Trajectory optimization by a direct descent process
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ABSTRACT

The problem considered is that of trajectory optimization
using step-by-step descent to minimum cost along the
direction of the cost gradient with respect to the control.
Using a hybrid computer, the gradient is computed di-
rectly as the response to nearly impulsive control perturba-
tions. A method is presented for computing the gradient
when several terminal constraints are enforced. Examples
of application of the method are presented. It is concluded
that the direct gradient computation method has some
significant advantages over other methods.

INTRODUCTION

Computer methods of solution of variational problems are
of considerable interest because only the simplest ideal-
ized problems can be treated analytically. The variational
problem of space vehicle trajectory optimization has re-
ceived much attention because of the relatively large in-
crease of pay load in orbit due to even a small percentage
decrease of fuel required.

A practical computer procedure for trajectory optimiza-
tion is iterative in nature, giving a step-by-step approach
to the optimal control program. The steps are taken in the
direction of steepest descent, along the function-space
gradient of the cost with respect to the control. Determi-
nation of the gradient is the major computer problem; if
this can be accomplished rapidly and economically, a
practically optimal control usually can be found easily.

The difficulty of computing the descent direction in-
creases greatly when the control is restricted by the re-
quirement that the trajectory must satisfy a set of terminal
conditions or constraints. Imposition of terminal con-
straints changes the steepest descent direction from that
of the cost gradient to the direction determined by an ap-
propriate linear combination of the cost gradient and the
gradients of all of the constraints with respect to the
control. Thus the cost gradient and each of the constraint
gradients must be computed, and, in addition, auxiliary
computation must be performed to determine the coef-
ficient multipliers of the constraint gradients.
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The function-space gradients of the cost and the termi-
nal constraints with respect to the control also may be
regarded as the responses at the terminal time to unit
impulsive changes of the control which were applied at
earlier times. High-speed iterative analog and hybrid
computation methods which have recently become avail-
able permit one to introduce directly an approximately-
impulsive change of control and determine the resulting
change of the cost and any other terminal quantities, all
simultaneously. This paper is concerned with a very direct,
simple method of determining the cost and constraint
gradients and with methods of using the resulting informa-
tion to obtain an optimal control program.

STATEMENT OF THE PROBLEM
We are concerned with variational problems of the Mayer
type:

a. The cost, J, to be minimized by selecting the best
control or driving function, «(t), depends only on the
terminal values of the state variables, x; | t—tp and the
terminal time, tgp:

J=Jxp, tp) i=1....n (M
where
Xir = x;(t)
t—=tp (2)
b. The state variables must satisfy the equations of mo-
tion, which usually are nonlinear.

X; == filxq, X2, ... xaat) 0<t<tp
x:(0) = x 3)
i=1...n

¢. There may be a number of terminal constraints which
must be satisfied:

drxiptr) =0 k=1...m<n 4)

A simple example of the type of problem considered is
the celebrated “brachistochrone” problem which may be
formulated as follows:

Delermine the shape of a wire down which a bead will
slide, without friction, from the origin to x., y. in least time.
The path shape is specified by the path angle from the
horizontal as a function of time, a(t).

$o==Xp— X, =0

P1=yr—Ye=0

Xe,Ye
t=tr

Y

Figure 1-Brachistochrone problem 7
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In this case the equations of motion are:

X1 = V=g sin a« = f1(xy,Xe,X3,a)
X2 = X = X1 COS a = falXy,X2,X3,a) (5)
X3 == ¥ = X1 sin a = fa(Xq,X2,X3,&)

The angle of the wire to the horizontal is the control or
driving function, «(t). The terminal constraints are:
Py =xp—x,=0
(6)
by =yp—y. =0
The cost, which is to be minimized, is just the terminal
time:
JXip, tp) =ty 7)

Problems of the Mayer type have been treated exten-
sively, using gradient methods, by Kelley?, Bryson, Carroll,
Mikami, and Denham?, Wingrove and Raby?, and others.
These investigators have used two entirely different meth-
ods to determine the function-space gradient of the cost
with respect to the control. Kelley, Bryson, et al., have used
indirect adjoint equation methods, whereas Wingrove and
Raby measured the gradient directly as the response to an
“impulsive” change of control.

