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Abstract 

The basic formulation of plane stress-analysis techniques for textiles imbedded in 
rubber is given both from the viewpoint of a load-carrying net and of a continuous elastic 
material with orthotropic properties. The developments are basically dissimilar, and
yet it is shown that, for material properties commonly encountered in rubber-coated
textiles, both theories predict essentially the same textile loads, although the stresses
carried by the rubber matrix differ in the two theories. This shows that the network
approach, which is by far the simpler of the two, is perfectly valid for purposes of estimat-
ing cord load in cord-rubber structural members.
A method is presented through the use of either theory to compute the fraction of

load carried by the cord network and the fraction carried by the rubber matrix.
r

’ 

Introduction

At least two techniques are in common use for the
evaluation of cord loads in rubber-impregnated cord
structures, such as commonly used in pneumatic
tires and other rubberized structural members.
One point of view focuses on the network of textile
cords, due to the fact that their elastic stiffness is so
much greater than the rubber in which they are
imbedded. The usual procedure is to completely
neglect the presence of the rubber and to deal with
the loads carried by the net alone. This process is

straightforward but requires large and nearly un-
restrained deformations of the net in order to ac-
commodate biaxial stress states whose normal force
resultants do not lie parallel to the cord network.
This type of analysis is most common in two-di-
mensional or plane structures where the net may be
treated as a two-dimensional set of lines and the
membrane stress is determined accordingly. Little
effort has been made to adapt such net formula-
tions to bending-stress problems.
A second possible technique for conducting a

stress analysis of a regular array of cords imbedded
in some softer material is to consider the entire
structure as an elastic continuum with the proper
orthotropic elastic properties: In the case of
twisted cords, such as commonly used in pneumatic
tires, it is necessary to imagine that the cords are
untwisted and the filaments uniformly dispersed

throughout the matirx, so that the orthotropic
elastic properties become continuous across the
width and thickness of the body.in question. This
avoids the mathematical difbculties of concentrated
anistropy which is, of course, the true description
of the material, and yet provides a reasonably ac-
curate overall or gross picture of the deformation
characteristics of the body in question. Such an
approach neglects the local effects of the cords, but
it does accurately represent phenomena averaged
over at least several cord diameters and spaces.
This type of analysis has been pursued by a number
of authors interested both in applications of cord-
reinforced rubber and in applications of fiber- and
~filament-reinforced materials of higher strength.
Such materials have been studied in the plane case
by Akasaka [1], by Azzi and Tsai [2], and by
Clark [3], while a complete theory has been given

. by Resissner and Stavsky [6]. A thorough dis-
cussion of the elastic properties and stress-analysis
techniques associated with this continuum ap-
proach to materials has recently been given by
Hofferberth and Frank [5]. While some effort
has been devoted to the study of bending character-

istics in such materials, primarily by Reissner and
Stavsky, most of the published information con-
cerns membrane effect. Whitney [8] has re-

cently pointed out that plane, symmetric materials
commonly studied in the cited refecencea are sym-
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metric only insofar as their membrane characteris-
tics are concerned. They are completely unsym-

- metric in regard to bending. 
1 

4

With the complete theory of Reissner and
Stavsky available, it seems most probable that the
bending characteristics of such fiber-reinforced
materials w ill be approached from the continuum
point of view, and that such analysis only requires
determination of the proper elastic constants for its
complete implementation. On the other hand,
plane or membrane stress problems may apparently
be done by either method, and there are significant
advantages to the net analysis approach in mem-
brane stress analysis since it represents a far
simpler technique in most cases. Further, the re-
sults may be more easily interpreted in terms of
their physical effects on the composite cord-rubber
structure. This is particularly true when the cords
or reinforcing elements are significantly stiffer than
the matrix in which they are imbedded. This is
commonly the case in pneumatic-tire construction,
as well as in many other applications of rubber-
coated fabrics, but not necessarily so true in regard
to fiber-reinforced plastics or whisker-reinforced
metals. ,

Net Analysis . 

’

Here, a symmetric multi-ply laminate is treated
as an inextensible plane net of cords imbedded in a
softer matrix. The cords in successive plies form
positive and negative angles with an axis of sym-
metry, such as shown in Figure 1. A portion of the
total load applied to the laminate is carried by the
net and the remainder by the matrix. These dif-
ferent portions are found by evaluating the load-
carrying capability of the net and by requiring that

lie- 1. Loaded elan~at of net..

any remaining load be carried by the softer matrix.
The load carried by the net causes net deformation
caused by the change in cord angle, and, since the
matrix is attached to the net, it must also deform
in a similar manner. Utilizing equilibrium condi-
tions and deformation compatibility requirements,
the loads carried by the net and the matrix can be
found, as can the resulting deformations.

