-77;(03,)2 (58b)

These results lead to the following important lemmas:

Lemma 2: The BPF expansion series {Wi} of the Wiener process {w(t)} can be modeled as a
nonstationary Integrated Moving Average IMA(1,1) process (Priestley, 1981) of the form:

(1-B) Wi =(1+6}B)-Nx (59)

with 6 given by (58a) and {Ni} being a Gaussian zero-mean innovations sequence with variance
given by Eq.(58b).

7 THE ESTIMATION METHOD

By substituting the IMA(1,1) representation (59) of the discrete endogeneous excitation signal,
and also the form of C°(B) given by (39), into the difference equation Sj [Eq.(18)], we obtain the

following stochastic difference equation:
Sp:  A°(B) Yy =B°(B)-Ux+C°(B)-(1+6B) N Ny ~ 1id. N(0,(0%)?)  (60)

with i.i.d. standing for independently identically distributed. Since 65 is a-priori known, we may

reexpress Sp in terms of the filtered sequences:
UF£1+6B) .U, YF2(1+6B) .1, (61)

and by additionally normalizing the polynomials A°(B), B°(B), and C°(B) by dividing by A7,

we obtain the following normalized stochastic difference equation:

Spr: AY(B)-YF =B%(B)-UF +C°(B)- N} N'i ~ iid. N(0,(03:)%)  (62)
with:

A'(B)2 1+ AYB+...+ A% B (63a)

AE[1AY AL TEA/A, (63b)
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B (B)2 BS + B{B+...+ B. B (63¢)

B'2(B By ... BT £ BJA°, (63d)
C”(B)21+CYB+...+C _ B! (63e)
cency ...ce_Fec/es_ gy, (63f)
and: C° C‘-,o .
TAY ng—1 A n
= —==_— N, = 2
Nj 4. Ve = g Ny (64)

being a zero-mean innovations sequence with variance:
o \2 o o B 0\2
(03)? =(Cram1/43,) " (o) (65)

The normalized stochastic difference equation Spr [Eq.(62)] with the stationary zero-mean and
uncorrelated endogeneous excitation { N/} can be now identified as a discrete-time ARMAX(nq, ng,ng—
1) model, which is:

1. Normalized by construction (the leading coefficients of the AR and MA polynomials are equal
to unity),

2. Stationary, since A°(B) is strictly minimum phase by virtue of corollary 2, which guarantees

that A°(B) is strictly minimum phase,

3. Characterized by a minimum phase MA polynomial C°l(B) by virtue of assumption A2 and

Theorem 3, which guarantee that C°(B) is minimum phase,

and is therefore identifiable. The proposed estimation method is based on both the identifiability
of Spr and the bijective transformation nature of the mapping between the set of all systems of
the form Sp and that of continuous-time ARMAX systems of the form S¢ [see Eq.(1)]. This latter
property is formally given by the following theorem:

Theorem 4: The mapping 7, between the sets:

C. 2 {(a,b,c,(afu)z) € R™FIxR"™ xR"xR* | with a, b, c of the form (21) withaj, =cp _; =1
| (66a)
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and:

. 2 {(A',B’,C',(a;’wf) € RMetl x R+l x R™e x R | with A’, B’, C' generated through

(23), (36), and (63) , and (a%/)? by (58b), (65) by all (a,b,c,(02)?) € c,,} (66b)
is a bijective transformation. a
Proof:

First 7, is a transformation as for any 4-tuple (a, b, ¢, (02)?) € C, expressions (23), (36), (58),
(61), (63), and (65) define a unique 4-tuple (A’,B’,C’,(d%,)?) € D,. T, is also onto since, by
construction of the set D/, every 4-tuple (A/,B’,C’,(0%,)?) € D, is the image of at least one
4-tuple (a, b, ¢c,(02)?) € C,.