The object of the present investigation is to develop the
direct gradient method, using procedures related to those
of Wingrove and Raby. In particular, we wish to show how
the impulse response procedure may be implemented on a
high-speed iterative differential analyzer to obtain a great
amount of information about the effect of the control
variable on the cost and the constraints. This information
is readily usable to determine a practical optimum tra-
jectory.

The general gradient computation procedure used here
in minimizing the performance index, /, consists of the
following steps:

a. Determine, by any means, an initial or nominal pro-
gram of the driving function, a(t), which satisfies the
terminal constraints, but does not necessarily mini-
mize the cost, J. v

b. Solve the equations of motion using «(t) and deter-
mine the cost of using this program, J,.

c. Add an approximately impulsive change, K8 to @ so
that « = & 4 K84;. Here 84 means an approximation
of 8(t—t;), the delta function or unit impulse. That
is, 84; is an approximately impulsive unit change of a
located ““at” t = t;. For this investigation we used a
triangular shaped “impulse,” 84, shown in figure 2.

20° PEAK — 10°

- K== Kmax
KSa; 1 | SLOPE — 10 }
10 g

Figure 2—"Impulsive’ control perturbation



d. Measure the change of J due to K8 and plot against
the location of the impulse, t;. The cost response 8/ to
K84 is approximately proportional to the impulse re-
sponse, or weighting function, of the cost with re-
spect to @ which we will call Wo!. W’ may be viewed
as the function-space gradient of the cost with re-
spect to the control or driving function.

e. Simultaneously with (d), measure and plot the im-
pulse responses of any terminal constraints, ¢5. Call
these W% (k=1...m). Note that W.’' and all
Wea?* can be determined simultaneously on a single
computer run.

f. With the gradient of the cost and that of each of the
terminal constraints known, several different “‘steep-
est descent” procedures can be used to change the
control, «(t), so that the new cost will be less than the
old and the terminal constraints still will be satisfied.
The procedure selected is repeated until no further
improvement of / is obtained, indicating that J is
stationary and should be checked to see if a mini-
mum has been reached.

Some of these procedures are discussed in detail in the
examples presented.

Since it was desired to accomplish steps (b), (c), and (d)
many times each second (20 to 50 times per second), most
operations were accomplished automatically by means of
the control features of the iterative differential analyzer.

ITERATIVE DIFFERENTIAL ANALYZER

The iterative differential analyzer used was a small (48
amplifier) analog computer with 12 integrators, each with
individually controllable mode switching, and a small
complement of parallel, patchable, asynchronous logic
elements. See figure 3. Two problem patchboards are
used, one for the analog signals and one for logic signals.
The equations to be solved are patched on the analog
board, and the control scheme is patched on the logic
board. All control is by means of logic signals: logic 0"
(—6V) and logic “1” (0V). All communication between the
analog and logic elements is by means of logic level
signals.

IR R R R R TR TR TS
BARKAKLEECIIIEIRIETRERL
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Figure 3—lterative differential analyzer

the complement of the output are terminated on the logic
board, so that OR, AND, NOR and NAND operations can
be performed. Logic level signals operate the integrator
mode controls and four free high-speed switches, provid-
ing analog operations under control of the logic elements.

Communication from the analog board to the logic
board is by means of logic signal outputs from four com-
parators. Comparator inputs are on the analog board; their
outputs are on the logic board. When the sum of the
input voltages to a comparator is greater than zero, the
output on the logic board is logic 0; otherwise it is logic
1. A small amount of hysteresis is provided to suppress
noise.