In carrying out this net analysis, one begins by
assuming cord loads in the net. These net loads
are then resolved irito the principal directions or
directions of symmetry of the original laminate so
that the total external imposed stress may be ex-
pressed as a function of these cord loads. The ele-
ment used for this analysis is illustrated in Figure 1,
where To and Qo are the loads per cord in alternate
plies. Loads in alternate plies are assumed to be
different until otherwise determined, i.e., both To
and Q, are independent unknowns. However, it is
assumed that each set of cords running in the same
direction carries the same load per cord. We as-
sume an even number of plies to maintain approxi-
mate membrane symmetry and orthotropy, along
with the assumption that the thickness is small
enough, compared to the other dimensions, so that
this may be considered a plane structure with van-

ishing or unimportant thickness effects. In addi-
tion, it will be convenient to let each ply have the
same physical and geometric characteristics, except
for the cord angle, although this requirement can
be avoided where desirable.

In Figure 1, x and y represent the principal direc-
tions of elasticity while a is the angle made by the
cords with the y axis. By letting n~ be the number
of cords per unit length measured perpendicular to
the cord direction and n, the total number of plies,
then the normal force per unit length on the y face is

. Similarly, the normal force per unit length on the x
face is . 

I . 

-

The shear force per unit length on each face is

To and Q, are independent variables, i.e., may be
specified arbitrarily. Using Equations 1, 2, and 3,
the independent variables may now be considered as
N and S. Physically, this means that any magni-
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tude of shear force S will be carried completely by
the symmetric net arrangement, since S may be
specified arbitratily. However, only one ratio of
normal forces in the x and y direction may be car-
ried by the net alone, since ~Ns = N tanla at all
times. Thus, a net may be thought of as an array
which, when viewed from principal axes laid out
along the bisectors of the cord angles, carries any
shear without deformation and any set of normal
membrane forces in the ratio N. = N tan2a. The
net array only deforms under those normal forces .
which are not in the ratio Ns = N tan=a, and, hence,
the role of the matrix in which the net is imbedded
is to carry such &dquo;excess&dquo; normal membrane forces.
The load distribution carried by the net is illus-
treated in Figure 2. -

Fig. 2. Membrane-force distribution under
cord loads.

Under a general stress state, a portion of the total
load is carried by the net and a portion carried by
the matrix. The net loads are shown in Figure 2.
Figure 3 is a sequence of sketches illustrating the
net and matrix both before and after application of
some general load. In Figure 3, .$~, Ss, and Ss&dquo; are
the applied general stresses, while 4 and ts are the
stresses carried by the matrix. This implies, of
course, that all of the applied shear stress is carried
by the net, as previously discussed.
The net deforms under load, resulting in a new

cord angle. The matrix deforms accordingly.
This means the unknowns N, ai, t&dquo;, and ’6 must be
found in terms of the applied stresses and the, origi-
nal cord angle a. The equations available for this
are those of equilibrium and of strain or deformation
compatibility. The equilibrium equations are

where h is the thicknese of an individual ply, £ is
the cord diameter and

H is the effective area of the matrix per unit length
for each individual ply.

Fig. 3. Ekment, of laminate before and
. after applied load.

Strain compatibility arises from the fact that the
deformation of the matrix in the x and y directions
must correspond to that of the net in thoee direc-
tions. For small strains, conditions are represented
by the equations

where E and ~ are the Young’s modulus and Pois-
son’s ratio of the matrix for small strains. It

_ 

I
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~ould be noted that Equations (6) and 7 are con-
structed here on the basis of infinitesimal strain or

. deformation, sincd this is the simplest and most
readily recognizable stress-strain law. It will be
shown below that equations similar to 6 and 7 can

’. 

. be written for finite deformations. Equations 4
~.1d 5 are valid independent of the magnitude of the

. Oefonnation, since the stresses I., y, S., and S, are
referred to the original area. Since all of the ap-
plied shear stress is carried by the net, shear stress
dols not enter into the matrix stress-strain relations
an the matrix is free of shear deformation.

ubstituting 1, and t. Equations 6 and 7 into

Equations 4 and 5 gives .