The fact that 7, is one-to-one may be shown as follows: Assume a 4-tuple (A’,B’,C’, (0%:/)?) €
D’. A corresponding 4-tuple (a,b,c,(c3)?) € C, may be then computed by the following sequence

of operations:

a 2 Dy t-A | (67a)
a = afag, (67b)
A =Dy a (68a)
b = Ag'-B', - A3, | (68b)
C”(B) = (1- B)-C°(B) (69a)
¢ £actC, (69b)
c = c¢/cp,1 (69¢)
C =D¢-c (70a)
032 m 1 An ? 0 \2
(ou)" = T X 0.622008x<é;;:) x (o) (70b)
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where B, and C! represent arbitrary n,-dimensional subvectors of B’ and C, respectively,

Agp, Ac, appropriate n, X n, submatrices of Dg and D¢, respectively, and a = [ap, ceadt

)

c 2 [c3._1-+-c3]T intermediate (unnormalized) parameter vectors. Due to the nature of these
expressions and the full rank property of D4, Dg, and D¢ (and thus of Ag and A¢), the 4-tuple

(a,b,c,(03)?) thus determined is indeed unique. a

The proposed estimation method is thus composed of two main stages: In the first stage a

discrete-time ARMAX(nq, 74,7 — 1) model of the form [compare with Sp/ given by Eq.(62)]:
Mp:  A(B)-Yf =B (B)-UF +C'(B)-E, (71)

with {E}} representing the model’s one-step-ahead prediction error sequence, is estimated based
on the available sequences {UF }7-, and {Y{'}7.,, whereas, in the second, the parameter estimates
of the continuous-time ARMAX system S¢ are obtained through expressions similar to (67)-(70).
Due to inevitable estimation errors, however, the actually obtained model Mp: may not belong to
the set D, (Mps ¢ D.), in which case it will have no image within the set C, of continuous-time
ARMAX systems. This problem may be dealt with by assigning to Mps that continuous-time
ARMAX model M¢ € (. whose image in D/, is, in some appropriate sense, closest to that of
the estimated Mp:. Within the context of this work we have chosen to achieve that by using the
Moore-Penrose pseudo-inverse, and the parameters of the continuous-time ARMAX process may
be then estimated as follows [compare with (67)-(70)]:

For the estimation of the AR parameter vector a°:

D;' A (72a)

(72b)

where A’ represents the estimate of A®' [the coefficients of the polynomial A% (B)], 4 2 [&,, ---8,40)7

. . ~ A . A
an intermediate parameter vector, and a = [y, - .. alao]T the vector of the final AR parameter es-

timates [the estimates of the coefficients of the polynomial a°(D)]. o

For the estimation of the X parameter vector b°:

>

A=D,a (73a)

b = (DLD3)"! DLB' A,, (73b)
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where A is the vector of the estimated coefficients of A°(B), B’ the vector of the estimated co-
efficients of B°'(B), and b the vector of the final X parameter estimates [the estimates of the
coefficients of the polynomial 5°(D)]. ]

For the estimation of the MA parameter vector c°:

&"(B)2 (1 - B)-Ti(B) (74a)
¢ 2 (DIDe)! DL (74b)
e = é/éna'—l (74C)

where C'(B) is the estimate of C(B)/Chn,, C’ the vector of the coefficients of E”(B), @(B) the
estimate of C’(B), ¢ an intermediate estimate, and € = [é,,...¢1é]7 the vector of the final MA

parameter estimates [the estimates of the coefficients of the polynomial ¢°(D)].

For the estimation of spectral height (az_,_)_z_:

& = Deé (75a)
m 1 A\ 2
~2 __ il Na 5Aars
7w = T 0.622008 (E'n ) (n) (75b)

Summary of the Estimation Method:

Based on the above, the proposed estimation method may be summarized as follows:

Step 1: Obtain the BPF spectral representations {Ux }7+, and {Yx}7% of the exogeneous excitation
{u(t)} and corresponding response {y(t)} signals, respectively, by using the operation (12).
Step 2: Obtain the filtered representations {U{ } and {Y;F'} by using expressions (61).