THE ITERATIVE CONTROL SCHEME

The control scheme used in determining the impulse re-
sponses applies to the general problem and is shown in
the block diagram, figure 4. The equations of motion, cost
computation, and terminal constraint computation are
peculiar to a given problem and are discussed in the ex-
amples. The method of using the gradient information in
the steepest descent procedure and the method of han-
dling terminal constraints also are discussed separately.

The logic complement consists of 18 OR gates, 14 flip- START C AT
: i C < ‘“enpDoOFR®
flops, 4 variable pulsers (one-shot multivibrators) and one

4-cell shift register. The output of each logic element and } R 3
2
R GENERATE R =
GENERATE TIME GENERATE SOLVE EQUATIONS OF SIGNAL z
VOLTAGE DURING C | _E: NOM'INNIEL SUM, _| MOTION DURING C + - O
HOLD DURING T T ORI, a=a+3a| | HOLD DURING T 2
RESET DURING R e »> RESET DURING R %
a(t) T < GENERATET Fa
R SIGNAL 2
®, =0 z
GENERATE IMPULSE GENERATE COMPUTE COST Jixs,1 2 5
LOCATION VOLTAGE, | ¢ IMPULSE E @ COMPARE, @ < 0 =

En, CHANGE S RO ——] COTOTRAINT ERRORS ™| GENERATE STOP

DURING R; HOLD AT : SIGNAL @ ®p=0

ALL OTHER TIMES ] 5, START PERIOD T

I J0x,0) /0+ Y K=1...m
SAMPLE COST SUBTRACT COST S;\yg’gtjw | rLOT séur vs Eu Wa b
Jxo) @ t=tr |} J, FOR NO DURING T: K=1---m
DURING T; HOLD IMPULSE HOLD DURING
DURING C AND R Bog = 0 CAND R ? £
B
Jr :l[ PLOT 8/r vs Eu o

Figure 4—Block diagram of impulse response computation
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There are three periods during one computation cycle;
we will call them C, T, and R. The C (compute) period runs
from the start of solution of the equations of motion until
a stopping condition is reached at t—=tp. The T (track)
period runs from t= tp until sufficient time for memory
units (track and hold amplifiers here) to have accepted the
values to be held. At the end of the T period, the track and
hold units are placed in the “Hold” mode, and then the
trajectory integrators are placed in the ‘“Reset” or “IC”
mode. The R (reset) period lasts sufficient time for the
integrators to accept the initial conditions, for the impulse
K84; to be advanced to a new location, t;4+3, and for any
other parameter changes to be made, after which a new
C period starts. The three periods, C, T, R are determined
by a three period “clock,” shown in figure 5. The end of
the C period is determined by the occurrence of a stop-
ping event: either t = tg, if tp is fixed, or ®olxz, tr) = 0.
When the stopping event occurs, a pulser, Py, is triggered
causing the output of P, to be logic one for a preset time
period, which is the T period. When P; output drops to
logic zero at the end of the T period, P2 is triggered to start
the R period, and when P; output drops to zero, the next C
period starts. (As shown in figure 5, a short delay between
the end of the T period and start of the Reset period is
generated by pulser P; to ensure that the track-and-hold
amplifiers are holding before the integrator Reset mode is

o |

sToPPING |2 SeT | TTRIGGER) P T
CONDITION Iy FLIP-FLOP| F PULSER #1 |71
COMPARATOR 0—(— CLEAR [Oo—— O—
R/
P2
t=0 t=tr t=0 R
A ' PULSER #2|
F
P
Py T i
P, PULSER #3| Py
S
Pa D
P2
c |
T Ps R
R Py
T v

+1

OP—R_
HOLD ~R

started.) The control signals are obtained by combining
suitably the C, T, R signals from the clock. In addition,
master control signals are introduced to start the compu-
tation, to interrupt it during a sequence of iterations, and
to initialize all elements in preparation for a new run.