HI is the ratio of the total volume of a given
elem t to the matrix volume in that same element.
Elim ating N from Equations 8 and 9 results in the
folio jng transcendental equation for the final cord
angle ’ of the net .

It is instructive to write the right-hand side of
Equation 10 in the dimensionless form indicated,
since it shows that the final cord angle depends not
only on the magnitude of the ratio of applied
stresses to the matrix modulus, as given by the
quantity

in Equation 10, but also upon the ratio of the two
applied stresses S,/5,,. After some consideration
of Equation 10, it may be demonstrated that for
those cases where the ratio S.IS, on the right side is
exactly equal to tanla’, then the solution to Equa-
tion 10 for the final angle, a’ of the net is exactly
equal to the original angle a. In other words, the

unique solution for a zero right-hand side of Equa-
tion 10 is a = a’. This means that a net loaded in
such a way that the applied force vectors are co-
linear with the cord directions in this symmetric net
results in no change of the geometry of the net.
This is to be expected from physical considerations.
For those cases where such a simple solution to
Equation 10 does not exist, it is necessary to use it
to determine the final angle-a’ of the network. In
addition, one must also draw upon the fact that all
of the applied shear loads are carried by the net
itself so that the applied shear stresses are related
to the quantity S through Equation 11 1

The value of a’ found from Equation 10 may be used
in either Equation 8 or 9 to obtain N. The quan-
tity S may be obtained from Equation 11, and
these values can then be used in Equations 6 and 7
to obtain the stresses carried by the matrix. Equa-

. tions 4 and 5 give the cord loads To and Qo ,which
may also be obtained from the direct solution for
these cord loads in the form given by Equation 12

’ 

The final angle obtained from Equation 10 de-
pends on the linearity of the stress-strain relation
as expressed in Equations 6 and 7. Generally, this
is only good for relatively small ranges of strain,
which means small ranges of cord-angle change.
Even when the cords are inextensible, there can be
large angle changes which result in finite deforma-
tions of the matrix. An additional refinement to
this previous theory can be made by substituting a
finite deformation stress-strain law in place of
Equations 6 and 7. These new equations may be
used with Equations 4 and 6 to form a general,
finite deformation theory which is not subject to
the indicated restrictions. ,

Referring to Figure 4 for notation, let the matrix
stresses ts, y, and t, be referred to the original or
unstrained area of the element. Let the ratios of
final lengths to original lengths of the sides of the
element be called extension ratios M, Xy, and x,.
Then a good approximation to the stress-strain
curve of rubber is shown by Treloar [7] to be given
by the expressions
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Using the condition of incompressibility in the form
of .. 

’

and noting that t, = 0 for the plane problem in

question, then Equations 13 and 14 may be written
as

A set of equations analogous to Equations 4-7 may
now be written as follows

Equations 18-23 may be combined in a fashion

similar to Equations 4-7. The result of eliminat-

icing all unknown cord loads and matrix stresses is
again a characteristic equation relating the final

cord angle of the symmetric net to the initial cord
angle. This takes the form of

Equation 24 is the characteristic equation govern-
ing the deformation of the cord-matrix combination.
In general, after solution of Equation 24 for the
final, deformed cord angle a’, one may return to
Equations 22 and 23 in order to determine the ex-
tension ratios, and from there to Equations 20 and

Fig. 4. Principal str~sees in the matrix.

21 to determine the matrix stresses. These then
allow determination of cord loads by means of
Equations 18 and 19. It should be noted that all
shear stresses are still presumed to be taken by the
cord network, so that Equations 11 and 12 are still
valid. This allows all internal characteristics of
the network to be determined in terms of the final

geometry.
Equation 24 also illustrates the fact that the final

deformed shape of the net is dependent upon the
shear modulus of the matrix material, so that in the

limiting case, as the shear modulus increases in-
definitely, the cord angle remains unchanged during
loading. It may be demonstrated that a zero

right-hand side of Equation 24 results in a unique
solution to it, in which the angle a’ is identical to
the original angle a. This means that no net de-
formation will be present for all cases where the
ratio of applied stresses S.IS, is equal to tansa’.
Under such conditions, the initial and final cord

angles will be identical. For other cases, where the

righ t-hand side does not vanish, it is seen that the
net deformation is proportional to the magnitude
of the applied stress S,, as well as inversely propor-
tional to the shear modulus G, as previously dis-
cussed.

Let the change in angle be small, so that for a
particular case, . 