Step 3: Fit discrete ARMAX(ng,n4,n, — 1) models of the form (71) to the above filtered represen-

tations for successively higher values of n,, by using Maximum Likelihood estimation. In each case

compute the Bayesian Information Criterion (Akaike, 1977):

ng logm

BIC(ng) = log(&N/)2 + > (76)

where ny denotes the total number of estimated parametefs, (6n+)? the estimated variance of the

discrete innovations { N}, and m the length of the BPF spectral representations used. The model
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that yields the smallest BIC is selected as best.
Step 4: Obtain the estimates of the continuous-time ARMAX system parameters through expres-
sions (72)-(75).

Remarks:

The following remarks are finally in order:

(a) Ezistence and Uniqueness of the Estimates a, B, ¢, and 72

The existence and uniqueness of the continuous-time ARMAX system parameter estimates is
a consequence of Theorem 4 and the full rank property of Dg and D¢, which, in turn, guaran-
tees (Barnett, 1990) the existence and uniqueness of their Moore-Penrose pseudo-inverses used in
- Eqgs.(73b) and (74b), respectively.

(b) Consistency of the Parameter Estimates.

As is well-known, the Maximum Likelihood, or, in fact, the Prediction Error, estimator of the
parameters of a discrete ARMAX system is, under mild assumptions, consistent (Ljung, 1987),
and, therefore, such is the estimator of Sp: [Eq.(62)]. Hence, asymptotically (m — o0), the
estimated model-M‘D: € D! (in probability), and since the parameters of the continuous-time
ARMAX system are obtained as rational functions of the former [see Egs.(72)-(75)], the application
of Slutsky’s lemma (Cramer, 1946) implies that the estimator:

§2(aTbT eT o2 |7 (17)
will be also consistent, that is:
72 0° as m — oo (78)

where 6° represents the true parameter vector and m the length of the BPF spectral representations
used. a

8 SIMULATION RESULTS AND DISCUSSION

In this section the performance characteristics of the proposed method are evaluated via numerical
simulations. For a given continuous-time ARMAX system of the form (3) and specified exogeneous
excitation {u(t)}, the response signal {y(¢)} is calculated by integrating each one of the following
differential equations:

a*(D) - i(t) = B°(D) - u(t) (79a)

a°(D) - 4a(t) = (D) - w(t) (79b)
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and superimposing their solutions:
y(t) = 91(2) + y2(2) | (79¢)

For the faithful computa,tion.of continuous-time responses the integration step At is selected
such that 20 < 7/At < 200, with 7 representing the smallest system period or time constant.
Additional care, is, however, needed for the simulation of the stochastic differential equation (79b).
Indeed, the continuous-time innovations {w(t)} is approximated by discrete white noise, and the
differential equation is integrated by using a fourth-order Runge-Kutta method. In order for the
second-order characteristics of the resulting response to match, at the beginning and end of each
integration step, those of the theoretical solution, the variance of the discrete white noise is selected
equal to:

b =3.6-(c2)%/ At (80)

‘with (02,)? representing the desired spectral height of the continuous-time white noise (Riggs and
Phillips, 1987).

In all cases examined, the exogeneous excitation signals are composed of trains of pulses with
amplitudes forming a sequence of Gaussian independently identically distributed (i.i.d.) random
variables with zero mean and unit variance, and the BPF expansions are computed from (12) by
using Simpson’s composite rule (Burden and Faires, 1985). The estimation of a discrete ARMAX
model of the form (71) is then based on the computed BPF spectral records, and the estimated
model is validated by examining its predictive ability and the characteristics of its residual (the one-
step-ahead prediction error) sequence computed from Eq.(71) for the estimated parameter values.
For a good model the latter must be uncorrelated, and this is judged by examining whether its
normalized sample autocorrelation lies within the 95% confidence interval of +1.96//m (Pandit
and Wu, 1983).