The impulsive change of control, 8, is generated by the
simple diode circuit shown in figure 6. The time location
of the impulse, t;, is controlled by the voltage, Ey, the out-
put of an integrator with a small constant input. During
the R period, while the equations of motion are being
initialized, the E;; integrator is in the “Operate” mode; it is
in the “Hold” mode at all other times during a run. Thus
the E; voltage is increased by a small constant amount
before each computation step, automatically advancing
the impulse location, t;, in small equal increments from 0
to ty during a complete run.

EXAMPLE 1: BRACHISTOCHRONE PROBLEM

As a first demonstration of the direct gradient measure-
ment method, consider the brachistochrone problem men-
tioned earlier, but with a single terminal constraint, xp—1.
That is, determine the shape of the wire down which a
bead will slide without friction, from the origin to a wall
located at x = x,, in least time.

The control or driving function, «(t), is the angle of the
wire to the horizontal, the cost is the terminal time itself,
J = tr, and there is one terminal constraint, ¢ = (xzg — 1)
=0.

When the terminal time is included in the cost and is
therefore variable, as in this case, some condition or event
other than t = ty must be used to stop the computation.
In this case, the obvious choice is the occurrence of x=x.
Thus the voltage x,— x is used as the input to the stopping-
condition comparator in figures 4 and 5. The logic signal
output of the comparator terminates the C period and
starts the T period. An integrator with a constant input
gives a voltage proportional to time, E;; this voltage at
t=tp, i.e., when x = x,, is the input to the “Sample Cost”
block in figure 4 (a track-and-hold amplifier). For this
simple case, the only terminal constraint is used as a
stopping condition, and every solution therefore satisfies
the constraint. It therefore is unnecessary to measure any
constraint gradients, Wa?*.

E: = Kt 0<t<
Ei = K2 (number of iteration) ) = — t=tr

P ™
OoP—C — TO COST —VV\A—
HOLD ~T TRACK & HOLD | .~ 1m
RESET — R L AAA K8

Figure 6—Diode circuit for generating control perturbation, K8
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¢o = Xp— X, =0

4 2

Figure 7—Brachistochrone example

We chose as a first nominal trajectory « = constant =
45° and measured the gradient of the terminal time, W/,
about &= 45°. Figure 8 shows the plot (taken directly
from the xy recorder) of W4/ vs. t;, where it will be recalled
that t; is the time of application of the control impulse,
Kda:. All of the points shown were computed and plotted
in about 20 seconds —the speed limitation was the xy
plotter. The gradient in this simple case can be determined
analytically to be proportional to time, which checks
within the accuracy of the plotter.

Wa’

O RECORDED POINTS
— ANALYTICAL SOLUTION, K(t — tr)
NOMINAL TRAJECTORY, &= 45°

Figure 8—Response of terminal time, brachistochrone, one
terminal constraint used as stopping condition

The usual steepest descent procedure is to generate a

new control program, @ (t), with

0 =a+ da="a — KW,/ (8)
The constant, K, is selected to produce a desired achiev-
able amount of improvement of J.

In this case, since W.’ is linear in time, @; —= a — bt, and
the constants a and b were simply adjusted by hand until
tr appeared to be minimized. (Note that these are just the
first steps of the Rayleigh-Ritz procedure, with the assump-
tion that «(t) can be expanded in a power series.) Because
of the high iteration rate, the apparent minimum was
reached in only a few trial settings of a and b. Figure 9
shows the final control program, with maximum positive
and negative control perturbations superimposed. Figure

/2

a(t)

tr

o

Figure 9—Optimum driving function program, brachistochrone
with maximum positive and negative “impulsive” change

10 shows the trajectory resulting from the best settings of
a and b, and also shows the effect on the trajectory of the
maximum control perturbations that were used.