_

where 8 is much smaller than a or a’. Then it may
be shown that under this condition both Equations
10 and 24 reduce to an identical form. This is to be

expected, and serves as one check on their validity.
In general, the more exact Equation 24 would be
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preferred as a means of calculating the final net
angle a’, since both Equations 10 and 24 are. com-
plex enough so that solutions can only be obtained
by numerical trial and error methods. 

’

’ 

Continuum Analysis
A thin, multi-ply cord-rubber laminate is treated

as a plane orthotropic elastic continuum. I n this

analysis, a general plane-stress state applied in
the principal directions of elasticity is transformed
to the directions of the cords and orthogonal do
them. If one assumes that the strain in the cords
direction vanishes, all of the force in the cord di-
rection is carried by the cord. The stress perpen-
dicular to the cords., as well as the shear stress, is
assumed to be carried by the matrix. The matrix
stress distribution is then transformed back to the

original principal directions so that it can be com-
pared with the distribution obtained directly from
the net analysis. In addition, the cord loads from
thia analysis can be compared with those of the net
theory. Again, it is assumed that alternate plies
carry the same loads, that the,~aminate is composed
of an even number of plies, and that each ply is

geometrically and materially the same except for
the cord angle. As in the net, the continuum is

presumed to be two dimensional only.
Figure 5 shows a general two-dimensional stress

state applied to an elemeniof a symmetric angle-
ply structure. In this sketch, y and x again repre-
sent the principal directions, and S&dquo;, Sa, and S&dquo;Z are
the applied stresses. This element will be analyzed
in detail below, and the results will be readily
adaptable to any structure with an even number of
plies alternately laid up such that the cords make
an angle of -+- a with the y-axis.

.. Applying the generalized Hooke’s Law to each
of the plies, the strain-stress relations are found to
be as follows : .

Fig. 5. Loaded element of symmetric laminate.

Here, the o and Q’ are the individual ply stresses.
The E represent the extensional and shearing strains
while the a;; are the elastic constants associated
with the individual plies. The E are the same in
each ply, since the assembly deforms as a bonded
unit. The ai, have been studied ins some detail by
Clark ’[3, 4J, and it has been found that each aii
can be determined by knowing only basic geometric,
elastic and constructional properties of the ipdivi-
dual ply..

In addition to the strain-stress relations, force
equilibrium requires that

Equations 25, 26, and 27 represent a system of nine
equations and nine unknowns ey, es,. e&dquo;s, uy, ext o&dquo;s,

fT’&dquo;, art., fT’ &dquo;s. Solving these equations simultane-
ously gives the following expressions for the stresses



937

. The first step in determining the fraction of the

applied load carried by the cords and the fraction by
the matrix is to transform the stress states of each of

the plies in Figure 5 into directions along the cords
and perpendicular to them, as shown in Figure 6.
The transformed stresses can be obtained from the

well-known equations of a Mohr’s circle analysis.

Rewriting Equations 29 and 30 in terms of Equa-
. tion 28 gives the transformed stresses in terms of
known quantities.

Fig. 6. Transformed stress distribution.

In order to determine the fraction of this stress

distribution carried by the cords and the fraction
carried by the matrix, it is usef ul to recall that this
continuum analysis is to be compared with the net
analysis in which the cords are assumed to be inex-
tensible. ,Thus, to a first approximation, the strain
in the cord direction is assumed zero. Therefore,
for ply 1, the strain in. the cord direction for the

matrix is ’

where it is assumed that all of 0’1 and r are carried

by the matrix. R is the matrix stress in the cord

direction,. However, since t. ~ 0, R ~ &dquo;&dquo;’1. Thus,
in order for the strain in the cord direction to be ap-

proximately zero, there must be an additional stress
~u~l acting in the cord direction of the matrix. This

implies that all of oe is not carried by the cord.
Some of O’e, an amount equal to Nui, is carried by the
matrix. Thus, the total stress carried by the cord
is (0’. - pa, 1). This results in a cord load for ply 1
of 

’ 

,

and for ply 2,

These cord loads may be compared with those of the
net analysis (Eqs. 12).
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Assuming that the load carried by the cords is as
given above, the stress distribution of Figure 6 can

’ 

be re-examined, based on the distribution shown in
Figure 7. However, to compare the matrix stresses
of Figure 7 with those of the net analysis (Eqs. 6
and 7), it is necessary to transform them back to the
original principal directions and recombine them
into a single stress distribution. Figure 8 illus-
trates this transformation and recombination.