Once an estimated discrete-time model is succesfully validated and accepted as an accurate sys-
tem representation, the continuous-time ARMAX parameters are obtained through the expressions
(72)-(75). Estimation accuracy is finally judged in terms of parametric error indices of the form:

_lo-e|

E, = X 100% 81
Y (81)

with # representing a selected parameter vector and || - | Euclidean norm.

Estimation Results
The estimation of the underdamped ARMAX(2,1,1) system (System A):

(D* + 2D + 16)-y(t) = (D + 10)-z(¢) + (D + 9) - w(?) (82)
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is considered first, based on data records that are 100 secs long (T' = 100 secs) and generated with
white noise sequences having spectral heights (¢3,)? = 0.005 and (¢2,)? = 0.01. The integration
step and BPF width were selected equal to T'/m = 10At and At = 0.01 secs, respectively. In both
of the considered cases discrete ARMAX(2,2,1) models were estimated as statistically adequate,
and, as the results of Figure 1, that depicts the normalized sample autocorrelation of the residuals
lying within the 95% confidence interval of +1.96//m, indicate, were successfully validated. From
these models the continuous-time ARMAX system parameters were obtained, and the final esti-
mation results are summarized in Table 2, with Figure 2 also comparing the estimated frequency
response characteristics of both the 8(D)/a(D) and ¢(D)/a(D) transfer functions to their theo-
retical counterparts. As these results demonstrate excellent accuracy is achieved, with parametric
percentage errors confined to reasonably small values. Similar remarks may be made from Table
3, that presents the results of a Monte Carlo analysis of the method based on twenty data records
generated by different seed numbers and (¢2,)% = 0.005.

Next, the estimation of the overdamped ARMAX(2,1,1) system (System B) described by the
equation:

’ (D? + 3D + 2)-y(t) = z(t) + (D + 10) - w(t) (83)

is considered based on data records that are 100 secs long and generated with white noise sequences
having spectral heights (¢2)? = 0.00005 and (02 )% = 0.0001. The integration step and BPF width
were selected as in the previous example, that is T/m = 10A¢ and At = 0.01 secs. In both of the
considered cases discrete ARMAX(2,2,1) models were estimated and successfully validated (Figure
3), from which the final estimation results presented in Table 4 were obtained. The achievable
accuracy is very good, and the estimated frequency response characteristics nicely match the corre-
sponding theoretical curves (Figure 4). A Monte Carlo analysis based on twenty data records and
()% = 0.00005 (Table 5) further confirms the excellent characteristics of the method.
In this final case the ARMAX(3,2,2) system (System C):

(D? + 11D? + 424D + 1200)-y(t) = (2D? + 60D +800)-z(t) + (D? + 12D + 225)-w(t) (84)

is considered based on data records that are 37.5 secs long and generated with white noise sequences
having spectral heights (¢2,)? = 0.005 and (¢2,)? = 0.01. The integration step and BPF width were
selected as T/m = 8At and At = 3.125 x 1072 secs, respectively. Discrete ARMAX(3,3,2) models
were estimated as adequate (Table 6) and successfully validated (Figure 5). The final estimation
results, corresponding frequency response characteristics, and Monte Carlo analysis of the method
[(¢2,)? = 0.005), are presented in Table 7, Figure 6, and Table 8, respectively, from which very good

accuracy is, once again, observed.

24



9 CONCLUSION

In this paper a novel and effective Maximum Likelihood type method for the estimation of continuous-
time stochastic ARMAX systems from analog data records was introduced. This method is based

on block-pulse function spectral representations, through which the problem is transformed into

that of estimating the parameters of an induced stochastic difference equation subject to endo-

geneous and exogeneous excitations. The study of the structural and probabilistic properties of

this equation was shown to further reduce the problem into that of estimating a special-form and

identifiable discrete ARMAX system from spectral data. The method was then based on a number

of key properties that this discrete ARMAX system was shown to possess, including stationarity,

invertibility, and the bijective transformation nature of its mapping relationship with the original

continuous-time system.