Because it was known that the control program achieved
above was near the desired optimal program, it was tested
for optimality as follows: at a number of times, t;, the im-
pulse response, 8/ was plotted against the size (area) of
the impulse. That is, instead of using a fixed impulse size,
K8ai (where K is fixed) and advancing the location of 84; at
each iteration, the location, t;, was fixed for a series of
iterations, with each iteration corresponding to a different
impulse area, K. At each t;, the value of 8§/ was plotted
against the area of the impulse, resulting in a plot from

Figure 10-Brachistochrone, showing effect of maximum positive
and negative impulses in «
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which the second variation could be determined. Figure 11
shows the results of this procedure. It is seen that the
gradient does indeed vanish, within the accuracy of meas-
urement, indicating that the best control has been

achieved. The final trajectory was compared with the
known analytical solution (a cycloid) and was found to
agree within a few percent.

Figure 11—Plots of §/ vs. ls for various ti. « optimal.
Brachistochrone problem.

TERMINAL CONSTRAINTS

When there are no terminal constraints, or if the only
constraint is used as a stopping condition as in the previ-
ous example, the descent to the minimum cost normally
proceeds step-by-step in proportion to the measured
gradient, since this is the direction of steepest descent. If
additional terminal constraints are imposed (for example if
the terminal value of y is specified instead of being left
free in the brachistochrone problem), then it is apparent
that the direction of descent generally must be changed
to avoid violating the constraints.

For simplicity, consider the case of a single terminal
constraint, ¢1(x;7) = 0, and let the terminal time be fixed.
As before, let the impulse response of the cost with re-
spect to the control be W,/ and the impulse response of
the constraint be W.?. If a descent step is taken in the
direction of the cost gradient, without regard for the con-
straint, so that 8a; = KW/, the cost will be decreased,
but, naturally, the constraint ¢; = 0 will be violated. To
first order, the constraint error, 3¢1 will be:

tr
3p1 = f KWW, 2dr 9)
0

In order to correct the constraint error in the most efficient
way, that is, to reduce the error to zero in the direction of

II-15(11 968
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steepest descent, we should add to the control function an

increment
Sag = KW, (10

where K? is adjusted to give 8¢y = 0. Using this condition,
tp
Sp1 = ‘J‘(K"W,J/W(ﬂ5 4 KW PWef)dr =0 (11)
0
from which:

Kb — — <L’—¢> K7 (12)
Ipe

we have used the notation:

tr
1J¢ pm— f Wa Wa¢dT
0 )
13
tr (13)
Ipp = f (Wa?)2dr

Thus, with a single “free” terminal constraint, one should
take

I
Sa = K( Wol — % Wﬁ) (14)

where K determines the size of the descent step and the
ratio I;¢/Is¢ is such that the constraint, ¢; = 0, is not vio-
lated, to first order. (If a constraint error existed at the end
of the previous iteration, of course, this error would be
eliminated, to first order, by taking 8¢; %0 in equation
(11).) If more than one constraint is imposed, so that it is
required that

¢r=0 k=1....m (15)
it can be shown that the descent steps should proceed in
the direction of a linear combination of the impulse re-
sponses:

m
da=K CpWob* (16)
k=1
The C; are determined so that none of the constraints will
be violated, to first order. Using the condition that all
8¢ = 0, it can be shown that

WaJ +

Ak :
C":T (17)
where
Li Lo «oo.o..... Iim
A= 121 122 .......... Izm (18)
e Inm

and Ak is the same determinant as A except that the kth
column is replaced by

—hLy
—Izy;

(19)

_ImJ



We have used the notation

tr
I‘tj: f Wa¢iWa¢de

0 (20)

tp
L= f WP Woldr
0 :

It is apparent that this procedure, which is essentially that
given by Bryson et al.?, substantially increases the compu-
tation load and can be expected to have an adverse effect
on the convergence of the iterative steepest descent
process.

Our procedure for handling terminal constraints was
devised to utilize the high iteration rate of the differential
analyzer in determining, by direct computation, the steep-
est descent direction shown in equation (16), orthogonal to
the impulse responses of the terminal constraints.