Again, using a Mohr’s circle analysis; 
’

where the subscript M refers to matrix stresses in
the individual plies, and where 

’

The stresses in Equations 39 now represent, the
stress distribution in the matrix, when referred to
the original principal directions of the composite
structure. Thus, a direct comparison can be made
between the net and continuum analyses by com-
paring the results obtained from Equations 39 with
those obtained from Equations 6 and 7. An addi-
tional comparison can be made by comparing the
cord loads obtained from Equations 12 and 37. A
detailed study of these comparisons is made l~elow.

The combined stresses are

I 

Fig. 7. Distribution of stresses carried
. 

by cord and matrix.

.Fit. 8. Matrix stresses combined
in principal directions.

~ 

Analytical and Numerical Comparisons
The two theories previously outlined are quite

different in their philosophy. Continuum theory
’treats the net and matrix in its original geometry,
but, in general, allows the cord to be extensible.* 1
Net theory, on the other hand, considers the cord
inextensible, but allows for changes in the cord
angle due to deformation of the structure. Each

1 For purposes of calculating cord loads in this paper, the
cord is considered essentially inextensible compared with the
matrix.
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theory represents one portion of the real physical
situation and, from a purely abstract point of view,
it is not possible to say that one is more accurate
than another. A better theory would be one in-

corporating the features of both approaches. For

the present, it would be useful to simply compare
the two theories quantitatively.
Two methods exist for comparison of the net and

continuum analysis theories. In the first, the form

of each result may be examined to ascertain the

possibility of expressing their relative values in some
analytical fashion directly. This would be most

desirable, if it could be accomplished. A less at-

tractive possibility would be to choose selected

representative stress states and to evaluate the

results from each of the two theories for these stress

states. Both methods will be considered here.

Let us consider first the possibility of analytical
evaluation of the two approaches. The results of

the continuum approach are rather complicated
algebraically. However, they may be substanti-

ally simplified by noting that the elastic coefficients’
aij take on a greatly reduced form when one uses
the physical fact that the extension modulus of a
single ply of material with parallel inextensible

reinforcing cords is indefinitely large in the cord

direction compared to the extension modulus per-
pendicular to the cords. Although the algebra is

lengthy, it may be shown that such an assumption
leads to a simple form for two of the constants pre-
viously defined, i.e., ,

Using these in Equations 32, 33, 34, and 35 gives

If Equations 41 and 42 are used with Equation 39,
one may obtain the following expressions for the
stress carried by the matrix

Thus, the simplification associated with neglecting
the small ratio of modulus perpendicular to cords/to
modulus parallel to cords in a single sheet is suffici-
ent to cause the continuum theory to predict zero ,
shear stress carried by the matrix. This coincides

exactly with the results from net theory, and in this

respect the two theories are identical.
As a further check, let us consider the special case

where the cord angle a = 45°, S.. - 0 and S = Ss
’= S&dquo;. Net analysis, from Equation 24, predicts
no angle change; hence, no deformation, so that the
matrix stresses t. and y are zero. The resulting
cord loads are given by Equation 12 in the form of 

’

It may readily be shown that, for a = 45°,

so that the continuum theory of Equations 41 and
42 gives . 

.

11 -

This means that the matrix stresses are zero, from
reference to Equation 44, which again is in agree-
ment with the net theory, as is the cord load. This

latter quantity may be evaluated .for this ca8e from
Equations 40 and 43 which give . 

’

Using Equations 37 then allows cord loads to be
derived 

I

as was obtained above for the net.
Another method of comparison of the two theories

is by direct numerical evaluation. Fortunately, it
is possible to do this in a dimensionless form, but it
is necessary to testrict attention to a few simple but
illustrative cases. First, continuum theory is made
much easier computationally by assuming that the
modulus of a single ply in the cord direction is

indefinitely, large compared with the modulus in
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. other directions. Second, we restrict attention to
two simple stress states, one of pure tension and
one of pure shear.
Taking first the case of pure tension, it is possi-

ble to compare the angle changes predicted by the
small-displacement net theory (Equ. 10) with those
given by the finite deformation net theory (Equ.
24).&dquo; The latter should be more exact and would in
general be preferred for computation. Using sev-

’ 

eral different values of a dimensionless applied
tension Sill E and a range of initial cord angles, the

final cord angles may be computed for both forms
of net theory and are presented in Table I. Here,
it is seen that the final cord angles are nearly the
same for both theories if the applied stresses are
small (S&dquo;/E = 0.01, S,,/E = 0.05), while for larger
stresses, the differences between small strain and
finite deformation theory become greater. Gener-

ally speaking, the greatest differences seem to ap-
pear at large stresses and large cord angles, where
the finite deformation net theory predicts somewhat
greater angle change.