Among the unique features and advantages of the proposed estimation method, that make it
especially attractive for applications, are: (a) The fact that neither estimates of signal derivatives,
nor direct discretizations that lead to asymptotic bias errors, are used, (b) no prefilters or a-priori
information regarding the system dynamics is required, (c) the data are allowed to be in analog
form; a fact that, apart from its obvious significance, also implies that non-uniformly sampled
and/or missing data can be also accomodated if necessary, and, (d) the relationship between the
discrete and the original continuous-time system parameters is linear, so that sensitivity problems
associated with highly nonlinear transformations are circumvented, the computational complexity is
alleviated, and a-priori system knowledge can be readily incorporated into the estimation procedure.

The effectiveness and excellent performance characteristics of the proposed method were finally

verified via a number of numerical simulations.
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APPENDIX: The 6perational matrix for integration of signals in

the BPF representation

Consider the m-th order BPF expansion of the signal {y(t)}, as given by expression (9b). The

k-fold integral of {y(t)} may be then expressed as:

t t -
/ / y() - dt' = XTF, 0 (2) (A1)
0 0
k—fold
where:
fe1 fra2 fr3 frm
NZO G 0  fra fro2 Srm-1
Fp (H) ] 0 0 fl:,l fk,r:n—Z [m x m] (A.2)
0 0 0 e
and:
fixg =1 (Vk)

fei = T —2(i = DFFL 4 (5 - 2)kH

(i=2,3,...,m) (A.3)

The matrix Fy is called the k-th order operational matrix for integration (Wang, 1982). Finally

note that the approximation in (A.1) is due to the truncation error associated with the m-th order

BPF signal representation, and, due to Theorem 1, converges to zero as m — oo.
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Table 1: Relationships between the coefficients of S¢ [Eq.(1)] and Sp

(Eq.(18)].
Ist-order system | A; =ay + 3
Ao = 1—11 + ——-ao
By = 3=bg
By = 124,
Cl = Cp
Co=-co ~
2nd-order system | Az = az + 3 Lo + %(%)2;0
Ay = —2a, + %(%)2(10
Ao = a3 - 3Za; + 1(£)%a0
By = 30b1 + b
Bl 2(”&‘)2b 6( )
By = — %b + S(E)zb
q2 =c + %LCO
01 = —261
éO =C1 — 'I'%CQ
3rd-order system | As = a3z + 3=a, T+ 1)1 + £ (a0
Az = “303 - llaz + l(‘t)""’al + 41(‘42)3

A1 = 3(13 - ——a, 2( 2
Ap = —as + 1’?!102 - (’Z:)zal + _1_('51)3%

By =3 2m s(r)2b ‘*“‘( )31’

By = “3Zby £ (2 Py 41 5%

PR T 1
Bo —%ib '1'( )2b +24 )3b
Cz=c3+3 c1+6(f)2
C2—- "362—"—01-}-2( )2
01—302———-0 - ( )2
Co——cz+1%c1— ( L2,

4th-order system | A4 = aq + 303 + 3(= )2 + = (L£)ar + %5 %4%
Az = ‘4‘14""13'*‘1( )2 a2 + 5(Z)%a1 + B(L)ao
A2—6a4—-( )2a + ( )4
1 = ~da, + Ta + (5w~ $(Z )0 + B(Tytao
Ao = a, — $Zas + 1L, ~ (L s+ LS an
By b+6( )2b+ Tb1+2()b0
Bs__riba__‘_ ( )2b + gT3b + 13 F)Atb
By = (L2, + 14(ZL )b
Bl +Tm 3( )2b T3b + )4b
Bo= —§Zp, + (L )26 - T3b1+m( )4bo

Ci=cs + e+ 3(2)e +24< Feo

Ca = —4ez — Ley + 3( L32¢y 12(m)e'co
Cz = 663 -—_ ( )261

le = —4dcz + e+ 3( Yeq ~ li(%)%o
Co = e — 1Ly + 1 (L Ve, - %(;ﬁ-)am

30




Table 2: Estimation results for System A at two different noise powers.