For simplicity, consider first the case of a single terminal
constraint which is not used as a stopping condition. As-
sume that the impulse response of the constraint has been
measured as described earlier, so that W,? is known. Now
consider the response of the cost to an incremental con-
trol function of time which is composed of a linear com-
bination of a unit impulse and the constraint impulse re-
sponse function:

8a = K8ai 4+ DWA() 21
The multiplier, D, is to be chosen so that the constraint is
satisfied, and D therefore is a function of the location of
the impulse, t;. Denoting the response of the cost to 8a
with a superscript ¢, then, to first order:

t. ty
8/0 = { Wobadr =  Wa(KSa+ DWab)dr  (22)
0 0 .

Using the properties of the unit impulse:
8J® = KW (t;) + D(t)1s¢ (23)
Since D is to be adjusted at each ¢t; so that §¢ =0,

tr ty
8¢ = fWatSadr = { Wa?(K8ai + DWaP)dr =0 (24)
0 0

and therefore:

— KWt (t)
Dit) =———— (25}
Ipe
Using this value for D(t;), the response of the cost to the

augmented impulse becomes:

86 = K [ W (t) — 28 WM&)] (26)
Ipo

Comparing this expression with equation (14), we see
that the response to the augmented impulse is in the direc-
tion of steepest descent, orthogonal to the constraint in-
fluence function.

When there are several terminal constraints to be sat-
isfied simultaneously, it can be shown by a process similar
to the preceding that

m
8P =K [Wd(t) + = C:WaPk(t)] (27)
k=1

which agrees with equation (16). 8J? is the response to the
augmented impulsive control perturbation:

Sa=K8u+ S DpWob¥ (28)

k=1
The Di(t) are determined by the requirement that 8¢y
=0, k=1...m.

We modified our control program so that the response
8J? could be computed as follows:

The constraint gradients, Wo?*, were first computed all
simultaneously, using the procedure shown in the block
diagram, figure 4. The functions W.#%(t) then were set on
diode function generators and a simple iterative automatic
parameter adjustment scheme was used to set the param-
eters, Dr, so that all 8¢5 were zero at each t;.

There are a number of iterative parameter adjustment
procedures which can be used to set the D;.# Since the
Wa?* represent steepest descent directions for the 8¢, if
the 8¢x and the adjustment steps of the D; are small
enough, either a simultaneous or a sequential parameter
adjustment procedure should converge. We therefore
chose the simplest simultaneous adjustment scheme, rep-
resented by the block diagram shown in figure 12. For a
single constraint, the circuit gain can be adjusted so that
any small error, 8¢, is removed to a good approximation
in a single step. When there are several constraints which
interact, more iterations are required at each ¢;, but con-
vergence should be obtained since the errors are reduced
in the direction of steepest descent. Also note that (assum-
ing the constraints to be linearly independent) an or-
thogonalization procedure could be used to minimize
interaction. For the example presented here, it was found
that the constraint errors were eliminated to a good ap-
proximation in four iterations. The control scheme there-
fore was modified to provide four adjustments of the D;
at each t; before 8J? was plotted and the impulse shifted
to t;+1. The four-bit shift register was used to count the
iterations; the plotter signal and the signal to increment
E+; in figure 6 were taken from the fourth register stage.
This procedure, of course, increased the actual computing
time by a factor of four, but it still was negligible in com-
parison with other times required—for example, adjusting
the hand-set function generators.

o ]

8¢n| tRACK AND | 8801 TRACK AND HOLD | Da

TRACK AND HOLD

HOLD K Do = Doz + K8¢n_s > HOLD Da—1
GAIN
ADJUST y D
Waot ——> Sap? = DaWa? Do oD |
86— 0
* Sa,?
m loops needed
T — an =2+ KBui for m constraints,
K8ag—— + San? ¢e=0 k=1"''m
=
COMPUTE
Scpn(cn)

]

Figure 12—Iterative loop for satisfying one terminal constraint
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EXAMPLE 2: SATELLITE LAUNCH TRAJECTORY
OPTIMIZATION

As an example of the use of impulse response for trajectory
optimization with terminal constraints, we consider a
satellite launch problem:

Determine the best program of thrust angle to the hori-
zontal to launch a satellite into a circular orbit at pre-
scribed altitude using minimum fuel (see figure 13).