Cords loads may be predicted by either net or
continuum theory for a state of simple tension S&dquo;
as the only nonzero stress component. This may
be done by continuum theory methods by letting
the modulus E. in the cord direction approach
infinity, and the associated Poisson’s ratio approach
zero. 

’ 

This simplifies the expressions for the elastic
constants in the plane orthotropic case so that

It may be shown, by considering the cords to be
inextensible, that the ratio of shear modulus GZII to
modulus perpendicular to cords E,, is given by

With these relations, 
, ...

This may be used to obtain

For finite-deformation net theory (Equ. 24) must
first be used to obtain a final deformed cord angle.
Then the following quantities can be derived

For these calculations, we assume that the cord
diameter is negligible, so that

This conforms to the assumption used in the con-
tinuum theory, where the in8uence of cord ~re~ ie

, neglected, .
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Cord loads are calculated on this basis for a range
of cord angles, using continuum theory as one form
and two different stress levels in net theory as the
other form. These results are given in Figure 9,
where it is seen that very little difference exists
between the two forms over most of the range of
cord angles. Only at angles in excess of about 65°
do the net theory cord loads for small stresses differ
substantially from the continuum theory and the
net theory for S&dquo;/~ = 0.1. The latter two are
almost identical over the entire range of cord angles.

. 

I

Fig. 9. Dimensionless cord load caused by pure
. 

, 

tension vs cord angle.

Similar results are obtained for the matrix stresses

t&dquo;, in the applied stress direction, and 1, in the direc-
tion perpendicular to the applied stresses. These
are plotted in Figures 10 and 11. Again, it is seen
that continuum theory and net theory for S&dquo;/E
= 0.01 and S&dquo;/E = 0.1 are essentially identical.

Fig. 10. Dimensionless matrix stresses due to pure
tension S. vs cord angle.

Fig. 11. Dimensionkm matrix sbvsm due to pure
. tension S, vs cord angk. , 

For an applied shear stress Sq, with no applied
normal stresses SZ and S&dquo;, it may be shown that
the finite-deformation net theory gives

For continuum theory, one must calculate the fol-
lowing quantities

From these, one obtains

from which

and the cord load is

Values of cord tension To and T’, for net and con-
tinuum theories were calculated for this condition of
shear stress and were found to be identical for all
cord angles. They are shown in Figure 12. Values
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Fig. 12. Dimensionless cord load due to applied
. shear stress Sw vs cord angle.

of shear stress carried by the matrix for continuum
theory were calculated and found to be zero, as is

the matrix shear stress from net theory. Thus, for ,
shear stresses applied to a body net and continuum
theory give identical results.
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Flexing Fatigue of Glass-Fiber Filter Cloth
R. E. Hicks and W. G. B. Mandersloot

Council for Scientific and Industrial Research, Chemical Engineering Group, 
Pretoria, South Africa 

Abstract

A flexing endurance test, using a modification of ASTM D643-43 for paper, is suit-
able for the evaluation of glass-fiber filter cloth. The test can be applied to new cloths
and cloths after exposure to heat, this being the major cause of deterioration of the cloth
properties in practice. Superior flexing endurance, when new, is not necessarily main-
tained after heat exposure.

The life distribution is log-normal for the texturized-yarn weft direction and bi-modal
log-normal for the continuous-filament-yarn warp direction. For the warp, a two-stage
mechanism leading to failure is evident from the observed specimen elongations; for the 
weft, only one stage was observed.

The log of life is inversely proportional to the flexing angle, which is explained by
considering the flexing angle (proportional to the length of specimen being flexed) as an
equivalent of specimen length in axial-stress cycle fatigue.

’ 

.. Introduction 
’

. Bag filtration is one of the most effective means
of fine-dust collection [8] but it results in dit~culties
when applied to the high-temperature ( > 300° F )
filtration which is desirable in order to minimize the

expense and corrosion dangers resulting from the
cooling of hot gases [20 . A material is required
that is temperature-resistant and capable of with-

standing, at elevated temperatures, the mechanical
wear experienced during the removal of the filter

cake: The latter is effected by reversing the gas
flow which causes partial collapse of the filter bag
tubes, with simultaneous vibration of either the bag
or, using sonic energy, the gas. In some cases, e.g.,
carbon black filtration, the frequency of this cleaning
cycle is high due to the high dust load and the high