Process Estimated Parameters ¢
Parameters | o2 = 0.005 | o2 = 0.01
az 1 1.0000 1.0000
ay 2 2.0406 2.0256
ao 16 16.1395 16.0939
b1 1 1.0537 1.0623
bo 10 10.1251 10.1007
a1 1 1.0000 1.0000
Co 9 8.7383 8.7138
EX (%) — 0.8992 0.6026
EZ (%) — 1.3544 1.1783
ES (%) — 2.8901 3.1605 |
[ o2 — | o0.0112 0.0223

%For the simulation /At = 157.

Table 3: Monte Carlo results for System A.

Process Estimated Parameters
Parameters | Mean Value | Standard Deviation
ay 2 2.0249 0.0833
ag 16 16.0771 0.2961
by 1 1.0364 0.0293
bo 10 10.0765 0.2234
o 9 8.4713 0.5563
E2(%) — 0.5025 —
EZ (%) — 0.8426 —
ES(%) — 5.8746 — ,
[ o2 | 0005 | 0.01144 | 0.00066 I
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Table 4: Estimation results for System B at two different noise powers.

Process Estimated Parameters °
Parameters | o2 = 0.00005 | o2 = 0.0001
as 1 1.0000 ~1.0000
a 3 3.0570 3.0618
ag 2 2.0181 2.0194
by 0 0.0014 0.0021
bo 1 1.0203 1.0217
1 1 1.0000 1.0000
co 10 9.6879 9.7009
EX(%) — 1.5995 1.7324
EZ (%) — 2.0381 2.1774
ES (%) — 3.1054 2.9757
2 1T — 1.1084 x 10~% [ 2.2154 x 10~*

%For the simulation /At = 50.

Table 5: Monte Carlo results for System B.

Process Estimated Parameters
Parameters | Mean Value | Standard Deviation
a, 3 2.94573 0.12459
ao 2 2.00387 0.09451
by 0 0.00029 0.00312
bo 1 1.00906 0.01792
co 10 9.24614 0.62962
EX(%) — 1.50911 —
EZ(%) — 0.90632 —
ES (%) — 7.53856 — -
[ o2 T 5x107° [114245x10~*] 6.92103x 10—° |

Table 6: Order determination results for System C (o2 = 0.005).

System order n, BIC
2 -8.16820
3 -8.77149
4 -8.77039
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Table 7: Estimation results for System C at two different noise powers.

Process Estimated Parameters °
Parameters | o2 = 0.005 | 0% = 0.01
a3 1 "1.0000 1.0000
as 11 11.7901 11.9525
a 424 433.4398 434.9380
ao 1200 1268.5162 | 1304.6710
b, 2 2.0402 2.0266
b 60 64.3514 65.2344
bo 800 822.3662 827.7895
Co 1 1.0000 1.0000
a 12 12.7478 12.8618
co 225 223.1065 224.7139
E2(%) — 5.4345 8.2691
EZ(%) — 2.8402 3.5249
ES (%) — 0.9035 0.4030
o = 0.0103 0.0205

%For the simulation /At = 100.

Table 8: Monte Carlo results for System C.

Process Estimated Parameters
Parameters | Mean Value | Standard Deviation
as 11 11.3989 0.2347
ay 424 431.7177 4.7444
ao 1200 1225.5114 67.7825
b 2 2.0780 0.0281
by 60 62.0788 1.5323
bo 800 824.2760 23.5585
c 12 12.6146 1.1445
o 225 232.4035 13.7799
E2X (%) — 2.0944 —
EZ(%) — 3.0371 —
ES(%) — 3.2970 —
[ o2 T 0005 [ 001023 | 0.00045 |
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