Vi = (Ue,0)
Yo - —

|

a(t)

¢oZU1-’—uc:O
d1=ve=0
de=yr—y.=0

Figure 13-Satellite launch optimizalion problem

An analytical solution of this general problem is not
known, but under the assumptions of a flat earth with
constant gravity, negligible atmospheric forces and thrust
magnitude proportional to a constant fuel flow rate, it is
known that, for the optimal program, the tangent of the
thrust angle varies linearly with time.® Since we wished
to have at least a partial analytical check of our results,
the above assumptions were included in our problem.
With the notation shown in figure 13, the control function,
a(t), is the angle of the thrust to the horizontal, minimum
fuel corresponds to minimum time:

J=tr ' (29)
There are three terminal constraints: '
¢0 = Up— U= 0
¢1=vr=0 (30)
pe=yr—y.=0

We selected constants for the problem such that uc is
the circular velocity at the orbit altitude, y,, which was
1/20 of the orbit radius. Initial lift-off acceleration was set
at 1.2g and maximum burning time (mass approaching
zero) was 420 seconds. We selected ¢, as a stopping con-
dition, and therefore had two “free” terminal constraints,
$1 and ¢o, to be satisfied.

Because of the rather low initial acceleration, it is ap-
parent that the rocket must be launched nearly vertically.
We therefore chose the thrust angle program shown in
figure 14 for the first nominal control program; the re-
sulting trajectory is shown in figure 15. The control pro-
gram slope and breakpoint were adjusted by hand until

r.1
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Figure 14—Initial control program
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Figure 15—Initial trajectory, satellite launch

the terminal constraints were satisfied. The impulse re-
sponses of the two terminal constraints, ¢; and 2, then
were measured, simultaneously, using the procedure
shown in the block diagram, figure 4. These are shown
in figures 16a and 16b along with approximations of them
which were set on diode function generators for use in
the next program step.

With Wa?l and W,?2 known, the response of the cost
to the control 8a = K84 + D1W?t + DaW,#? was meas-
ured; it is shown in figure 17. The multipliers Dy and Da
were adjusted automatically at each t; by means of two
loops of the type shown in figure 12. Four iterations to
adjust D; and Ds were performed at each t; before 8/
was plotted for that t; and the impulse advanced to & 1.

Wwith 8J% known, we next set an approximation of it on
a hand-set diode function generator and added K$8/% to @
The automatic constraint satisfaction circuitry was left in
operation while the constant of proportionality was ad-
justed, so that the constants D1 and D2 were changed
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Figure 16a—Impulse response of terminal vertical
velocity component

automatically during the adjustment of K. The constant

K was adjusted by hand until no further decrease of th

e

cost could be noticed, and ‘@ was recorded, as shown in
figure 18a. Note that by leaving the constraint satisfaction
circuitry in operation, the descent direction is altered auto-
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Figure 17a,b—Nominal control program and impulse response of
final time, 8§/, Satellite Launch, ¢: = ¢ =0
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Figure 16b—Impulse response of terminal altitude

matically to account for the finite-size step. Thus no con-
straint error exists at the beginning of the next step. The
new nominal control program, &, was set on a diode
function generator, the gradients Wa#1 and W.?2 were
computed again (they had changed only a small amount),
and the procedure was repeated a second time. The sec-
ond §/? is shown in figure 18b.
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Figure 18a,b—Control program and impulse response after first
iteration, Satellite Launch

r,.1
L

SIMULATION



DISCUSSION

The control program resulting from only three descent
steps is shown in figure 19a along with a program that
has the same end points, but for which the tangent varies
linearly with time, a known characteristic of the optimal
program. It is apparent that we had not quite reached
the optimal program, a fact confirmed by the remaining
small gradient, shown in figure 19b.

The total decrease of cost achieved was quite small:
1% for the first iteration and about 0.1% for the second.
Adding the small amount indicated by the remaining
gradient shown in figure 19b made a barely measurable
change in total cost.
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Figure 19a,b—Control program and impulse response after three
iterations, Satellite Launch

The computation time required to determine a com-
plete set of gradients was only a few seconds. Most of our
time was used in adjusting the hand-set function gener-
ators and operating the plotter. If a fast hybrid computer
with automatic digital function storage and generation
equipment had been available, the descent to an accep-
table minimum cost could have been accomplished in less
than a minute, even with several terminal constraints to
be satisfied.

As an indication of the sensitivity of the method, note
in figure 19 that quite small irregularities in the nominal
control program were detected and would be reduced in
the following iteration. The fact that they were not elimi-
nated is due to our inaccuracy in setting the hand-set
function generators.

We feel that this method has several significant advan-
tages over the more common method using adjoint equa-
tions. It is very simple and easy to understand. The

.1
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mathematical techniques involved are elementary, and the
information available to the analyst can be interpreted
readily.

A considerable advantage is that it is not necessary to
linearize the equations of motion, which may be difficult
when arbitrary nonanalytical functions are involved, the
usual case.

Impulse response of any number of terminal quantities
can be computed, all simultaneously.

By using the automatic parameter adjustment method
of satisfying terminal constraints, the descent direction is
continually altered to account for finite-sized descent
steps. Sizable descent steps can be taken and an accep-
table minimum cost achieved in only a few steps. It is
not difficult to check the second variation to assure that
the cost is near at least a local minimum. Presumably, this
would also detect the presence of sharp ridges and other
types of discontinuities, although we have not demon-
strated this.

A probable disadvantage, which we have not investi-
gated, is that scaling of the nonlinear equations of motion
cannot be expected to be as favorable as is that of the
equations adjoint to the linearized equations of motion.
Although it is not obvious that this means that the impulse
response will not be as accurate as the gradient deter-
mined by the adjoint method, this point requires further
investigation. :

AN ALTERNATIVE METHOD OF COMPUTING
IMPULSE RESPONSE

When several terminal constraints are imposed, the mag-
nitude of the cost impulse response may be quite small
and difficult to compute accurately. The following scheme,
which we have not yet demonstrated, was devised to
permit improved computation scaling and hence more
precise determination of the gradient.

Instead of introducing the impulsive perturbation of the
control directly into the differential equations of motion,
we propose to introduce the equivalent step changes of
the state variables which would result from the control
perturbation.

The equations of motion, using the control function
a="a- da, are:

Xp T+ S, ) (31)
For a small control perturbation, §«, we assume that the
equations can be linearized in a. Then, to first order:

.
X; = filx1, X2, * *

¢ ¢
of;

Xi(t) = x40 + f filx1, X2, * * * Xa, 2, T)dT + fé_ Sadr (32)

{44

0 0

For an impulsive 8,

Sa=K8(r —t;) (33)
— of;
X{(t) = Xi(t) + K u(t t@) (34)
da
t=t,
where
t
Xi(t) = xio 4 { filxy, X2, = * * Xn, @, 7)d7 (35)
0

and u(t — t;) is a unit step occurring at t = t;.



The effect of an impulsive control perturbation is syn-
thesized by making the step changes of state variables
indicated by equation (34). By using this alternative meth-
od, it should be possible to compute the effect of quite
sizable control perturbations without encountering prob-
lems due to nonlinearity with respect to the control
function.

CONCLUSIONS

On the basis of our limited experience, we believe that
direct computation of impulse response shows great prom-
ise as a simple, fast, and accurate method of trajectory
optimization. Imposition of several terminal constraints
reduced the cost impulse response significantly and in-
creased required computing time, but did not cause other
computation difficulties in the cases we have investigated.
Rapid convergence to a practically minimum cost has
been obtained in all cases investigated so far.

An alternative direct method of computing impulse re-
sponse is proposed. This method should permit better
computation scaling and more accurate computation of
the gradient.
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